
Reports & Opinions
Reports

Editorial, From the Chair, Membership and Conference Organiser 4
Standards Report and Mentored Developers 5

Dialogue
Student Code Critique (competition) entries for no 17 and code for no 18 6
The Wall - Your Letters 9
Francis’ Scribbles 12

Features
What is a Hash Table? by Victoria Catterson 14
Enlarging on “A Problem of Access” by Atul Khot 16
XM Parsing with the Document Object Model by David Nash 19
4DML Revisited by Silas S Brown 23
Professionalism in Programming 15 - The Outer Limits by Pete Goodliffe 24
Linux Server Series part 1 by Paul Grenyer 27

Reviews
Bookcase 28

Copy Dates
C Vu 14.6: November 7th
C Vu 15.1: January 7th

Contents

Contact Information:
Editorial: James Dennett

76 Lawn Road,
Bristol, BS16 5BB
0117 9653875
editor@accu.org

Advertising: Pete Goodliffe
Chris Lowe
ads@accu.org

Treasurer: Bryan Scattergood
19 Bayford Place
Cambridge, CB4 2UF
01223 475468 (home)
01223 692445 (work)
treasurer@accu.org

ACCU Chair: Alan Griffiths
alan@octopull.demon.co.uk
chair@accu.org

Secretary: Alan Bellingham
020 8998 6964
secretary@accu.org

Membership David Hodge
Secretary: 01424 219 807

membership@accu.org

Cover Art: Alan Lenton
Repro: Parchment (Oxford) Ltd
Print: Parchment (Oxford) Ltd
Distribution: Able Types (Oxford) Ltd

Membership fees and how to join:

Basic (C Vu only): £15
Full (C Vu and Overload): £25
Corporate: £80
Students: half normal rate
ISDF fee (optional) to support Standards

work: £21
There are 6 journals of each type produced

every year.
Join on the web at www.accu.org with a

debit/credit card, T/Polo shirts available.
Want to use cheque and post - email

membership@accu.org for an
application form.

Any questions - just email
membership@accu.org

4 CVu/ACCU/Reports & Opinions

Reports & Opinions
Editorial
In a break from routine, I would like to start by
saying thank you to all of those who continue to
contribute. My greatest fear when I took the
helm of C Vu was that I’d be begging for material
days before a deadline. To date that has not
happened, and indeed you, the readership, have
been spared the horror of having me publish my
own articles. (That day will come, and then you
will know of what I speak!)

What should C Vu cover?
The first appearance of an article from ACCU’s
recently-formed Python SIG raised some concerns
about the direction C Vu is taking, and which
direction it ought to be taking. Some things are
uncontroversial, I hope: C Vu is to be consistent
with the goals of the ACCU, in particular
advocacy of professionalism in programming at
all levels, both when programming as a hobby and
when employed to do so. So far, so good. The field
of programming, however, is far too large to be
covered by a single journal, or most likely even a
single organisation. We must limit our attentions,
or risk failing to do justice to any area we explore.
The C and C++ programming languages remain
the essence of ACCU, but professionalism dictates
that we should not be so narrow minded as to
neglect other tools. The question then becomes:
how much effort should ACCU invest in things
outside of the world of C and C++ and how much
space should C Vu devote to them? If we cover
Java, should we also cover C#? If we welcome a
Python SIG, what about Perl? Tcl?

Sven Rosvall’s letter is one opinion. In his
column Francis Glassborow presents another.
Surely there are more, and equally surely a solution
will be found that is acceptable to the vast majority
of ACCU’s pragmatic membership. Please do
consider what you want from ACCU, and make
your voice heard. You can write on the mailing lists
(such as accu-general), write to cvu@accu.org, or
find you own forum. ACCU being the way it is, the
decision will be made by the members who make
the effort to influence it. Those who contribute
material also have a large say – as editor, I only
select from the material I receive and ask for
volunteers to write about subjects that I know to be
of interest to the readership.

Software Configuration
Management
A vital tool in every serious programmer’s toolbox
is (or should be) a version control system. Any
company developing software without one should
address that now. (If that’s you, stop reading.
Install version control before reading on.) Version
control is the most basic level of the whole subject
known as software configuration management
(SCM), and companies such as Rational Software
and Serena Software will be happy to buy their
consultants expensive cars with the fees they will
charge to make sure your SCM solution is working
as it should. One remarkable thing, though, is how
hard it is to find a version control tool that can
support even a basic set of functionality with no

fundamental flaws. Surely software designed to
help development ought to allow effortless
renaming of files – and yet most products fail to
achieve even that. One major version control tool
comes armed with tools to repair its database when
it inevitably becomes corrupted. Even spending
£1000 per developer does not guarantee that the
basics work as they should; as is so common, the
extra money seems to buy extra features, many of
which you won’t use, rather than buying better
quality.

In a recent attempt to determine which SCM
solution was appropriate for my company, one
thing surprised me. It is remarkably hard to find
good impartial information on the pros and cons
of different version control systems when you get
outside of the low-budget options such as Visual
Source Safe and CVS. Various of my colleagues
had experience of assorted other systems, but
most of us happily just fall into place and use
whichever system a company imposes without
taking the time to learn about it in depth. SCM
isn’t what drives us, it’s just a necessary thing
(and sometimes feels like a necessary evil .)

Once again the punchline is too obvious: that
ACCU members, between them, have a vast
wealth of experience of version control and
higher-end SCM systems, and with effort could
collate that experience into a rich resource. Is
there a willingness to do this? If so, how would
it best be done? I would be happy to publish
summaries of individual tools, or comparisons,
or descriptions “from the trenches” of members’
experiences in trying to get these tools to make
development better, not harder.

Teaching Standard C++
Experience in a number of places suggests to me
that much teaching of C++ in academic
institutions (where commercial interests have not
driven faculties to teach Java or C#) is still
covering pre-standard C++. Given that the C++
Standard has not changed since it was officially
published in 1998, there now seems to have been
ample time for most people in a position to teach
the language to have updated their knowledge, and
tools which are able to compile at least the vast
majority of modern C++ are widely available
without paying an arm and a leg. Surely many
college teachers are making the necessary effort,
and still others while falling short of this ideal are
still offering a valuable service to students who
would otherwise have nobody from whom to learn
C++. Nonetheless, there seems to be a gulf
between academia and practice, and unusually in
this case it is often the practitioners who are more
formally correct. This is a very real problem,
because today’s students are tomorrow’s
professionals and bad habits die hard. It is
understandable that most teachers are not experts
– achieving and maintaining expertise in
contemporary computing is a time-consuming
commitment – but there should be steps we can
take to help. Maybe our student members can tell
us how C++ is taught, maybe we can provide
online material aimed at quickly bringing a
motivated but rusty teacher up to speed on
standard C++. Your suggestions are welcome.

And now, after this longer than usual
editorial, on to the reports…

James Dennett

From the Chair
Alan Griffiths <chair@accu.org>

In my last report I mentioned that our
Advertising Officer Pete Goodliffe is standing
down, in this report I’m pleased to tell you that
Chris Lowe has offered to contribute. Details of
how this will happen are being sorted out and
there will be more information in the next C Vu.
Thanks Chris for volunteering and thanks Pete
for the work over the last few years.

By now preliminary information relating to the
conference should be available. I was very pleased
to meet many of you at the last conference and am
looking forward to doing the same next year.

Membership
David Hodge <membership@accu.org>

At the time of writing (9th Sept) we have had
150 more renewals than at the same time last
year, if you are one of the early renewals then
thank you. If you are reading this, and you have
not yet renewed then this is the last journal that
you will receive, unless you take some action in
the next few weeks. If you are not sure if you
have renewed, then the mailing label always
contains your current membership expiry date.
The current paid up membership is 776, which
includes 60 new members who have joined since
July 1st. We have 211 overseas members in 38
countries. For the benefit of the new members
and anyone else who has forgotten, please keep
membership@accu.org updated with
changes in your postal and email addresses.

Conference Organiser
Francis Glassborow
<francis.glassborow@ntlworld.com>
Plans for the ACCU Spring Conference 2003
(April 2nd-5th at the Holiday Inn, Oxford) are
coming along nicely. I think that those attending
will have the best ACCU conference so far. The
line up of speakers will be second to none in the
World and between them they will be covering a
truly immense range of topics. I have no doubt
that there will be some who will be irritated by
some of the topics covered, but I think far more
will be bemoaning the fact that they will often
have to make tough choices.

There is still time for you to propose a talk you
want to give, and this year we have built in time for
less experienced speakers to give shorter (30 minute
presentations). However please do not prevaricate,
if you want to be a speaker you must let me know
very quickly because by the time you read this I will
be drafting the programme and confirming
speaking slots with those already on my list. On the
other hand please do not be put off by the
formidable list of experienced speakers that you
will see on our web site. We all have to start
somewhere. At least you will know that you will
not be faced with an audience of a couple of
hundred experts but by a select group of people who

4

5CVu/ACCU/Reports & Opinions

have chosen to come to your presentation because
they positively want to hear it. Believe me, that
helps when you are less experienced.

Now let me take up a few moments of your time
on the subject of costs. There are always people
who take one look at the costs of a conference,
shudder and move on to something else. Now, if
you are a student, a pensioner or unemployed I can
understand (but remember that the ACCU will
always do what it can to help such members, but if
you do not ask we cannot help). However, if you
are a professional in software development I think
you are making a mistake. More to the point, I think
your employer (which comes to the same thing if
you are self employed) is making a mistake. There
are a multitude of reasons why conferences in
general and ACCU ones in particular are worth
consideration. Let me focus on ACCU ones. For a
hobbyist the cost of attendance is apparently high,
but for the developer they are, frankly, very low.
You get to meet expert practitioners who will enrich
your professional skills. You will make contacts
that may prove invaluable when you are stuck with
a problem. Yes, it should be fun, but the technical
content will also be very high. Do you ever wonder
why so many world-class experts are willing to
come and speak at our events? It certainly isn’t for
the money, because they do not get paid. Most of
them do so, at least in part, because of the
opportunities they get to listen to each other. I think
we should not value them any less than they value
each other. If you are truly a professional in
software development you should be attending at
least one conference a year. If you employer does
not agree then it is time to ask yourself whether you
really want to continue with that employer.

Hobbyists also get excellent value but for
slightly different reasons. How much does your
hobby cost you every year? I suspect that it is
much more than you think. Many years ago when
I was an officer of the Oxford University Judo
Club I became increasingly frustrated by the
reaction of so many when they learnt of the cost
of a judo outfit. Yes it was substantially more than
you would pay for almost any other item of sports
clothing. So I did a survey of the cost of sports
clothing for all the sports I could. The year on year
costs for Judo were amongst the very lowest. Judo
outfits are robust, you do not have to keep
replacing them. That is more than can be said for
running shoes, track suits etc. The up front one
time payment was high but the long-term costs
were definitely low. I think that compared to the
costs of being a football supporter, climber, model
train enthusiast etc. the cost of coming to the
ACCU conference each year will seem pretty
small. After all, be honest, how much did you
spend on your computing gear last year?

I sometimes hear people say that their
husbands, girlfriends etc. do not like being left at
home for four days. So don’t: bring them with
you. There are lots of things to do round Oxford
and it is close enough to London for them to
spend time there as well. I can understand that it
is not always possible to attend a particular
conference, but if you really are not interested in
attending them at all, I am left wondering why
you want to be a member of ACCU.

Start your campaign to be at the ACCU
Spring Conference 2003 today. Get your
employer and your family on side in time to
make a booking. And do not forget to encourage
your colleagues to come as well.

Standards Report
Lois Goldthwaite

The international C++ standards committee has
a new convenor. He is Herb Sutter, well-known to
ACCU members from his lectures at the annual
ACCU conferences. Sutter is also the author of the
books “Exceptional C++” and “More Exceptional
C++”, many magazine articles, and the Guru of the
Week web column on the internet newsgroup
comp.lang.c++.moderated (catch up on
previous Guru puzzles at www.gotw.ca). In
addition to his independent writing and consulting,
he is also C++ community liaison for Microsoft.
The convenorship involves a serious commitment
of time and travel, and IMHO Microsoft deserves
a lot of credit for underwriting C++
standardardisation efforts to this extent. Along with
ACCU, Microsoft is one of the sponsors for the
C++ committee’s week-long meeting in Oxford
next April. The ACCU conference on April 2-5 falls
between the meetings of the C and C++
committees, and will feature speakers from both
groups, so you can expect a very high level of
technical content. Book early to ensure a place.

Sutter succeeds Tom Plum, who has been
WG21 convenor for the past six years. (ISO/IEC
JTC1 SC22 WG21 is the official name for the
C++ standards committee. Try saying it real fast
three times.) At the meetings and on the
committee reflectors, debate can sometimes get
heated, but Plum’s calm leadership has kept the
effort on a steady course. He will continue to
participate in C++ standardisation.

Mentored Developers
Python Project
Jim Hughes and Tim Penhey
The python project is finally underway, and at
the time of writing (5-Sep-2002) the fast track
group should have finished chapter 2 of the text.
The students of the python project decided to
split into two groups. One group aiming to go
through a chapter every two weeks, and the other
group aiming for a chapter every four weeks.
People were then free to choose their speed based
on past experience and available time to put
forward to the project.

The text that both the fast and slow track groups
are using is: “Learning Python”, Mark Lutz &
David Ascher, O’Reilly, ISBN 1-56592-464-9

Chapter 2 covers the different data types. As
well as the “normal” basics like strings and
numbers, python also has tuples, lists, dictionaries,
and files as standard types. There hasn’t been
much discussion on the list yet, and we have some
fantastic people mentoring the groups. Although
by the time you read this there should have been
much more in the way of messages.

XML Project
Rob Hughes
<r.d.hughes@open.ac.uk>
There have been some changes on the XML project
front in the past month or so. A change in
coordinator for the project coincided with a desire
to set up a learning XML strand as well as the XML
editor/validator strand. As there seems more student
interest in the learning XML project, the sensible
approach seems to be to concentrate on this, with
the hope of gradually moving into the more
advanced project as interested parties develop

XML skills. The main step that the learning XML
strand has taken is in adopting ‘Learning XML’ as
a study text. Orders have been placed, and once
copies are in the hands of students and mentors we
will push on with developing the project further.

Book Group
Paul F. Johnson

“C++ from the top – a guide for those new to programming”
The idea of the book came about very shortly
after the mentored developers group started to
get itself moving. Basically, it was to follow the
“course” and at the end, become a rather good
book. That was the plan.

However....
Rather than writing a book based solely on the

ACCU groups activities, it was decided that a
book for new comers to the language (and to
those moving language over to C++). The
premise was that currently most books for those
new to the language have some severe problems:
1 They are revised from older versions which

normally pay lip service to the C++ standard,
but usually contain the same technical
mistakes they previously had.

2 They are C books which have been flavoured
with C++ or worse, explain C++ as if it were
an extension to C rather than what it really is

3 They are usually poorly written or full of
inaccuracies (such as finding void main() or
iostream.h) – giving someone new to the
language such a bad start is unforgivable,
especially as the standard is now 4 years old.

4 Quite a lot, if not all assume that the person
has some prior language experience. Even the
likes of Schildt and the “for dummies” series
assume prior experience (and we all know
how bad they are!). There is a definite gap for
those who know how to basically switch on
the machine, insert a CD and that’s it.

5 Books seem to favour one platform or one
compiler. This is usually for a Windows or
MS-DOS based machine. This is one of the
largest detractors to learning, especially if you
are not using that specific platform.

From a very early stage in the development and
planning of the book, the book team (which
consists of Paul Grenyer, Kevlin Henney, Terje,
David Nash and myself) decided that we would
come up with a contents list which was not only
logical, but would not scare people off. It was also
decided that a CD would be available with the
book with a copy of GCC for Windows, Linux,
DOS, MacOS and RISC OS (this may expand to
include an Amiga and Atari version, but it seems
unlikely). With the exception of RISC OS, the
version of GCC shipped is (currently) 3.2 with
RISC OS using 2.95.4. A full set of source code
will also be on the CD with explicit instruction on
installation in both the book and on the disc.

When will you get to see this work?

Simple answer - no idea. It is a work in progress,
it is a work being written in our respective spare
time (all of us have full time jobs). Personally, I’d
like to see the first couple of chapters finalised by
mid October. Why so long though? Simple. We
are taking the introductory chapters very slowly
so that the reader will fully understand key
concepts. This does have the inherent danger of
going too slowly as to patronise the reader, so it
must be guarded against.

6 CVu/ACCU/Dialogue

Student Code Critique
Competition
Prizes provided by Blackwells Bookshops & Addison-Wesley

Please note that participation in this competition is open to all
members. The title reflects the fact that the code used is normally
provided by a student as part of their course work.

Note that this item is part of the Dialogue section of C Vu which
is intended to designate it as an item where reader interaction is
particularly important. Readers’ comments and criticisms of
published entries are always welcome.

Francis Glassborow

Student Code Critique 17: The Entries
Last time I asked for a critique of the following short program.

template <int N>
class T {
public: friend T operator+(const T&,

const T&);
private data[N + 1];

};
template <int N>
T<N> operator+(const T<N>& S1,

const T<N>& S2) {
return S1;

}
int main(){
T<64> a, b, c = a + b;

}
The critique was to include more than just identification and
correction of errors. I wanted to see positive advice to the student
on how better to achieve the objective.

When I set the problem I realised that it would actually be rather more
demanding than some of the earlier critiques. That I was right in this is
illustrated by the fact that I only received three submissions. It is a pity
that only one in four hundred members can manage to submit a solution.
Yes, I know about time, but this was summer for most of you. Perhaps
lying around on sun washed beaches is more attractive. Interestingly
the three entries all come from outside the UK (India, US and Norway)
and those members have less time to enter than those in the UK.

From Gurusami Annamalai <d0253028@ncb.ernet.in>
0. Need for a template parameter

The first question that needs to be asked is “Is there a need to make the
class T a template?” This question is important because, when we make a
class a template, and there are too many instances of the template, then the
space complexity of the resultant object code would increase. Paraphrased,
improper usage of template class would lead to code bloat.

There is a more fundamental issue here. For example, in the above
program, if the template parameter, specifies only the attributes of objects,
rather than their behaviour, then its better made a member variable of the
class, and the value could be assigned in the constructor. This means that, if

T<25> t1;
T<50> t2;

behave the same (only their state differ), then the usage of templates is not
justified.

I’ll assume that class T being a template is justified and proceed further.

1. Specifying the access modifiers

When we specify an access modifier, like public: etc, it doesn’t apply to
one member of the class. Rather it applies to all the members of the class that
are declared after the modifier, either till the end of the class declaration, or the
occurrence of another access modifier, whichever is earlier. Because of this
semantics, it would be more self-descriptive if the access modifier is specified
in a line by itself, followed by the members which it qualifies.

For example, it is better to write
public:
friend T operator+(const T&, const T&);

than
public: friend T operator+(const T&,

const T&);
The latter somehow gives the feeling that it applies only to the member

along which it appears; the former, is self documenting. It seems to say
that the following members are public. As a bonus, the former style helps
to avoid errors like the one in the program, (reproduced below)

private data[N + 1]; // data type missing

2. Operator Overloading

While overloading an operator (like ‘+’) for a user-defined data type, it is
better kept as a member function of that class, unless the left operand of
the operator being overloaded is of a different class. In that case, a friend
function would be used.

In the above program we have
T operator+ (const T&, const T&);

// friend function
Since the left hand operand of the operator (the first parameter) is a

reference to an object of the class, for which we are overloading the
operator, this function is best made a member function of the relevant class
(here it is T). So we should prefer the following in place of the above.

T operator+ (const T&); // member function
Suppose we want to do something like

T<25> p;
int j;
T<25> r = j + p;

then we would need,
T<N> operator+(const int&, const T<N>&);

which cannot be converted to be used as a member of template class T.
Only in such cases friend functions (to overload operators) are to be used.

The classic example to demonstrate this requirement is the overloading
of operator<< to work with the ostream object cout. Of course,
there are other examples, but I have given one.

3. Making friends with template function

The declaration,
friend T operator+(const T&, const T&);

taking account of its context in the above program, is the same as
friend T<N> operator+(const T<N>&, const T<N>&);

This, in spite of our best intentions, doesn’t make any friends. This is because
we are looking for a non-template function with name “operator+”, which
doesn’t exist. (g++ compiler, version 2.96, warned me of this!)

The above declaration should be
friend T<N> operator+<N>(const T<N>&,

const T<N>&);
which can be simplified as, again taking account of its context in the above
program,

friend T operator+<N>(const T&, const T&);
and further to,

friend T operator+<>(const T&, const T&);

4. Fixing the above program

By fixing the above program we get,
template<int N>
class T {
public:
friend T operator+<> (const T&, const T&);

private:
int data[N + 1]; // int or anything

};

template <int N>
T<N> operator+(const T<N>& S1, const T<N>&S2){
return S1;

}

Dialogue

7CVu/ACCU/Dialogue

int main() {
T<64> a, b, c = a + b;

}

5. The idiomatic way

The better way to write the above code is,
template<int N>
class T {
public:

T operator+(const T&); // member function
private:

int data[N + 1];
};
template<int N>
T<N> T<N>::operator+ (const T<N>& S1){

return *this;
// first parameter in given program
}

int main() {
T<64> a, b, c = a+b;

}
Gurusami Annamalai

Note that Annamalai is a student in Bangalore. Until today, his was
the only submission, which left me somewhat worried because I am
not sure he has exactly pinned down the problem. Then the following
arrived in my email:

From Christopher Currie <christopher@currie.com>
Syntax Errors
Though the goal was to comment on C++ idioms, there are some syntax
errors that will need to be corrected first, before the code can even be
compiled. The original code, as printed, with line numbers added for clarity:

1 template <int N>
2 class T {
3 public: friend T operator+(const T&,
4 const T&);
5 private data[N + 1];
6 };
7 template <int N>
8 T<N> operator+ (const T<N>& S1,
9 const T<N>& S2) {
10 return S1;
11 }
12 int main() {
13 T<64> a, b, c = a + b;
14 }

The syntax errors are in the declaration of data; the omission of a colon after
private and the lack of a data type. Access control keywords like
private and public are not to be confused with type modifiers such as
const. They are labels that affect the access of all the declarations that follow
them. For this reason, it is good style to keep them on lines of their own:

1 template <int N>
2 class T {
3 public:
4 friend T operator+(const T&,
5 const T&);
6 private:
7 data[N + 1];
8 };

Now we can clearly see the other problem with data, the lack of a data type.
Legacy C compilers allowed identifiers to be implicitly int in the absence
of a type declaration. Although some C++ compilers allow it, this is not
valid C++.

7 int data[N + 1];
Now the code will compile, but it will not link. The reason is subtle, and
the answer in this case covers many points of style that code borrows from
textbook examples. As we clean up the style of the example, hopefully the
answer will become clear.

Class Names & Template Parameters

A major source of confusion in the class is the use of T as an identifier.
T is (over)used in books on template programming, most commonly to

represent the type of the template parameter. In this case, the template
parameter is not a type, it is an integral value. This illustrates the importance
of using parameter names and class names that represent the purpose of
the class or parameter. In this example, there is not enough context to know
the purpose of this class, so we’ll use the name FixedBuffer for the
class, and length for the template parameter.

template <size_t length>
class FixedBuffer {
public:
friend FixedBuffer operator+(

const FixedBuffer&, const FixedBuffer&);
private:
int data[length + 1];

};
template <size_t length>
FixedBuffer<length> operator+(

const FixedBuffer<length>& S1,
const FixedBuffer<length>& S2){

return S1;
}
int main() {
FixedBuffer<64> a, b, c = a + b;

}
This looks better, but now that the obscuring type names are gone, you
might notice that the two operator+ functions look a little different...

Friend Functions

From the C++ specification:
“When a template is instantiated, the names of its friends are treated as

if the specialization had been explicitly declared at its point of instantiation.”
In our code, the function is treated as if it was declared as it appears in the
friend function declaration. This draws attention to what the friend function
is saying. As is common in template classes, the compiler does not require
that you include the template parameters when using the class name within
its declaration. The precise declaration would read:

template <size_t length>
class FixedBuffer {
public:
friend FixedBuffer<length> operator+(

const FixedBuffer<length>& S1,
const FixedBuffer<length>& S1);

...
};

But since it is within a template declaration, the name lookup doesn’t
happen until the class template is instantiated. When our class declared in
main, it’s template declares a friend function that looks like:

FixedBuffer<64> operator+(
const FixedBuffer<64>& S1,
const FixedBuffer<64>& S1);

Aha! This is not a template function! This is why the program will not link,
for the signature of this function does not match the template function that
is defined later in the code. In this case, one correct declaration would be:

template <size_t length>
class FixedBuffer {
public:
friend FixedBuffer operator+<length>(

const FixedBuffer& S1,
const FixedBuffer& S1);

...
};

(There is another syntax that my compiler accepts that requires that you
declare the function before defining the class. I prefer the above.) This
designates operator+ as a template function, and shows that the concrete
instance of the template function that has a matching length template
parameter is the actual friend.

Idiomatic usage

Wow, all these rules for template friends of template classes are hard!
Fortunately, there is a better way. The important point to realize is that
operator+ doesn’t have to be a friend! Think about the following:

int a, b, c;
// ... assign values
a = b + c;

8 CVu/ACCU/Dialogue

Are b and c any different after the assignment than before? Of course not.
The calculated result doesn’t affect either of its parameters. In fact, we can’t
change either parameter, because its arguments are (as in this case) almost
always const! The few operations that need rights to change an operand
include the assignment operators and their kin, and these are almost always
member functions that don’t need to be friends anyway.

template <size_t length>
class FixedBuffer {
public:
FixedBuffer& operator+=(

const FixedBuffer& rhs){
// ...add rhs to *this
return *this

}
...
};

This code illustrates the canonical definition of the add-and-assign operator
that takes its right hand argument as an operator, and returns a reference to
itself, allowing the result to be used as an r-value (in other words, you can
add the result to other variables, use it as a function argument, etc.). We’ve
contained the code for adding FixedBuffer types within a member
function, without any complicated friend functions.

Now, instead of duplicating that code in operator+ , we’ll simply
reuse it in the canonical definition of addition:

template <size_t length>
FixedBuffer<length> operator+(

const FixedBuffer<length>& S1,
const FixefBuffer<length>& S2){

FixedBuffer<length> temp(S1);
temp += S2;
return temp;

}
This very neatly allows us to change the definition of operator+=, and
get an updated definition of operator+ absolutely free. This is typically
the way most of the arithmetical operators are defined for classes that need
addition and subtraction to work the way that we expect that integers do.
Remember this need not only apply to template classes; regular classes can
benefit just as much from this technique.

Summary

This deceptively small piece of code contained a lot of complexity, and in
our analysis we can deduce a couple general rules. Remember, like all rules
there are exceptions, but these will give the student place from which to
build experience:
1 When a function needs to modify private or protected data within a

class, make that function a member function if at all possible.
2 Define non-member, non-friend functions in terms of member functions

to maximize maintainability and correctness.
I was about to put this column to bed when the following arrived in
my inbox.

From Terje Slettebo <tslettebo@chello.no>
I’ve been waiting for a C++ entry, and finally, one came. :)

Also, since I unwittingly “submitted” a blooper (which ended up as
“Problem 3” in “Francis’ Scribbles”, C Vu June & August, :)) let me try
to “remedy” that by submitting this entry. By the way, in the following
discussion, I agreed with Francis, about the problems with that code. It was
originally intended to be just a test of a calculation, as well, not a well-
tested routine. (Indeed you did, it just made a good problem for my column
because it gave me an excuse to write about something I wanted to write about
anyway. I am like that, scavenge for bits wherever they may be found.)

Regarding the given program. It says it can be compiled, but not linked.
However, there are syntax error that makes it not even compile. These may
be typos resulting from transferring the program to the magazine, though.

There are quite a few problems with this code, so let me take them in order:
1. Missing “:” after private.
2. Missing type of data, int chosen arbitrarily to fix it.
3. The operator+() doesn’t make much sense, as it just returns one of

the operands.
4. More seriously, the friend declaration declares a function, not a

function template.
Point 4 leads to the following problem: When it comes to c=a+b it will

have seen the following declarations:

T<64> operator+(const T<64> &,const T<64> &);
// friend declaration only, instantiated
// by the T<64>.
template<int N>
T<N> operator+(const T<N> &,const T<N> &);
// Declaration and definition

Since the first is an exact match for c=a+b; , it won’t instantiate the
template, and you get a link error.

The fix is easy enough: Make the friend declaration a friend
template declaration. One also needs to provide a reasonable
operator+() implementation:

template<int N>
class T {
public:
template<int M>
friend T<M> operator+(const T<M> &,

const T<M> &);
private:
int data[N+1];

};
template<int N>
T<N> operator+(const T<N> &S1,const T<N> &S2){
T<N> temp;
for(int i=0;i!=N;++i)
temp.data[i]=S1.data[i]+S2.data[i];

return temp;
}

As another comment, in general, “T” doesn’t appear to be a very
meaningful class name, either, but it’s hard to tell, without knowing the
context.

OK. On to the alternative. The article said “I want suggestions for
coding idioms that will make the student’s life easier,” so let’s see what we
can do. A common idiom is to implement an operator in terms of the
assignment-version of the operator. See for example [1].

In the case above, operator+() could be a member function, but if
you have an operator where the left-hand argument is another type, then it
has to be a global function. So let’s design a class for this general case,
making the operator a global function. We’ll also make a sensible
operator+=() implementation, that operator+() will use. The
compiler-generated copy constructor does the right thing, so none is
provided, and other constructors are omitted, for brevity, and since they
didn’t appear in the original:

template<int N>
class T {
public:
T &operator+=(const T &other){
for(int i=0;i!=N;++i)

data[i]+=other.data[i];
return *this;

}
private:
int data[N+1];

};
template<int N>
T<N> operator+(const T<N> &S1,const T<N> &S2){
return T<N>(S1)+=S2;

}
int main() {
T<64> a,b,c=a+b;

}
This has a number of advantages over the first one:
1. By providing both += and +, you let the user of the class decide which

to use, knowing that the former is generally more efficient, as it avoids
creating a temporary object.

2. By implementing + in terms of +=, you ensure a consistent behaviour
(and expected efficiency) for the two operators. The operation only
needs to be implemented in +=, and you essentially get + “for free.”

3. An important point is that you don’t need any friend declaration,
unlike the first version. operator+() needs no special access to T,
as it only uses the public interface.

4. By implementing the operator+() as a general template, you may
actually use it for several classes. Here, we only implement it for the
class T, though.

9CVu/ACCU/Dialogue

Some details about the implementation:
l As given in [1], by using an unnamed temporary in the function template

(rather than T<N> temp(S1); S1+=S2; return temp;), we
make it possible for the compiler to perform the return value
optimisation (eliminating the creation of any temporaries, by
constructing the result at the call site), which may be available in more
compilers, than the more recent named return value optimisation.

l It may be debated if operator+=() should return T&or const T &.
However, the advice in [2] and precedence in the standard is to use T&, so
that’s what is used here. The rationale is basically to “do as the ints do.”

References:

[1] Scott Meyers More Effective C++, “Item 22: Consider using op=
instead of stand-alone op.”

[2] Scott Meyers Effective C++ , “Item 15: Have operator= return a
reference to *this.”

The Winner of SCC 17
The editor’s choice is Christopher Currie.

Please email francis.glassborow@ntlworld.com to arrange
for your prize.

Student Code Critique 18
I have taken particular care not to introduce typos into this piece and
I have quoted the first part of a twenty-line error message, not least
because it is less than helpful. The specific problem is one that you
either see straight away or that will take you an embarrassingly long
time to identify. However there are a number of other points that should
be spotted and commented on. Remember you should never allow
your students to go away with no more than the instant fix they seek.

I am trying to compile the following code and getting error that I don’t
understand.

In file pgsimeta.h
#include <vector>
namespace PGSIMeta {
class PgsiMeta {
public:
PgsiMeta();
virtual ~PgsiMeta();
bool operator==(const PgsiMeta);

private:
// MetaData is a class defined at the top
typedef vector<MetaData> DataList;
DataList dataList;

};
}
In file pgsimeta.cpp
#include “pgsimeta.h”
using PGSIMeta;
bool PgsiMeta::operator==(

const PgsiMeta& obj){
return dataList == obj.dataList;

}

Here is the error compiling:
_pgsi_meta.h:51: `PGSIMeta::operator== (const
PGSIMeta::PgsiMeta &)’ must take exactly two
arguments

Try to get entries to me by early November (by Nov. 17 at the latest)

The Wall
Letters to the Editor
Regarding Changes to C Vu

Under the title “this->evolve()”, James wrote about the scope of C Vu.
I don’t agree that C Vu shall be a magazine for Python or Java users. Firstly,
if this happens, I would feel left out as a Perl user. No, C Vu cannot cover
every language. Secondly, I don’t think the world needs another forum for
Python/Java/... If I want to get in depth with Python or Java, then I would
turn to existing forums where there is enough depth and big audiences.

However I think it would be interesting for C Vu to include articles on
other languages with a C/C++ slant, such as how to use C/C++ libraries
from Python/Java and comparisons of languages in various aspects. Yes I
expect a few articles would favour C++ over Java just as a Java magazine
would favour Java but I don’t see any problems with this.

Sorry for complaining when I am not contributing to C Vu. However I
do enjoy reading C Vu even if there are non-C/C++ features like
“Professionalism in Programming” and “A Short History of Character Sets”.

Best regards
Sven Rosvall

Sven_Rosvall@programmingresearch.ie

Thank you for taking the time to express an opinion. I certainly don’t
see C Vu as being a magazine for Python or Java users, but I do see
that carrying a small amount of content for languages other than C
and C++ is appropriate. I hope that the readership will make their
opinions known and shape the form that C Vu takes in 2003. – James

Some Pitfalls:

Dear James,
I received the following collection of traps hidden in typos and

misconceptions from David Caabeiro <dac@globalmente.com>
(one of our newer members). They are exactly the kind of thing that I was
looking for when I presented the original little puzzle in my column. I
wonder if other readers can be stimulated by this to add a few more of
their own.

class foo {
public:

static void f() {}
};
void f() {}

foo:f(); // this calls global f()

switch(c){
case 0: return 0;
case 1: return 1;
defualt: return –1; // default misspelled

};

string s(); // This is a declaration, not a
// construction with no args

int main(){
int *v = new int(10); // instead of new

int[10]
for (int i = 0; i < 10; ++i) v[i] = i;

}

char names[] = {
“David”,
“John”,
“Peter” // comma forgotten here!
“Mary”,
“George”

};
And finally the classic:

void foo() {}
foo; // Forgot()

I hate to think how many hours I have wasted with variants of that last one. Of
course good compilers at a sufficiently high level of warnings give a diagnostic
warning for many of them. That alone should be a good reason to switch to high
warning levels. Unfortunately that often generates spurious warnings from third
party libraries resulting in us fiddling around with #pragmas to hide them.

Francis Glassborow
francis.glassborow@ntlworld.com

10 CVu/ACCU/Dialogue

James,
Some suggestions in response to “A Little String Thing” by Paul

Whitehead (CVu 14.4).
1 The code can be shortened by replacing the definition of struct

is_space with a call to ptr_fun(isspace) from the header
<functional>.

2 The version of isspace Paul uses does not come from <locale>,
but from the C-compatibility library <cctype> . To use the
<locale> version you must pass a locale object as a second
argument. This can make the utility more flexible.

3 I think it’s good practice to use const_iterator whenever you
don’t need an writable iterator. It’s safer.

4 I get suspicious when I see things like the following:
str = (str_start <= str_end) ?

std::string(str_start, str_end) : “”;
This checks for a “special case”. Special cases are inelegant. Programs are
meant to model the real world, but in my experience there are not as many
special cases in the real world as programmers think there are. Is the above
really a special case? I don’t think so. The need for the test stems from
scanning the whole string backwards. Since it has already been scanned
forwards, and a starting position already found, we only need to scan
backwards up to that position.

So we have:
void rem_space(std::string& str) {
typedef std::string::const_iterator str_it;
const str_it str_start =

std::find_if(str.begin(), str.end(),
std::not1(ptr_fun(isspace));

const str_it str_end =
std::find_if(str.rbegin(),

std::string::const_reverse_iterator(
str_start),

std::not1(ptr_fun(isspace)).base();
str = std::string(str_start, str_end);

}
Personally, I would have preferred this function to return the result instead
of changing the parameter:

const std::string trim(const std::string &);
Finally, it can be advantageous to templatize it so that it can work with
wchar_t as well as char. I leave that as an exercise.

Klitos Kyriacou
klitos@klitos.org

Paul Whitehead has provided a response to the message from
Klitos, which I reproduce below:

James,
I would like to reply, at least in brief, if only as a kind-of “thank you”

for replying to the original article. Firstly I’d like to say thanks to Klitos
Kyriacou for reading the article. Secondly, I’d like to say thanks for taking
the time and effort to reply. It is appreciated.

Thirdly, I have an admission to make: I wrote the article/code in January
this year (just after the heady days of Christmas/New Year celebrations :-
). Since then, I’ve been changing compilers and platforms so often and
have also had a hard-disk failure (yes, _of course_ I backed-up the hard-
drive regularly, just not the things it turned out I needed ;-) that I have to
confess I’ve “mislaid” the original code; the article too, as it happens, but
then it’s been reprinted in CVu so at least I can read my own article there!
Now, I did send a copy of the code to be made available on the ACCU
website but I haven’t seen it on there in any recognisable form as yet, so
I’ll have to do some of this from memory - bear with me, if you can.

Points 1 and 4: yes, ptr_fun is good. Tidies things up a little. However,
my own dissatisfaction with the solution I provided is that I find the whole
thing just too verbose for what seems to be a rather trivial problem. Later on
(point 4) you talk about a “special case” and say that it is inelegant. I would
go further and say that special cases do not exist. They are simply a
degenerate case of a more general rule - a general rule which just hasn’t been
found (or even looked for?) yet. When I do design reviews (and in general
they tend to be OO and UML) I consistently weed out special cases as it
shows, at least to my mind, that the problem is not correctly understood and
therefore the solution is not correct. If this sounds a little extreme, then at
least you can see that I fully support your point (4). I would, however, like
to take the thought processes in your point (4) a lot further. As I have already

mentioned, I find the whole thing too verbose and I suspect a more radical
re-think of the initial solution - along the lines of your point (4), but more of
it - may be required. Any takers amongst the C Vu readership?

Point 2 re: locale - yes, passing a locale to isspace does call up the
locale version and this, as you rightly say, will make the utility more flexible.

Point 3 re: const_iterator - hmmm, well, yes, I do tend to use
const_iterator whenever I can - and even “const
container_type::const_iterator it = ...” where possible.
I do this despite other people arguing convincingly that you may as well
use the “simple” iterator in pretty much most cases. Scott Meyer’s Effective
STL springs to mind as having this guideline somewhere (but don’t quote
me, I need to check!). So using const_iterator is arguably not such
a good thing as it may first appear. However, being stubbornly const correct
(at least I hope I am!) I just can’t bring myself to type “iterator” when
“const_iterator” would work too.

Back to point (4) if I may. I’m not sure about passing back a const copy of
the string object as it doesn’t really get you much. A const ref, assuming, of
course, it isn’t a ref to a local (i.e. automatic) in the function or a const pointer
(ditto) - that’s fine. But a const copy? What are you going to do with it? If it is
going to be used in another object then there’s nothing stopping me doing this:

using std::string;
string mySpaceStr(“ abc def “);
string myStr(trim(mySpaceStr));

I could make mySpaceStr a const object and it still wouldn’t change matters
as myStr would still be non-const, as I wished - assuming I’m not just being
sloppy and really did want a non-const myStr string object. Copy constructors
(and assignment operators) in general take a const reference as their argument
so by returning a const copy of the object from the trim function, all you are
doing is passing that const object into a copy constructor in the above case)
and then creating the non-const myStr object from it. A notable exception to
the const argument for copy constructor/assignment operator is
std::auto_ptr<> - and in that case it _may_ make sense to pass back a
const auto_ptr<> as a return value, but that’s a different story...

You mention making the function a template function. Yes, this would
increase its flexibility somewhat. I would find the whole trim() function
much tidier if it were to become a method on the
std::basic_string<> class (thereby incurring the wrath of the
multitude who believe basic_string<> has too many methods
already!). If you consider the following, we could have:
1 trim(string&) - which modifies the argument, original proposal, or
2 string trim(const string&) - which doesn’t modify the

argument and returns a new string object (non-const, as per my
comments above) as you suggest in your comments, or

3 method on the class. Sample usage: string mySpaceStr(
“ abc def “); mySpaceStr.trim(); After this
operation, mySpaceStr now hopefully contains “abc def”

I find option 3 preferable.
Regards,

Paul Whitehead

Dear Editor,
In a recent ‘CVu’ article (April 2002, Vol.14, #2, p.25), Francis

Glassborow (FG) reviewed my latest book, “Embedded C”. I am grateful
to the editor of C Vu for giving me the opportunity to respond to this review.

Let me first say that I began writing software books almost a decade
ago, and “Embedded C” is my third book: I have therefore been an author
long enough to know that commenting on reviews is never a good idea.
When your name appears on the cover of a book, you raise your head above
the parapet. At this point, according to the unwritten rules of this ‘game’,
the reviewers are allowed to take pot shots, and the authors are not allowed
to fire back. In this case, given the tone and nature of FG’s April 2002
article, I decided that I should break with tradition. Naturally, my comments
will relate mainly to this review of “Embedded C”. However, I will
conclude by arguing that there are some more general lessons to be learned
here for the ACCU as a whole.

FG opens his review by stating that “[Embedded C] is one of the most
irritating books that I have reviewed for a long time”. This theme - of
‘irritation” - is maintained throughout the article.

FG’s first source of irritation was, apparently, to find “too many places
where text had been duplicated, almost word for word”. As far as I am
aware, the only text that is duplicated in this book is material in the preface,
a small amount of which re-appears in later chapters. This is, I’m afraid,
a fairly inevitable consequence of my writing style. I expect potential

11CVu/ACCU/Dialogue

readers to be able to skim the preface in a bookshop (or, increasingly, on
line), and to come away with a clear understanding about the contents of
the book. To meet this need, I create the first draft of the preface by
assembling key sections of text from later chapters. In general, this
approach works for me, and has never previously caused any comment
from (let alone irritation to) a reviewer. In this particular book, the main
body of the preface (excluding the ‘Acknowledgements’ section) is five
pages long: even if all of this material appeared again, verbatim,
somewhere in the 300 pages of the main body of the book, I doubt that the
majority of readers would have noticed, let alone been irritated.

Despite his apparent concern about this issue, FG is only able to give
one example of a piece of text which I have repeated. In this piece of text,
FG has found an arithmetic error which I made when calculating the
percentage of the microcontroller market occupied by devices from the
8051 family. FG is right: this is an error, and I should have picked it up.
FG makes quite a lot of this error and - if it could be shown to be
symptomatic of a ‘sloppy’ approach to my subject matter - I would
understand his concern. However, this error is no more than a minor
arithmetic slip-up that appears in an introductory paragraph and which has
no bearing on the meaning of this paragraph, or on any other part of the
book: if it is symptomatic of anything, it is only that the author is human.

The second thing that irritated FG was the source code layout. Here,
his main criticism is that the font used for the source code listings is too
large. Again, I agree, and hope that it will be possible to use a slightly
smaller font in the next edition.

Another layout issue that concerned FG was the fact that in my code I
use both “/* … */” and “//” forms of comments. In my experience,
this is not particularly unusual. FG clearly disagrees with this usage (as
he is fully entitled to do), and he goes on to argue that - as a consequence
of the font size used in the listings and my “inconsistent” comment style -
the book suffers from “poor presentation of about 50% of the printed
pages”. In a room of 1000 ordinary developers (the intended audience of
this review), I do not believe FG would find more than a handful that
backed this assertion.

The third source of FG’s irritation was the fact that I did not explain
why the ‘main’ functions in my code examples do not return a value, and
neither did I explain the ‘unusual’ declarative syntax used in Keil C when
dealing with memory-mapped addresses. He’s right: the book would have
been improved if I had dealt with both of these issues.

The final main source of irritation for FG was my brief attempt to
explain why C is a more appropriate language than C++ for use in
embedded systems. This is an introductory book and my main point was
very simple: accessing ‘ordinary’ variables in a C program carries less of
an overhead than accessing private data encapsulated in a C++ object. I
sought to illustrate this point with some simple code examples in C and
C++. I do not think the point I was making was at all contentious.
Apparently, however, my way of approaching this issue had FG “spitting”
(his word). In his response, he makes a number of detailed observations
about C99, new keywords and something called VLAs, and argues that the
language used for embedded systems is not Standard C. I’m sure that FG’s
comments are all factually correct, but they have little to do with the - very
simple - point I make in this introductory book about the overheads which
result from O-O programming.

FG concludes his review at this point by suggesting that all is not lost,
and he sees “scope for improvement” (my words) in a second edition:
indeed, his closing sentence suggests that Addison-Wesley should get
started on this next edition right away.

As I have made clear above, I agree with the great majority of the
comments which FG makes in his review of “Embedded C”, and they will
be very useful when, in due course, we come to work on the second edition.
Having said that, no book is perfect, and someone who wishes to find fault
will always be able to do so. In this case, in my view, the reviewer has
taken what most developers would view as minor issues and blown them
up out of all proportion. This seems to me to be an over-reaction which
might be expected (if not justified) in an academic journal: however, in a
magazine aimed at professional developers it seems wholly inappropriate.

In addition, although it is far from clear from his review, FG’s last
detailed comment refers to material at around page 84 of “Embedded C”.
There are around 200 more pages. Should I conclude that they are free of
irritation, or that FG gave up in disgust at this point? If the latter is the
case, this would be a great pity, because most of the important material in
this book appears after the introductory chapters which FG chose to focus
on. For example, in Chapter 7, I describe how to create and use a very

simple operating system for embedded applications and - by Chapter 10 -
I discuss the creation of a complete embedded system (an intruder alarm
system), which uses the operating system and other key techniques from
the earlier chapters. Sadly, FG either did not read this material or, for some
reason, did not feel it was worthy of a mention. This seems a pity, because
I would have thought that people reading the review might have liked to
be aware that this material existed.

Of course, the fact that I - as author of a book - disagree with a critical
review is unsurprising. However, I think that this review may have some
more general lessons for your organisation. In the last decade (or so),
according to the ACCU WWW site, FG has reviewed well over 800 books
for you. I haven’t attempted to make a very accurate count, but it appears that
this single individual is responsible for more than 50% of the published ACCU
reviews. As an organisation, you should - I think - have two concerns. First,
your book reviews are - as far as most members of the public are concerned
- the most important thing you do. At present, you are allowing one individual
to dominate your book-review section. This seems a very risky strategy for
any organisation (to give just one example, what happens when this individual
hangs up his reading glasses?). Secondly, you are clearly expecting rather a
lot of any one individual, since - on average - FG must be reading (and
reviewing) at least a book a week, every week of the year. The consequences
are inevitable (and not hard to predict). In this case, I don’t know if FG read
all of “Embedded C”, but I suspect that he did not: he is certainly on record
for having “skimmed” (his word) at least one other book he has reviewed for
you recently [C++ (Nitty Gritty), reviewed in “C Vu”, February 2002, p.30].
Perhaps you need to keep a record of the key skills of your members (or people
outside the organisation) and ask people to review books in their area, rather
than simply having what appears to be a “first come, first served” policy
(which seems to mean that FG reviews everything he wants, and the rest of
you fight over the scraps)?

Let me end on a lighter note. The cover of ‘C Vu’ says “Written by
Software Developers for Software Developers”. I think that, if you are to
continue to publish reviews like this, you should amend this to read
“Written by Pedants for Pedants”. You’ll then be much closer to the mark.

Michael J. Pont
6 June, 2002

This letter has been published to show that there is no conspiracy here
at ACCU. Authors work hard in preparing books, and are
understandably upset when reviews are unfavourable or even harsh.
At Mr Pont’s request, I have written a second review of “Embedded C”,
independently of the first. I shall therefore keep my response to Mr
Pont’s lengthy letter as short as possible, given the number of points
he raises. In order to preserve the reputation of ACCU’s book reviews,
we must be open and responsive to criticism.

I too noticed the duplication of material. This may be a style
choice of Mr Pont, but I don’t feel that it makes a book more readable.
In fact, I found my flow as I read the book (and I did read the entire
book) to be broken by this repetition. Later text is not repetitive,
however, though the code is; I lost count of how many times a busy
wait time delay was printed.

The irritation at the “explanation” of why C is more suited to
embedded development than C++ is most understandable, given
that FG knows perfectly well that there is no overhead in accessing
a private data member through an inlined accessor function with
most modern compilers. Indeed, the various compilers I use for
embedded development all optimise this away to produce exactly
the same code that would be given by accessing a public data
member directly as in C. There are reasons to prefer C in many
embedded projects, but an inherent overhead in OO is not among
them. The claims of the author that C++ is unsuitable for this reason
suggest to me that he is not a C++ expert, which is reasonable, but
in that case one must question why he must write about C++.

Any of you who are at all worried by thoughts that FG might
indeed take the pick of the books for review should read what he
has to say about obtaining books for review. I should mention that
FG wrote that without any knowledge of the content of Mr Pont’s
letter. The pleasure of writing book reviews is open to all ACCU
members, and many of us are grateful to those like Francis who give
up their time to review truly dreadful texts such as “C++ (Nitty Gritty)”.

For more specific information on the book, including an idea of
who might find it worthwhile in spite of its flaws, my review appears
in the book review section of this issue. — James

12 CVu/ACCU/Dialogue

Francis’ Scribbles
by Francis Glassborow

Compatibility Issues
One of the hottest topics in the C and C++ communities is the issue of
compatibility between the two languages. There are two extreme views:
l C should be a strict subset of C++
l C has nothing to do with C++
Most of us are somewhere between those two. I think we need to spend some
time considering the issues and our own positions. I am not going to spend
much time on the technical arguments relating to the first of the above because
Bjarne Stroustrup has a well considered position being published by the
C/C++ Users Journal. However I think it fair to try to remind people about
why Bjarne Stroustrup’s position would tend to that end of the spectrum.

Many languages are initially designed by a single person. Some then
go on to become standardised. When that happens most language designers
retire to the background, bite their lips and let others get on with changing
their brainchildren. The only case I am aware of where this did not happen
is C++. Bjarne Stroustrup continues to play a major part in its specification
and evolution. He not only continues to have a major interest in the
development of C++ but is a key player in it. I hope he will forgive me for
saying that I think that means that he continues to have strong emotional
as well as intellectual ties to it. He has a very definite view of what it is
designed for and how it should evolve.

Now right at the beginning Bjarne Stroustrup made a practical (political)
decision to build C++ on top of C, even when that meant the design decisions
were not those that would have been made in a green fields development.
There were excellent reasons why that decision was right. It took a language
that was rapidly gaining popularity and that was an essential tool for Unix
development and supplied a migration path to a much broader based
language. However, I am also convinced that Bjarne Stroustrup designed
C++ to eventually replace C. That was part of his vision. But let me be
absolutely clear, it was not part of the vision of those responsible for the
ongoing design of C. Ritchie had passed the batten on to J11 and eventually
WG14. Those that took Bjarne Stroustrup’s view that C++ was to replace C
migrated to J16 & WG21 in the period 1989 to 1992. Those that believed C
had an independent place in the World stuck with J11 & WG14. That is the
root of trouble because there is a way in which both groups believed at some
deep level that they were the guardians of the true flame.

One consequence has been the tendency for some C experts (aficionados)
to decry C++ as a deeply flawed design that failed to learn the lessons of the
past. At the same time some C++ enthusiasts were determined that C was an
interesting historical relic that should have been quietly laid to rest. Meanwhile
the vast majority of ordinary practitioners were receiving conflicting messages.
Often introductory books had whole sections on ‘C++ as a better C’, and far
too many writers got away with describing C++ as a superset of C. None of
these people were ill-intentioned but the upshot is that we have a vast number
of programmers who talk about something called C/C++ and believe that those
who prevent C from being a subset of C++ are being obstructionist.

A major issue is that the two languages are close enough so that it is
advantageous to some to be able to write code that will compile correctly with
both a C and a C++ compiler. One key group are those responsible for the
Standard libraries for C and C++. They do not want to have to write separate
versions of the common parts of these libraries for the two languages. But
writing versions that compile correctly for both languages is hard work, and
they can see that a unification of the languages would reduce their work.

Then there are many developers working in C++ who want to be able to
use libraries that have been written in pure C. This kind of compatibility makes
good sense but even the common parts of the Standard libraries highlight
serious issues with this approach. Look at strchr(). Its first parameter is
a char const * in C, and it returns a char * based on that input
parameter. The parameter has to be constqualified if it is to work with both
mutable and immutable C-style strings. But the return type must not be
const qualified if it is to be usable with mutable arrays of char. C has to
take the perspective of trust the programmer because it does not have a sane
alternative. C++ fixes the problem by splitting strchr() into a pair of
overloaded functions. But this is not cost free, not only does it require
overloading, but it also means that we have to forgo having a unique address
for strchr(). In other words we cannot pass a function pointer to functions
like strchr() in C++. Of course there are other solutions to designs where
C would use a function pointer. My point is that even unifying the semantics
of const for C and C++ results in a ripple effect, one that may not be acceptable

to the community that uses C as its main development tool. And it is that
community that J11 and WG14 is supposed to serve (how well they meet that
obligation is a different issue). It is not the primary responsibility of those
committees to consider the needs of programmers who want to write code
that will compile identically in both C and C++. That does not mean that these
committees have no responsibility to such people, which is why they attempt
to remove gratuitous incompatibilities. However that is a far from easy task
as even among those responsible for C++ most would be reluctant to claim
they understood all the implications of the language design. How then should
we expect those who are C specialists to understand the fine detail of C++.

Let me consider another aspect of unification, the spirit of compromise.
It is my contention that that serves neither language. In a recent article in
CUJ Bjarne Stroustrup reiterates a proposal to make the semantics of
void* in C++ those that it has in C. In other words, remove the need for
a cast to convert a void* into any other pointer type. In the spirit of
compromise he is proposing that we weaken the C++ type system. From
his perspective unification is more important than a design decision that
has frequently been given as an example of the way in which C++ is better
than C. Sorry, but I cannot buy that.

Of course if you start from the premise that C and C++ should be unified
because it is an unfortunate error of history that they are not then
compromise to get unification makes sense. And once they are unified
efforts can be made to recover the high ground. But I think history teaches
us something different. The widespread adoption of C++ probably did
depend on a substantial degree of compatibility, though I am not so certain
when I look at more recent experiences (e.g. Java and C#). It seems that
languages that meet genuine commercial needs survive, and those that do
not die. Algol 68 is arguably a much better designed language than Fortran
but the world of numerical methods came down on the side of Fortran. The
decision had nothing to do with compatibility. And we could ask how
compatibility helped C gain such a strong foothold.

There is no other case where compatibility with an existing language
has been an issue. Indeed the concept of compatibility only makes sense
if C++ was intended to be a replacement for C in the same way that Fortran
77 was intended to replace Fortran 66. But if that were the case then it
would have been the task of J11 and WG14 to standardise C++.

Self-Compatibility
What almost every developer wants is to be able to use C++ libraries, and
many also want to be able to use C ones as well. But being able to do that
requires an entirely different set of requirements.

There are two major considerations. The first is that of an ABI, an
applications binary interface (I hope I got the term right). This means that
fundamental types and compatible user defined types (i.e., ones that can
be declared in both C and C++, the so called POD types) have to be
compatible. But this isn’t even necessarily true between object code
produced by different C implementations on the same platform and is
completely unsupported when it comes to C++ (e.g., different
implementations use different name mangling algorithms). Of course these
are accepted as being non-standards issues, correctly so in my opinion.

Without a per-platform agreement on such things as the size and layout
of fundamental types there is no compatibility and we have to resort to code
being shipped as source, even if it is just plain C. And now we start to get
reasons why the user might want to compile the same source code with both
a C and a C++ compiler. Actually he does not, he just wants to be able to
compile his entire source code with his C++ compiler. Establish good ABI
standards on each platform and that problem goes away. If I do not need to
compile C source because I can use a library shipped as object code then I
largely stop being concerned about source code compatibility between C
and C++. I could argue that increasing compatibility between C and C++
will make things worse because it will reduce the pressure for ABIs.

The second problem is much nastier, that of fundamental types. The
core design of C means that new types such as complex just about have
to be fundamental types. Providing a fully functional complex type in C
without language provision for operator overloading is impossible. Note
that operator overloading leads to reference types. But introducing such
features in C leads almost inevitably to C++.

On the other hand the natural way to introduce new types into C++ is via
appropriate libraries. I think that the designers of C++ would be very loath to
introduce a bundle of new fundamental types just for the purposes of
compatibility with C. C++ provides powerful tools for making user defined
types first class citizens. That is one of the strengths of C++ and it would be
odd to revert to fundamental types whenever C decides that it needs a new,

13CVu/ACCU/Dialogue

fully supported type. Of course we can argue the merits of C having a complex
type, but I contend that that is up to the pure C community to determine.

I do not know how we solve the problem of link time compatibility between
a fundamental type in C and a user-defined equivalent in C++. However if we
focus our efforts on link time compatibility we might solve the problem. I am
certain that if we pursue the path of unification of C with C++ we will not have
the energy and resources to deal with the real and immediate problems.

Food for Thought
Have a look and see how many new books for C novices have been written
in the last decade. Yes, one consequence of stability was a marked reduction
in publishing interest. Now look and see how many new books have been
published for C++ novices in the last couple of years. Some argue that the
visibility of such books indicates the health of a language. If that is true,
C is nearly dead and C++ is definitely on the way out.

C++ programmers know this is not true, so why do they think it is true
of C?

Just as a matter of interest, how many different compilers for pure C do
you think there are on the market today? Of course most of those are not
in the shrink-wrapped market because those that need them know where
to go and will want to buy multiple licenses.

Next time someone asserts that C is dead, or that C++ is dying, ask for
their evidence. And when they give it, check its relevance because mostly
such statements are based on a pretty superficial perspective.

Problem 4
When doing code inspections you need to cultivate a suspicious mind. In
that light consider the following simple function and comment on what you
would check and what minimal changes you would require.

void foo() {
mytype* mt_ptr = new mytype;
bar(mt_ptr);
delete mt_ptr;

}
I wonder how quickly you realised that it was essential to look at the
definition of bar. Once you get the idea, the longer you think about the
disasters it can perpetrate the worse it gets. For example, which of the
following function declarations is the greatest harbinger of doom:

something bar(mytype *);
something bar(mytype const *);
something bar(mytype * const);
something bar(mytype const * const);

something bar(mytype * &);
something bar(mytype const * &);
something bar(mytype * const &);
something bar(mytype const * const &);

The first instinct that many have is that the pass by value cases must be
safe because they do not change the original. That instinct really needs
quick modification. Not being able to change the original just might be the
biggest disaster of all. Consider a pretty minimalist definition:

mytype * bar(mytype* mt_ptr) {
delete mt_ptr;
return 0;

}
Now you see it. Just because a function gets a copy of a pointer does not
mean that it cannot damage the original because it can simply invalidate
it. Of course the function is pure madness, particularly with that name, but
there are lots of mad programmers out there. Oh, and in case you were
wondering, it does not matter how many const qualifiers you apply to
the parameter, you can still apply delete to it in Standard C++.

So what about the cases where the pointer is passed by reference? Well
have a look at:

void bar(mytype * & mt_ptr_ref) {
delete mt_ptr_ref;
mt_ptr_ref = new mytype[1];

}
See the problem this time? Exactly, your change requires that delete[]
be called on the mt_ptr in foo().

The nasty thing about the problem that I am trying to highlight is that
looking at the function declaration tells you very little of use. You have to
look at the definition. Pointers are like scalpels; they are highly refined

tools that experts can use constructively. However they are lethal in the
hands of others. Because C++ is designed as a language to meet the refined
purposes of library designers as well as the coarser needs of the application
programmer we have to learn the danger signals:
1) Raw delete/delete[]

Anytime you see a deleteor delete[] in a free (i.e. non-member)
function be deeply suspicious. If you see one in a member function,
have a look at the destructor for the type. We should only be destroying
what we own. Sometimes we delete one thing to replace it with another,
but that should only be done inside a type that owns the resource.

2) Suspect raw pointer parameters
There are many cases where these are fine, but you should have checked
the quality of the programming that produced these functions.

3) Do not use raw pointers for dynamic resources.
I think that one is close to an absolute injunction. It is the task of a
destructor to release resources. Dynamic resources should be owned by
something that releases them in a destructor. Generally this ownership
should be provided by some form of smart pointer.

4) Do not mix arrays with single instances
Sometimes we create single instances dynamically. auto_ptr is
designed to handle the lifetime of such objects. It has slightly unusual
semantics, with the result that it should always (well almost) be passed by
reference and returned by value. Think carefully till you understand why
the ownership semantics of auto_ptr lead to that coding guideline.
There are other smart pointers that have more sophisticated semantics,
however they are almost all designed for single objects. When it comes to
arrays we should distinguish between those whose size is fixed and those
whose size can vary. Mostly, where the size is fixed we should consider a
simple raw array. Its semantics will almost certainly meet our needs. If we
need variable size, or there is some other reason that we need to use dynamic
memory for our array then our prime candidate should be a vector. We
should not be calling new[] ourselves. The STL vector encapsulates a
dynamic array so that all the handling is done for us. If we need the actual
array (for example, to pass to a C function that takes a pointer to an array)
we can extract the address of the internal array. That address remains valid
until you do something that causes the vector to relocate its internal storage.
I know that this is not guaranteed in the original C++ Standard, but it should
have been and a response to a defect report has corrected that omission.

In conclusion: Most programmers should never use delete and even
fewer should use new[] and delete[]. Dynamic resources should
always be owned, usually by some form of smart pointer or container. You
should not be using delete on parameters, though delete applied to
member that is a pointer can sometimes be acceptable. Note that this is a
stronger statement than the commonly made request that the language
should not allow delete on a const pointer or pointer to const.

As I have said before, cultivate a suspicious mind and learn to program
responsibly. Just as you have to trust other programmers, make sure your
own code merits the trust of others.

Problem 5
Consider the following brief program. What is the output and why?

struct base {
virtual void report {

std::cout<< “base” << std::endl;
}

};

struct derived: public base {
virtual void report {
std::cout<< “derived” << std::endl;

};

int main() {
base * x = new derived;
try {

throw *x;
}
catch(base & br) {

br.report();
}
return 0;

}

14 CVu/ACCU/Features

What is a Hash Table?
Victoria Catterson <vic@cowlet.org>

A hash table is a data structure used for associating keys with values, with
the goal of efficient storage space and fast access. Each item has a key,
which the table’s hash function will use to calculate the “hash value” for
that item. The hash value indicates where in the table the item should be.
The use of the hash function means that indexing into the table can be
performed in constant time, regardless of the number of items in the table.
A key can be of any type, but a hash value will always be an integer, as it
represents the item’s position in the table.

A hash table where each key results in a unique hash value is called
directly accessible. This is the “ideal” hash table, because searching for items
will always take O(1) time. However, in most cases this type of hash table
is not practical, as it tends to be wasteful of memory. More common is the
chained hash table, where many keys will result in the same hash value.

A chained hash table can be organised as an array of linked lists. The
array positions correspond to the hash values. The linked lists are called
buckets, and store items with keys that all translate to the same hash value.
When a bucket contains more than one item, it is known as a collision.

As an example, a chained hash table is used below to store city
information. A structure is defined to hold the city’s name as a string, and
the population in thousands as an integer. The pointer to another city
structure is used for chaining cities in the one bucket. A very simple hash
function has been chosen, where the key is the city’s name, and the hash
value is the length of the name. The buckets are not sorted, so each item is
simply added at the start of the linked list.

The print_table function prints the name and population of every
city in the table, one bucket at a time. Five cities are added to the table, and
then print_table is called. The output of the program is:

Hash Table Contents:
Bucket 0: End.
Bucket 1: End.
Bucket 2: End.
Bucket 3: End.
Bucket 4: End.
Bucket 5: End.
Bucket 6: Dundee, population 147000; End.
Bucket 7: Glasgow, population 607000; End.
Bucket 8: Aberdeen, population 190000; End.
Bucket 9: Inverness, population 41000; Edinburgh,

population 402000; End.
Bucket 10: End.
Bucket 11: End.
Bucket 12: End.
Bucket 13: End.
Bucket 14: End.

This is a perfectly valid hash table, but it is not a very good one. Even if
more cities are added, the bucket lengths will not be balanced, with most
city names colliding in buckets 6 to 9. In addition, buckets 0 to 2 are not
likely to contain any cities! This sort of behaviour is poor for two reasons:
buckets 0 to 2 are a waste of memory; and searching will be closer to O(n)
than the O(1) ideal, because the concentration of items in 4 buckets makes
the searching behaviour more like that of a linked list than a hash table.

This problem can be solved by choosing a hash function that will give a
more even spread of items between buckets. In addition, it may be advisable
to change the number of buckets. If a good hash function is selected that results
in a relatively even distribution of items in buckets, then the number of items
expected in each bucket will be roughly n/m, where n is the number of items
in the table, and m is the number of buckets. If this is a realtively large number,
increasing the number of buckets is advisable. In order to help achieve an even
spread, m should not be a power of 2. A prime number is an ideal value for m.

As this example only contains five cities, a good value for m is 5. With
a good hash function, the expected distribution will be one city in each

bucket. However, it is tolerable to have one bucket with two cities, and one
with none, as a hash function will never (well, rarely) be perfect.

The most difficult aspect of creating a hash table is deciding on the hash
function. Very often the simplest functions will produce extremely uneven
results, as in the example above. If the key is not an integer, it is a good
idea to massage it in some way, so it can be treated as an integer. This
technique was used in the previous example, where the key was a string,
but the length of the string was used to produce the hash value. However,
to produce better results something more random than the string length
must be used to calculate hash values.

A relatively simple method is to add up the ASCII values of every
character in the city’s name, dividing by a prime number after each
addition. This algorithm may not produce good results if the keys are very
similar. For example, hashing “malloc”, “calloc”, and “realloc” with the
new function produces very poor results, with all three hashing to the same
value. However, there is no obvious pattern in the city names, and the
function produces reasonable results, with only one collision.

One final stage must be performed before the integer is a valid hash
value. As there are five buckets, the value must be taken modulo 5. This
ensures that the hash value is a bucket number. The new hash function looks
like:

int hash_func(struct city *item) {
int sum, i;
for(i = 0, sum = 0;

i < strlen (item->name);
++i)

sum = (sum + item->name[i]) / 3;
return (sum % NUM_BUCKETS);

}

The new table looks like:

Hash Table Contents:
Bucket 0: Dundee, population 147000; End.
Bucket 1: Inverness, population 41000; End.
Bucket 2: Edinburgh, population 402000; Glasgow,

population 607000; End.
Bucket 3: Aberdeen, population 190000; End.
Bucket 4: End.

And, of course, NUM_BUCKETS is now defined as 5, instead of 15.

It should be noted that the example hash table is efficient in terms of
memory and indexing speed, but it is not very scalable. If the number of
cities were to increase to 25, the time to find an item would be relatively
poor. The average number of items in a bucket would be 5, and
consequently the search time will tend more towards O(n) than O(1).

Generally, if it is known roughly how many items the table will
accommodate, the number of buckets should be tailored to maximise
efficiency, as in the given example. However, if the number of items is not
known, or may vary greatly, a trade-off should be considered between
indexing time and memory usage. More buckets can result in wasted
memory, but faster indexing time.

Increasing the number of cities to 10 produces the following results:

Hash Table Contents:
Bucket 0: Havana, population 2241000; Paris,

population 9469000; End.
Bucket 1: Bombay, population 15093000; Tokyo,

population 26836000; End.
Bucket 2: Moscow, population 9233000; Beijing,

population 12362000; End.
Bucket 3: Johannesburg, population 1849000; Perth,

population 1220000; End.
Bucket 4: San Francisco, population 3866000; Lima,

population 7452000; End.

Features

15CVu/ACCU/Features

/* hash.c by Victoria Catterson */
#include <stdio.h>
#include <string.h>
#define MAX_NAME_LEN 15
#define NUM_BUCKETS 15

struct city {
char name[MAX_NAME_LEN];
int population; /* in thousands */
struct city *next;

};
/* This is the array of linked lists;

the hash table itself. */
struct city buckets[NUM_BUCKETS];

int hash_func(struct city *item) {
return (strlen (item->name));

}
void add_item(struct city *head,

struct city *item) {
item->next = head->next;
head->next = item;

}
void print_table(void) {
int i;
struct city *current;
printf(“Hash Table Contents:\n”);
for(i = 0; i < NUM_BUCKETS; ++i) {
current = buckets[i].next;
printf(“Bucket %d: “, i);
while(current != NULL) {
printf(“%s, population %d000;”,

current->name, current->population);
current = current->next;

}
printf(“End.\n”);

}
fflush(stdout);

}

int main (void) {
struct city glasgow, edinburgh, aberdeen,

dundee, inverness;
int hash_val;

strncpy(glasgow.name, “Glasgow”,
MAX_NAME_LEN);

glasgow.population = 607;
hash_val = hash_func(&glasgow);
add_item(&buckets[hash_val], &glasgow);

strncpy(edinburgh.name, “Edinburgh”,
MAX_NAME_LEN);

edinburgh.population = 402;
hash_val = hash_func(&edinburgh);
add_item(&buckets[hash_val], &edinburgh);

strncpy(aberdeen.name, “Aberdeen”,
MAX_NAME_LEN);

aberdeen.population = 190;
hash_val = hash_func(&aberdeen);
add_item(&buckets[hash_val], &aberdeen);

strncpy(dundee.name, “Dundee”,
MAX_NAME_LEN);

dundee.population = 147;
hash_val = hash_func(&dundee);
add_item(&buckets[hash_val], &dundee);

strncpy(inverness.name, “Inverness”,
MAX_NAME_LEN);

inverness.population = 41;
hash_val = hash_func(&inverness);
add_item(&buckets[hash_val], &inverness);

print_table();
return 0;

}

This is the optimal number of items per bucket. Increasing the number of
buckets to 9 gives good results, also:

Hash Table Contents:
Bucket 0: San Francisco, population 3866000; End.
Bucket 1: Paris, population 9469000; End.
Bucket 2: Bombay, population 15093000; Tokyo,

population 26836000; End.
Bucket 3: Moscow, population 9233000; End.
Bucket 4: Lima, population 7452000; End.
Bucket 5: Havana, population 2241000; End.
Bucket 6: End.
Bucket 7: Beijing, population 12362000; End.
Bucket 8: Johannesburg, population 1849000; Perth,

population 1220000; End.

This shows that the hash function chosen appears to be scalable, whether
the number of buckets is increased or not. It can therefore be said that it is
a good hash function for these data sets.

Another type of hash table is the Open Addressed hash table. This stores
all items in the table array itself; items are never chained. When the hash
function results in a collision, an algorithm is used to suggest another
bucket. This algorithm is used repeatedly until an empty bucket is found,
or all possible buckets have been inspected. This process of trying different
buckets is known as probing the table.

The simplest open addressed hash table uses linear probing. This
involves probing buckets in numeric order until an empty one is found.
The bucket indicated by the hash function is the starting point, and each
bucket is inspected in order until the collision is resolved.

Another probing technique is called double hashing. This involves
two hash functions: the first to determine the starting bucket; and the
second to determine the “stride”. The stride is the value added to the

bucket number to determine the next bucket to inspect when a collision
occurs. [1]

A disadvantage of this sort of table is that the maximum number of items
to be inserted must be known in advance. While the buckets of the chained
hash table can be increased in size to accommodate items until there is no
more memory available, the open addressed hash table’s size is always
fixed.

An advantage of the open addressed hash table is that the worst case
search time is better than that of the chained hash table. In the first table,
the worst performance occurs when the hash table is full, but the
required item is not in the table. In this situation, searching takes O(m)
time, where m is the number of buckets in the table. In the chained
table, the worst performance occurs when all items are in one bucket,
but the required item is not in the table. In this case, searching takes
O(n) time. If n>m, then the open addressed table has the best
performance.

Hash tables may seem rather daunting and complex, but this is only
because of the many decisions that must be made. Once the type of table,
number of buckets, and hash function have been chosen, implementation
is quite straight forward. Next time a data structure is required, consider
whether a hash table would be effective; it is surprising how often they can
be used.

Victoria Catterson

References
[1] For more information on double hashing and other probing algorithms,

see http://www.cise.ufl.edu/~sahni/
dsaaj/enrich/c11/overflow.htm

[2] Scottish city population statistics: 1991 Census,
http://www.siliconglen.com/scotfaq/1_6.html

[3] World city population statistics: The Times Atlas of the World, 2001

Enlarging on “A Problem of
Access” in CVu December
2001 Vol. 13 No. 6
Atul Khot

We are developing a component based system where one central
component is the server.

Among other things, the server holds some very large containers of objects
(thus these containers are preferably constructed only once — at the time the
server component is coming up.) A number of client components can refer to
the container object simultaneously. They may inspect it (shared mode —
container and its objects are read only) when there are no exclusive (mutating)
mode clients, but if any client wants to change any such containers or objects
within, it has to have an exclusive lock on the container first (exclusive or
mutating mode) and there must be no pre-existing exclusive or shared mode
clients. This way, there is no (meaning “minimum”!) space for surprises.

One such container is Dimension, which holds a great many members
(millions).

The following abstract class is exposed to outside clients (other
components):

// Interface class
class CDimension_I {
public:

virtual Id GetId() = 0;
virtual void setId(Id id) = 0;
// other interface methods

};
// This class holds millions of members
// organized in a tree structure
class CBaseDimension
: public CDimension_I, public Resource_m {
public:

Id GetId();
void setId(Id id);
//other helpers and concrete implementations

};

Client contexts are stored in objects of class Session.

CBaseDimension& cbd = ...;
Session* pSession = ...;
// ...
ResLock_m* pResLock = new ResLock_m(

dynamic_cast<Resource_m*>(&cbd), pSession,
LT_SHARED); //locks in shared mode

// inspect the container, traverse the
// data structures it holds etc.
delete pResLock; // unlock the above locked

// resource

A number of issues rear their ugly heads:
1 How can we handle locking transparently? The business logic gets

muddled if we put locking calls in between.
2 How do we make sure that every Resource is locked, used and released?

(i.e., no resource leaks).
3 What about multiple locking of the same resource by the same client?
Okay, let us take them in turn. First some definitions:

enum LOCK_TYPE { LT_NOLOCK,
LT_EXCLUSIVE,
LT_SHARED

};
template<LOCK_TYPE lckType>
struct LockTraits {};

template<>
struct LockTraits<LT_SHARED> {};

template<>
struct LockTraits<LT_EXCLUSIVE> {};

This is similar to the Int2Type template explained in “Modern C++
Design” by Andrei Alexandrescu. We essentially convert an enum into a
type. Converting enums to types helps the C++ compiler track bugs for
you. This is immensely helpful as you shall soon see.

Next, separate all the methods of the shared class into const and non-
const methods.

Whenever, a client code asks about SHARED access, give a const
reference to the shared object.

Only when it requests an EXCLUSIVE access, then only give out non-
const reference, essentially allowing client code to call any method.

A singleton object of type CGetResource grants these accesses.

class CDimension_I {
public:
virtual Id GetId() const = 0;

// note the const
virtual void setId(Id dimId);

// note the absence of const
// other interface methods

};

const CDimension_I* inspectDim = ...;
CDimension_I* mutateDim = ...;

inspectDim->GetId(); // ok
inspectDim->setId(3); // compilation error,

// can’t call a non-const
// method on a const object

mutateDim->GetId(); // ok, a non-const can
// call a const method

mutateDim->setId(3); // ok

For more in-depth treatment of this pattern, please see a very neat article
by Kevlin Henney in CUJ — “C++ Experts Forum” online article “From
Mechanism to Method: Further Qualifications”.

template<class DimT, class LckType>
class CdimWrapper {
protected:
DimT* m_pDim;
CSessionBase* m_pSession;

public:
CDimWrapper(DimT* pDim,

CSessionBase* pSession,
LockTraits<LT_SHARED>)

: m_pDim(pDim),
m_pSession(pSession) {

// Pass the buck onto session class.
// This takes care of multiple locking
m_pSession->Lock(

dynamic_cast<Resource_m*>(pDim),
LockTraits<LT_SHARED>());

}
};

class CBaseDimShr
: public CDimWrapper<const CBaseDimension,

LockTraits<LT_SHARED> > {
public:
CBaseDimShr(const CBaseDimension* pDim,

CSessionBase* pSession,
CMapShr* pMap,
LockTraits<LT_SHARED>)

: CDimWrapper<const CBaseDimension,
LockTraits<LT_SHARED> >(

pDim,
pSession,
pMap,
LockTraits<LT_SHARED>()) {}

const CBaseDimension* operator->() const {
return m_pDim;

}
};

16 CVu/ACCU/Features

17CVu/ACCU/Features

class PtrBaseDimShr {
const CBaseDimShr* m_pLwDim;

// note the const
// private copy ctor and assignment op
// not shown */

public:
PtrBaseDimShr(const CBaseDimShr* pLwDim)

: m_pLwDim(pLwDim) {
}
bool operator!() {
return m_pLwDim == 0;

}
operator const void*() const {
return m_pLwDim;

}
const CBaseDimShr& operator->() const {
return *m_pLwDim;

}
~PtrBaseDimShr() {
delete m_pLwDim;

}
};

class CBaseDimEx : public
CDimWrapper<CBaseDimension,

LockTraits<LT_EXCLUSIVE> > {
public:
CBaseDimEx(CBaseDimension* pDim,

CSessionBase* pSession,
CMapEx* pMap,
LockTraits<LT_EXCLUSIVE>)

: CDimWrapper<CBaseDimension,
LockTraits<LT_EXCLUSIVE> >(

pDim,
pSession,
pMap,
LockTraits<LT_EXCLUSIVE>()) {

}
CBaseDimension* operator->() {
return m_pDim;

}
};

class PtrBaseDimEx {
CBaseDimEx* m_pLwDim;
// private copy ctor and assignment op
// not shown

public:
PtrBaseDimEx(CBaseDimEx* pLwDim)
: m_pLwDim(pLwDim) {

}
bool operator!() {
return m_pLwDim == 0;

}
operator void*() {
return m_pLwDim;

}
CBaseDimEx& operator->() {
return *m_pLwDim;

}
~PtrBaseDimEx() {
delete m_pLwDim;

}
};

class CGetResource {
// This class takes care of point 3
// (allow multiple SHARED locks or a single
// EXCLUSIVE)

const CBaseDimShr* GetBaseDim(
LockTraits<LT_SHARED>,
BaseDimHandle hDimHdl,
CSessionBase *session_ptr);

CBaseDimEx* GetBaseDim(
LockTraits<LT_EXCLUSIVE>,
BaseDimHandle hDimHdl,
CSessionBase *session_ptr);

.........
};

Now a client acquires the shared object as follows:

void ClientClass::getBaseDimName(
CSessionBase *pSession,
CGetResource* pGetRes,
BaseDimHandle hDim) {

// original code
// CBaseDimension* pDim =
PtrBaseDimShr pDim =

pGetRes->GetBaseDim(
LockTraits<LT_SHARED>(),
hDim, pSession);

}

When the above function exits (either with a return statement or by
throwing an exception), this scheme guarantees that all locks are released.
Also, all the locking mechanism is neatly hidden. The programmer just
has to know
1 He is trying to get a shared resource (LockTraits<>) and
2 The call might sleep

Now with all this in place, suppose somebody does the following:

PtrBaseDimShr pDim = pGetRes->GetBaseDim(
LockTraits<LT_EXCLUSIVE>(),
hDim,
pSession);

As LockTraits<LT_EXCLUSIVE> is a class (an empty class), there
is no function that satisfies the above line. The compiler will kick in an
error.

Now, the programmer corrects the mistake and obtains a shared
pointer.

Id id = 4;
pDim->setId(id); // this again will kick in a

// compiler error.

Let us trace this call to see what is going on. Trying to resolve the above
call, as pDim is not a plain pointer, the compiler applies the operator
-> found in class PtrBaseDimShr , which returns a const object of
“CBaseDimShr”. Reapplying the operator -> again, which returns
a pointer to const object of type CBaseDimension*. So in essence, the
above setId() call is invoked on a const object of type
CBaseDimension . However, as this is a non-constmethod, the call
fails to compile.

Similarly, tracing through an exclusive mode pointer, we can indeed see
that the above call goes through fine.

This design was grafted onto a legacy code, so we did many other nice
things so it all worked quite well. The only other thing that needed to be
changed was the declaration of the pointers. (PtrBaseDimShr instead
of CBaseDimension* etc.). As the code was quite huge, nearly 20000
lines and still growing, we never needed to know the logic so as to know
where to place the lock calls etc. We just mechanically replaced the above
declarations (using nifty VIM macros) and the work got reduced to just
few keystrokes. The unit testing of the locking scheme was done using a
Perl script (which is an altogether different story — will do it some other
time).

One queer thing I notice again and again. After all the core design was
coded in place, it was just a mechanical/routine matter to extend it. The
system just developed and extended itself. I remember a similar experience
while developing a schema language using Lex, Bison and C++. This way
of things is indeed very gratifying. We did complete our part well before
15 days of the release deadline, leaving everybody happy and some more
spare time for myself to linux it away.

Atul Khot

19CVu/ACCU/Features

XML Parsing with the
Document Object Model
David Nash

What is the DOM?

Following Tim Pushman’s article on parsing XML using SAX, I will
describe here the principles and details of the Document Object Model,
which defines a standard way to model an XML or HTML object. It
describes data structures with standard names and behaviours, and standard
functions to access the data. Most XML parsers support the DOM and will
parse any well-formed XML document into a DOM structure for you.

But first a bit of history... Long ago when web pages were mainly static
text with a few images here and there, the writers of the two main browsers
(Netscape and Internet Explorer of course) came up with what they called
Dynamic HTML, or DHTML for short. DHTML allowed web pages to
access their own content, and to change it according to users’ actions. This
allowed people to write web pages with images that changed when the user
moved the mouse over them, and other fancy effects that they thought
would attract more people to their web sites.

Both browsers achieved this by adding a scripting to capability to the
dialect of HTML that they understood. The two scripting languages were
similar but differed in many ways. They were called Javascript and Jscript.
Neither is remotely related to Java and the two have now been unified and
standardised into ECMAScript [1].

In order that a script embedded in an HTML document could have
something to work on, a model was needed, through which the script could
access the various elements on the web page. The model that was created
modelled the actual HTML document itself, so became known as the
Document Object Model, or DOM for short. The DOM is now a W3C
standard [2] and comes in two slightly different alternatives, for XML or
HTML respectively. Although, as we have seen, the DOM had its origins
in HTML, the HTML version can be thought of as a slightly specialised
version of the XML DOM, and since this is a series of articles on XML we
will concentrate on that one here. You can read more about the HTML
DOM in the official W3C recommendation [3].

The model described by the DOM can be thought of as a tree-like
structure. The tree is made up of a number of different object-like nodes.
A node can be any one of a number of different node types, which are
effectively data types derived from the basic Node type. In fact the standard
does not specify that nodes in the DOM have to be implemented as objects
at all, merely that they behave like objects. This allows DOM
implementations in non object-oriented languages like C.

In order to get an XML document into a DOM tree you need an XML
parser that supports the DOM (most do). You can then parse existing XML
documents and create a DOM structure, or create one from scratch. In this
article we shall see how to do this, concentrating mostly on the Apache
Xerces C++ parser, although the principles apply generally.

The root node of the tree is the document itself. Since this is a tree
structure there can only be one root, and that ties in with the concept of an
XML document, which can have only one root-level element (the
“document element”). The other main types of node in the tree are
Elements, Attributes, and text. In keeping with well-formed XML, the
document node contains only one element, while elements can contain
other elements, attributes, or text:

This is a good place to explain that, although the DOM defines all these
types of node, you don’t have to use them. There are actually two interfaces
to a document via the DOM: through generic “node” objects (which the
W3C recommendation describes as “the primary datatype for the
Document Object Model”) or through more concrete derived types
“Element” objects, “Attribute” objects, and so on. This means that all the

different node types in the diagram could be labelled “node”, and accessed
through the DOM Node interface. Each DOM Node has an attribute (called
NodeType) that indicates what kind of node it actually is.

Let’s look at an example. Take the following piece of XML (yes, it’s
the familiar hypothetical phone book!):

<?xml version=’1.0’?>
<PhoneList>
<Entry type=”external”>

<name>John</name>
<number>123456</number>

</Entry>
<Entry type=”external”>

<name>Jane</name>
<number>7654321</number>

</Entry>
<Entry type=”internal”>

<name>Fred</name>
<number>100</number>

</Entry>
</PhoneList>

The DOM structure of this document would look something like this:

Once parsed into a DOM tree (we will see how to do this in a minute) you
can access the XML document using the DOM Document interface. This
has a documentElement attribute to access the single document element
(PhoneList in this case). As an example of the methods provided by
the DOM, you could find its child elements with a specific name using the
GetElementsByTagNamemethod.

Parsing
Different XML parsers and processors have different ways to initiate the
parse process that builds the DOM tree. The examples shown here all use
the Xerces parser [4] from Apache. This parser is closely related to the
IBM XML4C parser (IBM donated an early version to Apache, and their
subsequent versions are based on Xerces).

To do the parse we need a DOMParser object. We then call the parse()
method, giving it a name of an XML file. The program below shows a
minimal Xerces DOM program (Xerces has two sides to its personality,
also supporting the Simple API for XML, SAX, but this article ignores this
face of Xerces), all error checking and exception catching have been
omitted for the usual space and clarity reasons (but see later for details):

#include <util/PlatformUtils.hpp>
#include <parsers/DOMParser.hpp>
#include <string>
#include <iostream>
int main() {
// Initialise the XML processor
XMLPlatformUtils::Initialize();
std::cout<<”Enter the name of an XML file:”;
std::string filename;
std::cin>>filename;
DOMParser parser;
parser.parse(filename.c_str());

}

20 CVu/ACCU/Features

Reading Elements and Text
The following code fragment reads all the <Entry> elements from the
previous XML document:

DOM_Document phonelist=parser.getDocument();

// Get the <PhoneList> element
DOM_Element root

= phonelist.getDocumentElement();

// Get all <Entry> elements into a DOM
// “nodelist” structure
DOM_NodeList entries

= root.getElementsByTagName(“Entry”);

// Now iterate through the nodelist,
// processing each element found there
for (unsigned long node_index=0;

node_index< entries.getLength();
node_index++) {

//Deal with entry
}

You will notice that the getElementsByTagNamemethod provides us
with a NodeList rather than an ElementList. This is because the
DOM defines a list of nodes (which are all elements in this case) but not a
list of elements as such. We have to deal with a base node object rather
than a concrete Element object. More about that in a moment, but first
let’s see how we extract the name and number from those entries using the
DOM firstChild and nextSibling attributes:

for (unsigned long node_index=0;
node_index< entries.getLength();
node_index++) {

// Get each <Entry> element from the list
DOM_Node node=entries.item(node_index);
// Get the <name> node – the next sibling of
// <Entry>’s first child node
DOM_Node name_node

= node.getFirstChild().getNextSibling();
// Get the text node – a child of the
// <name> node
DOM_Node name_text

= name_node.getFirstChild();
// Finally get the actual text
DOMString name=name_text.getNodeValue();

// Repeat for <number>
DOM_Node number_node

= name_node.getNextSibling().
getNextSibling();

DOM_Node number_text
= number_node.getFirstChild();

DOMString number=number_text.getNodeValue();

// Process name and number, remembering they
// are Unicode strings encoded in UTF-16,
// whatever the XML declaration of this
// particular document says

}
The above code shows that, although firstChildand nextSibling
are attributes (not methods) of a DOM node, in this particular DOM parser
(Xerces) they are accessed via member functions getFirstChild()
and getNextSibling(). This is because the DOM specifies its
interfaces as IDL (as used by CORBA [similar to that used by COM]) and
does not specify the technology to be used to implement these interfaces.
The Xerces Parser chooses to define objects with get/set functions to
represent attributes – like COM – hence the names used. This is
implementation-defined though, and another parser may well access
attributes of DOM objects as simple member variables.

As mentioned earlier the DOM Node interface is an alternative to the
individual node-type interfaces. In as much as each type of node “is a”
DOM Node, we have an inheritance relationship, easily implemented using
a base Node class and derived Document class, Element class, and so
on. However Xerces chooses not to implement it like that. For whatever
reason (probably related to the fact that Xerces was implemented in Java

before C++) you can only convert an Xerces DOM_Node type to a
DOM_Element by using a static_cast:

DOM_Node some_node;
DOM_Element elem;
/*...assign some_node...*/
elem = dynamic_cast<DOM_Element&>(some_node);

// WRONG!
if(some_node.getNodeType()

== DOM_Node::ELEMENT_NODE)
elem = static_cast<DOM_Element&>(some_node);

// OK!
This means you must check first whether the DOM_Node really does
represent an element, and not a Text node for example. This must be done
using the DOM_Node::getNodeType member function. If you try to
“down-cast” a Xerces DOM node to the wrong kind of derived type beware
– you won’t get a bad_cast exception, and you will almost ceratinly get a
crash if you try to call member functions on the wrong node type. Note that
this is a detail of the Xerces implementation and other implementations may
well use “real” C++ hierarchies in which this restriction does not apply.

You can also see in this case that within an <Entry> node, the <name>
node is not the first child, but the sibling of the first child. Similarly the
<number> node is not <name>’s next sibling, but the sibling of that sibling
node. This is because the first child of <Entry> in our XML document is
a text node holding the End-of-Line character(s), as is the first sibling node
of <name>. Whitespace counts! Some parsers can be set to ignore these
nodes but you need to be aware that they exist, and allow for them if
necessary.

The DOMString Interface
The document object model defines a string type to hold character data,
which in Xerces is called DOMString , as you can see above. The
DOMString class can not be directly output using normal ostream
inserter operators since it holds Unicode characters encoded in UTF-16.
As the comment at the end of the code extract above says, this applies
whatever encoding your XML document uses, so you need to convert it to
a suitable representation if you need to output it. In the case of Xerces a
static member function called transcode is provided that returns you a
pointer to an allocated buffer containing the string’s local representation.
This means you can implement an ostream inserter like this:

std::ostream& operator<<(std::ostream& target,
const DOMString& s) {

char *p = s.transcode();
target << p;
delete [] p;
return target;

}
This is not ideal, since you are responsible for deleting the memory allocated
by the transcode function, and problems can occur if (for instance) it was
allocated from a different heap – as may be the case in Windows debug
environments, but it suffices for our illustration. See [5] for more details.

Other implementations will use different ways of transforming between
different character encodings, which you will have to use since DOMString
is mandated to use UTF-16 internally. Note the IBM version of Xerces,
XML4C, has more Unicode support and may be worth looking into for
those who need it.

You will get DOM_String objects from any methods that allow you to
access text content. We have already seen the general getNodeName() and
getNodeValue() methods of the DOM_Node interface, which are general
calls whose return values depend on the node type, giving for example the text
content of a text node, the name of an element,. There are also methods on
specific node types that return text in the form of DOM_String objects:

DOM_Element::getTagName()
DOM_Element::getAttribute(name)
DOM_Attribute::getName()
DOM_Attribute::getValue()
DOM_CharacterData::getData()

And so on. The DOM_CharacterData class is actually a base class of
two other types of node, the Comment node and the Text node. Actual
DOM structures will never contain CharacterData nodes. You can get
to the text data of both of the derived node types using the base class call
to getData.

Note also that it is not guaranteed that a single block of text is contained
in a single DOM Text object. When parsing, some implementations will

21CVu/ACCU/Features

break text into a number of Text objects split at line breaks, entity
references or other places.

Attributes
There are two ways to get at attributes on XML Elements using the
DOM. First, using the node interface, we can access the attribute
objects attached to an element: Each <Entry> element in the example
above has an attribute called type. In the DOM, an attribute is not a
child node of the element it applies to (bizarrely though the parent of
an attribute is that element). Suppose we are only interested in those
entries whose type attribute has a value of “external”. We can examine
the type attribute on each iteration and only process those elements that
have the required value. As already mentioned, the DOM does not insert
attributes as child nodes of elements, rather it makes available for each
element a list of its attributes. This list is of DOM type
NamedNodeMap and works like a C++ std::map for accessing
nodes by name:

// Find element with attribute ‘type=”internal”‘
// in list of elements ‘entries’
for(unsigned long node_index=0;

node_index<entries.getLength();
node_index++) {

DOM_Node node=entries.item(node_index);
DOM_NamedNodeMap attributes

= node.getAttributes();
// Are there any attributes?
if (attributes!=0) {
DOM_Node attr

= attributes.getNamedItem(“type”);
// Is there a “type” attribute of the
// right value?
if ((attr!=0) && (attr.getNodeValue()

.equals(“internal”))) {
//Phew, got there!
//Process this <Entry> node..

}
}

}
This method is useful if we don’t know what attributes there may be, or if
we want to get the attribute as a node object for some reason. There is a
quicker way of accessing a named attribute directly:

DOM_String type_attribute
= element.getAttribute(“type”);

if (type_attribute.equals(“internal”) {
//process

}

Creating XML using the DOM
We have seen how to parse XML using the DOM, now lets see how we
can use the Docunent Object Model to build a representation of our own
XML document.

You can only add XML to an existing document or document fragment,
so first we need to create a new document. The Document Object Model
does not actually define how implementations create an initial document
object (which is of course a type derived from DOM_Node). In Xerces this
is done using a method of an instance of the
DOM_DOM_Implementation class:

DOM_DOMImplementation impl;
DOM_Document doc = impl.createDocument(

0, // Namespace URI if required
“PhoneList”, // Root element name
DOM_DocumentType()); // Default document

// type object

The constructor of DOM_Document does not create you a valid XML
document node, only a “shell” which must be filled in by assigning the
result of the createDocument() function as shown above. The only
thing you can do to this object is assign to it. Once this has been done, the
document object will contain a single child, the root element node of the
document.

Adding Elements
To add elements to any exsisting element, including the root document
element we need to use the createElement() and
createTextNode() members of DOM_Document to create new
nodes. Unlike creating a new document, once we have a document the
DOM does define these methods as a way to create new nodes of varying
types. Then we append the new nodes as children:

// Create an <Entry>
DOM_Element Entry

= doc.createElement(“Entry”);
// Create a <name>
DOM_Element Name

= doc.createElement(“name”);
// Create a <number>
DOM_Element Number =
doc.createElement(“number”);
// Add the <name> to the <Entry>
Entry.appendChild(Name);
// Append the <number>
Entry.appendChild(Number);
// Get the document element from the document
DOM_Element DocumentElement =
doc.getDocumentElement();
// Add the composite <Entry> element to it
DocumentElement.appendChild(Entry);
// Create a text node holding the string
// “Bond”
DOM_Text NameValue =
doc.createTextNode(“Bond”);
// Append the text to the <name> element
Name.appendChild(NameValue);
// Do the same for <number>
DOM_Text NumberValue =
doc.createTextNode(“007”);
Number.appendChild(NumberValue);

Adding Attributes
To add the “type” attribute to the <Entry> element we could create an
attribute object, but it is easier to just call the setAttribute()method
on the element:

Entry.setAttribute(“type”, “secret”);
This member of DOM_Element makes it easy to set attributes but at

the expense of a little flexibility. The text passed to the function must be
correctly encoded with no entity references. You can alternatively create
an Attribute node in a similar way to how the Element nodes were created,
add Text and any Entity Reference nodes to it, and call the
setAttributeNode() method of the Element interface:

DOM_Attr Attr=doc.createAttribute(“type”);
Attr.setValue(“secret”);
// Create any Entity references in the
// attribute text and add them too...
// ...now add the attribute to the element
Entry.setAttributeNode(Attr);

If you want to create an attribute node, and the text doesn’t contain any
entity references, you can use the setValue(“text”) method of the
Attr interface instead of adding text nodes to it.

Outputting XML
Now we have built this tree in memory, we need to output it. How you do
so depends on the parser. Xerces does not provide a standard ostream
inserter for a DOMString, so we will have to provide one ourselves. This
is most likely because, as discussed above, the character data in a
DOMString object is stored in UTF-16 encoding, which is normally not
what we output to plain text files.

This means that to output the contents of a DOM Node to an ostream
we need do a couple of things:
1. Establish what kind of node it is (document, element, text and so on)

and act accordingly
2. Convert text to the appropriate encoding used by the current locale.

22 CVu/ACCU/Features

The first can easily be done using a switch statement and involves
outputting appropriate text for the different node types. Some nodes (e.g.
document, element) contain other nodes so they would use recursive calls
to the output function until the whole sub-tree had been dealt with:

ostream& operator<<(std::ostream& s,
DOM_Node& node) {

switch (node.getNodeType()) {
case DOM_Node::TEXT_NODE:
s<< node.getNodeValue();
break;

case DOM_Node::ELEMENT_NODE:
s<< ‘<’ << node.getNodeName();
/*..deal with attributes..*/
s<< ‘>’;
/*..deal with child nodes

recursively..*/
s<< ‘</’ << node.getNodeName() << ‘>’;
break;

/*.. and so on ..*/
}
return s;

}
A full example can be seen in the Xerces sample program “DOMPrint.cpp”.

This deals with the node type, but an additional operator<< is
needed to actually output the contents of DOM String variables, and will
be called by the function above. It needs to expand the special characters
&, <, >, ‘, and “ into predefined entities and send the contents of the
modified string to the stream. I will leave that as an exercise!

Validation
Any XML parser worth its salt should be able to validate the XML we pass
it. There are two requirements we could have checked for us:
1. Is the XML well-formed XML (ie. does it conform to the W3C XML

specification)?
2. Is the XML valid (does it conform to its DTD)?
The first requirement is the most basic – any XML we parse should be well-
formed or we can’t call it XML. The Xerces parser has two options and
will either throw an exception or call a user-supplied error handler if it finds
any irregularity in the XML it is parsing.

The error handler is an object of some class derived from
HandlerBase. There are three severities of error, the parser will call the
appropriately named method of your class, passing a reference to a
SAXException object describing the error.
The second requirement depends on us having a DTD for the XML we are
parsing. So far, the XML we have seen has been anonymous – that is with
no document type specification. Let’s look at the DTD for our example
phone list:

<!ELEMENT PhoneList (Entry*)>
<!ELEMENT Entry (name,number)>
<!ATTLIST Entry type CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT number (#PCDATA)>

We will assume that this exists in a file called PhoneList.dtd. We can refer
to this in out phonelist.xml file with a DOCTYPE declaration:

<!DOCTYPE PhoneList SYSTEM “PhoneList.dtd” >
If our parser is validating the XML (with Xerces this is enabled by calling
the DOM_Parsermember setDoValidation(), before parsing, with
the value true) it will compare the XML we parse with the DTD given.
Some parser-specific action will take place to report the errors, for instance
with Xerces the error handler (previously specified, or a default) will be
called, and the parse aborted.

Let’s modify our parsing code accordingly:

//First an error handler,
//derive from Xerces HandlerBase
class MyErrorHandler : public HandlerBase {
public:
void error(const SAXParseException &e) {

std::cerr << ”ERROR at line“
<< e.getLineNumber()<<std::endl;

}

void fatalError(const SAXParseException &e) {
std::cerr << ”FATAL ERROR at line “

<< e.getLineNumber()<<std::endl;
}

void warning(const SAXParseException &e) {
std::cerr << ”WARNING at line “

<< e.getLineNumber()
<< std::endl;

}
};

...

//Now, tell the parser to validate the XML
parser.setDoValidation(true);
try {
//Create an error handler
MyErrorHandler error_handler;

//And tell the parser to use it
parser.setErrorHandler(&error_handler);

//Now parse the file
parser.parse(filename.c_str());

}
catch (const XMLException& e) {
std::cerr << “An exception occured during

parsing\n Message: “
<< DOMString(e.getMessage())
<< std::endl;

}

The error handler method error will be called in the event that the
XML does not conform to the DTD. The fatalError method will
be called in the event of ill-formed XML, implying that the parse cannot
continue.

The catch block will catch any internal errors that occur during the
parse, or exceptions thrown from within your custom error handler.

DOM Exceptions
You might have noticed that the exception objects passed to the error
handler above were objects of type SAXParseException, not
DOM_Exception . The Xerces parser uses objects of this class to
encapsulate general parsing errors. I would guess that this could be
because Xerces uses SAX internally when parsing an XML document
into a DOM structure. The Document object model does have its own
Exception class that is supposed to be thrown under various error
conditions – the W3C recommendation states “when an operation is
impossible to perform” but allows implementations to use “native error
reporting mechanisms” if exceptions are not supported. It also says
that general DOM methods return specific error values rather than
throw exceptions.

Xerces will throw DOM_DOMException objects when you are
manipulating DOM data structures or creating them from scratch. For
example, you will get a DOM_DOMException if you attempt to substring
a DOMString object with too high an offset.
This means that you should be prepared to catch a DOM_Exception
object (but not during a parse, at least with Xerces) but it probably means
a serious problem rather than a simple error like an ill-formed XML
document.

XML Namespaces
The DOM level 2 (the latest version) includes support for XML
namespaces. In practice this means that, in addition to the standard DOM
accessor functions we have seen there are some new ones that allow you
to access namespace features.
For example:

// Retrieve the identifier of the namespace
// a node belongs to
DOMNode::GetNamespaceURI()

[continued at foot of next page]

23CVu/ACCU/Features

4DML Revisited
Silas Brown <ssb22@cam.ac.uk>

I’m not happy with the way I explained 4DML in C Vu 14.4 p26,
particularly the way the “depth’’ dimension seemed to be grafted on to the
design almost arbitrarily. My description followed the historical order of
the design process, but it would perhaps be clearer if we ignored this and
took another approach.

Attributes as Co-ordinates
If you want to represent a sparse N-dimensional matrix of objects (i.e. an
N-dimensional space that contains objects), then each object must
somehow be associated with N numerical values, to position it on each of
the N dimensions. You can think of these N values as extra attributes that
the object has. You can also do the reverse: Take a collection of objects
that all possess certain numerical attributes, and treat these attributes as
dimensions in N-space; an object’s co-ordinates are given by its values of
the said attributes.

It is, of course, possible to do this with attributes that are not numerical,
so long as they are sortable, or at least comparable so that two objects that
are equal in some attribute can be put at the same co-ordinate on the axis
(dimension) that corresponds with that attribute. However, 4DML only
uses numerical values, for reasons I’ll come back to later.

More generally, objects can have differing numbers of attributes; they
are not limited to having a fixed number of them. If we imagine a non-
Euclidean space in which objects can have positions on some dimensions
but not others, then this space can represent a general collection of objects
with arbitrary (numerical) attributes. Working with a non-Euclidean space
does make the geometry slightly more interesting, but it turns out that a
surprising number of operations are conceptually unchanged.

We now have a way of taking a near-arbitrary collection of objects,
arranging them (in N-space) by their attributes, and doing geometric
operations on this arrangement. This does not add any functionality, but a
lot of people find geometry easier to think about than algebra, so expressing
a problem in geometric terms can help.

Trees as Attributes
The next thing to note is that an object’s position in a tree can be represented
by a list of attributes. For example, one attribute can indicate which one of the
top-level branches the object is to be found under; another attribute can
represent which one of the second-level branches to go down; and so on. Since
these attributes can also correspond to positions in the non-Euclidean N-space,
this shows that the N-space has all the functionality of a tree.

This is significant, because matrix-like data (such as a musical score) is
often marshallised (that’s “serialized’’ in Java-speak) into a hierarchical (tree-
like) representation such as XML, and then programmers try to work with it
as a tree (by using re-writing systems and so forth) without being free to
perform as many geometric operations as they could have done on the
geometric representation. However, the above method, of representing the tree
as attributes and attributes as geometry, provides a ‘natural’ way of converting
between the two representations. This can make serialized matrix-like data
considerably easier to process (and to transform into completely different
serializations), and it can also manifest benefits when working with data that
would not normally be thought of as matrix-like. As a bonus, it is possible to
represent several independent hierarchies over the same data just by merging
their attribute lists (so long as there are no naming ambiguities).

Labels for Co-ordinates

Now, the problem is that having attributes such as “which top-level branch
to go down’’, “which second-level branch to go down’’ and so on is not
sufficient if those branches have names as well as numbers and we want
to be able to set constraints on both. It is, of course, possible to store these
names in extra attributes, or additional objects, or in some other manner,
and all kinds of complex constraints could be designed into the system to
make sure that they are used sensibly, but that might make the design too
complicated. I preferred to support attributes with pairs of values, that is,
each attribute can have both a named value and a numerical value. This
can be regarded as attaching a label to each one of an object’s co-ordinates
in the N-space. One obvious way of extending this is to support more than
one label on each co-ordinate, but people who need that functionality
perhaps really should be thinking about using additional attributes instead.

4DML (four-dimensional markup language) is so-called because the
prototype represents its non-Euclidean N-space as a set of four-dimensional
points; each one of those points gives a reference to the object that it is
helping to describe, the attribute that it is setting, the value, and the label.
For historical reasons the prototype calls these “scope’’, “depth’’,
“position’’ and “name’’ respectively, and lists them in reverse order. 4DML
can represent trees and matrices, and blurs the distinction between the two;
it can also be hacked to represent arbitrary relationships between objects
(objects can be regarded as related if they share a common value of a certain
attribute, i.e. they are at the same position on a certain dimension).

Not a ‘Real’ Database
Earlier, I mentioned that 4DML only treats numerical values as co-
ordinates, although it does support labels. It is important to realise that
4DML is somewhat different from a conventional database. In most
databases, an object can have attributes of various types and the attributes
store the data; for example, a record about a book might have as an attribute
(or ‘field’) the author’s name(s). It might then be possible to sort the
database by the “author names’’ attribute. If you wanted to do the
equivalent in 4DML, you would have to give each author a position number
(effectively pre-sorting them), and then arrange for the name and any other
information, including all of the books that s/he wrote, to be stored at that
position on an “author’’ axis of the N-space. The point is that there is no
information conveyed in the position (possibly excepting positioning
information); it only serves to categorise and structure the information that
is stored in the objects themselves (usually strings) which are opaque to
4DML’s organisation. It’s like using a database system in which everything
is indexed by unique identifier. This keeps the design simpler and also
helps prevent certain kinds of mistake (such as assuming that people’s
names are unique).

Although 4DML can be used for database-like applications, its main
purpose is to represent documents in various notations. Documents are
essentially collections of symbols with one or more reading orders (that is,
sequences in which the symbols can be arranged); any markup over the
symbols should reflect the arranging and interpretation of the symbols in
the document, not the symbols themselves, and by extension, any values
of any attributes associated with such markup should also reflect only this.
It is possible to hack things differently, but I’d call that an improper use of
the design. Perhaps I was wrong to use the analogy of objects and attributes
to explain 4DML (it wasn’t the way I designed it); it might make things
easier to understand, but only if taken in the proper context.

Silas S Brown

// Retrieve the namespace prefix of a node
DOMNode::GetPrefix()

// Retrieve just the name part of the node
// name (omitting the namespace prefix)
DOMNode::GetLocalName()

// Retrieve a list of attributes with the
// given name, and the given namespace
// identifier (“*” means all namespaces).
DOMElement::GetAttributeNodeNS(

const DOMString& namespaceURI,
const DOMString& localname);

You can choose whether or not you want to use the namespace features
of the DOM and stick to the appropriate set of method calls – those that
support namespaces or those that do not.

David Nash

References
[1] http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
[2] http://www.w3.org/TR/REC-DOM-Level-1 and
http://www.w3.org/TR/DOM-Level2-Core
[3] http://www.w3.org/TR/REC-DOM-Level-1/level-one-
html.html
[4] http://xml.apache.org/xerces-c
[5] http://www.goingware.com/tips/xmlmemory.html

24 CVu/ACCU/Features

Professionalism in
Programming #16
What’s in a name?
by Pete Goodliffe <pete@cthree.org>

“When I use a word,” Humpty Dumpty said, in a rather scornful tone, “it
means just what I choose it to mean – neither more nor less.”

Lewis Carroll [1]

Ancient civilisations knew that to name
something was to have power over it. This
was more than simply a claiming of
possession. Some believed so strongly that
they would never give out their own name
to a stranger for fear they would be able to
inflict harm using it.

Names mean an awful lot. It is
fundamental to our concept of identity. We
see examples throughout history. Even before
2000 BC we’re shown Biblical examples of
meaningful place names and children being
given names to reflect circumstances. It’s still
convention for women to change surname
when they marry, although the fact that some
choose to do otherwise shows how they
attribute significant meaning to their name.
Why would people want to have their name
changed by deed-poll if it meant nothing to
them?

A name not only promotes identity, it
also implies behaviour. Obviously a name
doesn’t entirely dictate what an object does.
But it goes a long way towards defining
how you interact with that thing, and how the outside world interprets it.
This is borne out even more clearly by the fact we’re never fixed to one
name per ‘object’. I’m known by different monikers in different contexts:
the name my wife calls me1, the name my daughter knows me by, the nick
name I’m known as in chat-rooms, and so on. These names describe a
relationship and interaction with me, and a role I fulfil.

A name marks something out as a distinct entity. It elevates it from an
ethereal concept to a well-defined reality. Before someone put a name to
electricity no one would have understood what it was, although they’d have
some vague idea of its effects by watching lightning or Benjamin Franklin’s
demonstrations. Once named, it became identifiable as a distinct force and
consequently easier to reason about. The Basque culture believes that
naming something proves its existence. Izena duen guzia omen da. That
which has a name exists [2].

Today the act of naming has become a multi-million pound business,
used (with varying degrees of success) by small firms through to the largest
multinational corporations to launch, re-brand and publicise products. The
newer, ever more catchy names are intended to build awareness of their
products and services.

So names clearly are of immense import.
As programmers, we wield this enormous power over the constructs we

create when we name them. A badly named entity can be more than just
inconvenient; it can be plain misleading and even downright dangerous.
Consider as a very simplistic example the following C++ code:

void checkForContinue(bool shallWeContinue) {
if (shallWeContinue) exit(0);

}
The parameter name is clearly a lie, or at least its sense is the other way
round to what you’d expect. The function will not perform as anticipated
and your program will halt as a consequence – a reasonably dire result from
a single misnamed variable.

Why should we name well?
Clearly we need to consider the names we give things carefully. The name
creates a channel of understanding, control and mastery. Appropriate

naming means that ‘to know a name is to know the object’. And the
opposite?

As in the real world, names can be both useful and limiting at the same
time. People tend to stick to their initial perceptions of a concept, despite
the proverb about judging books by covers. Therefore it’s important to
convey the right first impression through careful naming.

Apparently the human brain can only hold seven pieces of information
concurrently (although I’m pretty sure I’ve got a couple of defective slots in
my head reducing the overall capacity). It’s hard enough to hold all the
information about a program in your head as it is; we should not add complex
naming schemes or require obscure references to make this task even harder.

What do we name?
Let’s spend some time thinking, as programmers, about what we name and
how we name it. First: what? A minimum set of things we name, directly
related to writing code, are:
l variables,
l functions,
l types (classes, enums, structs, typedefs),
l macros, and
l source files.
This list is by no means an exhaustive one – there are other higher level
entities we’ll put meaningful names to: states of a state machine, parts of
messaging protocols, database elements, application executables, and so
on. These five are enough to be starting with.

What shall I call you?
So: how do we name? The naming convention for each of these classes of
item should depend on the coding standard we’re working to, if one exists.
However, whilst a standard might mandate certain naming conventions it is
not really sufficient to guide appropriate naming for each and every variable.

Generally there are very few rules from a compiler as to how we can
name things. Modern languages have case sensitive names, don’t allow
‘white space’ (spaces, tabs, newlines) and allow just alphanumeric and a
few particular symbols (commonly at least an underscore). These days
there are no appreciable limits on identifier length2. Without jumping
through a considerable number of hoops we’re usually limited to the
ISO8859-1 (ASCII) character set, so non-English speakers are at a
disadvantage. The C/C++ standards also reserve other ranges of names, for
example any global identifier that begins with str or an underscore, and
anything in a namespace called std. As practitioners it’s important to be
aware of these kinds of restriction so we can write robust and correct code.

Avoid jokey names like blah or wibble. They can easily creep in, and
whilst amusing at first, just create confusion later on. Things like this are
usually quick temporary hacks that outlive their expected uses. Name all
things well first time, all the time. Obviously, being professional means
that you don’t explete when naming.

For each of the above listed sets of items, the following sections present
some considerations for good naming.

Naming variables
If a variable didn’t consist of electricity it would be the sort of thing you
could hold in your hand. It is very much the programming equivalent of a
physical object, and a name that reflects this will usually be a noun. For
example, some variable names in a GUI application might be ok_button
and main_window.

If not a noun, it will usually be a ‘nounised’ verb, e.g. count. Numeric
variables’ names describe the interpretation of the value, e.g.
num_apples. As we saw earlier, a boolean variable name might be a the
name of a conditional statement, which is natural considering the value
will either be true or false.

Since your variables are the fundamental data you work with you must
give clear, very descriptive names. It doesn’t matter if these are long if it’s
required to make their meanings unambiguous. ‘a’ is not a realistic
replacement for ‘num_apples’

However, there may be a case for short (even one letter) variable names:
as loop counters. They actually make reasonable sense in small loops where
variable names like ‘loop_counter’ are not just obvious but can
become rapidly tedious.

1 This will alter depending on whether she’s in a good or bad mood with me at the
time!

2 Be aware that older versions of C limited external unique linkage to the first six char-
acters, and case was not necessarily significant. You need to understand exactly
what the target of your code is when you write it.

25CVu/ACCU/Features

When working with OO languages there are a number of conventions
you may adopt to ‘adorn’ member variables to show they are members and
not an ordinary local variable or (evil) global variable. This is a mild form
of Hungarian Notation (see later section). Whilst not strictly necessary,
some programmers find it a useful practice. In C++ some common forms
are to prefix member variable names with an underscore, suffix them with
an underscore or prefix with ‘m_’. The former method is frowned upon
because it sails close to the wind; remember you can’t have global
identifiers beginning with underscore. Besides, a leading or trailing
underscore makes the variable pretty unnatural to read.

Of course, this kind of member naming convention won’t have any
impact on a class’ public API because all your member variables are private
anyway (aren’t they?).

The French language has two forms of the word ‘you’: tu and vous,
depending on how familiar you are with a person. The name we know a
variable by may depend on the context we need it in. For example, you
may see a variable named differently in a function’s public declaration (in
a .h file) and in the implementation (in a .c file).

Some people feel it necessary to adorn pointer types with something like a
‘_ptr’ suffix, and similarly for reference types ‘_ref’. This is another subtle
incursion of Hungarian notation, and is redundant. The fact the variable is a
pointer is implicit in it’s type. If your function is so large that you think this
adornment is a useful aid-memoire, then your function is probably too long!

Another commonly seen variable naming practice is using acronyms as
a concise ‘meaningful’ name. For example you might declare a variable
like this: SomeTypeWithMeaningfulNaming stwmn(10);

No matter what your method of variable naming, it is helpful to prefer
a convention that distinguishes type names from variable names.
Commonly type names have an upper case initial letter, and variables a
lower case one. When using this convention it’s not uncommon to see
variable declared like this: Window window;

Naming functions
If you hold a variable in your hand, the function is what you do with it –
you don’t just want to hold it forever. Since a function is clearly an action,
its name will logically be, or will include, a verb to indicate this. A function
name that was just a noun would not be clear: for example, what does
‘apples()’ do? Does it return a number of apples, does it convert
something into apples, or does it make apples out of thin air?

Meaningful function names will avoid including the words be, do or
perform. These are a classic trap for students when first trying to
consciously include verbs in their function names (this function does

XXX…). That kind of word is just noise and don’t add any value to the
function name.

A function should always be named from the viewpoint of the user – hiding
all the internal implementation stuff neatly away (that’s the point of a function,
it’s a level of compression/abstraction). Who cares if behind the scenes it stores
an element in a map, makes calls over a network, builds a new computer and
installs a word processor on it, or whatever. If the user only sees the function
count apples, the function should be called countApples().

When we write functions they should be well documented (either in a
specification or using some literate programming method). However, this
is no excuse for not making the function name a clear statement of what
the function does. Its name is part of its ‘contract’. For example, what does
void a() do? It could be anything.

The detail that must be included in the name will depend on the context
it is defined in. For example, if a function that returns the number of apples
in a tree is defined in a C++ class Tree then it needn’t be called
numApplesInTree(). It’s full name would be an unambiguous
description: Tree::numApples(). This context information works
similarly for namespaces3.

One final set of functions deserve consideration: “getters” and “setters”.
We see that some classes naturally act as collections of variables that behave
like ‘properties’. Each property needs a member function to read its value,
and one to set it; some languages have built-in support for this kind of
property. Whilst some argue that the existence of such get/set methods shows
a weak design, nonetheless we see a lot of classes written containing this
kind of API. There are a number of conventions related to naming these
member functions: they include (for some property called foo of type Foo):

Foo &getFoo();
void setFoo(Foo &foo) const;

and:
Foo &foo();
void setFoo(Foo &foo) const;

or perhaps,
Foo &foo();
void foo(Foo &foo) const;

Your choice may vary, or again be dictated by your coding standard. This
is one where, personally, I would violate the ‘name always contains a verb
rule’ and go for the second option, since it reads the most naturally in code.

Naming types
The sort of types we may create depends on the language we’re using. In C
we can only define typedefs, which are synonyms for other type names. You
use them to provide an easier, more convenient name for existing type. It
stands to reason, then, that a typedef should be clearly named. Even if it’s
only a local typedef in a function body it should still have a descriptive name.

Java, C++, and other OO languages are profoundly based on the creation
of new types (classes). In the same way correct names for variables and
(member) functions is vital to the readability of the code, good type names
are paramount.

There aren’t many obvious naming heuristics for classes, though. A class
may be describing some state-full data object. In that case its name will
probably be a noun. It may be a function object or class implementing some
virtual callback interface. Here the name will probably be a verb, perhaps
including the name of some recognised design pattern [3]. If the class is a bit
of a mash of both, it’s probably hard to name and potentially badly designed.

We saw a few words to avoid in function names, there are similar cases
here. When putting a name to a class you should almost always avoid
including the word class or object. In type names these are usually redundant
noise. For example, DataObject is a bad name: the class may very well
contain data, but it’s obviously going to be used to create an object, that doesn’t
need restating in the type’s name. The class name should describe the class
of data and not the actual object. That’s a subtle distinction, but important.

A bad class name can serve to really confuse programmers. As an
illustration I’ve worked on an application which contained a state machine
implementation. For some historical reason the base class of each state was
called Window. It was very odd to work out what exactly was going on
(and this wasn’t helped by a distinct lack of documentation to boot). To add
insult to injury the base class of a command pattern was called Strategy
when it actually wasn’t implementing a strategy pattern. Suffice to say it

Capitalisation Conventions
Naming conventions are a source of about as many programmer fist-
fights as the Eternal Holy Editor Wars (no one seems to have noticed
that vim won years ago :-). (Clearly a typo: you meant emacs, of
course. — ed) Most languages prohibit us from using white space and
punctuation in our identifiers, so we adopt a convention for splitting up
multiple words. There are a number of common ways of doing so which
you’ll see in modern code.

camelCase
As seen used extensively by the Java language libraries, also in

many C++ codebases: KDE for example. It is so called because the
capitalisation resembles a camel’s humps, and was probably first used
in Smalltalk in the early 1970s.

ProperCase
This is a close relative of camelCase, its only difference is that the

first letter is also capitalised. Often the two conventions are used
together. For example, in Java, class names are written in proper case,
and variables and methods in camel case.

using_underscores
Proponents of this style are the implementers of the C++ standard

library (look at all the names in the std namespace) and the GNU
foundation.

There are, of course, more forms. How many can you come up
with from the top of your head? You can start by mixing proper case
with underscores. There are other similar naming considerations, like:
l How many vowels do you drop to make an identifier easy to type?

Too many and it becomes unreadable.
l Do you require that any verb must come first in multi-word function

names?
l Do you adorn member variable names, and if so, how?

3 In fact, this is a reasonably universal principle that could apply to most named items.
For example enumeration element names found at class scope would be different to
a similar definition at global scope.

26 CVu/ACCU/Features

took me a little while to get my head around what was going on. Better
naming would have allowed me easier access to the code’s logic.

Naming macros
Macros are the walnut-cracking sledgehammers of the C/C++ world. They are
a basic text search/replace tool that don’t respect scope or visibility. They’re
tactless. However, there are some walnuts that just won’t crack without them.

Since they have such drastic effects there is a well-established tradition
for naming macros in a maximally obvious way, using CAPITAL
LETTERS. Follow this without fail. And don’t make any other name
entirely capitalised. This makes macros stand out like a sore thumb, which
is basically what they are.

Naming files
Did you think of files when we talked about naming things? The name of
your source files can have a real effect on the ease of coding. Obviously
what you call a source file, be it a header or implementation file depends
on what goes in it. In C and C++ there aren’t actually any restrictions on
file names, but calling headers “something.h” is such a universal
convention that it would be like sticking pins in your eyes not to. We
already feel some pain from the lack of rigid definition though. Different
people call C++ implementation files different things, .C, .cc, .cpp,
.cxx , and .c++ are common file suffixes. Your choice will usually
depend your compiler, personal preferences, and/or coding standard. I have
even worked on platforms that didn’t support file extensions and defined
file types by the name of the enclosing directory (with appropriate
massaging for standard header file includes). That was reasonably evil!

Moving past the discussion of what suffix to give your files, exactly
how should you name them? To make this naming easy and obvious a file
should usually contain one conceptual unit. Any more stuff in that one file
is asking for trouble in the long run. Split your code into the maximum
number of files you can, not only will it make them easier to name, it should
reduce coupling since you don’t #include one big monolithic header
file who’s smallest change in one dusty corner requires many dependant
recompilations. If you have a file defining the interface for a widget it
should be called “widget.h” (not “widget_interface.h”,
“widget_decls.h”, or any other variation).

Once you have a file that can be appropriately named, you conventionally
should balance each foo.h with a matching foo.cpp that implements
whatever the foo.h declares. This is both obvious and conventional.

Now, there are other insidious issues when naming files. You need to sort
out the capitalisation. Some filing systems (naming no names4) can’t get this
right, ignoring case when looking up file names. When porting code to
platforms where case is important your code won’t compile unless you’ve
observed capitalisation carefully. Perhaps the easiest method of avoiding this
sort of issue is to mandate all lowercase filenames. If you don’t, be careful. For
the same reason, if your filing system considers that “foo.h” and “Foo.h”
are different files, don’t exploit it. Make sure that your filenames differ by more
than just case. If you mix languages in a single project don’t create foo.c and
foo.cpp – it’s messy; which file is used to create foo.o?

Older filing systems limited the number of characters you could use in a
filename, which made naming much messier. Unless you have to port code
across to such an archaic system this kind of limitation can be safely ignored.

Try to ensure that each header file you create has a distinct name, even
if they’re all spread across different directories. This makes it easier to
reason about which header file you are actually including when you
#include “foo.h”. If there were two different files with the same name
a newcomer to the codebase would be confused. This gets to be more of
an issue the larger the codebase gets. One valid way to work with this is to
include some path information in the logical filename, i.e. you may include
“library_one/version.h” and “library_two/version.h”
without too much panic.

As an illustration of how file naming impacts ease of coding, I worked a
particular project where the majority of the filenames matched the class names
exactly, for example the class Daffodil was defined in daffodil.h
(names have been changed to protect the guilty). To make things more
interesting, every now and again a file was named in a slightly different
manner, usually slightly abbreviated, so ProxyObject would be held in
proxyobj.h. That just made finding the right filename to include more
complicated and time consuming than it needed to be. On top of this, not all
of the Daffodil class implementation was necessarily in Daffodil.cpp

– some of it might have been in a shared FlowerStuff.cpp and perhaps
also in Yoghurt.cpp for no adequately explained reason. As you can
imagine, this made finding particular bits of code a nightmare.

A rose by any other name
That’s a pretty large set of considerations for naming bits of code. What are
the overall principles to pull out? Perhaps the most important thing is that
you should ensure consistency in all of your naming, and not just within your
own work, but also respecting company-wide principles. This goes right
down to the typography of a name, and its capitalisation. For example I have
no confidence in the quality of a class interface if it looks like this:

class foo : public Bar {
public:
doTheFirstThing();
DoTheSecondThing();
do_the_third_thing();

};
When you get a lot of people working ‘together’ on the same lump of code
its very easy to end up in this state, being about as internally consistent as
a random number generator. It’s often a symptom of worse problems – the
programmers probably aren’t respecting the fundamental design of the code
they’re simultaneously working on. This is where mandated coding
standards and central design documents are a big advantage.

With consistent naming we get code that is intuitive, therefore easier to
work with, easier to extend and maintain. In the long run it’s much cheaper
to manage. Whilst the C++ standard library is a definitive source of
programming best practice it also contains some classic examples of
inconsistent and inappropriate naming. This shows that no matter how good
your codebase you’ll probably have to live with some bad naming.

There is power in a name, and power that allows us to be more
expressive than a language’s syntax alone might allow. Think about how
you can use similar names to group things together, or how you can imply
which of a function’s parameters are input or output.

Hungarian notation
Bunfight! There is nothing like the mention of Hungarian Notation in the
programmer’s realm of naming that will raise hackles and cause such a
heated discussion. A few readers won’t know what this practice is. Since
it’s such a controversial issue, in describing it I’ll be careful not to make
any judgement calls; it’s not really the place of such an article.

Hungarian notation is the downright evil, obstructive and complex
practice of encoding information about a variable or a function’s type in its
name in the misguided belief that it will make the code more readable and
more maintainable. It sprang from Microsoft in the 80s and it’s particularly
interesting to note that these days large parts of Microsoft itself ignores this
abominable convention. It’s widely used in their public Win32 APIs and the
MFC library, which is almost certainly the main reason for its popularity.

It’s so called because it was pioneered by a Hungarian programmer
Charles Simony. It’s also called that because variable names written using
it look like they may as well have been written in Hungarian: non-Windows
programmers will be confused by surreal names like lpszFile,
rdParam and hwndItem dotted around every piece of code.

There are many subtly different and not-quite compatible dialects of
Hungarian Notation which doesn’t help matters. Also in some situations, the
same prefix can mean different things. These are some common Hungarian
encoding prefixes, not including any magic Microsoft typedef codes:
p pointer to... (lp means ‘long’ pointer, an old architectural

issue – if you don’t know, don’t ask)
r reference of...
k constant...
rg array of...
b boolean (bool or some C typedef)
c char

si short int

i int

li long int

d Double

ld long double
sz zero terminated char string (note: not p)
S struct

C class (you can define your own class abbreviations too)4 Painfully obvious pun.

27CVu/ACCU/Features

Linux Server Series Part 1
Paul Grenyer <pjgrenyer@iee.org>

Preferred Linux Distributions

This is the first part of my series on setting up a Linux Server. As the series
progresses I will explain how to set-up a Linux based server starting from
choosing a Linux distribution through to choosing hardware and setting
up, or upgrading to that latest version of, the likes of:
l Samba,
l Apache web server,
l A DNS server,
l A DHCP server,
l Internet connection sharing,
l A firewall,
l Postfix,
l GCC (Compiler),
l MySQL,
l CVS
for a small home sized network.

This first part of the series deals with choosing a distribution. The next
part will cover choosing hardware and the third installing and setting up
the Linux distribution. After that I will look at configuring the packages
listed above, starting with Samba.

It doesn’t make a great of deal difference to me which distribution of
Linux I use for the server and there are many to choose from so I posted a
query to accu-general to try to get an idea of which distribution people are
using and what they would like to see the article based around Mandrake,
SuSE, Redhat, Debian and Slackware came up again and again. Below I
have summarized the general feeling about each of these distributions
based on the comments I received.

Mandrake
http://www.mandrakesoft.com/
The main points made about Mandrake were that it was very easy to install
and very good at detecting lots of different pieces of hardware including
some of the relatively more ‘exotic’ devices such as USB printers, DVD
Drives and CD Rewriters. This makes it very good for Linux beginners.

Redhat
http://www.redhat.com/
RedHat is a main-player in the USA, however it tends towards the non-
standard edge of things. Not as easy to install as Mandrake, but seems to
be in wider use, especially in industry. It has some other strange features
such as installing postfix instead of sendmail as the MTA. A few problems
were pointed out such as SCSI compatibility issues and faulty compilers.

Just about everyone mentioned RedHat at some point. Most didn’t give
a reason, but said that RedHat would be the first distribution they tried.

SuSE
http://www.suse.co.uk/

SuSE is big in Europe, especially Germany. It equals Mandrake in terms
of ease of use and installation and has a better hardware detection system

than Mandrake. SuSE actively support XFree 86 development and KDE
development (http://www.kde.org/ - a very popular desktop).

Unlike RedHat, SuSE has printed manuals that actually have useful
information, they also offer 60 days free support for their personal edition
and 90 days for their Professional edition. SuSE has a much broader
selection of ancillary packages and uses the concept of maintaining the
configuration files using rc.config.

Again a lot of people mentioned SuSE, generally as the second
distribution they would try after RedHat. All comments were be very
positive and this distribution is obviously very popular.

Debian
http://www.debian.org/
Debian has many fans in the USA, apparently due to the apt-get package
manager that keeps the system well patched. However, it’s strictly non-
commercial and all the developers and maintainers are unpaid, so the
release cycle can be lengthy.

Debian has always at least three releases in active maintenance, Potato
(‘stable’), Woody (‘testing’) and Sid (‘stable’). Woody went into ‘almost-
frozen’ a couple of months ago preparing for the new 3.0 release and will
later become the new ‘stable’-release.

Slackware
http://www.slackware.org/

Slackware was mentioned by just a few people and is popular because
it does not try to do things for you, like most of the other distributions. It
has a very simple package manager that just requires tar and gzip. There
is greater control over what is installed and Slackware is the only
distrobution that is compiled for 386/486 “out-of-the-box”.

However, Slackware has its strong proponents and some found it too
sparse for their needs.

When I first read all the replies I received to my original post, it was
clear to me that RedHat was popular so I decided I would use it on my
server and have now gone ahead and purchased the distribution. However,
now that I have looked more closely at what people have actually said,
most people just mention RedHat as the distribution they would try first.
The most ‘popular’ and highly thought of distribution appears to be SuSE,
with no one having anything bad to say about the later versions.

I have some previous experience with RedHat and I am keen to give it
a go. However, I am also keen to try SuSE as a result of the response to
my post. Therefore, if people are interested I am prepared to do two
versions of my Linux Server Series, one with RedHat and one with SuSE,
they will more than likely overlap in many places anyway. If you would
like to see this, please let me know (pjgrenyer@iee.org).

All of these distributions are available from the Linux Emporium
(http://www.linuxemporium.co.uk) in the UK.

Thanks:
Thank you to everyone who replied to my original post on accu-general.

I hope I’ve got you all here: Neeraj Korde, Tim Pushman, Ewan Milne,
Anthony Williams, Andy Leighton, Graham Whaley, Richard Moseley,
Charles Polisher, Jason Gruber, Phil Hibbs, Kevlin Henney, /dev/null

Paul Grenyer

Hungarian notation was relatively unbearable in C (not to mention
unnecessary once the language became more strongly typed), and can
become rapidly nauseating in C++ since it doesn’t really scale up to the
many new type definitions you can introduce. If you really want to confuse
a maintenance programmer use Hungarian notation and then go around a
few months later changing the types of all the variables without search-
and-replacing every single variable name (naturally, it will take too long
to do that). Aside from being a joke, this is not an uncommon problem with
this naming scheme.

Unless you are forced to use it, Hungarian notation is best left well
alone. Naturally, thousands of readers will now write in and argue against
such a neutral and diplomatic viewpoint (please do!).

Conclusion
Our ancient ancestors knew it and good programmers know it. It’s crucial
to name things well. Good names serve more than just an aesthetic purpose,
they convey information about the structure of code. They are an essential

tool to aid comprehensibility and maintainability. Bad names have the
potential to mislead. There is power in a name and an experienced
professional programmer understands the balance of concerns involved
when naming any part of their code.

This all comes back to the main reason we write code in high level-
languages: to communicate. Our communication is to an audience of code-
readers, that is other programmers, rather than to the compiler.

I GOT PEELED OFF5

References
[1] Lewis Carroll (1832-1898). Through the Looking Glass.
[2] Mark Kurlansky. The Basque History of the World. Jonathan Cope.
ISBN: 0-224-06055-4.
[3] Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley. ISBN: 0-201-63361-2.

5 Inappropriate naming courtesy of the Internet Anagram Server.

28 CVu/ACCU/Features

Bookcase
Collated by Michael Minihane
<michaelm@pobox.co.uk>

Francis Glassborow writes:
Please note the names of the reviewers in this
issue’s Bookcase. Notice anything? Well if you
remove the reviews by me and by Chris Hills there
is little left. Another thing that you may notice is
that there are no books on straight C or C++.
Personally I think that is a good sign as long as it
is not always that way. The glut of ill-considered
books aimed at novices (or whose authors fondly
believe will be all things to all people) has moved
away from C (quite a long time back) and from
C++. The flood of books on Java is beginning to
subside while everyone jumps on writing books
about XML and C#. It would be a serious mistake
to judge the popularity of a language by the
number of books being written for it. What is more
significant is the number of genuinely advanced
books being written for a language.

Now let me reflect on my first question. ACCU
needs more reviewers so that the current ones are
not over-worked. We need those of you with
specialist skills that can review some of the more
obscure books publishers send to us. I do not know
if you have realised but as long as the book is in
first class condition, you can sell on any books that
you do not want to keep (as long as you have first
reviewed them). For example Blackwell’s
Bookshops would give you somewhere between
30% and 40% of the list price. A direct sale to a
local retailer is probably better than selling
second-hand through someone such as Amazon
because the postal costs would eat up much of
what you would receive if you went that route.

If you are not already reviewing books for
ACCU, give serious consideration to doing so. just
a couple of books a year would make a tremendous
difference to the state of my office (I have over
£5000 worth of books waiting for reviewers).

You know that I try to provide comparative
costs for titles sold both sides of the Atlantic. This
time I came across some quite bizarre cases. A
couple of books were only listed in the hardback
versions in the US even though paperback was
available in the UK. In one case though, identical
copies were much, much more expensive in the
US. Where I give a comparative cost it is, as far
as I can tell, for the same product. There is also
the case that Pearson Educational has just
substantially reduced some titles. And some titles
are available from Amazon.co.uk at 50% discount.

Francis Glassborow
<francis.glassborow@ntlworld.com>

The following bookshops actively support ACCU (the first three
offer a post free service to UK members – if you ever have a
problem with this, please let me know – I can only act on
problems that you tell me about). We hope that you will give
preference to them. If a bookshop in your area is willing to
display ACCU publicity material or otherwise support ACCU,
please let me know so they can be added to the list
Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
The PC Bookshop (020 7831 0022)
orders@pcbooks.co.uk

Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk
Modern Book Company (020 7402 9176)
books@mbc.sonnet.co.uk
An asterisk against the publisher of a book in the book
details indicates that Computer Manuals provided the
book for review (not the publisher.) N.B. an asterisk after a
price indicates that may be a small VAT element to add.

The mysterious number in parentheses that occurs
after the price of some books shows the dollar pound
conversion rate where known. I consider a rate of 1.5 or
better as appropriate (in a context where the true rate
hovers around 1.6). I consider any rate below 1.3 as
being sufficiently poor to merit complaint to the publisher.

Java & C#
C# Bible by Jeff Ferguson
et al. (0 7645 4834 4),
Wiley, 798pp @ £29-95
(1.34)
reviewed by Francis
Glassborow
Several publishers have
well defined series with a

clear brand image. The ‘Bible’ titles seem to
get passed around. IDG, The Waites Group and
Sams have all published books claiming to be
<something> Bible. Picking up this book with
a cover dominated by yellow and red, and
noting that it was a multi-author work made me
think that it would be a Sams publication. It
isn’t, this one is from Wiley. Then the penny
dropped, Wiley recently acquired the Dummies
series (and I am waiting to see what they will
do with such gripping titles as Sex for
Dummies) This book is a very fat volume for
dummies and post dummies. Try the first
paragraph from ‘Who Should Read This Book’

This book was written with both the novice
and experienced developer in mind. If you
know nothing at all about the basics of
software development, this book will get you
started with the fundamentals, teaching you
how variables, control loops, and classes
work. The book will also speak to developers
of any skill level, showing you the .NET tools
available for C# development and providing
you with tips to make your own C#
applications work seamlessly within the .NET
Framework development guidelines.

Does anyone actually believe that? If a book
is suitable for someone who knows nothing
about the basics of software development it
will have nothing to offer the experienced
developer. Even books written to introduce
experienced developers to a new language are
unlikely to be of use for anything else. I wish
publishers would stop encouraging authors to
target books at ridiculously wide readerships.
The result is always that they fall between the
needs of everyone.

Actually the first half of this book is clearly
intended for the newcomer to programming.
Unfortunately there are many other things apart
from syntax that such a person needs to learn.
Anyone who has done some programming will
not be too uncomfortable with the jargon of
programming (variables, functions, operators

etc.) but the newcomer certainly does not want
to be faced with terms like ‘metadata’ before
they have even written a line of code.

So my conclusion is that the first part of this
book is not suitable to the genuine novice. But
it isn’t suitable for the experienced programmer
because in that case the pace is too slow and
too much time is spent in inadequate (for the
novice) explanations. The experienced
programmer does not need to be told what a
break statement does. S/he does want to
know the syntax of it in this language together
with where it can be used.

This problem manifests itself even when
we move on to the more advanced sections.
These just do not read as expert writing for
expert. The text drifts, the authors waffle. The
book is peppered with source code that is of
poor quality, laid out with oodles of
whitespace (and yet still lines wrap because
neither the editor nor the author has thought
about the consequences of nesting depth. Let
me give you an example. The squares of a
chessboard can be represented by a letter (a-h)
followed by a digit (1-8). For internal
purposes we would normally represent that by
an ordered pair of integers each in the range
of 0-7. How should you convert from the
external representation to the internal one?
Well I will lay you pretty good odds that most
readers of this would not use a switch
statement to convert chars to ints. I can
think of several good ways that an
experienced programmer would do it, but not
with a switch. And should we be setting
such examples to novices?

There is a very narrow readership for this
book, those who are inexperienced
programmers in at least one other language
who do not want to learn a good coding style.

Sorry, we have enough poor books on
programming without adding more to them just
because we have a new language to learn
about. I have no doubt that this book will be a
reasonable commercial success and that many
readers will be quite satisfied but that will be
more a measure of the poor standards we have
come to accept in IT publishing rather than due
to any inherent quality of this book.

Developing Applications
with Java & UML by Paul
Reed (0 201 70252 5),
Addison-Wesley, 463pp @
£34-99 (1.29)
reviewed by Silvia de Beer
Before I started reading this
book I thought it would just

be another introduction to UML. I was
mistaken; it is actually a good case study on
how to follow the Unified Process. The theory
of the Unified Process and UML is very well
interwoven with a case study. Attention is
given to all development process concepts and
they are put into a practical context. Only the
most useful details of UML are explained.

A strong point of the book is that the design
of use cases is well explained. This is

Reviews

29CVu/ACCU/Reviews

especially important for people new to the
Unified Process, because this is the first point
where developers can fail. They do not have a
good idea what to achieve exactly. The book
warns on the pitfall of too many small use
cases, which, as the author explains, should
only be a pathway through a use case. Some
additional tools like event tables are described,
to ease the transition to other phases in the
development process.

General task lists and templates are given,
after which the case study fills them, which
serves as a concrete example. The case study
handles an ordering system for musical
instruments, which goes through the inception
and elaboration phases. The various activities
during those phases are shown, including a
little coding during the early iterations. The
transitions between iterations are well
explained. It is a pity that no chapter has been
dedicated to the construction phase, especially
after the good efforts of going through all
earlier iterations. Even if those phases were not
worked out in detail, some text could have
been dedicated to the implementation and
transition phase.

Java is used to implement the case study.
Java Beans, Servlets, JSP and Enterprise Java
Beans are used to show different possible
implementations during the elaboration phase.
This might make the book slightly less useful
if you have not worked at all with this
technology and even more useful if you work
in that area.

This book would be very well suited to get a
small team of developers who start using the
Unified Process, on one line. It could also be
used to support a university project of a few
students. A starting developer would get a very
practical view of the essential tasks in the
Unified Process.

Developing Enterprise Java
Applications with J2EE &
UML by Khawar Zaman
Ahmed & Cary Umrysh (0
201 73829 5), Addison-
Wesley, 330pp @ £30-99
(1.29)
reviewed by Silvia de Beer

I was disappointed with this book. It starts
with an introduction to UML, after which an
overview of the J2EE technologies is given;
Servlets, Java Server Pages, Session Beans,
Entity Beans, and Message Driven Beans.
Based on the title I expected a book for
experienced Java developers and advice on
how to develop sound applications using
UML as the modelling language. However
this book is just another introduction to UML.
One should read the title as that J2EE
concepts are documented with UML
diagrams.

To give an example, the Servlet life cycle
is explained in a sequence diagram, showing
init(), service() and destroy() messages to the
Servlet object. The same is done for the
various types of Enterprise Beans, their
lifecycles and basic interaction are
documented with UML diagrams. The
example diagrams and implementations do
not bear enough coherence. They seem to me
like a first iteration in a design project, which

is not correctly reviewed yet. Only the last 25
pages are dedicated to a small case study,
which would not be enough to help the
developer apply the Unified Process
correctly.

One interesting point of the book is that the
advantages and disadvantages of the use of
various types of Enterprise Java Beans are
discussed and how EJBs could interact with
JSPs, Servlets and normal Java Beans. One
should pay attention to the performance of
EJBs though.

Concluding, if you would like an
introduction to UML and J2EE technologies,
this is a reasonable book. If you are not looking
for that, leave this book aside. The book does
not contain much original work. I did not find
any tips on how to avoid pitfalls in the
development process. The authors did not
manage to inspire me, although they claim to
have over ten years of software development
experience. If I compare this book to
Developing Applications with JAVA and UML
by Paul Reed, I would definitely choose the
latter.

Java Precisely by Peter Sestoft (0 262 69276
7), MIT, 118pp @ £10-50 (1.42)
reviewed by Francis Glassborow

[see web]

Borland JBuilder 3 Unleashed by Neal Ford et
al. (0 672 31548 3), SAMS, 1072pp+CD @
£36-50 (1.37)
reviewed by Steve Dicks
A 1,000 page book on an IDE? A very unlikely
scenario and so it proves in this book. This
weighty tome tries to deliver ‘Java everything
plus JBuilder’ and inevitably fails.

The first 150 pages try to cover software
development in general and manage little more
than this example on ‘Best Practices’:

‘Development teams should make efforts to
establish their own coding standards. These
standards can consist of high-level practices
such as the use of design patterns or low-level
standards including the specific formats for
program structures such as if blocks’

I.e. well intentioned but ultimately too
shallow to be of any real use.

I also take exception to some of the author’s
‘example’ code viz this little fragment on
‘handling I/O Exceptions’ (middle of the try
block removed for brevity):

try{
// <do some file i/o>
}
catch (IOException iofex){
Message msg = new

Message(new Frame(),
“File Exception”,
(“An exception
occurred writing
to the file!”));

msg.setVisible(true);
return (“Error”);

}
This has so many faults [user told ‘exception’
rather than user language, no mention of
filename or any detail from exception, no
logging of exception, and the mysterious
return of a string “Error” from the method
(whose signature we never see) for the error

case] that I would hesitate to call it an
‘example’.

The book has 6 different authors, who do
make a reasonable job of writing in a consistent
style; if only the book as a whole didn’t have
such a ‘global’ ambition.

While there are some good chapters on use
of JBuilder, they are so thinly scattered to make
this book neither a good reference nor an
introductory text. The publication date of 1999
just adds to this book’s problems, that it is
written at a snapshot in time which ages far too
quickly in the Java world.

Perl, Python etc.
Making Use of Python by
Rashi Gupta (0 471 21975
4), Wiley, 390pp @ £25-95
(1.35)
reviewed by Francis
Glassborow
What does the title signify
to you? Now turn to the

back cover where we find the following
claim highlighted:

A step-by-step guide on how to use Python
for CGI scripting, GUI development, network
programming, and much more!

[The exclamation mark is theirs, not mine].
Now when you come to check between the
covers you find the first half of the book is the
usual mix of preaching the virtues of Python (if
I were not already convinced of that, why would
I be spending time studying Python) with an
introductory course on Python. Unfortunately I
find that material very poorly presented and at
times deeply confusing (please note that I already
know some Python though I do not program
fluently in it.)

The first half of this book clearly does not
stand up to the promises of the title and the back
cover. It would be much better for the author to
assume that the reader has a basic knowledge of
Python (or can get one from such excellent texts
as ‘Learning Python’). Now having made that
assumption he can focus on what was promised.
In other words the book should start at page 213.
Now if you start reading there you will be faced
with large quantities of HTML. Now think about
this, what I really need is some instruction on
HTML. OK, you (yes, you reading this review)
already know that writing cgi scripts presupposes
being comfortable with HTML but if that is the
case why does half the chapter consist of reams of
HTML? I want to know how to write a cgi script
in Python and have just a single pathetic example
buried away in a chapter littered with trivia.

The next chapter on Database Programming
(using mySQL) is a little better but is still too
broadly based and inadequately focused on the
Python. If the reader does not already know
about mysql they will not be able to make sense
of this chapter, and if they do they will not be
interested in most of the contents.

This is another example of a book where the
author is so concerned about having a broad
readership that he assumes that his reader needs
to be spoon-fed. The author needs to have a clear
image of whom he is writing for and discard all
the superfluous floss that litters his book. He then
needs to provide about ten times as much
information directed at the real needs of the reader.

Python Programming with
the Java Class Libraries by
Richard Hightower (0 201
61616 5), Addison-Wesley*,
620pp @ £37-99 (1.32)
reviewed by Francis
Glassborow
The sub-title is A Tutorial

for Building Web and Enterprise Applications
with Jython. That is a pretty good summary of
this book as long as the reader understands that
it is about a particular version of Python
designed to run on a JVM. This version is often
called Jython.

The book is a well-presented text for
newcomers. The competent C++ programmer
can skip the first few chapters that are concerned
with really basic stuff. By the time we reach
chapter eight we are ready to start exploring
some of the power that lies under the Python
hood in general and the Jython one in particular.

The point about Jython is that it compiles
down to Java bytecode (or, as is common for
simple Python, it can be directly interpreted as
bytecode, which is an interesting idea because
we finish up with an interpreter sitting on top of
an interpreter, Python interpreted into bytecode
which is then interpreted by the JVM). The
great advantage of this is that the Java Libraries
are also compiled to bytecode. The JVM does
not care where bytecode comes from; it simply
interprets it (or if you have a JIT, it compiles it
on the fly). This means that as long as we can
tell Python what a Java API provides we can
mix Python with Java libraries. This is the
reason for the title of this book.

If you have some programming experience
(if not, I think something such as ‘Learning
Python’ would be a better start) and want to
explore the potential for using Jython for
developing Web and Enterprise applications
this book would be a good place to start. There
is much more to Python than is covered in this
book so do not assume that it will turn you into
a Python expert. However if you put in the
hours of study this book will help you realise
the potential of Jython for simple to
intermediate applications.

Perl Pocket Reference 4ed
by Johan Vromans (0 596
00374 9), O’Reilly, 91pp @
£8-95 (1.45)
reviewed by Francis
Glassborow
This is another of O’Reilly’s
small format books that

really will fit in a pocket. I do wish O’Reilly
would work out how to make books in this
format lie flat, because as they are you have to
hold them open with one hand while typing
with the other.
If you need something to remind you of Perl
syntax/semantics while away from your normal
work area, this will do nicely. The first paragraph
on page 1 says all you need to know when it
comes to deciding if this is the version for you:

The Perl Pocket Reference is a quick
reference guide to Larry Wall’s Perl
programming language. It contains a concise
description of all statements, functions, and
variables, and lots of other useful information.
This edition is based on Perl version 5.8.

Beginning Perl for Bioinformatics by James
Tisdall (0 596 00080 4), O’Reilly, 368pp @
£28-50 (1.40)
reviewed by Robert W. Hand
This book is a curious, hybrid that teaches the
computer language Perl, on one hand and
serves as an introduction to the rapidly growing
field of Bioinformatics, on the other. The
author recommends the book as a ‘practical
introduction to programming for biologists’.
Since our organisation is for C and C++
programmers rather than for biologists, this
book and my review might seem ‘off-topic’.
However, I found the book to be excellent and
the author pulls off the marriage of his two
aims quite well.

The first three chapters contain very basic
information for the novice programmer – how
to get and install Perl, how to get a text editor,
how to back up work. The advice is sound, but
an experienced programmer could skim them
without loss of direction.

At this point, I started to read Appendix B,
Perl Summary. This appendix reads very well,
provides a good reference to the language and
is worth the price of the book. In particular, the
pace of the presentation is consistent with the
reading appetite of an experienced
programmer. The section on regular
expressions is especially noteworthy.

Chapters four through nine contain the meat
of the book. The focus is on writing programs
to analyse DNA, genes and proteins. As a
result, some Perl topics are omitted and others
are emphasised. For example, the important use
of Perl in cgi programming is mentioned only
in passing. The example programs do illustrate
important programming principles while
allowing illustrations of the power of Perl in
the field of Bioinformatics. The approach is
practical rather than theoretical. The requisite
biology is explained in very simple and
abstracted terms that should be understandable
by the non-biologist.

Chapters ten through twelve introduce the
GenBank, Protein Data Bank, and BLAST with
good examples of Perl programs that
manipulate such data. Unfortunately, the
biological detail started to strain my knowledge
of molecular biology.

This book was my first encounter with Perl.
I found that I could read it quickly and there
appear to be few errors. I recommend it to
readers who are interested in the application of
Perl to Bioinformatics.

ADO, COM etc.
Microsoft .NET for
Programmers by Fergal
Grimes (1 930110 19 7),
Manning, 356pp @ £31-50
(1.11)
reviewed by James Gordon
A neat little book, not too
big and unwieldy. It

assumes nothing and leads you from an
overview of the .NET framework and
compiling your first C# and VB.NET program.
It describes the built in types and assemblies
among other things of interest to understand
before getting into the bulk of the book, which
is a poker game.

The author uses this example to show how
to produce a standalone application as well as a
Web Service. It is all run from Visual
Studio.NET and includes creating the projects
and using the Visual Designer and debugger.

This book is not an in-depth look at .NET
but shows enough to get you started and a bit
more. I like the layout and not being padded
out with great swathes of code it is easy to read
and understand.

At over £30 it is expensive, but no more
than many other books.

ADO ActiveX Data Objects
by Jason Roff (1 56592 415
0), O’Reilly, 601pp @ £31-
95 (1.41)
reviewed by Paul Grenyer
From the beginning I liked
this book. However, once
I’d finished reading it I still

felt that overall it is a good book, but it is let
down by its poor C++ examples (I feel
unforgivable in a post C++ Standard
publication) and its poor .Net chapter which is
just plain wrong in places.

The contents shows that the book is divided
into the usual few introductory chapters, one
which explains how to use ADO from various
different languages, and then goes on to look at
some of the familiar ADO objects such as
Connection, Recordset and Field.
Towards the end of the book there is also a
chapter on ADO.Net. The final third of the
book is comprised of an ADO API reference
and three appendices, Introduction to SQL, The
Properties Collection and ADO Errors.

This book is aimed squarely at VISUAL
BASIC developers. Although ADO: Active
Data Objects describes a COM based
technology and includes a chapter on creating
and using ADO objects form other languages
(such as C++), the remainder of the examples
in the book are in Visual Basic. Many of the
examples are difficult to translate directly into
other languages, especially if you are not
familiar with COM in that particular language.
This is particularly true of Chapter 8: The ADO
Event Modal, as COM events are handled for
the user by the Visual Basic IDE.

If you are a Visual Basic developer or a
C++ developer with previous experience of
COM and the basics of the ADO C++ API,
then I would recommend this book if you
wanted to know more of the details of ADO
and how to use them effectively.

Embedded
Programming
Embedded C by Michael Pont (0 201 79523
X), Addison-Wesley, 294pp+CD @£24.99
(1.80)
reviewed by James Dennett
When opportunity arose to provide a second
review of Michael J Pont’s book “Embedded
C” I welcomed the chance, given that I have
been working in the embedded world since the
beginning of 2002 and still have plenty left to
learn. This review have been written based on
my reading of the book only, and do not take
into account the previous review by Francis

30 CVu/ACCU/Reviews

31CVu/ACCU/Reviews

Glassborow nor the comments in Mr Pont’s
letter, to which I intend to respond in the letters
section of this issue.

The author first explains the scope of the
book, and it’s here that we find out that the
title is not entirely representative of the
book’s content. “Using the Keil C compiler
for the 8051-series Microprocessor in Simple
Embedded Devices” would be more
descriptive of what is actually present.
Indeed, there is no focus on teaching C here,
not even aspects of the C language or library
that are affected by the embedded
environment. This may be why the intended
audience for the book is programmers
familiar with desktop programming in C,
C++ or Java. Given this assumption of
previous programming background, some of
the points made in the book are somewhat
basic, and it would be useful for
programmers with a mainstream background
to be told why it is a sane idea to attempt to
produce a time delay with an empty loop that
most familiar compilers would optimize
away. The author has deliberately
concentrated on a single 8-bit processor
family, a reasonable choice but it really
should be stated more prominently.

This is a book about software, not
embedded hardware, though the examples
given do include a fair amount of coverage of
the physical details of devices the code is
intended to control. There is also a
considerable amount of coverage of the
capabilities of the various devices in the 8051
family of 8-bit microprocessors, and it is here
that the book’s greatest strength lies. The
author makes a point that this is not a book
about hardware, and yet there is much
background discussion of simple hardware
devices. This is useful to provide context for
the example code, but the introduction did lead
me to expect a book focusing more on the
software aspects and less on hardware.

Note that much of the book consists of
printouts of code which is on the
accompanying CD. This is not a decision
which seems wise to me. The code is not
particularly readable on paper, being printed
entirely in a monospaced font, and there is no
reason for any reader to type in out. The code
is fairly well commented, but it was
disappointing to see the author using names
such as _MAIN_H for include guards. Authors
should make more of an effort not to write
code which is needlessly flirting with
undefined behaviour. Too much of the code I
see falls into this particular trap [of using
reserved names for include guards] and I would
have hoped that an experienced author would
have warned against it, rather than propagating
the bad practice. An explanatory note of why
“void main” is used (a permitted extension in
C, though not in C++) would be helpful, given
that it is common in embedded programming
but not on the desktop.

In conclusion: if you are inquisitive about
some of the quirks of 8-bit microprocessors
and would be interested to learn about one
particular family of such processors, then the
included Keil compiler and simulator may
make this book worthwhile for you. If you
are looking for a book offering an overview

of how to use C in embedded systems, or a
general text covering the huge variety of
embedded systems, you should look
elsewhere.

Programming in the OSEK/VDX Environment
by Joseph Lemieux (1 57820 081 4), CMP
Books, 359pp+CD @ £36-95 (1.35)
reviewed by Chris Hills

[see web]

Smart Card Manufacturing: A Practical Guide
by Haghiri & Taranfino (0 471 4967 3), Wiley,
221pp @ £55-00 (2.45)
reviewed by Chris Hills

[see web]

Embedded Systems
Firmware Demystified by
Ed Sutter (1 57820 099 7),
CMP, 364pp+CD @ £37-99
(1.31)
reviewed by Chris Hills
The problem with
embedded systems is that

the only thing they have in common is that they
are all different. Running on anything from a 4
to a 128-bit processor, with or without an OS
and single or multi tasking.

At the Embedded Systems Show this year
(Excel-London, May 2002) I asked the
audience at the seminar I was presenting who
used what. Whilst the majority were evenly
split at 8, 16, and 32-bit, there were a sizeable
minority on 64-bit and as many 4 as 128-bit
developers in the room. Not scientific but 4-bit
is not (quite) dead and 128-bit not so rare.

This particular book is looking at
demystifying the techniques used mainly in the
32 and 64-bit end of the market. Though there
are also some 8 and 16-bit processor families
that also use these techniques. If you want to
play with the PICs or 8051 this is not really the
book for you.

The main target for the book is the Motorola
Coldfire, not the world’s most popular chip but
the bundled GNU X-Tools on the CD support
20+ platforms and there are ports of the
monitor package for 68K, PPC, and SH2 as
well as the Coldfire. Also a complete Cygwin,
which will give you most Unix utilities running
under Win32!

So, having set the scene, what of the book?
I found it very good. It works its way logically
through from hardware (all embedded systems
have an intimate relationship with the
hardware) through ‘bringing up a board’, the
initial set up which requires assembly (to create
the environment that can call main) and then
on to programming the flash so that you can
put in a monitor to run applications. This is
usually done via a JTAG. If you have a target
board and a [JTAG] wiggler the book has the
rest.

The main area of the book is the building
and use of the target monitor. Therefore the
reader learns a lot about the monitor,
interfacing to hardware, communications
protocols, flash programming and creating file
systems. In fact most of the basics required for
embedded work in the 32-64 bit market.

Students will find this book is a great
introduction and lecturers should look at this

book for course use. You will need to do more
research and read books covering specific
topics, e.g. Ethernet, file systems, etc. as this
book only really talks you through the example
shown. In some cases an area, recursion for
example, is skimmed very lightly.

Engineers working in the 16-64 bit market
(with JTAG) who spend time with the code on
the CD will find it a useful insight, especially if
they are using GNU X-Tools or want to
develop their own debug system.

I like this book. One last point; the author’s
example code on the CD has his company and
personal email addresses in it. You can’t say
fairer than that! Recommended.

Embedded Systems & Computer Architecture
by Graham Wilson (0 7506 5064 8), Newnes,
294pp+CD @ £24-99
reviewed by Chris Hills
An interesting book, it is complete and easy to
read. A well thought out and structured first
book on embedded systems. It covers number
basic logic gates, memory, flip-flops, timers
cache memory, serial ports, etc.

There are descriptions on how the registers
in the processors work with walk thought on
things like adding numbers. What is more there
is software on the CD that animates the CPU to
show the system (and internal busses) working.
There is a simple to use logic gate animation
and also lots of examples.

It sounds too good to be true. I was about to
test it on my teenage son when reality hit. It is
all a simulation of a mythical processor. A lot
of work has gone into producing an assembler
and linker to do with the simulator for this
mythical processor.

So do you teach using a real processor or
using a mythical one? I have heard the
arguments on both sides from many people.
Personally I prefer to use a real system (there is
usually so much more available like hardware
development kits and vast amounts of free
code). The problem with using a mythical one is
that you get no real world experience and the
first thing you have to do is learn a new
processor. Assuming you can get a job that is,
since you have no experience of a real processor.

The software on the CD installs from a self-
extracting .exe, so you can’t get at any other
files without doing a full install. It also insisted
on installing to my C drive with no options on
directories. On the good side it does check that
the PC has the required spec. It is at this point
that you discover that it will only run on Win98
or Win 2000! This does NOT impress me.
These restrictions should be made clear on the
cover of the book, where it loudly proclaims
the free CD full of software.

The software is very good for teaching the
basics, such as logic gates and internal
processor workings, but it’s not a real processor
type. There are many respected lecturers who
do prefer this method.

The book is exactly what it claims to be. An
entry-level book for HND courses where this
book is the set book. It is of little use to anyone
else. (Though this comment does do the high
quality of the book a bit of an injustice.)
Lecturers at HND level should look at this
book if you want to teach techniques without
using a real processor.

Embedded Systems Design
by Arnold Berger (1 57820
073 3), CMP, 237pp @ £25-
99 (1.34)
reviewed by Chris Hills
The problem with embedded
systems is that no two are
the same. Therefore a book

on embedded systems is either covering a very
wide field or looks at a particular aspect of it.
Most look at a single development on a specific
architecture. This book manages to cover a
very wide field but feels as though it is looking
at your project!

The text basically goes through an
embedded system lifecycle as the subtitle says
‘introduction to process tools and techniques’.
Therefore, there is virtually no source code nor
a single circuit diagram. There are no hex or
ASCII tables nor lists of compiler or
development kit vendors.

This book is one of the first I have come
across that sensibly describes an almost
generic embedded system development. It
does not go into enough detail to discuss the
use of interrupts and or a specific processor
design, but will guide you through the choices
and pitfalls of being a project manager or
engineer on an embedded system. Which
paradoxically does mention interrupts and
processor choice. The author has obviously
been there and accordingly a lot of the text is
anecdotal, but real world, with problems and
solutions.

Due to the author having been employed by
a silicon vendor, as well as being development
engineer and a college lecturer, there are some
fascinating insights into the industry that many
others will not have picked up and so I enjoyed
reading this book.

This is a book that many graduates or new
engineers who want to go into embedded
work should read. It is difficult to quantify as
it gives advice on process and methods
without diagrams. One example is
development tools such as ICE. The author
explains in broad terms what an ICE is and
what you can do with it. He then goes on to
explain the views and philosophy of
development tools as seen from the view of
the silicon vendor, the tools vendor and the
project management (and accountants).
Absolutely fascinating and from my
experience, very accurate.

The other main sections are selection
process of processor/rtos/tools. The
hardware/software partitioning decisions. The
development environment, tools, debuggers
and testing. The book is not as big as you
would think but it’s all in there.

So this book will help with the politics of
embedded system development. Politics and
economics usually intrude into embedded
systems far more than any ‘normal’
development because the embedded system is
usually a sub-part of something else. The book
will help you to see why the tool/silicon vendor
is taking the stance that they are and why
sometimes the obvious technical answer may
not be the right one.

There are some interesting comments and
ideas that could save you a lot more than the
cost of this book. The author lists all his

references on a per chapter basis, which I
found helpful to find source material for a
specific aspect of the book. Many are available
on the web.

This book has been clearly written by
someone who has been there. Useful for
students and engineers moving to embedded
systems and also for managers. Highly
recommended.

Embedded System Design by Frank
Vahid/Tony Givargis (0 471 38678 2), Wiley,
324pp @ £24-95
reviewed by Chris Hills

[see web]

Software Development
The UML Profile for
Framework Architectures
by Marcus Fontoura et al.
(0 201 67518 8), Addison
Wesley, 228pp @ £33-99
(1.32)
reviewed by Silvia de Beer
A UML profile is a

modification of the UML standard to target a
specific application domain. A framework is
defined as an extensible semi-finished piece
of software. The authors propose the UML
Profile for Frameworks, which they call
UML-F profile in short. The book does not
target a large audience of mainstream
software developers, though it should be
interesting for software designers and
architects who want to reflect on the topic of
frameworks and the use of UML in design
concepts.

The book contains seven chapters. The
first chapter defines terms like framework
and profile. It explains in what ways a
framework can be extensible and states the
goals of the UML-F profile. The second
chapter discusses the UML notation in the
light of the extensions by the UML-F profile.
Chapter three explains tagged values and
stereotypes and introduces two UML-F
specific presentation tags, the completeness
and incompleteness tag. Inheritance
indicators are introduced to be able to
indicate in class and object diagrams whether
methods and attributes are abstract or can be
overridden. Some new tags are introduced
for the sequence diagrams to indicate
triggers and repetition of messages. Three
other tags for class diagrams are used to
indicate which classes belong to the
framework and which classes to the
application. The <<fixed>>,
<<adapt-static>> and
<<adapt-dyn>> tags are introduced to
indicate how classes and methods can be
specialised by an application, e.g. a fixed tag
does not allow overriding of a method in
application classes.

Chapter four presents framework
construction principles and introduces the
corresponding UML-F tags. Two important
construction principles are discussed, the
unification and separation construction
principle. Template and hook methods are
explained. At the end of this chapter it is shown
how UML-F tags can be defined for the

Composite pattern. Appendix B defines more
tags for the GOF patterns. Chapter five
discusses how to facilitate framework
adaptations, i.e. guide the writing of real
applications and discusses how a cookbook can
consist of a guided tour and a collection of
recipes. Some example recipes are given.

Chapter six provides a case study that
exemplifies the theory of the previous chapters.
The last chapter gives some hints to framework
development, which in itself is more
complicated then developing an application
according to given requirements.

I did not agree with all of the statements
made about framework development, but on
the whole this book is an interesting and
original piece of work, presenting lots of useful
concepts for framework design.

Making Process
Improvement Work by Neil
Potter & Mary Sakry (0
201 77577 8), Addison-
Wesley, 169pp @ £22-99
(1.30)
reviewed by Pete Goodliffe
Most software development
companies know that they

could be doing things better. Many have
‘process improvement’ programmes to work
out how to do just that. Only a few of these
will have any appreciable effects.

This book provides insight into how to
improve software processes. It doesn’t labour
why you’d want to do this, which is a benefit –
if you’re reading the book, you know the why
already. It is a concise, practical guide aimed at
the people directly involved in implementing
the improvement process.

It is well thought out and sympathetically
laid out. Comprising just three chapters, the
book jumps pretty much straight in to the
deep end without waffle. Starting with
‘Developing a plan’ the authors suggest
practical and pragmatic ways to identify
areas to improve and also suggest how to
‘sell’ the improvement process to co-
workers. The ‘Implementing the Plan’ and
‘Checking Progress’ chapters follow on
logically.

This is a well-written book, the authors
certainly convey their wealth of experience.
There are plenty of examples, but they are not
taken overboard. The level of detail is pitched
carefully and the book defers to other texts in
many places where the material is not core to
the main thrust of the discussion.

In fact most of book is done by page 115.
The rest is a set of (useful) appendixes, which
contain subject matter that was pulled out of
the main body of chapters to prevent breaking
up the flow.

Although potentially appealing to only a
restricted number of readers, if this is a subject
that you need to read about, this is an excellent
reference.

Tricks of the Windows Game Programming
Gurus 2ed by Andre LaMothe (0 672 32369 9),
SAMS, 1063pp+CD @ £43-99 (1.36)
reviewed by Francis Glassborow

[see web]

32 CVu/ACCU/Reviews

33CVu/ACCU/Reviews

Questioning Extreme
Programming by Pete
McBreen (0 201 84457 5),
Addison Wesley, 199pp @
£22-99 (1.30)
reviewed by Francis
Glassborow
All the other books on XP

that I have read, or browsed as they crossed
my desk on the way to other reviewers have
been seeking to convert the reader to the joys
of XP in some way or other. This book is
different in that it seeks to question all aspects
of XP. In a way this shows the degree to
which XP has taken root. Pete McBreen seeks
to challenge XP whilst respecting its
objectives. Kent Beck (the creator of XP) says
this in the foreword he provided:

Pete claims that the more he looks at XP, the
smaller he sees its scope. I see just the
opposite. I won’t refute his argument point by
point– this is a foreword and I’m supposed to
be polite. I will suggest that as you read this,
you keep in mind one mistake of early XP
thinking for which I am entirely responsible –
“the customer” doesn’t mean one person. It
means a team, as big as or bigger than the
development

Part I of the book consist of a single short
chapter in which the author takes an overview
of the claims of XP, the evidence for its success
and reasons why you might adopt it.

Part II consists of five chapters that are
largely aimed at reminding the reader of the
alternatives as well as the aims of having a
methodology at all. He spends a fair amount of
time reminding the reader that XP is only one
of a group of methodologies that have come
together as ‘the Agile Alliance.’ Those that
have not previously come across this should
take time out to read a book such as the
excellent Agile Software Development by
Alistair Cockburn (0 201 699 69 9).

The author then moves on to the main parts
of the book (III & IV) in which he examines
XP in detail. Here he suggests things that other
methodologies could learn form XP as well as
how XP has itself changed and learnt from
experience. As I was reading these sections it
crossed my mind that there is a degree of irony
in the XP adherent who considers XP to be the
one true way; one important point of agile
methodologies is to be able to adapt to the
needs of the moment and that means you
should recognise when an XP doctrine is
inappropriate. This book will help those who
do not have entirely closed minds to
understand that. If you cannot recognise that
having your beliefs challenged makes you
beyond salvation then this book will do nothing
for you whether you are attracted to or repulsed
by XP.

Part V of the book concerns
understanding the XP community. Note that
this is relevant to both the outsider looking in
and the insider. Perhaps it is more important
for the latter because it reminds them that
there is a world outside the closed
development team in which they work. One
very interesting chapter in this section is
chapter 21 Transitioning Away From Extreme
Programming . Here the author tackles the
problem of how to break XP devotees away

from it. It is a short chapter but contains food
for thought. Here is what the author writes
early on:

This is an interesting question, because XP
is very appealing to programmers but is not
suitable for all kinds of projects. Yes, it may be
feasible to restructure your organization and
projects to make them more suitable and
amenable to Extreme Programming, but for
some projects you may have to find an
alternative process. In doing so, you are likely
to face resistance from your XP teams because
the sense of control over their work that
Extreme Programming gives is very addictive.
Very few people who have worked as part of a
well-functioning XP team have expressed any
interest in using a different process.

The book concludes with Part VI that
consists of two short chapters giving guidance
as to whether XP might suit your needs, and
how to choose a project to start XP on.

I think this is a book that deserves to be
widely read by those whose minds are open
enough to make choices based on reason rather
than emotion. Agile development is much liked
by programmers because it makes the process
closer to the way their instincts say it should
be. XP in particular is a methodology that takes
over the thinking processes of its adherents and
too often blinds them to the essential purposes
of a methodology. The outsider looks on and
sees something akin to religious fanaticism, the
insider cannot see how anyone could not
appreciate how good XP is. For the devotee,
failure must mean lack of sufficient devotion
and for the antagonist success is just
coincidental. This is a book from which
programmers of goodwill can learn and in
doing so apply the lessons to what they
actually do. This book is an excellent read and
food for much thought.

General Computing
Security Engineering by
Ross Anderson (0 471
38922 6), Wiley & Sons,
602pp @ £42-95 (1.40)
reviewed by James Amor
Ross Anderson is one of
the most respected authors
in the field of computer

security and this book represents the
culmination of his experience as a security
consultant. Anderson takes a fresh approach
to documenting security engineering; the
contents pages are not simply a listing of
cryptographic algorithms, as found in so
many other titles, but a myriad of subjects
ranging from biometrics and intrusion
detection, through to management issues and
system evaluation. Anderson first introduces
the basic concepts of security engineering,
next the application of these concepts are
explained and finally various management
issues are covered.

This book is suitable for all readers;
whether new to security engineering, or a
seasoned professional, everyone is
guaranteed to learn something new. The
explanations of all concepts are excellent,
with fascinating case studies littering the
book. Personally I found the entire book

fascinating; with topics ranging from nuclear
command and control, ATM cash machine
defence and physical smart card protection,
each chapter stimulates the reader to
consider the security of many everyday
objects.

I cannot recommend this book highly
enough and in my opinion, every computer
professional should have a copy on their
bookshelf, for anyone whose interest
includes security engineering this is essential
reading.

T1 A Survival Guide by
Matthew Gast (0 596 00127
4), O’Reilly, 290pp @ 20-95
(1.43)
reviewed by Mark
Easterbrook
If you need to know T1 for
data networking in detail,

even infrequently, then this book belongs on
your bookshelf. In reading the book from cover
to cover I couldn’t spot anything obviously
missing.

However, it will be a must-have book for
only a small number of engineers and that
number is diminishing each year. The
intended audience is described in the
preface; This book maintains a blatant and
sometimes overwhelming, focus on the U.S. This
book approaches T1 from the narrow perspective
of data networking . This is not surprising as
T1 is only used in North America and a small
number of Pacific Rim countries _ it has
little information for readers outside those
territories, nor for the voice telecomm
engineer. Even in the U.S. the 1.5Mbit/s T1
as a medium-speed data access transport is
being displaced by newer and cheaper
technologies such as cable, xDSL and
terrestrial radio and satellite.

The book does contain some subjects with
wider appeal, such as the chapters on HDLC,
PPP and frame-relay, but it is not worth
purchasing the book just for these.

Site-Seeing by Luke
Wroblewski (0 7645 3674
5), Hungry Minds (Wiley),
341pp @ £34-99 (1.43)
reviewed by Francis
Glassborow
I am going to keep this
brief, no more than

drawing your attention to this book, because
it has nothing to do with programming other
than that some programming is used in
making websites.

The book’s subtitle, A visual approach to
web usability , says most of what is
necessary. The author has written a carefully
considered text on website design with
copious full cover illustrations from existing
sites. The strong underlying theme is that it
is all about appropriate communication. If
you are involved in designing a website (yes,
of course you are because in the present age
you have a home page - actually I do not
because I lack the time to design a good one
and would not put my name to a bad one)
this is one of the books you should consider
reading before you start.

34 CVu/ACCU/Reviews

Operating System Concepts 6ed by
Silberschatz et al (0 471 26272 2), Wiley,
949pp @ £31-95 (3.02)
reviewed by Francis Glassborow

[see web]

The LATEX Companions by Goossens, Lamport
et al. (0 201 77591 3), Addison-Wesley, 4bkspp
@ £106-99 (1.30)
reveiwed by Francis Glassborow

[see web]

Non-Computing?
Writers’ Workshops & the
Work of Making Things by
Richard Gabriel (0 201 72183
X), Addison-Wesley, 268pp @
£22-99 (1.52)
review by Francis Glassborow
When this title landed on my
doormat my first instinct was

that it was one of those books that has been
sent to me by accident. I bet your instinctive
reaction is that poetry and programming have
little to do with each other. If you stop for a
few moments and think about it you may
realise that they actually share a very great
deal. Both programmers and poets create by
writing in a language that is constrained by a
bundle of rules and guiding principles. There
is a tendency for both to work alone. Both
groups need exposure to the thinking of
others.

Of course there is more. We need to learn to
write documentation, both the specific for an
application or library or the more general such
as researching and documenting a software
pattern.

Now there is poetry in the souls of many
programmers. I am sure that is one reason that
some revolt against such things as Hungarian
Notation (it looks so ugly). We do not just
want to write successful code but we want to
write elegant code. Good code does not just
appeal to our intellects but to our aesthetic
sense as well. I wonder how many poets,
romantic novelists etc. would consider that
they had anything in common with
programmers.

Now this little book addresses the wide range
of issues concerned with organising and
participating in successful workshops for
writing regardless as to what sort of writing is
involved. Let me quote the first paragraph of
chapter 5, The Gift:

The writers’ workshop begins with some
people’s decision to give each other the gift of
their work in progress, and a more experienced
individual’s decision to give the gift of
experience and expertise as a workshop leader.
The magic of the gift.

The magic of the gift is not something new –

it’s always been part of human culture. The gift
economy has been studied deeply. It’s how our
families are held together. It’s how many
ancient and contemporary cultures are held
together. It forms the center of many religions.
The writers’ workshop works best when it is
most firmly based on a gift economy.

Now does that seem familiar to you? If you
are a member of ACCU it should because that is
one of the fundamentals on which it is built. It
finds expression in many ways, those who take
time to write for our journals, those who
participate in our Mentored Developers
programme and those who participate in our
conferences. Indeed reflecting on much that this
author writes makes me realise that the success
of our conferences is exactly because we have
instinctively created something that is closer to a
workshop than most technical conferences.

I would encourage you to read this book, to
think about the message and then think how you
can apply it both in your place of work and
within ACCU. Perhaps it is time that we thought
about having summer workshops. Read this
book and let me, or better still your committee
know what you think.

Now for non-ACCU members, I think this
is an excellent book in that it gives guidance
on one more way that your professional
development can progress. I think that I
would make this book compulsory reading for
anyone organising a workshop. I would also
make it highly recommended reading for
anyone planning to participate in a workshop.
Yes, programmers are writers, and they do
make things and some even have poetry in
their souls.

Calendrical Tabulations
1900-2200 by Edward
Reingold & Nachum
Dershowitz (0 521 782 53 8),
CUP, 605pp @ £85-00 (1.41)
reviewed by Francis
Glassborow
This volume takes me back to
the time when it was normal

to have solid books of tables in which to look up
seven figure logarithms, sines etc. Here is the
first paragraph of the preface:

We give tables for easy conversion of fifteen
different calendars. Ten calendars are given
explicitly (Gregorian, ISO, Hebrew, Chinese,
Coptic, Ethiopic, astronomical Persian, Hindu
lunar, Hindu solar, and astronomical Islamic);
another five are easily obtained from the tables
with minimal arithmetic (JD, R.D., Julian,
arithmetical Persian, and arithmetical Islamic).
Detailed explanations of the structure and
determination of these and many other
calendars can be found in [10].

The reference is to the authors’ book
Calendrical Calculations.

In the next paragraph they justify the book on
the basis that there are no existing computer
programs that handle more than a couple of
calendars. I think this book is the wrong response
to this. What is needed is a good program that can
be run on a palm-top. Such a program would not
be limited to just three centuries and so would be
useful to people who need to convert between
historical dates. I would not expect there to be a
very big market for this book despite its quality
and coverage of all calendars currently in use.
There are a few people who could benefit from
copies sitting on their reference shelves. A Daily
Mirror journalist, for example, might have saved
himself the embarrassment of assuming that the
current date in Afghanistan was an Islamic one
(they use the astronomical Persian calendar)

Note that the computation times given by the
authors show that on the fly computation can be
done for most calendars. The exception being the
Hindu Lunar calendar which requires some very
complex computations and would probably
require noticeable computation time on the
current generation of palm-tops.

I suspect that much of the quoted computation
time (about 10 minutes per year) was the result of
not only computing the dates but also the page
layout.

An interesting book, but, sadly, even libraries
should think carefully about its value. Now
anyone willing to produce a computer program to
calculate dates on the same range of calendars but
starting much earlier. Let me give you an example.
Someone studying the crusades might get real
insights if they could understand how Islamic
religious dates interacted with Christian ones.

Reviewer Needed
Real-Time Interactive 3D
Games (uses Macromedia
Director by Allen Partridge
(0 672 32285 4), SAMS,
604pp+CD @ 43-99 (1.36)
request for reviewer
The sub-title is Creating 3D
Games in Macromedia

Director 8.5 Shockwave Studio, which really
means that a reviewer needs some familiarity
with this product. If you meet that qualification
and the following from the back cover attracts
you trying the book out, please let me know and
I will pass the review copy on to you.

This book provides an exciting blend of game
design, nuts-and-bolts programming tips,
deeply detailed code samples, and richly
developed games and demos. Real-Time
Interactive 3D Games defines the role of
narratives in games and is packed with
valuable advice on a variety of topics, including
tapping into the traditions of theatre to make
the games you develop more dramatic and tips
for marketing your 3D game.

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor disparage
any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is, by default,
assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not a letter or a review of
software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers, no material
can be copied from C Vu without written permission of the copyright holder.

