

Vittorio Romeo

vittorioromeo.info
vittorio.romeo@outlook.com
vromeo5@bloomberg.net
@supahvee1234

ACCU 2021

2021/03/12
Virtual Event

(C) 2021 Bloomberg Finance L.P. All rights reserved.

C++11/14 at Scale
What Have We Learned?

http://vittorioromeo.info/
mailto:vittorio.romeo@outlook.com
mailto:vromeo5@bloomberg.net
https://twitter.com/supahvee1234

Backstory

Introduction

Why are we talking about C++11/14 in 2020?

How C++11/14 can surprise you today

C++ at scale

"Safety" of a feature

Case study: extended friend declarations

introduction
what is this talk about?

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

10

Why are we talking about C++11/14 in 2020?

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

11

Full C++11 adoption: ~83%

Full C++14 adoption: ~58%

isocpp annual survey
results - 2018

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

12

Full C++11 adoption: ~88%

Full C++14 adoption: ~65%

isocpp annual survey
results - 2019

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

13

Full C++11 adoption: ~90%

Full C++14 adoption: ~74%

isocpp annual survey
results - 2020

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

14

The results might seem good...

However, ~20% of people were not fully using C++11 in 2018

And ~25% of people were not fully using C++14 in 2020

Sample size was ~3000 in 2018, ~2000 in 2019, ~1000 in 2020

Personal experience tells me C++11 is still a luxury in some places

Example: legacy architectures

People still complain online -- vocal minority?

isocpp annual survey
conclusions

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

15

"Experience is the best teacher"

I've been using Modern C++ since 2012

C++11/14 more widely used in production, especially over the past ~6 years

I've been teaching C++11/14 professionally since ~4 years

There are great learning resources

But most teach "the features" rather than "the experience"

What looks good on paper might not work in the "real world"

time
experience matters

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

16

How C++11/14 can surprise you today

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

17

C++11/14 features can be unpredictable, even today

Q: What's the smallest change to the core language you can think of in C++11?

unexpected behavior
c++11/14 can be surprising

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

18

Hint...

> >
unexpected behavior
c++11/14 can be surprising

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

19

Did you know that � closing angle brackets can...

...make a valid C++03 program ill-formed?

...silently change a program's behavior?

unexpected behavior
closing angle brackets

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

20

template <int POWER_OF_TWO>
struct PaddedBuffer { Õ� ÕÕ� Õ� };

PaddedBuffer<256 � 4> smallBuffer;

Valid prior to C++03, ill-formed since C++11

Easy fix: wrap the right shift expression in parentheses

unexpected behavior
closing angle brackets

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

21

enum Outer { a = 1, b = 2, c = 3 };

template <typename>
struct S { enum Inner { a = 100, c = 102 }; };

template <int>
struct G { typedef int b; };

int main()
{
 return S<G< 0 � �c> �b> �a;
}

Valid in both C++03 and C++11, but completely different meaning!
C++03 returns 100

C++11 returns 0

unexpected behavior
closing angle brackets

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

22

Unlikely to happen in practice

Example of something "innocent" hiding a pitfall

How about...

Attributes that can make your code ill-formed NDR?

extern template not improving compilation time or code size at all?

Destruction order UB with Meyers Singletons?

Encoding of whitespace within raw string literals?

Almost every feature has a... "dark side"

unexpected behavior
closing angle brackets

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

23

Modern C++ at scale

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

24

What is the best way of teaching C++11/14?

What features should be prioritized/avoided?

Diversity of skill and seniority

Impact of style guides

at scale
heterogeneous environment

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

25

Age range: 21-70+

Prior C++ experience

Prior development experience

Experience with other languages

"Interest" in Modern C++

Application/library development goals

at scale
diversity

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

26

Companies can have thousands of engineers

Not every company has fancy code governance tools

A style guide is essential to promote consistency and discoverability

Who writes the style guide?

What is the "input" to a style guide?

at scale
style guides

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

27

"Safety" of a feature

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

28

Every C++ feature is "safe" when used correctly...

But what is the likelihood that it is used correctly?

Does the feature have any "attractive nuisance"?

What are the advantages of using a feature compared to its risks?

Is it worth teaching to a new hire? To an experienced hire?

definition
what do we mean by safety?

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

29

From our book:

"The degree of safety of a given feature is the relative likelihood that
widespread use of that feature will have positive impact and no adverse effect
on a large software company’s codebase."

Not an exact science

Relies on teaching and usage experience

Useful metric to decide what to teach or to focus on

definition
what do we mean by safety?

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

30

Safe: add considerable value, easy to use, hard to misuse

Ubiquitous adoption of such features is productive

Conditionally Safe: add considerable value, but prone to misuse

Require in-depth training and additional care

Unsafe: provide value only in the hands of an "expert", and prone to misuse

Wouldn't teach these as part of a general C++11/14 course

Require explicit training on their use cases and pitfalls

definition
safety levels

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

31

The override keyword is the prime example of a safe feature

class MockConnection : Connection
{
 void connect(IPV4Address ip) override;
};

Prevents bugs

Makes code self-explanatory

No real technical downsides

Only pitfall: overreliance without enforcement

a safe feature
override

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

32

Range-based for loops are often great... until they aren't

for(Combo& c : keyboardTriggerGetters[bindID]().getCombos())
{
 Õ� ÕÕ�
}

class TriggerGetter
{
public:
 std �vector<Combo> getCombos() const;
};

Q: Any issue? Is the code above OK?

a conditionally safe feature
range-based for loops

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

33

for(Combo& c : keyboardTriggerGetters[bindID]().getCombos())
{
 Õ� ÕÕ�
}

The code above was OK for months...

Until an "optimization" was implemented!

class TriggerGetter
{
 std �vector<Combo> cachedCombos;

public:
 const std �vector<Combo>& getCombos() const;
};

a conditionally safe feature
range-based for loops

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

34

Range-based for loops are a fantastic tool

But you need to be aware of their pitfalls

Hence, additional training is required (compared to override)

This is why they are a conditionally safe feature

Categorization might change in the future, see:

P2012: "Fix the range-based for loop"
(N. Josuttis, V. Zverovich, F. Mulonde, A. O'Dwyer)

a conditionally safe feature
range-based for loops

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

35

https://wg21.link/p2012

decltype(auto) has some very important use cases

Yet, it is often misused without proper training and care

Example: higher-order functions

template <typename F>
decltype(auto) logAndCall(F � f)
{
 log("invoking function ", nameOf<F>());
 return std �forward<F>(f)();
}

an unsafe feature
decltype(auto)

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

36

I used to teach decltype(auto) right after auto and decltype

Train of thought: provide a complete overview of type inference

Actual results: overuse of decltype(auto)

Some students thought:

If decltype(auto) does everything auto does and more, why not use it all
the time?

If decltype(auto) is more flexible, why not use it when I'm not sure when
to choose between auto and auto& ?

an unsafe feature
decltype(auto)

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

37

In order to understand when decltype(auto) is appropriate, you need to:

Have a solid grasp on type inference and value categories

Be somewhat experienced and familiar with both decltype and auto

Have some metaprogramming experience (e.g. SFINAE)

I couldn't find valid use cases for decltype(auto) in variable position

Only real use cases are as a return type placeholder

And those have to be compared against a trailing return type

decltype(auto) is far from trivial!

an unsafe feature
decltype(auto)

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

38

Safe: attributes, nullptr , static_assert , digit separators, ...

Conditionally Safe: auto , constexpr , rvalue references, ...

Unsafe: [[carries_dependency]] , f�nal , inline namespace , ...

Safe Cond. Safe Unsafe

C++11 18 21 7

C++14 5 3 2

safety
more examples

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

39

Teach safe features early and quickly

Most of them are QoL improvements or hard to misuse

Trust your students!

Teach conditionally safe features by building on top of safe knowledge

They require more time and examples

Show how they can backfire

Have exercises that make students question whether to use a feature or not

Leave a subset of unsafe features for self-contained CE courses

E.g. "Library API and ABI version with inline namespaces"

safety
teaching strategy

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

40

Case study: extended friend declarations

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

41

Prior to C++11, friend declarations require an elaborated type specifier

Syntactical element having the form <class|struct|union> <identif�er>

struct S;

struct Example
{
 friend class S; Õ� OK
 friend class NonExistent; Õ� OK
};

extended friend declarations
basics

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

42

This restriction prevents other entities to be designated as friends

E.g. type aliases, template parameters

using WindowManager = UnixWindowManager;

template <typename T>
struct Example
{
 friend class WindowManager; Õ� Error
 friend class T; Õ� Error
};

extended friend declarations
basics

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

43

Use of C++03 friend can sometimes be surprising

struct S; Õ� This S resides in the global namespace

namespace ns
{
 class X3
 {
 friend struct S;
 Õ� OK, declares a new `nsÕ�S` instead of referring to `Õ�S`
 };
}

extended friend declarations
basics

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

44

C++11 extended friend declarations lift all the aformentioned limitations

struct S;
typedef S SAlias;

namespace ns
{
 template <typename T>
 struct X4
 {
 friend T; Õ� OK, refers to template parameter
 friend S; Õ� OK, refers to `Õ�S`
 friend SAlias; Õ� OK, refers to `Õ�S`
 friend decltype(0); Õ� OK, equivalent to `friend int;`
 friend C; Õ� Error, `C` does not name a type.
 };
}

extended friend declarations
basics

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

45

However, we categorize this feature as unsafe -- why?

It is rarely useful in practice, like C++03 friend

Promotes long-distance friendship (!)

When a type X befriends a type Y which lives in a separate component...

X and Y cannot be thoroughly tested independently anymore

Physical coupling occurs between X and Y 's components

Possible physical design cycles can happen

extended friend declarations
safety

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

46

However, even an unsafe feature can have some compelling use cases

For example, avoiding typos

struct Container;

struct ContainerIterator
{
 friend class Contianer;
 Õ� Whoops, compiles!
};

struct Container;

struct ContainerIterator
{
 friend Contianer;
 Õ� Error, no such type!
};

Other interesting use cases: type alias customization points, PassKey idiom, ...

However, let's focus on CRTP

extended friend declarations
safety

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

47

CRTP stands for "curiously recurring template pattern"

template <typename T>
class Base
{
 Õ� ÕÕ�
};

class Derived : public Base<Derived>
{
 Õ� ÕÕ�
};

Base knows who derives from it, thanks to T

Useful to implement mixins and factor out copy-pasted code

extended friend declarations
CRTP

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

48

Example use case: instance counter

class A
{
 static int s_count; Õ� declaration
 Õ� ÕÕ�

public:
 static int count() { return s_count; }

 A() { �s_count; }
 A(const A&) { �s_count; }
 A(const A �) { �s_count; }
 ~A() { �s_count; }
};

int A �s_count; Õ� def�nition (in .cpp f�le)

extended friend declarations
CRTP

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

49

Factor out the counter, using protected access specifier

template <typename T>
class InstanceCounter
{
protected:
 static int s_count; Õ� declaration

public:
 static int count() { return s_count; }
};

template <typename T>
int InstanceCounter<T> �s_count; Õ� def�nition (in the same f�le)

extended friend declarations
CRTP

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

50

Let's use it!

struct A : InstanceCounter<A>
{
 A() { �s_count; }
};

struct B : InstanceCounter<A>
{
 B() { �s_count; }
};

Q: Any issue?

extended friend declarations
CRTP

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

51

Also, a class further down the hierarchy tree could mess with s_count

struct AA : A
{
 AA() { s_count = -1; } Õ� Oops! *Hyrum's Law� is at work again!
};

We'd like to prevent mistakes and hijacking of the counter

Turns out, extended friend declarations solve both issues!

extended friend declarations
CRTP

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

52

Turn s_count from protected into private

Befriend T

template <typename T>
class InstanceCounter
{
 static int s_count; Õ� Make this static data member `private`.
 friend T; Õ� Allow access only from the derived `T`.

public:
 static int count() { return s_count; }
};

extended friend declarations
CRTP

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

53

struct B : InstanceCounter<A>
{
 B() { �s_count; }
 Õ� error: 's_count' is private within this context
};

struct AA : A
{
 AA() { s_count = -1; }
 Õ� error: 's_count' is private within this context
};

extended friend declarations
CRTP

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

54

Extended friend declarations seem of limited use at first

They also promote bad design (physical coupling, long-distance friendship)

However, they have some nice properties

Avoidance of typos/mistakes

Great synergy with CRTP

Due to their niche nature, we categorize them as unsafe

Significant training and experience is required to avoid misuse

extended friend declarations
CRTP

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

55

Conclusion

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

56

C++11/14 at scale are still an open research area

"Human cost" of a feature is not easy to quantify

Categorizing features by "safety" helps with devising learning paths

For productivity and stability, it is important to prioritize what to teach

All features have good use cases and nasty pitfalls

"Knowledge is power"

conclusion
lessons learned

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

57

"Embracing Modern C++ Safely"

John Lakos
Vittorio Romeo

Rostislav Klebnikov
Alisdair Meredith
...and many others

Out in Q2 2021 -- emcpps.com

Follow me on Twitter for updates: @supahvee1234

conclusion
emc++s status

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

58

https://emcpps.com/
https://twitter.com/supahvee1234

Thanks!
https://vittorioromeo.info

https://github.com/SuperV1234/accu2021

vittorio.romeo@outlook.com
vromeo5@bloomberg.net

@supahvee1234

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234 | (C) 2021 Bloomberg Finance L.P. All rights reserved.

https://vittorioromeo.info/
https://github.com/SuperV1234/accu2021
mailto:vittorio.romeo@outlook.com
mailto:vromeo5@bloomberg.net
https://twitter.com/supahvee1234

