

© 2021 Bloomberg Finance L.P. All rights reserved.

Processing Decimal Data

ACCU 2021
2021-03-13

Dietmar Kühl
Developer
dkuhl@bloomberg.net

mailto:dkuhl@bloomberg.net

© 2021 Bloomberg Finance L.P. All rights reserved.

• Round-Trip: Decimal input comes back as the exact same value
on output.

• Correct Basic Maths:

• In case of too many digits, at least they are correctly rounded.

• Otherwise, addition, subtraction, and multiplication are exact.

• Division, fractional power, etc. generally can’t be exact.

Objective: Correct Decimal Processing

© 2021 Bloomberg Finance L.P. All rights reserved.

• The number of digits grows…

• … for addition to use an extra digit per addition.

• … for multiplication to use the sum of the factors’ digits.

• The number of digits in fixed size representations is limited.

• For exact computations, the number of digits needs to be
controlled.

Number of Digits

© 2021 Bloomberg Finance L.P. All rights reserved.

The Problem

0.1

© 2021 Bloomberg Finance L.P. All rights reserved.

The Problem (double)

0.1
0.1 0.1000000000000000055511151231257827021181583404541015625

© 2021 Bloomberg Finance L.P. All rights reserved.

The Problem (float)

0.1
0.1 0.0999999940395355224609375

© 2021 Bloomberg Finance L.P. All rights reserved.

The Problem (float)

0.1
0.1 1.10011001100110011001100b-4

© 2021 Bloomberg Finance L.P. All rights reserved.

• Integer values do not have a problem.

• For fractional values, a floating point representation is used:

• Due to available hardware, binary floating points are used.

• A binary representation cannot represent all decimal values
exactly.

• The problem is masked by looking as if things work.

The Problem

© 2021 Bloomberg Finance L.P. All rights reserved.

The Problem (float)

0.1
0.0999999940395355224609375Computer! 0.1

I got: 0.1

Let’s use this value instead:

© 2021 Bloomberg Finance L.P. All rights reserved.

• Basic arithmetic operations work correctly.

• Nothing really esoteric, just some simple expressions:

 0.3 + 0.6 == 0.9 
 0.4 - 0.3 == 0.1 
 0.3 * 3 == 0.9

• Sadly: none of the above is true for float or double.

Expectations

© 2021 Bloomberg Finance L.P. All rights reserved.

• Values get decomposed into three components:

• The values of the components depend on the used base.

• The sign of the value: + or -

• An integer used as exponent for the base to scale the value.

• An integer to represent the unscaled value (called significand).

The Representation

© 2021 Bloomberg Finance L.P. All rights reserved.

The Representation

±0…0didi-1…d0.d-1…d-j0…0

di ∈ [0, base)

© 2021 Bloomberg Finance L.P. All rights reserved.

The Representation

(-1)sign * baseexponent * ∑i∈[0,∞) di * basei

© 2021 Bloomberg Finance L.P. All rights reserved.

The Representation

(-1)sign * baseexponent * ∑i∈[0,#digits) di * basei

© 2021 Bloomberg Finance L.P. All rights reserved.

The Representation

(-1)sign * baseexponent * significand

© 2021 Bloomberg Finance L.P. All rights reserved.

The Representation: Special Case Integer

(-1)sign * significand

Computers don’t really use that: using two’s complement makes things a bit simpler.

© 2021 Bloomberg Finance L.P. All rights reserved.

The Representation: Special Case Unsigned Integer

significand

© 2021 Bloomberg Finance L.P. All rights reserved.

• Use the closest representable values.

• Minimizes errors on computations.

• Allows round-trip of decimal values (subject to reasonable constraints):

• The decimal value can be restored from the binary representation.

• Assuming not too many digits are used and the value is in range.

• Trailing zeros can’t be recovered.

Encoding Decimal Values

© 2021 Bloomberg Finance L.P. All rights reserved.

Digit Value:

• 0 * 0.5

• 0 * 0.25

• 0 * 0.125

• 1 * 0.0625

• 1 * 0.03125

• 0 * 0.015625

• 0 * 0.0078125

• 1 * 0.00390625

Encoding Decimal Values: 0.1
Remaining value:

• 0.1

• 0.1

• 0.1

• 0.0375

• 0.00625

• 0.00625

• 0.00625

• 0.00234375

© 2021 Bloomberg Finance L.P. All rights reserved.

• Two related papers:

• “How to Read Floating Point Numbers Accurately”, Clinger, 
https://dl.acm.org/doi/pdf/10.1145/93542.93557

• “How to Print Floating-Point Numbers Accurately”, Steele/
White, 
https://dl.acm.org/doi/pdf/10.1145/93548.93559 
In particular Dragon 4 for general printing.

• Better performance algorithms for Printing: Grisu and Ryu.

Encoding Decimal Values

https://dl.acm.org/doi/pdf/10.1145/93548.93559

© 2021 Bloomberg Finance L.P. All rights reserved.

• Determine the decimal value closest to the encoded binary value.

• To do so, produce leading digits and track the size of the
remaining error:

• Once the error becomes bigger than the remaining value, stop!

• Implication: the binary value correctly represents a decimal value.

Dragon Algorithms Idea (Recovering Decimal Value)

© 2021 Bloomberg Finance L.P. All rights reserved.

• Represent decimal value as binary FP and restore decimal value

• Assumes the decimal is in the range the binary value can cover

• There are a limited number of decimal digits:

• float: 6, double: 15

• Trailing, fractional zeros are lost (numeric value is the same,
though)

Round-Trip

© 2021 Bloomberg Finance L.P. All rights reserved.

• Float uses 24 bits for the significand:

• 10 bits can represent 1024 values, 3 decimal digits.

• 4 bits can easily represent one decimal digit.

• Problem: the values are not evenly distributed.

• Example problem:

• Identical representation for 9.536745e-07 and 9.536746e-07
(0x35800002)

Why Can Float Only Round-Trip 6 Digits?

© 2021 Bloomberg Finance L.P. All rights reserved.

• Subtraction, addition, multiplication can produce exact values.

• Comparison and formatting readily produce correct results.

• Decimal rounding can be done correctly.

Base 10: Exact Representation of Decimal Value

© 2021 Bloomberg Finance L.P. All rights reserved.

• The usual representations when processing text.

• BCD (Binary Coded Decimal) packs the data more tightly:

• 4 bits per digit (or sign or, possibly, decimal point).

• Problems:

• Variable size or a relatively small range of value.

• Computations are relatively slow.

Decimal Representations: String

© 2021 Bloomberg Finance L.P. All rights reserved.

• Representation is just a signed integer: decimal point implicit in
the type.

• Advantage: Operations are very fast - just integer operations.

• Disadvantage: the scale needs to be known and fixed.

• FixedPoint<N> + FixedPoint<N> => FixedPoint<N>

• FixedPoint<N> * FixedPoint<M> => FixedPoint<N + M>

Decimal Fixed Point: Scale by a Fixed Power of 10

© 2021 Bloomberg Finance L.P. All rights reserved.

• FixedPoint<N> + FixedPoint<M> => FixedPoint<max(N, M)>

• Not quite as fast: requires a multiplication by 10abs(N - M).

• Often a suitable, constant scaling factor isn’t known.

• Make it more flexible: don’t encode the scaling in the type!

• Use scaling factor from context: becomes more fragile.

• Idea: store the scaling factor together with the value!

Decimal FixedPoint: Different Scaling Factors

© 2021 Bloomberg Finance L.P. All rights reserved.

• Representation is similar to binary floating point.

• The representation is not normalized:

• Equal values may have multiple representations: cohorts.

• Allows representation of number of trailing zeros.

• Although equal these may display differently, e.g., 0.1 and 0.10.

• Standardized by IEEE 754 (2008)

Decimal Floating Point: Scale by Variable Power of 10

© 2021 Bloomberg Finance L.P. All rights reserved.

• IEEE 754 DFP use ~54 bits for the signficand, ~9 bits for the exponent, 
and 1 bit sign.

• Scaling for addition may require division by a power of 10:

• Fixed set of divisors needed: use precomputed values with multiplication.

• Idea: instead of division by 10n, multiply by 2k * 10-n .

• Typical use cases often sum values with the same scale.

• The flexibility has some cost.

Decimal Floating Point

© 2021 Bloomberg Finance L.P. All rights reserved.

• a / b

• == a * 1 / b

• == a * 2n / (b * 2n)

• == a * (2n / b) / 2n

• ≈ a * ⎣2n / b⎦ / 2n

• Choose n such that the error doesn’t matter.

Multiplication Instead of Division

© 2021 Bloomberg Finance L.P. All rights reserved.

• With C++, DFPs can be represented as a suitable class.

• There is an open source implementation as part of BDE.

• bdldfp::Decimal64 (and bdldfp::Decimal32).

• Implemented using Intel’s open source C implementation.

• https://github.com/bloomberg/bde/tree/master/groups/bdl/
bdldfp

Decimal Floating Point: bdldfp Implementation

https://github.com/bloomberg/bde/tree/master/groups/bdl/bdldfp
https://github.com/bloomberg/bde/tree/master/groups/bdl/bdldfp

© 2021 Bloomberg Finance L.P. All rights reserved.

• Value preserving: fast, but doesn’t restore encoded decimal
values.

• Decimal value restoring: slow, but get back the original value.

• Which one to use depends on the context.

Conversions From Binary To Decimal Floating-Point

© 2021 Bloomberg Finance L.P. All rights reserved.

• For exact computation, e.g., in finance: decimal.

• The transport can be binary if necessary, e.g., for Excel plug-
ins.

• Any estimate, simulation, etc.: binary.

• Exposing a decimal does allow control over the result.

• The value of fractional powers, e.g. interest rates, can’t be
represented exactly.

Decimal vs. Binary: What to Use

© 2021 Bloomberg Finance L.P. All rights reserved.

• We have 8 fingers: we should use these to count!

Nature Primed Us Well

© 2021 Bloomberg Finance L.P. All rights reserved.

• We have 8 fingers: we should use these to count!

• Sadly, someone had the bad idea to also use the thumbs…

Nature Primed Us Well

Thank you!

Questions?

© 2021 Bloomberg Finance L.P. All rights reserved.

• BDE: https://github.com/bloomberg/bde/tree/master/groups/bdl/
bdldfp

• IEEE 754 analyzer: https://babbage.cs.qc.cuny.edu/IEEE-754/

• Printing Floating Points: https://dl.acm.org/doi/pdf/
10.1145/93548.93559

• Reading Floating Points: https://dl.acm.org/doi/pdf/
10.1145/93542.93557

References

https://github.com/bloomberg/bde/tree/master/groups/bdl/bdldfp
https://github.com/bloomberg/bde/tree/master/groups/bdl/bdldfp
https://babbage.cs.qc.cuny.edu/IEEE-754/
https://dl.acm.org/doi/pdf/10.1145/93548.93559
https://dl.acm.org/doi/pdf/10.1145/93548.93559
https://dl.acm.org/doi/pdf/10.1145/93542.93557
https://dl.acm.org/doi/pdf/10.1145/93542.93557

