

So I'm pretty sure that COVID will need no introduction. Although to be fair this talk will work with any communicable disease, plus a lot of other things that behave in a
similar fashion, such as memes.

Dom Davis
@idomdavis

about.me/idomdavis

I probably need some introduction. My name is Dom Davis and I am a go developer who has been doing bad things to innocent graphs for a long time.

Dom Davis
@idomdavis

about.me/idomdavis

Despite having decades of experience, I always feel like an impostor at this conference because there are loads of super intelligent people who ask my technical
questions I can't answer. Which is why I use Go. Go is a simple language, and I am a simple person.

0

25

50

75

100

April May June July

Graphs almost certainly need an introduction. This is not a graph. This is a chart.

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

x=y

This is a graph of a function, but that's not the type of graph we're talking about.

What we're going to be talking about is the discrete maths definition of graphs. The confusion comes about because people routinely refer to charts as graphs...

but given we're in a world where literally literally now means figuratively, this is not a hill I'm willing to die on.

h5ps://en.wikipedia.org/wiki/Graph_theory

So wikipedia provides what it calls a "restrictive but common sense" definition. I... I mean yes, I guess, although I'm having to infer what half of that means.

In this case a picture paints a thousand words, or hides a bunch of mathematical symbols.

Vertex, node or point

A graph is simply a set of things we call vertices, or nodes, or points

Vertex, node or point

edge, link or line

which can be joined with a set of things we call edges, links or lines.

node

link

Initially I shall use the words nodes and links, although we'll change links later for reasons that will hopefully be obvious.

node

link

Typically nodes are circles, links are lines.

A slightly more complex graph definition allows for links to have direction. This is a directed graph. Unsurprisingly the previous version was an undirected graph.

A

B

C

We can go further and store information on the nodes which now makes our graph useful.

package main

import "fmt"

func main() {

 fmt.Println("We should probably write some code!")

}

And we can represent this in code:

A

B

C

TransiF
ons to

TransiFons to

TransiFons to

But there's more we can do. I prefer to call links "relationships" because I also store information on the link. This information helps us understand how two nodes are
linked, that is, the relationship between them. So lets add that to our data structure.

package main

import "fmt"

func main() {

 fmt.Println("Let's add relationships")

}

So lets add that to our data structure.

id

named

A

foo

id

named

B

bar

So let's consider two subgraphs, that is portions of a graph that look like this. If we were to allow more complex values on our nodes ...

{

 id: "A"

 name: "foo"

}

{

 id: "B"

 name: "bar"

}

we could do this... This is semantically equivalent. This sort of structure is what backs a property graph.

package main

import "fmt"

func main() {

 fmt.Println("Let's write more code")

}

So lets add that to our data structure.

package main

import "fmt"

func main() {

 fmt.Println("Introducing Neo4j")

}

package main

import "fmt"

func main() {

 fmt.Println("A basic population")

}

package main

import "fmt"

func main() {

 fmt.Println("\"Contact\"")

}

package main

import "fmt"

func main() {

 fmt.Println("Infection")

}

package main

import "fmt"

func main() {

 fmt.Println("Location")

}

package main

import "fmt"

func main() {

 fmt.Println("Trace")

}

Dom Davis
@idomdavis

about.me/idomdavis

