
Reports & Opinions
Reports

Editorial, From the Chair 4
Membership, Conference Organiser, Standards Report and Mentored Developers 5

Dialogue
Student Code Critique (competition) entries for no 18 and code for no 19 6
Francis’ Scribbles 8

Features
Professionalism in Programming 17 by Pete Goodliffe 10
Using SAX Parsers by Tim Pushman 13
Installing and Using MySQL on Windows by John Crickett 20
Effective C++ in an Embedded Environment by Lois Goldthwaite 22
Linux Server Series part 2 - Choosing Hardware by Paul Grenyer 24
Self-Documenting Code by Hubert Matthews 25
PDF Problems - Can We Learn From Them? by Silas S Brown 26
Uninitialised Variables in C: What to Expect by Victoria Catterson 26

Python
Using Python’s Dynamic Features to Encapsulate Relational Database Queries by Richard Taylor 27

Reviews
Bookcase 30

Copy Dates
C Vu 15.1: January 7th
C Vu 15.1: February 21st (Note early copy date, to enable publication of the April issue before the Spring Conference)

Contents

Contact Information:
Editorial: James Dennett

76 Lawn Road,
Bristol, BS16 5BB
0117 9653875
editor@accu.org

Advertising: Pete Goodliffe
Chris Lowe
ads@accu.org

Treasurer: Bryan Scattergood
19 Bayford Place
Cambridge, CB4 2UF
01223 475468 (home)
01223 692445 (work)
treasurer@accu.org

ACCU Chair: Alan Griffiths
alan@octopull.demon.co.uk
chair@accu.org

Secretary: Alan Bellingham
020 8998 6964
secretary@accu.org

Membership David Hodge
Secretary: 01424 219 807

membership@accu.org

Cover Art: Alan Lenton
Repro: Parchment (Oxford) Ltd
Print: Parchment (Oxford) Ltd
Distribution: Able Types (Oxford) Ltd

Membership fees and how to join:

Basic (C Vu only): £15
Full (C Vu and Overload): £25
Corporate: £80
Students: half normal rate
ISDF fee (optional) to support Standards

work: £21
There are 6 journals of each type produced

every year.
Join on the web at www.accu.org with a

debit/credit card, T/Polo shirts available.
Want to use cheque and post - email

membership@accu.org for an
application form.

Any questions - just email
membership@accu.org

4 CVu/ACCU/Reports & Opinions

Reports & Opinions
Editorial
Should an editorial for December start by wishing
you all a good Christmas and New Year? Only if I
also offer wishes for those celebrating other cultural
events, so I shall do that. For those in the US, I offer
my apologies for not having wished you a good
Thanksgiving break, and for those in Canada I
apologize for not knowing when your
Thanksgiving break is. (Note for those in the UK:
pumpkin pie tastes better than it sounds.)

Education and Professionalism,
Continued
In my previous editorial, I wrote a few words about
the way programming is taught in our colleges.
Now I would like to step back a little to consider
what the relationship between students,
educational establishments and industry should be.

There is a long-standing debate over whether
education should be for the benefit of the student
or for the benefit of the provider of that education
(which may well, at least in large part, be the
state). As with so many apparent dichotomies, we
should be wary of allowing our thinking to be
constrained by the question. Firstly, beware of
being pushed into black-and-white choices: I do
not expect to hear significant dissent when I say
that education should benefit both the individual
and the state to some level, so that the question at
most is where the balance should be. Secondly,
consider the image which arises from thinking in
terms of a trade-off between value to the
individual and value to the state: we think in terms
of a linear model where movement towards one
end is necessarily movement away from the other.
If, instead, we think in terms of two perpendicular
axes, it is easier to consider factors which benefit
both parties. The linear view breaks down in any
case when we factor in the third party in this case:
industry, who are in a sense consumers of the
results of the educational process.

With all this said, back to the question of what
our education system ought to aim to provide for
the three stakeholders we have identified (roughly:
students, state, industry). Should colleges be
churning out project-ready software engineers?
Many in industry seem to think so, and complain
that the graduates they see are not ready for “real
work”. (Publications such as “Computing”, driven
by the IT industry, often print such views.)
Individuals sometimes complain that their courses
don’t provide them with the up to date skills
requested by industry – and in the current economic
climate that is understandable, as companies are
even more reluctant than normal to employ people
who need training when there are so many
experienced practitioners seeking work. Should we
switch to a more practical (applied, specific) style
of education in the field of computing? Industry
wants it, students want it... so why not?

Before discussing why not (all in time!), let us
ensure that we are not slipping into black-and-white
thinking again. The simplistic question is which
direction to go in: vocational or theoretical. As
usual, some combination may be best, and that
combination may not be a simple question of

proportions. Diversity is so often a good thing, and
in this case it could be reflected by a combination
of different approaches: some technical colleges
could choose to offer courses with a relatively
practical emphasis, while traditional universities
might prefer a focus on “computer science”,
whether or not they agree with the opinion that
sciences (say, physics, biology, chemistry) are
distinguished by the fact that their names do not
include the word “science”. So, allow us to think
in terms of a diverse selection of courses to suit
different goals and different kinds of people.

Enough of this whole balanced viewpoint
exercise. I would like to argue. Specifically, I
would like to argue that there is more merit in
theoretical computer science courses than is
perceived by industry; to put it another way, that
what industry wants is not necessarily what
industry needs. Industry cries out for production-
ready engineers dropping from universities which
are there so that industry does not have to pay for
more costly training courses, or develop the
capability to develop the skills of its workers. Even
if we assume for a moment that the educational
establishment could provide these droids, it would
not solve the major educational problem facing our
industry. That problem is that industry either does
not recognise the value of continual education or,
as with so many other things, knows what it ought
to do and yet continues to concoct excuses why it
cannot do it. Companies are reluctant to invest in
training because they fear that they will not see the
value from it, as employees leave to join other
companies. Most of us do not actively look
forward to searching for a new job, so it is odd that
employers should live in fear of staff moving away
– and yet, maybe slightly ironically, the
dissatisfaction that leads employees to seek greener
pastures often arises from the same thing that
stifles opportunities for training: deadlines. A
discussion of what software professionals can do
to improve that situation will have to await a future
editorial. For now, back to education and its
relationship with industry.

For one easy point, it is clear that an educational
course in computing cannot cover the whole field
in any depth. Even if we restrict ourselves to a good
grounding in general computing concepts
combined with a practical knowledge of a small
representative selection of programming langauges,
operating environments, tools etc., there is too
much to cover in a single degree 3- or 4-year
course. That means – just as in industry – that
compromises must be made, some important items
must be omitted and others must be covered only
in overview. Debate over what to cover should not
focus on whether the knowledge is important or not,
but rather with whether adding them to a course
adds more than would have to be lost by taking
other material away to make room. There is a scale
invariance to this as well; for each subject that is
included, it is necessary to choose which parts to
present. (I am trying hard here not to call them sub-
subjects; there is a limit to how much abuse the
English language should be asked to endure). To
take an example, a Computer Science degree might
include a one term course on C++, and then will
need to choose which parts of this expansive

language (including its library) to cover. That is
emphatically not a case of saying that there are
areas which should be ignored or covered up, but
rather of choosing how to get the “best”
combination of material covered. What is “best”
depends on the goals of the course. For students of
electronics, best might mean learning just some of
the C-compatible subset of C++, or sticking to C,
or even eschewing the abstractions of C and C++
and learning assembler of some form. For those
who plan to be pure software engineers, it may well
be most valuable to focus in a first C++ course on
what its advocates refer to as “modern C++”: C++
making extensive use of the standard library, using
exception-safe forms, and aiming for consistency
with the idioms used in the standard library. For
colleges which choose to teach C++ as a first
language in an introductory course for non-CS
students, simple use of standard library facilities
(such as preferring std::string to raw char
arrays) can help students to understand the ideas of
programming without having to have an in-depth
feel for the underlying machine. All of these
choices (and others besides) are reasonable, so long
as the goal of a course is clearly stated. One thing
a college C or C++ course will not do is to turn a
novice into a software engineer capable of
authoring production quality code. Colleges should
not aim to do so, and employers should not expect
that from fresh graduates; prefer those who know
their own capabilities and limitations to those who
have a command only of contemporary
(fashionable?) tools. This is an industry in which
continual learning is essential throughout our
careers, and where the best in the business delight
in learning from others.

Enough for now; this is a subject which can
run and run.

Journal Composition
I want to say a few words about C Vu (apparently
that’s allowed in an editorial piece). Some have
said that they consider C Vu as being restricted to
the C language only; Overload, they say, is for C++.
And certainly Overload is the main focus of
ACCU’s printed C++ material, but the division
between the two journals is not quite so simple.
Overload has its focus, and while it is not my place
to describe that I will say that it tends to cover more
in-depth pieces on more advanced subjects. C Vu
is more general; it’s here to publish whatever the
membership want to see, so long as the membership
are willing to write it. If more C material is wanted,
then consider writing it. Similarly for C++. Or if
you don’t feel that you can write yourself, then tell
me what you’d like to see; somewhere among the
membership of ACCU there is likely to be someone
who could write an article on it.

James Dennett

From the Chair
Alan Griffiths <chair@accu.org>

Every two months I receive a reminder from the C
Vu editor that it is time to write to you about what
is happening in the ACCU and over my term there
has been much to write about. It is with a certain

4

5CVu/ACCU/Reports & Opinions

sense of relief that I find that there is little going on
in the organisation to tell you about.

But that very sense of relief is a cause for
concern. When I took on the job I thought that
the biggest challenge would be to find ways to
make contact with the many developers who
should be members of the ACCU (both for their
benefit and that of the organisation). I should be
viewing the lack of disasters or initiatives to
announce as an opportunity to further this
agenda. I should, but I no longer do. I conclude
that it is time for me to move on and let a fresh
mind address the problem of chairing the ACCU.

I hope that I’ve achieved something
worthwhile as chair. My term has been a period
of significant changes to the organisation: both
with changes to the production of the journals,
and with the withdrawal of Francis Glassborow
whose energy had been the driving force behind
ACCU for as long as I could remember.

I’ve got a tremendous amount out of the
ACCU and from being Chair, but I need to do
something different and you need a Chair with
the enthusiasm to take the organisation forward.
I still want to contribute, but in some other
capacity. I don’t intend to accept nomination for
Chair at the 2003 AGM.

Membership
David Hodge <membership@accu.org>
Total paid up membership is 970. New members
continue to come in at about 20 a month. From now
on you will not be able to join or renew by standing
order from July-October. Standing orders can still
be set up from November to June, but from the next
August 15th onwards. The reason for this is that
setting up standing orders that have a start date and
an August the 15th date is something the banks don’t
seem to be able to cope with. So if anybody wants
to start a standing order for next August 15th (2003)
then just email me for a form.

Conference Programme
Francis Glassborow
<francis.glassborow@ntlworld.com>
The main programme is now complete. Well
almost because there are still a couple of
important speakers that are unable to confirm
that they will be able to come.

Unfortunately, despite being the one speaker
most asked for, Scott Meyers is unable to make
it. However when you see the overall line-up
most of you will be relieved that you do not have
to make yet another hard choice. I have no doubt
that this year’s conference will raise ACCU’s
already high standards.

I know that cost of attendance is always an
important consideration for some. I also realise that
the cost might be reduced (by about 15%) if we had
only a 1-track event because the ratio of speakers
to attendees would be more favourable. Last year
the ratio was about 1:5. However many speakers do
not claim all their expenses and many come exactly
because they enjoy the event and also enjoy
meeting other speakers as well as the attendees.

I have no doubt that the ACCU Conferences
are among the best in the world but that message
needs spreading so that more employers are
willing to pay the costs of attendance as well as
a larger overall attendance reducing the costs.

Please consider whether you should not only
be coming but also dipping your toes in the water

by offering a 30-minute lunchtime presentation.
This would be an excellent way to get started on
the conference circuit and we will try to give new
speakers feedback on how they can improve
(assuming that they are not already world class)

I intend that this will be my last event as
Conference Programme Organiser so I hope that
you will be among those who come and make it
an outstanding success.

Standards Report
Lois Goldthwaite
<standards@accu.org>
The international C++ Standards Committee met
in Santa Cruz late in October. The UK was
represented by Francis Glassborow, James
Dennett, Jason Merrill, and Lois Goldthwaite.
Other participants came from the US, Denmark,
Japan, Canada, France, Norway, and Germany.

The Library sub-group of WG21 (official name
of the C++ committee) is looking toward the next
revision of the Standard and what new functionality
should be added to the Standard Library, with any
additions to be based on well-tested existing
practice. Much of the development of existing
practice is coming from the Boost group
(www.boost.org). Two of the Boost libraries —
Tuples and Polymorphic Function Wrappers —
were accepted for inclusion into the Technical
Report which will lay the groundwork for the next
Standard. Another proposal for Regular Expression
Objects, from the UK’s John Maddock, will almost
certainly be included as well.

Speaking of C++ Committee Technical
Reports, the one on C++ Performance is nearing
completion. You can read the latest draft at
http://anubis.dkuug.dk/jtc1/sc22/
wg21/docs/papers/2002/n1396.pdf
(where you can also find papers on the topics in the
previous paragraph — look for n1402.html,
n1403.pdf, and n1386.htm). ACCU
Standards Officer Lois Goldthwaite1 has recently
been named as chair and editor for the Performance
sub-group, so if you read this paper please send
your comments to standards@accu.org.

Software is becoming increasingly pervasive
in everything around us — automobiles, washing
machines, children’s toys — and therefore
everyone should be concerned about whether this
software is reliable, especially when safety is at
stake. Carnegie Mellon University in Pittsburgh,
Pennsylvania, along with a couple of dozen
business and government organisations like
NASA, Oracle, Microsoft, FedEx, and Surrey’s
Programming Research, have founded a group
called the Sustainable Computing Consortium
(www.sustainablecomputing.org). The
objectives of the group are to drive order-of-
magnitude improvements in software quality,
dependability, and security. They say recent
estimates suggest that defective software
accounts for 45% of computer downtime and
cost U.S. companies alone over $100 billion
annually. Carnegie Mellon is the home of the
Computer Emergency Response Team (CERT),
which gathers information on internet security
problems, and the originator of the Capability
Maturity Model for evaluating the process of
software development.

SCC are developing standards and
specifications, plus ways to measure and reduce
risk, both that associated with software and also risk
to organizations, the broader markets, and the
economy. (Think how much of the international
infrastructure in communications and
transportation is dependent on software.) In
addition to a series of metrics (the “Sustainability
Index”) to quantify quality, dependability,
availability, security and survivability, they will be
producing tools and technologies to support these
improvements. Programming Research, which
markets software to audit software for standards
compliance and safety-critical good practice, has a
natural alignment of interest with SCC.

The aims of SCC are highly laudable, but there
is also controversy associated with the project. The
joining fee is $25,000, with a $5000 concession
rate for government and non-profit organisations.
Furthermore, membership only confers a license
for internal use of the intellectual property created
by the SCC; developers will have to pay royalties
if their products incorporate technology created by
the consortium. Open Source developers are
hoping CMU will reconsider the emphasis on
proprietary solutions (and some of them argue that
it is closed-source, proprietary software that has
created such a big problem in the first place). The
American space agency NASA has already
donated $23 million to CMU to pursue studies in
high-dependability computing. Earlier, they
underwrote the FlightLinux project
(flightlinux.gsfc.nasa.gov) to develop
an embedded real-time operating system for use
on spacecraft, but that project’s original period of
funding expired last summer. If NASA are turning
away from Open Source, Tux may never get a ride
into space.

Mentored Developers
SI Units Project
Pete Klier <pete.klier@lmco.com>
The SI units project has made significant
progress up to the point of near completion. The
requirements have been essentially completed
and an implementation has been provided by
Simon Watts, which includes the usage of
metaprogramming and the capability to handle
rational powers. Thus the basic skeleton can be
considered to be complete.

The challenges ahead of us include the
incorporation into the above system of the
ability to use baseline types in a fully general
way: For instance, if T op U yields V, then
velocity<T> op velocity<U> should
yield velocity<V> if it is otherwise legal.
A draft implementation is being peer-reviewed.

Beyond that, we would like to incorporate
good compile-time error messages, as well as the
ability to print types in a “smart” way, i.e.
recognizing “ohms per metre” as such without a
prior declaration of same.

Progress has been hampered by the fact that
nobody seems to have much time on their hands
due to annoying things like actual jobs.
However, it would be nice to finish up the above,
make certain that the system is user-friendly and
well-tested, and then perform some sort of write-
up or publication if we haven’t been trumped
already – however, we are implementing a
stringent set of requirements and thus we hope
that this effort will be useful to the community.

1 I recently discovered that a person who refers to him- or
herself in the third person is termed an ‘illeist’. There is
a word for everything if you look hard enough!

6 CVu/ACCU/Dialogue

Student Code Critique
Competition
Prizes provided by Blackwells Bookshops & Addison-Wesley

Please note that participation in this competition is open to all
members. The title reflects the fact that the code used is normally
provided by a student as part of their course work.

Note that this item is part of the Dialogue section of C Vu, which
is intended to designate it as an item where reader interaction is
particularly important. Readers’ comments and criticisms of
published entries are always welcome.

Student Code Critique 18: the entries
First a reminder of the code being critiqued.
I am trying to compile the following code and getting an error that I don’t
understand.
In file pgsimeta.h

#include <vector>
namespace PGSIMeta {
class PgsiMeta {
public:

PgsiMeta();
virtual ~PgsiMeta();
bool operator==(const PgsiMeta);

private:
// MetaData is a class defined at the top

typedef vector<MetaData> DataList;
DataList dataList;

};
}

In file pgsimeta.cpp
#include “pgsimeta.h”
using PGSIMeta;
bool PgsiMeta::operator==(const PgsiMeta& obj) {
return dataList == obj.dataList;

}
Here is the error compiling:

_pgsi_meta.h:51: ‘PGSIMeta::operator== (const
PGSIMeta::PgsiMeta &)’ must take exactly two
arguments

From James Holland <jamie_holland@lineone.net>

The compiler error message quoted in C Vu is somewhat curious. The message
refers to the header declaration of operator==() as having a reference
parameter. The header (pgsimeta.h) makes no mention of a reference
parameter. Is this a typo in the text of the problem? The parameters of the
declaration and the definition of operator==() must match. They must
either be value parameters or reference parameters. The operator==()
function does not need a copy of the PgsiMeta object passed to it and so it
would be sensible to refer to the object by reference. In other words the
declaration of operator==() should be bool operator==(const
PgsiMeta &);

The error message states that operator==() must take exactly two
arguments. Now, if operator==() were to be implemented as a non-member
function it would require two arguments (the first argument as a reference to
the object on the left of the == operator and the second as a reference to the
object on the right). The student has declared operator==() as a member
function and so only requires one argument as a reference to the object on the
right of the == operator. The compiler has clearly got itself confused.

In any case, my compiler does not issue the same error message as the
student’s. The messages it does come up with are just as unhelpful, though.
It’s a pity but the C++ standard does not require compilers to be helpful!

The first thing my compiler complains about is that the typedef in
the header is missing a semicolon. The semicolon plainly exists at the end
if the line. The compiler is definitely confused. This is quite typical. You
should not take what the compiler says too literally. It has definitely found

a problem with typedef statement, but what? This is the sort of problem
that can keep the programmer scratching his head for ages.

It turns out that the class vector has been defined within a namespace
with the name of std. The compiler has no idea what vector is because
the compiler is not looking in the std namespace. The compiler can be
made to look in the std namespace for its search for vectorby preceding
the reference to vector by the namespace name std. The statement in
question now becomes typedef std::vector<MetaData>
DataList;After correcting this problem we can recompile the program
and see what the compiler has to say for itself this time.

The compiler is now complaining about invalid use of namespace
PGSIMeta in the second line of pgsimeta.cpp. This time the compiler
is spot on with its diagnosis. The statement using PGSIMeta; is simply
incorrect. What is required is either using PGSIMeta::PgsiMeta;
or using namespace PGSIMeta;.

The using-declaration using PGSIMeta::PgsiMeta; instructs the
compiler to look in the PGSIMeta namespace for the identifier PgsiMeta.
The using directive using namespace PGSIMeta; instructs the
compiler to include the PGSIMeta namespace when it is looking for any
identifier. Either way the compiler should now find the definition of
PgsiMeta. There is another way to solve this problem and that is to add the
namespace name to the definition of PgsiMeta::operator==(). The
definition of the equality operator would now become bool
PGSIMeta::PgsiMeta::operator==(.... A similar thing was done
when the namespace std was added to vector above.

The program should now compile without error and produce the correct
result. There is one enhancement that could be made and that is to make
operator==() a constant function. The function does not alter the value of
any member variables and making the function constant will make that explicit.

For completeness I provide a copy of the corrected program.
In file pgsimeta.h

#include <vector>
namespace PGSIMeta {
class PgsiMeta {
public:
PgsiMeta();
virtual ~PgsiMeta();
bool operator==(const PgsiMeta &) const;

private:
// MetaData is a class defined at the top
typedef std::vector<MetaData> DataList;
DataList dataList;

}; }
In file pgsimeta.cpp

#include “pgsimeta.h”
using namespace PGSIMeta;
bool PgsiMeta::operator==(const PgsiMeta& obj) {
return dataList == obj.dataList;

}
James

Note From Francis Glassborow

I want to raise a couple of issues with the above critique that
demonstrate two common misunderstandings. The first is that if your
compiler compiles it the way you expect then everything is correct.
Compilers do not define C++; only the Standard does that.

The second is that using declarations and directives do the same
kind of thing. Using declarations make those declarations behave
as if they had been declared in the declarative scope of the using
declaration. Using directives on the other hand tell the compiler of
another scope to search for declarations.

Nonetheless I would prefer the style of reopening the namespace
as being less problematic:

#include “pgsimeta.h”
namespace PGSIMeta{
bool PgsiMeta::operator==(const PgsiMeta& obj) {
return dataList == obj.dataList;

} }

Dialogue

7CVu/ACCU/Dialogue

Entry from Simon Sebright
<simonsebright@brightsoftware.freeserve.co.uk>

Here’s my entry. Edit the waffle if you like, but I notice that most ACCU
articles take a sentence or two to get down to business. I have assumed
that the code given is the entire content of the two files. If not, then some
of my points won’t be valid...

As John Denver would say in the modern age, the combi boiler’s gently
pumping water round the radiators, and pasta’s on the gas hob. And of
course, there’s some beer on the desk. A homely environment for our
student. If we meet outside the learning centre, perhaps a level of mutual
respect is maintained. One would hope that this would lend more credence
to any arguments put forward. As this is a monologue, I’ll have to assume
answers, or allow for various options.

Well, your code doesn’t compile, huh? Let’s see. Yes, rather a long error
message, I’m not sure I follow it either. My compiler (VC6) complained about
an overloaded function not being found in class PgsiMeta. And true enough
it isn’t. I spotted this quickly, you know. Not because I’m a human compiler,
but because I found your declaration of operator == rather odd.

Is there any reason you chose not to use the canonical form? That’s the
usual way of doing it. Have a const reference as your thing to compare
against. When do you think it’s best to use a by-value parameter, then?

Bit of a discussion ensues in which we boil down to builtin types. Oh,
and it’s usual to call the parameter to operator== , copy constructors,
etc. something like other, rhs to indicate the relationship to the this
object. obj is bland, says nothing other than that you had to give it a name
in the implementation to get it to compile (yes, I note there isn’t a name in
the declaration, why’s that?).

Does this function modify a PgsiMeta? So... Yes, make it const. I
personally prefer to have to ask myself the question, “Should this not be
const?”. Would you modify either side in a comparison? Isn’t it
symmetrical? Right, the parameter is const, so should this be.

Why is your destructor virtual? No other virtual functions. It’s not pure. Ah,
it was wizard-generated code. Hmm. And you trust that to know the ins and
outs of your class, do you? Or, ah, you read somewhere about the dangers of
non-virtual destructors. Here’s a thought, you make it non-virtual and think
how you would answer the opposite question. Hint, read some Scott Meyers.

That’s not an issue about compilation. Neither is this question. Why did
you feel the need to comment the fact that class MetaData is defined at
the top? Firstly, it isn’t. Secondly, for the code to compile, it must be defined
(prior to this point in the pre-processed file), so anyone looking at your code
would know that. It’s completely meaningless, and as the only comment in the
file, it shows you don’t understand the purpose of comments.

[Actually, I think that in this case the comment was simply to avoid
having to provide a lot of source code that was not germane to the
problem, or at least did not appear to be. Francis]

Where’s the comment describing what PgsiMeta does?
Compilation issue – your using statement is missing the keyword

namespace – using namespace PGSIMeta;
Stop, before you do that, why? Yes, you get the remaining code to compile,

but I would contest that you are not using the namespace when you define the
functions of PgsiMeta, but defining them. Yes, deliberately tautological.

Scrap it.
Well, commentless, we don’t know what it’s all for. What’s the meaning

of life for this class? Why is it in a namespace? Not that it shouldn’t be, I
just want to know why you put it in there. Why did you make the name of
the namespace and the name of the class the same, bar case? One class per
namespace, or is it because you read about namespaces and thought you
have to have one and couldn’t think of a name? You need to think about
these things, you know. Without looking, write down the names of your
namespace and your class. Quick.

Where are your constructor and destructor?
Here’s a question – do you need your operator == at all? What

does the compiler do if you don’t specify one? Go and find out. This is a
teacher’s trick, as off the top of my head, I’m not sure if it’ll do a bitwise
comparison or a member-by-member comparison, the latter obviously
being fine for our purposes.

[Actually it will generate an error as operator== is not one of the functions
that compilers are permitted to generate if you do not provide one. Francis]

There’s no divine solution here. That’s mainly because I can’t see the
purpose of this class other than as student testing something, and what that
is is not even clear. With no public or protected members other than
constructor and destructor, it’s pretty devoid of use. So, prefix all of my
entry with, “What are you trying to do?”.

Simon

General Comments from Francis Glassborow
I knew this was a tougher problem than it looked. I also suspect that quite
a few readers skipped over it on the basis that it was too simple to try. Or
perhaps some spent time staring at it and wondered how it generated just
the single error message when so obviously there was an earlier place
where any quality compiler would call you out.

We generally ask that when faced with an error that you do not
understand, strip the code down to the bare minimum that exhibits the
problem. I think this is clearly what the student did this time, so I would
make a quick comment on the issue of MetaData , I would also assume
that he had in fact handled the problem of vector being in namespace
std. If he had not his code would not have compiled.

The two main issues are a design one and a coding one. A third, and for
me minor one is the naming conventions. And lastly is the issue of whether
the class should have a virtual destructor. That last one can only be handled
if the exact intention of the whole class is known. As the student has clearly
stripped out all but the bare minimum to show the problem I think that
nothing more than the mildest comment on the destructor is called for.

The design issue concerns the choice of parameters for operator==.
As this operator is being provided as a member function I am pretty sure
that should be a const member function and take a const reference for its
parameter. However that leaves me a little worried if this is a base class,
because it allows conversions on the right-hand operand though not the left.

The syntax issue, the one that was responsible for the somewhat unhelpful
(English understatement) error message, is interesting because both entries
have missed the real requirement whilst identifying the cause of the error
message.

The general rule is that definitions must always be in the same scope as
the declarations. All the forms of using are about making something visible
for the purposes of name look-up. But they do not do the same kind of thing.
I would strongly advocate either the solution I suggested earlier or:

bool PGSIMeta::PgsiMeta::operator==(
const PgsiMeta & obj)const {

return dataList == obj.dataList; }
That is using a fully elaborated name. My preference is definitely for the former.

The Winner of SCC 18
The editor’s choice is Simon Seabright. Please email
francis.glassborow@ntlworld.com to arrange for your prize.

Student Code Critique 19
I’m trying to write a class to represent a card that can used to create a pack
of cards. I’m thinking an array of pointer to card in the back of my head.

class Card {
public:
Card():itsNumber(0) {}
Card(int Number):itsNumber(Number) {}
virtual ~Card(){};
void SetNumber(int val) {itsNumber = val;}
int GetNumber() const {return itsNumber;}
virtual void Display() const =0;

private:
int itsNumber;

};
const int RegularPack = 54;
int main() {
int i;
Card* pack[Regularpack];
Card* pCard;
for (i = 0; i < RegularDeck; i++) {
Card:pack[i]->SetNumber(i);

}
cout << pack[50]->GetNumber() << “\n”;
for (int i = 0; i <= 53; i++) {
cout << i << endl;;
cin >> *pack[i]->SetNumber(i);

}
cout << “The CARD is: “ << Card << endl;

}

This code contains a variety of different errors. First there are several design
flaws that need addressing. Then there are syntax errors, at least one of
which suggests that this is not the writer’s first programming language.
And finally there are issues with consistency of idiom. A successful critique
should cover all these issues but prioritise them in an appropriate manner.
Style, correctness, completeness are all elements that are taken into account
when assessing a winner.

8 CVu/ACCU/Dialogue

Francis’ Scribbles
Francis Glassborow

ACCU & Programming Languages
Back in 1987 when this organisation was founded it was called ‘The C Users
Group (UK)’. It was started, as were most user groups at that time, by a small
band of enthusiasts. Membership was £10 and lasted for six issues of C Vu.
At that time C Vu was a typical collection of A4 sheets stapled together. Much
of the content was reproduced from elsewhere. While I notice, I think that
the long-term management of ACCU deserves a great deal of credit for
holding membership fees down. £10 in 1987 was worth somewhat more than
the current basic ACCU membership fees, yet today you get much more for
your money than those enthusiasts did fifteen years ago.

By the early 1990’s CUG (UK) was neither limited to C nor to the UK. C++
was so clearly of interest to most C programmers that most of us thought it
perfectly reasonable to add it into the range of articles published in C Vu.

Several things then happened that have been documented elsewhere
with the result that CUG(UK) changed its public name to ‘The Association
of C and C++ Users.’ Of course this got abbreviated to the acronym ACCU.

As the organisation slowly grew during the 1990s the material being
published in our two magazines (and for a time a newsletter for Acorn
programmers) broadened. We published what members wanted to write
about. That is a sound basis for editorial selection, if a member wanted to
write about it, probably others would be interested in reading about it.

Objective C never really made it to our pages, not that there was any
reason that it shouldn’t, just that no one was interested enough to contribute
anything. Java hove on the scene and now there was clearly something that
many members would be interested in. At this stage it was clear that there
would be other languages that a substantial part of the membership would
be interested in. The ACCU Committee decided that constant name changes
would destroy the brand image and that we would be best off by branding
ourselves with the ACCU acronym. In doing that we followed many other
successful groups. Who now knows what ECMA originally stood for? Or
ACM? Or ... (don’t write and tell me, because I do know the answers).
These days what the acronyms stood for has been discarded. In the same
way ACCU is now ACCU and has no intention of following all those
organisations with a death wish who want to rebrand themselves.

So now let me turn my attention to Python. What makes Python
different from awk, Perl, Ruby etc? I do not know that I can put it into
words but clearly it has something that is attractive to many highly
competent C++ programmers. When Andy Koenig noticed that the ACCU
Spring Conference 2002 was hosting the UK Python conference he wrote
to congratulate me (as Conference Programme Organiser). By that time
Andy was not only regularly programming in Python but had also spoken
at a major Python conference in Japan.

Then I noticed Boost was actively working on a library to provide bindings
in C++ for Python. Python had already provided mechanisms for the reverse.

Can these highly competent C++ programmers be confused or does this
braceless language belong in the community that ACCU represents?

I know that the awk, Perl, etc. enthusiasts and plain simple users wonder
why Python seems to be so actively coming into the broad ACCU
community. The answer is plain and simple, because they feel at home with
us and want to participate in ways that some other language groups do not.

From my perspective they bring a welcome breath of fresh air and pose
questions that we will benefit in finding answers to. Someone who is fluent
in both C++ and Python is going to be a much more rounded programmer
than one who only knows C++.

I know that some members fear that Python will somehow usurp
resources that they feel should go to the older more traditional languages.
I think they are wrong. As long as members write about C++, ACCU editors
will publish articles on C++.

However there is another issue with this broadening of ACCU’s base. The
C# standards (yes it is a standardised language and runtime system) were
issued by ECMA and are in the process of being fast tracked to ISO. The UK
language experts were concerned about leaving maintenance entirely in the
hands of ECMA because most of us are individuals and not backed by large
corporations. The way ECMA works means that most contributions have to
come from fully paid up corporate members. There is no equivalent to the
National Body participating that is the way ISO works.

However there is one option that ECMA provides and that is for purely
voluntary organisations to be allowed to participate in ECMA workgroups
without charge.

It both amazed and delighted me to learn that one proposal to allow
independent language experts to participate in the future standardisation
of C# was to accredit ACCU as participants in the relevant workgroups.

I have no idea if this will actually come to fruition but I think that the
whole membership of ACCU (past and present) should feel very happy that
in fifteen short years we have moved from a bunch of young enthusiasts
for C to become an international organisation with sufficient status to be
considered for such a responsible task. For me, ACCU has at last grown
up (you would have to read some of my editorials to understand that) and
become a broad community of people who consider programming as more
than just the language in which they write source code.

Yes, please do write and express your own views but when you do so
remember that one of the great qualities of ACCU members is that they are
not language bigots. If enough members wanted to write and read about
Ruby, I am sure we could find the space for them just as we always find
space for those that write about C (I am sure your editor feels the same way
as I do, I wish there were more of them).

In so far as ACCU conferences are concerned, I think you have little
reason to worry that speakers on other languages might dilute them. Rather
I think they have been and will be enriched by such speakers. Even the
most dedicated C++ or C programmer should realise that we have things
to learn from experts on other programming languages.

Future C
Some of you may know that there has been work going on over the last
three years concerned with providing support for programming DSPs
(Digital Signal Processors) in C. This support constitutes a major part of a
TR (Technical Report) that is being worked on by WG14.

It is quite clear to me that the sub-community of C programmers whose
work lies mainly in the domain of DSPs need the proposed extensions to
C, or at least something like them. They need a Standard for exactly the
reason that computer languages have them; to provide portability both
between hardware and between compilers.

Unfortunately DSPs have some heavy requirements. They need a highly
specialised type of fixed-point arithmetic, not one that would be of any use
in such sectors as the financial one. They also need to be able to control
the behaviour with overflow. Effectively they need twelve new
fundamental types and each must support three types of overflow
management. The current proposal is to provide a new type qualifier so
that programmers can either use the default behaviour of the new
fundamental types or qualify them to provide saturated arithmetic.

The proposal to have a second type qualifier to allow for modulus
wrapping behaviour has been withdrawn and either a #pragma or a set of
functions will provide that flavour. Even so we have 24 new types and a
bundle of rules to deal with conversions between them and between them
and the existing arithmetic types.

I think most C programmers will wish to resist any attempt to add those
to Standard C. Currently we are only looking at a TR, but it is clear from
my discussions with those working on this TR that they will want
incorporation of support for DSPs into the next release of C.

Is there a way round which will satisfy a large majority and that the rest
can tolerate? I think so, but it will need a change of view.

Some of you may know that the most recent release of C added support
for extended arithmetic including adding complex number types and
providing some genericity for maths functions, but only those in the
standard math library.

Quite a few programmers think that was unwise because it made C larger
and more complicated though the new features were only useful to a limited
part of the C community. The antecedents of those new features can be found
in a technical report released in the mid 1990s. In other words we have
already been down this path and not everyone is happy with the result.

It seems clear to me that we need a highly stable kernel C in which new
features are only added if they demonstrably strengthen C for all the
community that use it. That should include a major part of the C++
community who need compatibility between the C they use and C++.

I would advocate a radical review of the current version of C with a
view to removing a number of features, including but not limited to the
support for complex numbers.

Now I can feel a sense of deep disquiet among many who have
legitimate needs for those features. But before they ignore this proposal,
please read on and see the rest.

There will always be sub-communities who have a need for other
features that are supported across compilers and across hardware. The

numerical experts have a cluster of things they need to have supported. The
financial world has its desirable features. Those involved in embedded
programming have clear needs (for example some standard support for bit
variables would, I think, be helpful to those working on 8051 derivatives).
And, of course, the DSP programmers have all those needs that are being
addressed in the current TR.

Note that these needs cannot easily be met by something entirely
separate (like the Posix Standard) because each sub-community needs
specific additions to fundamental C. They need new types, new type
qualifiers etc.

What I am suggesting that we consider is producing a highly stable C
Standard that will only be maintained in the future. And then work on
separate standards for extensions. It should then be possible for a compiler
vendor to market C, or C with financial extensions or C with DSP support
etc.

Note that this is not sub-setting the C language, though you might view
it as super-setting. There is a long history of bad experiences with sub-
setting computer languages.

I do not think I am just playing word games. It does matter whether you
start with a whole and cut bits out of it or start with a base and allow
additions to it.

C++ programmers should feel relatively easy with the idea because it is
only the language equivalent of derivation. If you need Standard C any of the
extended versions will do (the principle of substitutability) but if you have C
with DSP support, it will not help if you need C with numerical extensions.

If we pursue this path and work carefully on the exact specification for
the pure C kernel we might even be able to put the issue of compatibility
between C and C++ to final rest. C++ would become one more extension
to C, albeit a very large one.

Extended Operators
Another issue that came out of discussions about the type system and DSP
support was the issue of extended operator behaviour. All that the saturated
type qualifier does is to change the semantics of overflow. Yet to achieve
this it makes major changes to the built in types of C. That seems overkill
to me. And I am not alone in this.

Currently we have only two other options, we can abandon using
operators and do everything through function calls. But the frailty of this
approach is one of the main motivations for C++ providing operator
overloading. Or we can use standard #pragmas to change evaluation
behaviour. That seems fraught with potential for errors.

I have an alternative, which is to allow operators to carry modifiers. We
discussed this as a theoretical idea at the recent WG14 meeting. We could
not go further because the idea raises serious compatibility issues for C++.

For what it is worth the idea is that C would support a syntax so that I
could write, for example:

a = b +[sat] c;
Note that this would allow the qualification to go where it belongs, on

the evaluation and not on the type. That sidesteps the problems with rapidly
growing lists of type conversions.

I think the idea was popular enough so that we might have added it to
the main part of the TR had there not been a C++ issue. As it is, it will go
as a suggestion in an appendix.

So what about the C++ issue. C++ already allows overloading of
operators. It would certainly be possible to allow such overloads to carry
an extra parameter that could be used as an extended qualifier. In a way we
already do that with new(nothrow).

I can imagine that such an extension would be helpful in some
application domains. For example, vector mathematics uses two products
– cross and dot. Currently we have to choose which of those we will
represent with * and then what other operator we will pervert by using it
as the other product. This adds a burden to the domain expert who has to
remember which is which.

Would it not be better to be able to write:
a = b *[dot] c *[cross] e;
Not least because the domain expert would immediately recognise if

that is well formed.
By the way, the syntax has been carefully checked by those who are

familiar with syntax problems. The recycling of the index operator was
chosen for two reasons.

First the way the index operator is used already post-qualifies an
expression so we are only extending it to post-qualify an operator.

Second, and probably more important, as far as we could determine that

syntax would not cause the kind of parsing problems that C++’s use of
angle brackets for templates has caused.

Feedback
As always, I would be very happy to have feedback on the ideas that have been
presented in this column. They are pretty raw and are largely presented here
to get other people thinking, and possibly coming up with better solutions.

There are real problems that need tackling and the more minds that can
consider them the better chance we have of getting good solutions.

Problem 5
Consider the following brief program:

struct base {
virtual void report {

std::cout<< “base” << std::endl;
}

};
struct derived: public base {
virtual void report {

std::cout<< “derived” << std::endl;
}

};
int main() {
base * x = new derived;
try {

throw *x ;
}
catch(base & br) {

br.report();
}
return 0;

}

What is the output and why?
I had a couple of responses to this from people who were puzzled as to

what the problem might be. Let me ask you a simple question, what is the
type of *x? Well what is the type of x?

The answer as we all know is that it is a pointer to base. That means
that *x must be either a base or a reference to base. Does it matter? Well,
in some circumstances it might not but in this case whatever it is must be
copied because that is the requirement for exception objects. There are no
such things as virtual constructors so the type of the thing copied will have
to be the static type of the dereferenced pointer. In other words the process
of throwing converts the derived object into a base one.

The catch clause will catch a reference to a base that actually refers to
a base. That means that if your compiler behaves correctly the message
should be:

base
The other points that you should have noted is that:
1 The dynamic instance of a derived is never deleted
2 Should we be using std::endl or should we prefer ‘\n’?
That second question is one that is often skimmed over. std::endl does
two things, it appends a newline character to the output buffer and then it
flushes it. As cin and cout start out in life bound together, we do not
normally need to force a flush. When input is required from cin the buffer
attached to coutwill be flushed.

Problem 6
Consider the following definition of a simple function to draw a line across
the screen. Assume that the resolution has been chosen so that successive
pixels can be generated by incrementing an int.

void yline(int y, int startx, int endx) {
for(int x = startx; x != endx; ++x)

plot(x, y);
}

There is a flawed assumption in this code. How should it be fixed? There
is also an issue of the line itself. Where does this line end? Is that a
reasonable place for it to do so? In the computer world where pixels have
finite size, how should we represent a line of zero length?

Another way to represent a line is by providing its start point and its
length. What problems might result from such a choice?

9CVu/ACCU/Dialogue

10 CVu/ACCU/Features

Professionalism in
Programming #17
The Code That
Jack Built
by Pete Goodliffe
<pete@cthree.org>

Unless you’ve started reading this
article by some unfortunate accident,
you are a programmer. You write
code. That is, you’re usually found
hunched in front of the ethereal glow
of a monitor, entering profound
combinations of punctuation
characters into some form of text editor.

If that was all there was to developing code our job would be a great
deal easier, although we’d run the risk of being replaced by a proverbial
infinite number of monkeys with their infinite number of text editors.
Instead, once we’ve written our source code we run it through a compiler
(or interpreter) to get out something that actually functions (or might just
function) as we intend. Rinse and repeat.

The task of converting our carefully honed high-level language into an
executable that can be distributed is commonly referred to as “building”
code (although you’ll find that this term is used pretty interchangeably with
“making” and “compiling” in most contexts). Building is often used as a
metaphor for programming. See the sidebar for some thoughts on this
comparison.

This act of building is a fundamental part of what we do – we can hardly
develop code without performing builds. It’s important, then, to understand
what’s involved and how our particular project’s build system works in
order to have confidence in what we’re up to. There are a lot of subtle issues
at play here, especially when a code base gets to a reasonable size.
Interestingly, almost all programming textbooks will gloss over this kind
of topic, they present single file example programs not showing any real
build complexity.

For some developers the build system provided by their IDE is
sufficient, but this doesn’t remove the burden of understanding how it’s
working. It’s very convenient to hit a button and have all your code
generated, but if you don’t know what options are being passed to the
C compiler, or what level of instrumentation is left in your object files
then you’re not really in control. The same holds if you’re firing off a
single “build” instruction at a command prompt. You must understand
what’s going on under the covers to be able to repeatably perform
reliable builds.

Making mountains out of molehills
Let’s spend a little time investigating what all this fuss is about anyway.

Say you’re starting a new project, coded in C. It will solve all the ills
in the software development world, and will usher in a new era of world
peace. However you have to start somewhere, and all you have at first is
a single file containing main.

It’s easy to build and run this single file program, you just type
“compiler main.c”1 and out spits an executable for you to run and
test. Simple.

The program grows and to help organise the parts you split it out into
multiple files, one per functional block. The build is still a simple process.
Now you type “compiler main.c func1.c func2.c”. The same
executable program is spat out, leaving you to carry on testing as before.
No sweat.

Soon you recognise that some sections of the code are really individual
components with particular concerns, almost like stand-alone libraries. It
would be easier to reason about these sections of code by placing them all
in their own directories – grouping the like sections of code together. Now
the project is beginning to spread out. The simple way of building under
this new file structure is to just build the source files in each individual
directory by hand, firing off a compiler call that doesn’t build an
executable, but just intermediate ‘object’ files. This is done in each of the
directories, then the main.c file is compiled, and linked in with all the
other intermediate object files. To do this, you’ll also have to help your
compiler out by telling it where to find some of the other directories’
include files as required. Hmm, things are now getting a little more
complex.

Whenever you change some code in one of the directories you have to
fire off the compile command in that directory, and then issue the final link
command once more. Quite manual. Additionally, if you make a change to
a function declaration in a particular header file, and there are other
directories with code that depend on that header, those directories have to
be rebuilt. You’ll usually know you didn’t recompile these dependent files
because your final link stage will generate cryptic complaints.

To fix this huge command line burden you can write a shell script (or
batch file) that walks around each directory and fires off the requisite build
commands. Having hidden all that messy work and the tedious compiler
parameters, you can get back to the serious business of code development,
safe that you don’t have to memorise unnecessary fluff.

Now it occurs to you that a number of these subdirectories of code really
are stand-alone libraries. They can also be used in other projects, not just this
particular one. You tidy up the code so it’s a little friendlier to use, add some
good user-facing documentation, and then alter the build commands so that
they generate shared libraries rather than object files. This requires some more
changes to your build script, but it’s relatively hidden so it’s not too painful.

Features

Do we really “build” software?

We frequently think about the software development process as being like
“building”. It would indeed be hard to argue that we aren’t building
software. This metaphor naturally equates what we do with the
“traditional” building industry. We have, in fact, seen some sort of overlap
and collaboration between these two disciplines, as the patterns movement
learns from Christopher Alexander’s work [1].

It’s valuable to understand how far this metaphor works and is useful.
No metaphor is perfect, after all. Although it is philosophy and a bit of an
aside, it’s still worth spending a little thought power on since the
comparison will inevitably prejudice our approach to development.

Like the physical construction process of, say, a house, we start from
nothing and build by placing layers of structure atop each other. Before
the construction begins, a process of requirements gathering and careful
design/architecting should have been performed. Whilst you can probably
build a garden shed without much planning, you’d be daft to hope an
unplanned skyscraper stood a chance of standing up; you’d need some

serious design and planning up-front. This parallels our software
construction neatly.

The metaphor stretches thinly in other areas though. We can modify
the foundational layers of our software constructions far more easily
(although there is still danger involved), and it’s much cheaper to tear
down a software edifice than a physical one. This means that in the
software world we have the opportunity to prototype and explore more
than in the physical world. Real world building mandates sound
engineering principles, this is enshrined in statute. Many software firms
wouldn’t know an engineering principle if it slapped them in the face.

What we’re thinking about in this article revolves around the
procedure involved in this building task. The metaphor’s a bit out of kilter
here too, at least for the purposes of this article. Our entire development
procedure is akin to a physical construction process, comprising system
conception, design, implementation, and test. But at a lower level, each
time we take a fresh copy of some source code we perform a “build” on
it, and that’s what we’re looking at here.

1 Obviously, replace compiler with the command to prod your C compiler – this is a
hypothetical example.

11CVu/ACCU/Features

Development carries on like this for some time. Code is added rapidly.
Many new sub-directories and sub-sub-directories get created. Although
the file structure seems pretty neat, build times become a problem since
each time you fire up your build script it goes around recompiling every
source file, even if it hasn’t changed and it doesn’t depend on a header file
that’s changed. The temptation here is to fire sub-directory builds off by
hand again and track the changes yourself (perhaps by running individual
directory shell scripts as a half-way-house). The project is now so large it
would be very easy to miss some dependencies and have hard to resolve
build errors, or worse, issues that don’t stop the link working, but that do
make the program behave in incorrect ways.

Now your development is on the brink. You can’t trust the system being
used to build the code. It’s not safe. You can only really trust the executable
if you’ve done a complete clean out and rebuild from scratch.

Enter the tool for just this occasion. The classic solution is a command
line program imaginatively called make. It deals with all of your intermediate
object files and compilation rules for you, and most importantly tracks which
files depend on which other files. You tell it what to do by writing makefiles,
which provide the necessary build rules. It looks at the source file timestamps
to check which files have changed since you last performed a make, and then
recompiles those, and any other files that depend on them. It’s a more
intelligent version of the shell scripts above, specifically tailored to the task
of compiling and recompiling software. A deeper description of how to use
the make tool is outside the scope of this article, but it’s something every
developer ought to know well. Over the years many variants of humble make
have appeared, these days many with GUI façades.

Building builds
In that sinking morass of software construction we’ve see some of the
issues of a ‘build’ procedure. Essentially, any build process takes source
files as input, and out the other end it spits some executable program, or
even perhaps an entire ‘distribution’ (including help files, installer etc, all
packaged neatly and ready to be burnt onto CD).

Like the cumulative story that I shamelessly pilfered this article’s title
from, as our software develops and matures the build process develops and
matures with it. Maybe yours didn’t start in quite such a basic state as in
the example above, but generally it’s true: the makefiles start off simple at
first and grow alongside the code they build. A large project often has a
bewildering build process that requires (but doesn’t necessarily always
have) adequate documentation. We can see that the act of compiling a
single source file is at the lowest level of the build food chain, we raise a
tower of extra work on top of this simple act.

It’s worth bearing in mind that a build process is not always just about
compiling C/C++/Java source files. It may also involve preparing some text
registration files from templates, creating internationalised strings, or
converting graphics files from their source format to some destination binary
format. Practically all such activities can also hang off the standard makefile
system, and be run in the normal course of a build. This does presume that the
tools involved are “scriptable”, and can be run in a command line environment.

What makes a good build system?
There is a general set of considerations for a good build system. I’ll spell
them out below. Maybe you’re creating a new build system from scratch,
or you’re improving, or even just evaluating your existing system against
this yardstick. As these are only a broad set of rules, they exist to be broken;
they can’t possibly apply to all scenarios.

Mechanics
The ideal is that a build system should take undoctored “virgin source” and
compile it all in one go, with no human intervention. There should be no
“special steps” you have to go through to perform the build. You should
not have to fire up some GUI app half way through and prod a file. You
shouldn’t even need to run more than one command to perform the build
stage. This ensures that no information is locked away in your head, just
waiting to be lost. All the build magic is ‘documented’ in a reliable place.
The build is always repeatable. It’s safe. (More on safety below.)

If you can’t reach this ideal (and it’s not at all unreasonable), then the less
manual a build is, the better. All the manual steps need full documentation. It’s
usually acceptable for one step to obtain the virgin source, one step to build it,
and one to create the distribution from this, for example.

If your build procedure is a simple matter of firing off one command,
you can easily set up overnight builds of the entire source tree. This is a
remarkably helpful trick to identify build errors early on. When you add

an automated regression test suite into this mix you have a potent tool to
validate your work on an ongoing basis.

Targets
A makefile allows you to specify multiple targets for a build. These allow
you to use the one build system to generate several different outputs. The
targets may be something like these
l Different platforms to build your application for (PC/Apple/Linux,

Desktop/Embedded)
l Product variants (full release or demo release with save/print disabled)
l Development build (with debugging support enabled/disabled)
l Differing “levels” of build (build just the internal libraries, build the

application, build entire distribution)
Each of these targets can be simply built from the one source tree. There
is a huge benefit doing this rather than having separate source trees for each
target. If most of the code is the same it would be an intense task to keep
several similar trees in sync excepting their minor differences. The physical
differences between these targets that the build system will accommodate
might boil down to a number of things:
l Different files being built (e.g. save_full.c or save_demo.c)
l Different macro definitions being passed through the compiler (e.g.,

compiler flags altered to predefine DEMO_VERSION when building all
source files, to select #ifdefed code)

l Different toolsets/environment being used for building (e.g., for
different target platforms)

For every build target rule in the build system, there should be a
corresponding ‘clean’ rule, that undoes all the build operations, removing
the program executable, intermediate library and object files, and any other
files created during the build. The source tree should revert to its original
‘virgin’ state; it’s relatively easy to verify. This implies that build systems
that physically alter any original files are nasty. You should instead use the
original files as templates, and send modifications to a different output file.

Whilst you could have any number of targets for all sorts of minor
differences, it opens the possibility of making your build system complex
and unwieldy. Some of this configuration can be done at code install time,
or even run time. This would be preferable if it reduces the number of
different builds that exist and require testing.

Reliability
Builds should be deterministic and reliable. You should be able to
determine the set of input files easily before performing the build. You
should then be able to take these files and perform a build step, followed
by the clean step, and get back the same set of files you started with.
Performing the build again should give you the same final executable you
got the first time – the build should be repeatable. You should be able to
mark (or archive) a set of files as a particular version of the software, and
then be able to perform many identical builds of it.

A build process that spits out an unreproduceable binary is worrying. If
what comes out of a build depends on which way the wind is blowing, the
world becomes a hard place to reason about. This means that gratuitous
use of __DATE__ or other potentially changeable information should be
kept to an absolute minimum in a build tree.

Safety
Our build systems should be safe. It sounds good, but what does that
actually mean? We’ve already said that our builds should be reliable and
repeatable, but there’s even more to it than that.

First, the system should be documented thoroughly. A newcomer should
be able to immediately see how to build the code without spending years
studying messy makefiles.

You must be able to pull out some source from three years ago and
rebuild it correctly. This is crucial, since an important customer may find
a significant bug in an old revision of software, and if you can’t get back
to that version and generate the exact same program you may never be able
to reproduce, let alone find the fault.

This implies that all your source should be appropriately accessible to
feed into your build process. There is no excuse not to keep the source code
under source control (e.g. CVS). Only the ‘input’ files that are part of the
virgin build tree need to be under control. No object files, libraries or other
generated intermediate files should be held under source control.
Obviously, the makefiles themselves will be held in source control too.

Safety also requires that the build environment should be reproducible.
To make this practical there should be no unreasonable dependency on type

of computer installation. There should be no ludicrous reliance on setup in
environment variables. That said, it can be hard to determine the exact
environment you’re building under to be able to reproduce it later. The
build tools and operating system configuration you’re using should be
accessible at any future point. The compiler doesn’t necessarily need to be
held under source control, but you need to document exactly which version
was used, including patches/service packs etc. This kind of issue raises
some ugly problems; how dependent on hardware (i.e., a particular PC) is
your build environment, and do the libraries, service packs, etc on the build
machine affect the produced executable at all? For example, MSVC should
produce identical code on Windows 98 and Windows XP, gcc version 3.2
should produce identical code under Red Hat 7.3, SuSE 8.1 and Solaris.

Builds should not be noisy. If your code elicits compiler warnings then
there is something there you should be looking in to. Persuade the compiler
to be quiet. Copious compile warnings can cloak any more insidious
messages that you should be reading. You should really be building with
all compiler warnings enabled for maximum peace of mind, switching them
off does not fix the problem.

Most importantly, your build system must not carry on after an error. It
should stop and leave you in no doubt what broke and where it can be fixed.
If the build process continues, other problems will almost certainly result
as a consequence of that first skipped error that will be very hard to
understand. For your own sanity, don’t break this rule!

To be a safe and resilient build system it’s best not to be too clever. Complex
build tools that do things you don’t understand are a worry2. The makefiles
you create should be simple and tidy. The temptation is always to quickly hack
up the build system and spend more time on the code being built. However, it
must be easy to modify the makefiles when the project requirements change.
Anything that requires a guru build engineer to update is a liability.

Authority
Who should be able to perform a build? There are two different answers to this
question. We’ll look at the first here, and the second in the next section.

The build system should not only be comprehensible to a build guru.
Quite simply, any developer should be able to perform a build. In fact,
every developer must be able to perform a build or they wouldn’t be able
to develop. To be even more accurate, every developer must be able to
perform a development build. For release builds, see below.

This again means that the build should be simple to learn (and well
documented). It should be easy to modify and maintain. Each developer will
be working on their small part of the overall system. For this reason it makes
sense that there should be targets to build each small part of the system, so there
is no need to rebuild everything all the time. This is often achieved using a
‘recursive’ make technique. The same makefile template is copied into each
directory (perhaps it includes a global one for the common rules). This makefile
recurses into each subdirectory, builds the components in that directory, and
returns. In this way you can type “make” at the top level directory, or just in
the directory for a particular component, and what you want built gets built.

Please release me
Some builds are particularly special, and require more care in their
preparation. These are release builds, builds that are made with special
purpose, rather than just in the course of normal development. A ‘release’
could be one of a number of exciting events, a beta version, the first official
product release, or a maintenance release. It may also be an internal
milestone release, or an interim release to the test department; these won’t
leave the company, but are held in as high a regard as other release builds,
almost a ‘fire drill’ for an official release build.

Now if our build system is carefully crafted, there shouldn’t be too much
extra preparation needed. However, these builds must be handled thoughtfully,
we need to make sure any build issues don’t compromise the code.

Such important builds should always come from a virgin source tree,
not from someone’s half-built working tree. Before the code build is
performed, a specific step beforehand identifies which source code, and
which particular version of each file to include in this release, and then
marks it in some manner, usually by tagging or labelling it in the source
control system. The release files are now obtainable at any point thereafter.

Each release build has a particular name you identify it by, sometimes
a cool codename, sometimes just a build number. This will usually tally

with the source control label the code was marked with. If you and I agree
we’re talking about “build five” when investigating a fault, then we’re both
singing from the same hymn sheet. If you’re working with build five, when
I found the fault in build six how do we know we’ll see the same issues?

There may be some extra packaging stage after the code has been built,
i.e., prepare a CD, add documentation, integrate licensing information, or
whatever. This might also be automated.

After being built, each release needs to be handled specifically. It should
be archived and stored for future reference, presumably these days on a
CD. Obviously you store a copy of the final built executable in whatever
form it ships to the user (the exact shipped zipfile, self-extracting exe or
whatever). You should also capture the final state of the build tree if
possible, but in most projects this may be enormous so it might not be
practical. At the very least the build log should be retained, that is that exact
sequence of commands issued and the response generated, so this must be
capturable and captured. These logs allow you to look back over old builds
and see what compiler errors may have been overlooked, or exactly what
happened during the build. Sometimes, this gives a clue into a fault reported
in a years-old version of a product that has long since been discontinued.

Each release has a release note that describes what changed in this
release. It may or may not be a customer facing document, depending on
exactly what you’re building. These should also be archived. The release
note contains updates subsequent to the printing of the official
documentation, any known issues, etc. They are an important part of the
release procedure and shouldn’t be overlooked.

When performing release builds you must select the correct set of
compiler switches – they might differ from those used in development
builds. Any debugging support gets switched off, for example. You also
need to choose what level of code optimisation should be selected3. The
optimisation level may be lower for development builds since the
compiler’s optimisation stage often takes a particularly long time to
execute. This can become unbearable for very large build trees. However,
if you use different sets of compiler options for development and release
builds, beware. You must be testing the exact builds you release regularly.
Aim to minimise the differences between release and development builds.

Since creating a release build is a relatively involved task, and important
to get right, it is usually given to one team member (perhaps one of the coders,
perhaps someone in QA). That person produces all the builds for that
particular project, to make sure that each build is of the same quality. Release
builds are as much about procedure as they are about the build system.

Jack of all trades, buildmaster of?
Many organisations employ a specific person to fulfil a build engineer role,
often known as the buildmaster. The role may also involve planning and
managing release schedules, or it may be purely technical. The buildmaster
will be the person who knows the build system intimately. They’ve probably
set it up at first, they add new targets as required, they maintain the overnight
build scripts, etc. They also own the build system documentation.

They are tasked with performing the release builds, and for this reason are
often heavily involved with the configuration management system being used.
They are charged with ensuring the reliability and safety of the release process.

The buildmaster is not always a distinct engineer, sometimes a coder
doubles in this task. However, it is helpful to have just the one nominated
person owning the build and release aspects of a project. This is not an
excuse for ‘normal’ engineers not to understand the build process, though.

Conclusion
On the face of it building software is easy, if you have the right tools. But
you do have to know how to use the tools properly. Producing trustworthy
builds for production is a more involved matter. It is important to have an
understanding of what’s going on when you fire off a build, even if you
don’t have to alter the build system every day.

Performing good builds is not a completely straightforward task; our
jobs are safe from the proverbial infinite number of monkeys. They’re too
busy arguing about which of their infinite number of text editors is the
better one, anyway.

Pete Goodliffe
References
[1] Christopher Alexander. The Timeless Way of Building. Oxford
University Press, 1979. ISBN 0 195024028.

12 CVu/ACCU/Features

3 This can be a harder question to answer than you think. Ramping the optimiser up to
warp speed nine may expose compiler optimisation bugs that break your code.

2 I have an in-built distrust of anything more clever than GNU make, but that probably
says more about me than the other clever make tools. GNU make is quite clever enough,
thank you!

13CVu/ACCU/Features

Using SAX Parsers
Tim Pushman <tpushman@gnomedia.com>

This article will introduce the subject of parsing XML files, using as
examples the Expat parser and the Xerces parser. In the process we will
examine the two event interfaces for XML parsers, SAX1 and SAX2. I will
assume that you’ve read the two previous articles in the series ([1] and [2])
and I assume that you have a good understanding of C++. The article won’t
cover the design of XML documents, the samples we use will from
necessity be simple and designed to demonstrate the basic facilities of the
XML parsers. We will create a simple program to parse an XML file and
count the characters and tags in it, showing how the program differs
between Expat and Xerces.

I’m assuming that the intended audience has never used an XML parser
before, if you have you may want to wait till further articles appear. My
intention is to give a basic overview of setting up a parser and reading in
an XML file.

The two interfaces we will play with, SAX1 and SAX2, are called Event
Based APIs and are straight-forward interfaces utilising callback functions.
Originally designed for Java, they are available in many other languages,
including C and C++. The original SAX1 API was designed by the
members of the xml-devmailing list in 1998 and released as a ‘de facto’
standard to the programming community. In May 2000 SAX2 was released
which included the use of namespaces, filter chains and methods for
querying and setting parser properties and is the recommended API to use
for current applications.

Strictly speaking the SAX API is designed for Java and is described by
a set of Java classes . Although the API has been ported to other languages
(such as C) the ports do not, and cannot, mirror the Java API exactly. I use
the term SAX rather loosely in this article to describe event based XML
parsing.

In particular, Expat is a C based parser and has no classes as such, so
the interface is of necessity an approximation. Expat is also based on the
SAX1 API, so you may wonder why we are going to start the article with
looking at how to use Expat. Well, for one thing, Expat is one of the most
widely used XML parsers in the C world (it’s also the basis for the Perl and
PHP XML modules). It is extremely fast and has a small disk and memory
footprint. If you want to use XML in your own applications, Expat may be
the first thing that you look at. And finally, there are some C++ wrappers
available, one of the best being Jez Higgins’ SAX in C++
[http://www.jezuk.co.uk/].

The Interfaces
As I said above, the SAX interfaces were originally designed for Java
programs, they exist in the org.xml.sax set of packages and consist of
interafces, classes and sub-packages.

In SAX1 there are interfaces for the parser, handlers, exceptions and so
on, SAX2 kept the same basic structure but deprecated some of the
interfaces and added some new ones. For example, Parser is now
deprecated and replaced by XMLReader . There are often also a set of
helper implementations that provide barebones functionality, such as the
SAX2XMLReader implementation of the XMLReader interface.

I’ll describe some of the main classes in SAX2 here using the Java
names, how that works out in the C Expat parser and the C++ Xerces parser
will become clear later in the article. I’ll mention when the class is replacing
one of the SAX1 classes

The first set of classes are those used for parsing an XML file. They are
based on the XMLReader interface (SAX1: Parser), and usually
created via an XMLReaderFactory . Most implementations provide an
adapter implementation called SAX2XMLReader . The XMLReader
interface provides methods for setting and getting features and properties
for the parser, setting handlers and a method called parse(). Typically
we derive a class from XMLReader, create it, set the properties and
features that we want, set the handlers and then call the parse method.
Parsing can throw exceptions, generate errors and warnings and call the
handlers.

The handlers are used for handling the various events and come in
different flavours. The main handler is based on the ContentHandler
(SAX1: DocumentHandler) interface. There are also the
ErrorHandler (errors, warnings and fatals), the DTDHandler
(DTDs) and the EntityResolver (for external entities). There is also
a Locator class that is used to keep track of where in an XML file the
parser is.

The XMLReader is normally passed an InputSource (which
encapsulates an input stream) and during parsing can throw various
SAXExceptions.

There are various helper classes and interfaces available, such as the
Attributes class to encapsulate attributes, different adapter and
implementation helper classes and a factory class to produce the required
parser.

In a nutshell, to parse an XML file, you must create a parser, tell it what
functions will handle the various events it creates from the file and then let
it rip on the file.

The Xerces parser has pretty much the same classes and structure as
the Java SAX API (along with other classes for DOM and so on), but
Expat, because it is written in C, has a set of functions that try to mimic
the above functionality as much as possible. Next we’ll have a look at
Expat.

An Example XML Document
We need a simple XML document to play with. I could start off with an
example using the hypothetical Person who is part of a hypothetical
AddressBook, but I won’t. I’ve seen enough of them and I refuse to write
another... instead we’ll look at a hypothetical configuration file for a
hypothetical application.

Let’s assume that we have an application that stores its state (user name,
last used file, etc.) at shut down in an XML file. And reads this file at start
up to restore its state to what it was before.

Listing 1 shows the first cut at this file, we’ll expand on it further as we
go.

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE config>
<config datecreated=”20011210”>
<user>John Smith</user>
<login>jsmith</login>
<password>topsecret</password>
<lastfiles>

<lastfile timestamp=”20011210T1002”>
accounts.txt

</lastfile>
<lastfile timestamp=”20011190T1132”>

/home/jsmith/docs/letter.doc
</lastfile>

</lastfiles>
</config>

Listing 1: The sample XML file, version 1

Using Expat
Expat was originally written by James Clark, one of the pioneers in the
world of XML and SGML. It’s written in C and is available on many
platforms. Recently development of the parser moved to SourceForge,
where it is overseen by Clark Cooper. To compile the following
examples you will need to download and install the Expat parser from
expat.sourceforge.net (I used the 1.95.2 version for this
article).

Listing 2 (next page) shows a bare bones program that creates a parser,
parses a file and exits. In the process it counts the number of characters,
tags and attributes that it reads.

On its own, not a terribly exciting application, but it demonstrates the
four fundamental actions in using Expat to parse an XML file: create a
parser, assign event handlers, give it data to parse, and then free the parser.

All the Expat functions are prefixed by “XML_” and they all take an
instance of the parser as their first parameter (except, obviously, the
XML_Create function).

We create a parser using XML_Create(NULL) which returns a
pointer to an XML_Parser, and it is this pointer that we pass around to
the other functions and is finally used in XML_ParserFree(p) to free
the parser.

XML_Create has one optional parameter, the document encoding,
which overrides the document encoding specified in the document itself.
In this case we pass NULL to indicate that the document will specify the
encoding, or else to use the default UTF-8 encoding.

The interesting stuff happens between these two calls to create and free
the parser. As the parser reads through the file it will generate events

whenever it encounters various parts of the XML, for instance, start tags,
end tags and so on.

To express our interest in these events, we register a set of functions
with the parser that it will callback on when a specified event happens. In
listing 2 we tell the parser that we are interested in knowing whenever a
start tag, end tag or character data is encountered.

We use the functions:

XML_SetElementHandler(p, startFn, endFn);
XML_SetCharacterDataHandler(p, characterFn);

to register three static functions to handle the callbacks, as usual, passing
the pointer to the parser as the first parameter. The other parameters are the
function pointers for the start handler, end handler and character data
handler.

We make use of a third callback method:

XML_SetUserData(p, pec);

to tell the parser to pass this pointer to the callback handler functions. This
can be a pointer to any data that we want passed to the functions (it’s a
void*), in this case we declare a structure ElementCounts to keep
track of the tag and character counts that we receive. Note that we are
responsible for disposing of the structure when we are finished with it,
before freeing the parser.

Now, on to the handlers themselves. The start handler takes the form:

void* startFn(void* data, const XML_Char*
name, const XML_Char** attr)

The first parameter is the pointer to the user assigned data mentioned above.
The second parameter is a pointer to a character array containing the
element name and the third pointer is to an array of character pointers to
the attributes. attr[0] is the first attribute name, attr[1] is the
value and so on.

The end handler takes the form:

void endFn(void *data, const XML_Char *name);

with similar meaning to above. If the tag is an empty tag (e.g.
) then
calls are made to the start and end handlers in order.

The character data handler is a little more complex, it takes the form:

void characterFn(void* userData, const
XML_Char* s, int len);

Here s is a pointer to an array of characters that are not null terminated.
The number of valid characters is contained in the len parameter. Only
that number of characters should be copied out and stored for use by the
client. And there is no guarantee that this string is the whole string within
the element. In fact typically the first call will contain blanks and new lines,
the next calls will have the data and the last call contains trailing blanks
and new lines. But that cannot be assumed.

#include <iostream>
#include <fstream>
#include <string>
#include <expat.h>

#define BUFFSIZE 2048

typedef struct {
unsigned int tagCount;
unsigned int attrCount;
unsigned int charCount;

} ElementCounts;

static void startFn(void* data, const char* el,
const char** attr) {

ElementCounts* pc = (ElementCounts*)data;
pc->tagCount++;
for(int i = 0; attr[i] != NULL; i += 2) {
pc->attrCount++;

}
}

static void endFn(void* data, const char* el) {}

static void characterFn(void* data,
const XML_Char* ch, int len) {

((ElementCounts*)data)->charCount += len;
}

int main(int argc, char** argv) {
if(argc < 2) {
std::cout << “Usage: test01 some.xml”

<< std::endl;
exit(1);

}
std::string filename(argv[1]);
std::cout << “Using “ << filename.c_str()

<< std::endl;
std::ifstream ifs(filename.c_str());
if(ifs.fail()) {
std::cout << “Error opening input file,

exiting...” << std::endl;
exit(2);

}
XML_Parser p = XML_ParserCreate(NULL);

if(!p) {
std::cerr << “Failed to create parser”

<< std::endl;
exit(3);

}
ElementCounts* pec = new ElementCounts();
pec->tagCount = pec->attrCount = 0;
XML_SetUserData(p, pec);
XML_SetElementHandler(p, startFn, endFn);
XML_SetCharacterDataHandler(p, characterFn);
// parser ready and raring to go.
bool done = false;
int len = 0;
int totalCount = len;
char buff[BUFFSIZE];
while(!done) {
ifs.read(buff, BUFFSIZE);
done = ((len = ifs.gcount()) < BUFFSIZE);
totalCount += len;
if(ifs.bad()) {

std::cerr << “Error in read operation.”
<< std::endl;

exit(4);
}
if(!XML_Parse(p, buff, len, done)) {

std::cerr << “Parse error at line “
<< XML_GetCurrentLineNumber(p);

std::cerr << “ with “ << XML_ErrorString(
XML_GetErrorCode(p)) << std::endl;

exit(5);
}

}
// free the parser when we’ve finished with it
XML_ParserFree(p);
std::cout << “Done, \nTotal chars read: “

<< totalCount << std::endl;
std::cout << “Tags counted: “

<< pec->tagCount << std::endl;
std::cout << “Attrs counted: “

<< pec->attrCount << std::endl;
std::cout << “Chars counted: “

<< pec->charCount << std::endl;
delete pec;
return 0;

}

Listing 2: Basic parsing (file test02.cpp)

15CVu/ACCU/Features

After opening the file for reading, and reading in a chunk at a time, we
pass this chunk to the parser in the XML_Parse method:

XML_Parse(p, buff, len, done)
There are four parameters, a pointer to the parser, a buffer to parse, the
number of characters in the buffer, and whether this is the final buffer. By
passing the number of characters to the function we don’t need to ensure
that the buffer is null terminated.

The function returns 0 if an error occurred, otherwise 1.
And that is the basic structure of a program for reading in an XML file

and handling the various events that the parser creates. Expat provides a
lot of different events, we can provide handlers for all of them, see the
header files or the documentation if you’re interested. We’ll look in more
detail at some of them in another article.

I’ll extend the program now to make it more practical for our purposes
by reading in the user’s name and password. The main file remains the
same, the changes we will make are in the handlers and in the data structure
that we pass around. Listing 3 shows the changes to the handlers and
structure (test03.cpp in the source package). Replace the three event
handlers, define a new data structure and modify the code to print the
results.

What we are doing, in short, is keeping track of which tag we are within
and, based on that, collecting or ignoring the character data that we are
passed.

Some points to note from the code:
1 The characterFn function can be called more than once within the

same tag, so the characters will be appended to the string until we reach
the end of that tag.

2 If we look at the strings as output by std::cout, we will see that we
also get some of the white space:

User name: <
Jsmith
>

Our program has also appended the new line/carriage return characters
to the string. So, in a real world application, we would want to trim the
string of extra characters.

3 Using a vector to store the tag names and indexing into it is just one
way of keeping track of which tag we are in, there are many others.
Using a stack, pushing the current tag onto it, and then popping it off
in the end handler is another popular technique. With a large number of
tags a map<string,int> is a good solution.

Handling attributes
The attributes are passed to the start element handler as an array of
char*s, the first element of the array being the first attribute name, the
next is the value, the next is the second attribute name and so on. The list
is ended by a NULL entry. In order to keep this article short enough, the
online source file (test04.cpp) has the details, I’ll just give a verbal
description here.

A typical means of accessing the attributes is simply to loop through
them, like so:

for(int i = 0; attr[i]; i += 2) {
// do something with attr[i] and attr[i+1]

}

attr[i]and attr[i+1]will point to a XML_Char* and we will need
to make a copy if we want to hang on to them. In our example, we assign
them to a string.

Error handling
Errors in an XML file can be broken down into 3 types.
1 System level errors (bad file, disk error and so on).
2 Badly formed XML
3 Non validated XML
System level errors can be taken care of in the normal way, such as
checking that the file can be read and so on. Non validated XML errors

// Replace the data structure and the three
// event handlers with this:

struct UserData {
enum { NO_TAG = -1, TAG_USER, TAG_PASS };
std::vector<std::string> tags;
UserData() : done(false),currentTag(NO_TAG) {

tags.push_back(“login”);
tags.push_back(“password”);

}
std::string username;
std::string password;
bool done;
int currentTag;

};

static void startFn(void* data, const
XML_Char* el, const XML_Char** attr) {

UserData* d = (UserData*)data;
if(strcmp(el, d->tags[

UserData::TAG_USER].c_str()) == 0) {
d->currentTag = UserData::TAG_USER;

}
else if(strcmp(el, d->tags[

UserData::TAG_PASS].c_str()) == 0) {
d->currentTag = UserData::TAG_PASS;

}
else {

d->currentTag = UserData::NO_TAG;
}

}

static void endFn(void* data,
const XML_Char* el) {

((UserData*)data)->currentTag =
UserData::NO_TAG;

}

static void characterFn(void* data,
const XML_Char* ch, int len) {

std::string s(ch, ch+len);
switch(((UserData*)data)->currentTag) {
case UserData::TAG_USER:

if(!s.empty())
((UserData*)data)->username.append(s);

break;
case UserData::TAG_PASS:

if(!s.empty())
((UserData*)data)->password.append(s);

break;
default:

// do nothing
break;

}
}

// and in the main body:
// new handler installation
UserData* pud = new UserData();
XML_SetUserData(p, pud);

//end new

//
ifs.close(); // as before

// new printing code.
std::cout << “User name: <”

<< pud->username.c_str() << “>”
<< std::endl;

std::cout << “ Password: <”
<< pud->password.c_str() << “>”
<< std::endl;

// end new

delete pud;

Listing 3: Additions to main code

16 CVu/ACCU/Features

will not happen with Expat as it is not a validating parser. That leaves us
with badly formed XML errors.

Expat is quite good at returning intelligent parser error strings (in
English) or error codes, and there are methods to find the line number,
column number and byte offset of the offending byte. (Note that it is a byte
offset, not a character offset). An error is indicated when the
XML_Parse() method returns 0, in which case the error code and error
string methods can be called.

So far we’ve looked at just a few of the functions in expat.h, I’ll take
a look at some of the other functionality in another article, what we’ve
covered so far is enough to have you parsing XML.

The Xerces Parser
Expat is designed to be small and fast and useable on all platforms, an aim
that it achieves but at the cost of a slightly clumsy user interface and only
supporting the SAX1 interface. The Xerces parser is at the other extreme,
providing SAX1, SAX2 and DOM1 and 2 interfaces, all wrapped in a C++
API. There are language bindings for Java, C++, Perl and MS COM. Like
Expat, the library is intended to be cross platform across a wide range of
operating systems.

Xerces was a project started by the Apache foundation in 1999 (based
on IBM’s XML4C) and is still in development. But although still evolving,
it is known to be stable and is in use in many applications. Currently (May
2002) the version is at 1.7.0.

Xerces has a different philosophy than that of Expat. Whereas Expat does
one thing very well, Xerces aims to provide a full toolkit of XML parsing tools,
it supports SAX1 and 2, DOM1 and 2, namespaces and XMLSchema. It is
also part of a larger toolkit, hosted at xml.apache.org, that includes a wide
range of tools for working with XML.

Using Xerces
To understand the differences between Expat and Xerces, we’ll do exactly
the same in Xerces as we did in Expat. See listing 4 (source test05.cpp)
for the barebones code to create a parser, read a file and exit (the code does
nothing practical). In this example we will make use of the SAX2 interface.

The first difference that jumps out from this code is that the Xerces
library needs to be initialized before it can be used, and terminated when
it is no longer needed, via calls to the two static methods
XMLPlatformUtils::Initialize() and
XMLPlatformUtils::Terminate(). The actual working of the
calls will depend on the platform Xerces is built for. (Note, on Xerces V1.5
and earlier there could be one, and only one, call to Initialize in an
application, otherwise the application would segfault. This has been
rectified in the later versions).

A second difference is that we now create our parser using a factory
method, XMLReaderFactory::createXMLReader() , which
returns an instance of the parser (or reader as it is called in SAX2).

Finally we note how the handlers are created. There are three main
handlers that the parser makes use of, a document handler for the content
of the XML document, an error handler for any errors or warnings in the
parse and a DTDHandler. Xerces provides a utility class
DefaultHandler, that acts as a ‘do nothing’ class and can be used in
place of an actual handler class. By deriving from this we can implement
just the functionality that we need.

All in all, a much cleaner interface than that of Expat. To do some useful
work in Xerces, the only thing we need to do is provide a document handler
class that can handle the events created by the parser, and we do that by
inheriting from the DefaultHandler class. In deriving from
DefaultHandler we can choose to override the methods that we need.

DefaultHandler inherits from five abstract classes in total
(ContentHandler, ErrorHandler , EntityResolver,
DTDHandler and LexicalHandler) but at present we are only
interested in dealing with start element, end element and character data
events from the ContentHandler interface.

Here is the handler class (from test06.cpp):

class OurHandler : public DefaultHandler {
public:
OurHandler()
: charCount(0),tagCount(0),attrCount(0) {}

void startElement(const XMLCh* const uri,
const XMLCh* const localname,
const XMLCh* const qname,
const Attributes& attrs) {

++tagCount;
attrCount += attrs.getLength();

}

void endElement(const XMLCh* const uri,
const XMLCh* const localname,
const XMLCh* const qname) {}

void characters(const XMLCh* const chars,
const unsigned int length) {

charCount += length;
}

int getCharCount() {
return charCount;

}
int getTagCount() {
return tagCount;

}
int getAttrCount() {
return attrCount;

}

private:
int charCount;
int tagCount;
int attrCount;

};

// Test of SAX parsing using Xerces C++ parser
#include <util/PlatformUtils.hpp>
#include <sax2/XMLReaderFactory.hpp>
#include <sax2/SAX2XMLReader.hpp>
#include <sax2/DefaultHandler.hpp>

const char* xmlFile =
“\\localprojects\\c\\sax\\data\\demo.xml”;

int main(int argc, char** argv) {

// initialize the Xerces library
try {
XMLPlatformUtils::Initialize();

}
catch(const XMLException&) {
// do something
return 1;

}

SAX2XMLReader* parser =
XMLReaderFactory::createXMLReader();

DefaultHandler handler;
parser->setContentHandler(&handler);
parser->setErrorHandler(&handler);

try {
parser->parse(xmlFile);

}
catch(const XMLException&) {
// do something

}

delete parser;

// And call the termination method
XMLPlatformUtils::Terminate();

return 0;
}

Listing 4: A barebones program to parse a
file with Xerces SAX2 interface

17CVu/ACCU/Features

Write for ACCU!
If you would not be forgotten,
As soon as you are dead and rotten,
Either write things worth reading,
Or do things worth the writing.

Benjamin Franklin

What to write?
Here is a small selection of suggested titles. These have been specifically
asked for by ACCU members. Please look at the list and consider if you
can write something on a topic.
l The preprocessor

What does it do? What can I do with it?

l Working with strings
How do they differ in C and C++?

l Which loop?
How do I choose between for, while, and friends?

Don’t let this list constrain what you write! What are you doing right now?
What do you know about? Please write something about this for the
ACCU journals.

How to submit
You can send submissions by email to editor@accu.org . Plain text
is perfectly acceptable; there is a Word document template you may wish
to use if you want to retain formatting. That’s all there is to it – please
write something.

Pete Goodliffe

and we use that as the content handler instead of the DefaultHandler:

OurHandler handler;
parser->setContentHandler(&handler);
parser->setErrorHandler(&handler);

Add some code at the end to print out the results and voila, the Xerces
equivalent to the program we wrote in the Expat section. Because all our
handlers are tucked up neatly in a class, there is no need to pass around a
separate structure to store the data, it can be part of the class. (See source
test06.cpp).

You’ll notice that we’re using the handler as a content handler and as
an error handler, this works because the super class, DefaultHandler ,
supplies three do-nothing handlers for the error functionality
(warning(...), error(...), fatalError(...)), as well as
a few other methods. This makes it easier to specialize the class for just
the functions that we need. In a full system, you would probably use
separate classes for content handling and error handling.

In a similar manner to our example in Expat, we can modify the program
to extract some of the data simply by providing a different set of handlers
that detect the ‘user’ and ‘login’ tags and saves the data. See test07.cpp
for the details.

The technique is similar to that used in the Expat example, in the start
handler, we keep track of which element we are within and in the character
handler we collect the strings that we are interested in.

The main difference is in the way the attributes are presented to us:
Xerces creates an object of type Attributes. Attributes is usually
implemented as a kind of vector, which contains a list of attribute
name/value pairs (Attributes itself is an abstract class). These can be
retrieved either by index or by name. For example:

XMLCh* timestamp = attrs.getValue(0);

or:

XMLCh* timestamp =
attrs.getValue(“timestamp”);

An Attributes implementation will also support a set of other
methods, allowing us to find the type of the attributes, the number of
attributes and so on.

If you take a look at the code in test07.cpp, you’ll note that I’m not
simply fetching a pointer to a char array. The actual code, in brief, is this:

char buff[BUFF_SIZE];
XMLString::transcode(attrs.getValue((int)0),
buff, BUFF_SIZE-1);

and this deserves a brief explanation, although it’s a complex matter that
I’ll devote more time to in a future article. You’ll remember that I
mentioned that Xerces deals with UTF16 encoding internally, and that
XMLCh is typedef’d to be a unsigned short (or a wchar_t).
However, in our simple examples, we’re dealing with plain old character
data, so we need to transform it. For this we use the transcode method
from the XMLString utilities, here the result of getValue() is
transcoded and stored into the buffer. The transcode family of methods are
a bit more complex than this quick usage would imply, but more on that at
a later date.

Summary

This has been a short tour of the Expat and the Xerces parsers, two of the
main SAX type XML parsers available.

The Expat parser has a long and distinguished pedigree, having been
created by one of the luminaries of the SGML world, James Clark, and it
has been in use in real world applications for many years now. Updates to
the code are few and far between, which is a sign that it works well and
the bugs have been ironed out of it. Despite a ‘C-style’ interface, the basic
functionality is easy to work with and for simple jobs this is usually the
right choice.

Xerces is a parser that is still in development and aims to cover a lot
more ground than Expat. It is a fully object oriented design and API and
covers SAX1, SAX2, DOM1 and DOM2 APIs. Despite being in
development the parser is stable and usable in a production environment,
although you may not want to rely on some of the more esoteric
functionality without extensive testing.

In this article I’ve given a brief overview of what is involved in setting
up a parser and parsing a simple file. There are lots of online resources that
can take you through the next step, of using them in real world applications.
In the next article I’ll skip the ‘intermediate’ phase and come back to look
at some of the more obscure aspects of parsing XML.

Tim Pushman
Full source code for these programs is available online at
(www.accu.org | http://www.gnomedia.com/cw/sax-
articles1.0.tgz)

Features comparison

References and further reading
[1] Tim Pushman, “A Short History of Character Sets”, C Vu 14.3
[2] David Nash, “ XML Parsing with the Document Object Model”, C Vu 14.5
[3] Expat Home page: http://expat.sourceforge.net
[4] Xerces Home page: http://xml.apache.org/xerces-c/
[5] The SAX project: http://sax.sourceforge.net/
[6] ExpatPP: http://www.oofile.com.au/xml/expatpp.html
[7] C++ Wrapper from Tim Smith:

http://www.codeproject.com/soap/ExpatImpl.asp
[8] SAX in C++ from Jez Higgins:

http://www.jezuk.co.uk/SAX/
[9] Oxml wrapper (pages in French):

http://apodeline.free.fr/Oxml/
[10] LibXML: http://xmlsoft.org/

Interface Expat Xerces

SAX1 Yes Yes

SAX2 No Yes

DOM1 No Yes

DOM2 No Yes

DLL size 135Kb 1,597Kb

Installing and Using MySQL
on Windows
John Crickett

This article describes how to install, configure, test and deploy a simple
database using MySQL running on a Windows NT (NT4, 2000, and XP) based
machine. It is intended to provide the reader with a direct Windows-specific
set of instructions on the installation, configuration and testing of a MySQL
installation, as the supplied manual is verbose and intermixes different
operating systems, making it hard to find what you need right away, and
perhaps a little intimidating for those not familiar with Linux or Unix.

MySQL is the world’s most popular Open Source Database, designed for
speed, power and precision in mission critical, heavy load use. It is maintained
by MySQL AB [1]; the company is owned by the MySQL founders. MySQL
is available free under the GNU General Public Licence (GPL). Commercial
licences are sold to users who prefer not to be restricted by the GPL terms.

Obtaining MySQL
MySQL can be downloaded free (under the GPL), from www.mysql.com.
This article deals with the Windows version found directly at:
http://www.mysql.com/downloads/mysql-3.23.html. I suggest you
download the installation files, and this article will assume you have done so.

Installing MySQL
Once downloaded, unzip the file to a directory, and run setup.exe. I suggest
you accept the default options for installation, which will install all the required
files to c:\mysql\. Once the installation program is has finished you’ll need
to open a console window, and the change to the directory c:\mysql\bin,
now it’s time to verify that you have correctly installed MySQL. Type mysqld
–install, as shown below to install the server as a service:

C:\mysql\bin>mysqld —install
Service successfully installed.

Next we need to actually start the service, for this use net start mysql:
C:\mysql\bin>net start mysql
The MySql service is starting.
The MySql service was started successfully.

If we later want to shutdown the service, it is simply net stop mysql:
C:\mysql\bin>net stop mysql
The MySql service is stopping.
The MySql service was stopped successfully.

Now would be a good time to set your computer#s PATH environment variable
to include c:\mysql\bin, You can do this with the command line:

set PATH=%PATH%;c:\mysql\bin
You might also want to add this to the end of your autoexec.bat
(located in C:\) or use Control Panel -> System ->
Environment Variables on Windows 2000/XP, to ensure the path
remains set for next time you reboot your PC.

Testing the Installation
We can use the program mysqlshow to display the details of the databases
in the server (do not forget the restart the service if you have just shut it down):

C:\mysql\bin>mysqlshow
+-----------+
| Databases |
+-----------+
| mysql |
| test |
+-----------+

which lists the databases in this server, or we can get the details of one
specific database as so:

C:\mysql\bin>mysqlshow mysql
Database: mysql
+--------------+
| Tables |
+--------------+
| columns_priv |
| db |
| func |
| host |
| tables_priv |
| user |
+--------------+

There are number of other useful facilities provided by mysqlshow,
so use the command line mysqlshow —help to see what else is
available. Congratulations, you have successfully installed MySQL.

Administering the MySQL Server
To administer the MySQL server we use the program mysqladmin ,
which allows you to perform general administration task on the MySQL
server. Such tasks might be:
l Create a database.
l Delete a database.
l Change the admin password.
l Check the status of the server.
l Shutdown the server.
Try the following command:

C:\mysql\bin>mysqladmin -?
for a full list of available commands; they are all self-explanatory.

Securing the Database
By default MySQL allows all local users to logon to the MySQL server
with full privileges, I suggest if you are going to deploy anything more
than a toy application that you change this immediately. To do so we use
the command line tool mysql, which provides a command prompt from
which we can send commands and SQL to the server. The process of
removing the default access rights is shown below:

C:\mysql\bin>mysql mysql
Welcome to the MySQL monitor. Commands end with ;
or \g.
Your MySQL connection id is 7 to server version:
3.23.49-max-debug

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear
the buffer.

mysql> DELETE FROM user WHERE Host=’localhost’ AND
User=’’;
Query OK, 1 row affected (0.90 sec)

mysql> quit
Bye

C:\mysql\bin>mysqladmin reload
C:\mysql\bin>mysqladmin -u root password secret

Here you can see we have used mysqladmin to tell the server to reload
the user table, thus updating its list of allowable users. This is known as
reloading the grants table, as the table “grants” users’ privileges.

Of course, I suggest you pick a more secure password than ‘secret’, for
your server. The downside of this is of course the commands we have
already learnt now need to be modified to run with your username and
password, otherwise you will be seeing results like the following:

C:\mysql\bin>mysqlshow mysql
mysqlshow: Access denied for user:
‘@localhost’ to database ‘mysql’

So we need to modify the command as so (once again replace secret
with your password):

C:\mysql\bin>mysqlshow -uroot -psecret mysql
Database: mysql
+--------------+
| Tables |
+--------------+
| columns_priv |
| db |
| func |
| host |
| tables_priv |
| user |
+--------------+

Here we are connecting as the user “root” (the –uroot), with the password
“secret” (-psecret), setting our active database to mysql.

Creating a Test Database
In this section, we will create a simple example database, and write some
simple programs to connect to the MySQL server and query the database.
To do this start up mysql, as so:

20 CVu/ACCU/Features

21CVu/ACCU/Features

C:\>mysql -u root -psecret
Welcome to the MySQL monitor. Commands end
with ; or \g.
Your MySQL connection id is 9 to server
version: 3.23.49-max-debug

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to
clear the buffer.

mysql> create database dev;
Query OK, 1 row affected (0.00 sec)

mysql> use dev;
Database changed

We have now created a new database called ‘dev’, and made it the active
database, in other words all the queries we run from now on will be against
that database. We can then create our tables, and query the database using
SQL, as we would for any other RDBMS. As SQL is beyond the scope of
this article, we will just quickly create a few tables and enter some simple
data.

I prefer to execute most queries as scripts, especially queries to create
tables, indexes and views, populate the static tables or the main tables with
test data, and to drop the database. This allows us to create and drop the
database as part of an automated build process, making it easy to test the
database, with confidence that we can easily restore it to a known, working
state. These scripts can now be kept safely in a version control system. We
can run a SQL script as follows:

C:\dev\articles\mysql\scripts>mysql -uroot
–psecret dev < create_tables.sql

where create_tables.sql is the SQL script used to create the tables
we need (the script is shown in full in the appendix). Note that we can also
specify the database to use on the command line.

Connection to the MySQL Database using ODBC
For testing I prefer to use a simple scripting language, as such I use PERL
[2] to test that the MySQL ODBC driver is correctly installed and working.
The script, test_odbc.pl given in the appendix performs the test. Note
that you do not have to use ODBC to connect to the database, MySQL
comes with its own C++ library, and many open source
languages/environments come with support built in.

Installing the MySQL ODBC Driver
I’ll assume you’ve downloaded the ODBC driver from the website, and
have unzipped the installer, so now run setup.exe . Accept all the
defaults, but do not enter a Data Source (just select close on this dialog
box). ODBC is now installed, however to use it we will need to configure
a DSN, so open up Control Panel, and find the Data Sources icon (Windows
2000/XP users will find in Adminstrative Tools).

Now select Add, then select the MySQL driver, and enter the following
values:

Windows DSN name: MySQLDev
MySQL Host: localhost
MySQL Database: dev
User: root
Password: secret

Once again swap secret for your password, and then leave the rest as
they are, and click OK, and OK.

Running the Test script
Before we can run the test script we need to create some tables in our
database, and populate them with some test data, so we will:

C:\dev\articles\mysql>mysql -uroot -psecret
dev < create_tables.sql
C:\dev\articles\mysql>mysql -uroot -psecret
dev < populate_tables.sql

We are now ready to run test_odbc.pl, assuming you’ve chosen to
use ActiveState’s PERL distribution we can run it as so:

C:\dev\articles\mysql>test_odbc.pl
building_name = ABC House
postcode = SN15 2EX
company_id = 0
county = Wiltshire
building_number =
company_name = ABC Ltd
street = Our Street
town = Chippenham

Congratulations: you’ve installed MySQL and configured the ODBC driver.
John Crickett

References
[1] MySQL AB – http://www.mysql.com
[2] Active State Perl – http://www.activestate.com

Appendix - Test Scripts
The following scripts are used in the preceding examples. This first script
(create_tables.sql) is used to create a table called “customers”.

use dev;
CREATE TABLE customers
(

company_id INT(10) PRIMARY KEY,
company_name VARCHAR(200),
building_name VARCHAR(200),
building_number INT(10),
street VARCHAR(200),
town VARCHAR(100),
county VARCHAR(50),
postcode VARCHAR(10)

);
The following script (drop_tables.sql) can be used to drop our table.
This removes the table from the database and will allow us to start over
from scratch after we have filled our database with either bad data or test
data during development.

use dev;
DROP TABLE customers;

The next script (populate_tables.sql) adds a row to the customers table.
use dev;
INSERT INTO customers
(company_id, company_name, building_name,
street, town, county, postcode)
VALUES
(0, ‘ABC Ltd’, ‘ABC House’, ‘Our Street’,
‘Chippenham’, ‘Wiltshire’, ‘SN15 2EX’);

The final script (test_odbc.pl) is a perl script.
use Win32::ODBC;
$dsn = “DSN=MySQLdev;UID=root;PWD=secret;”;
if (!($db = new Win32::ODBC($dsn))) {
print “Error connecting to $dsn\n”;
print “Error: “ . Win32::ODBC::Error() .

“\n”;
exit;

}
else {
$sql_statement = “SELECT * FROM customers”;

if ($db->Sql($sql_statement)) {
print “SQL failed.\n”;
print “Error: “ . $db->Error() . “\n”;

}
else {

while($db->FetchRow()) {
undef %data;
%data = $db->DataHash();

while (($column, $value) = each %data) {
print “$column = $value\n”;

}
}

}
}
$db->Close();

Effective C++ in an
Embedded Environment
Lois Goldthwaite

In embedded programming, every byte of memory and every tick of the
clock is a valuable resource to be conserved. Engineers writing code
for such environments value frugality over all other virtues. But as
embedded systems become ever more complex (think of global
telecommunications systems and aircraft flight controls), the
abstraction mechanisms and type safety features of C++ offer benefits
which can enhance robustness, maintainability, and verifiability of
programs.

Scott Meyers, author of Effective C++ , More Effective C++, and
Effective STL, came to the UK in October to present a series of seminars
on ‘Effective C++ in an Embedded Environment’. Sponsored by
Programming Research, vendor of software tools for quality assurance
and code auditing, the talks attracted engineers working on a variety of
embedded projects. To illustrate the range, one pair used C++ to
program the switching equipment for a large mobile-telephone service
provider; another group, just stepping up from C to C++, built
equipment to test the handling of automobiles (which is itself controlled
by other software).

The first half of the day was devoted to an overview of ‘C++ Under
the Hood’ – a discussion of how C++ language constructs are
transformed into object code by compiler and linker. While this is not
specifically an issue of embedded programming, Meyers explained, C
programmers often shy away from using C++ because of a fear that the
language has hidden overheads that add fat and stodginess to their
programs. A better understanding of how language features are
implemented should help to refute the superstitions, he said.

‘When I started looking into allegations of “code bloat” I found that everyone
knew it existed but no one knew what it was. I want to disabuse you of the
idea that C++ cannot be efficiently implemented and therefore is not suitable
for embedded programming. With C++, there should not be any additional
surprising stack or heap usage compared to equivalent functionality
implemented in C.’

No-cost C++ Features
Many features of C++ have a cost only during compilation, if at all.
They produce the same object code as if implemented in C. Among
these are structs, pointers, free functions – all the mechanisms from
the common sub-set of C and C++ – as well as class-static functions
and data. The keyword class is equivalent to struct, and
namespaces have zero overhead also (well, they may add a few
characters to mangled names displayed in a debugger, but have no cost
in production code). Calls to nonvirtual member functions and
overloaded functions and operators are bound at compile time, so have
no runtime overhead.

Meyers classified several additional features as ‘no-cost’, although
sometimes it takes a second look to realise it. These include constructors
and destructors, which should contain code for mandatory initialisation
and finalisation of data structures:

‘They exist to make sure you can’t forget to set up and clean up data. If the
code isn’t mandatory, don’t put it into a constructor or destructor – and if
you do, don’t blame the language.’

new is equivalent to mallocplus necessary constructors; delete is just
free plus necessary destructors.

Among the C++ ‘no-cost’ features Meyers included single
inheritance (the C equivalent is a nested struct) and, somewhat
surprisingly, virtual functions. He analysed at length some typical
compiler implementations of inheritance and polymorphism to back up
this claim. As a general rule of thumb, any use of virtual functions in a
class hierarchy adds a table of function pointers (the vtbl) to the code
space for each class, and a pointer to this table (the vptr) to the memory
layout of each object in the hierarchy. Calling a virtual function through
a pointer or reference to an object requires indirection through the vptr,
then indexing into the vtbl of function pointers, and invoking the
appropriate function through its pointer. The pointer indirections
consume only a few instructions, but because the desired function
pointer is selected at runtime, virtual functions may inhibit other
optimisations by the compiler, such as inlining. (However, direct calls
to a virtual function, where the type of the object is known at runtime,

do allow for optimisation.)
But how do the costs of the virtual-function mechanism stack up

against equivalent functionality implemented in C? Pretty well, it turns
out. Selecting a function at runtime involves C techniques based on
if/then /else or switch/case blocks, which have performance
implications of their own. It may involve adding a type tag field to the
struct’s data, with a data cost comparable to C++’s vptr. But the C++
compiler handles all the data structures and type-checking
automatically, instead of requiring explicit programmer attention. In
Meyers’s words,

‘The C code is harder to maintain, harder to get right, and harder to debug.
As for performance, I have seen a lot of implementations in C that are larger
and slower than C++. I have never seen one that was faster.’

Low-cost C++ Features
The features listed above are no-cost in another sense: if they are not
used at all, they are guaranteed to add zero overhead to the program.
There are some features, though, which may involve a small cost even
if they are not used. Depending on the implementation, support for
multiple inheritance, pointers to members, and RTTI (runtime type
information) can increase the size of vtbls a bit. And exception
handling, even if an exception is never thrown, does add some
overhead.

There are two main implementation models for exception handling:
one builds data structures on the stack at runtime to make sure that
appropriate destructors are invoked if an exception is thrown; the other
approach has no runtime impact but uses static data space to manage
cleanup if an exception is thrown. If it is certain that no exception is
possible in a program, most compilers have an option to disable
exception handling support. But dispensing with exception handling is
not a ‘zero overhead’ solution (assuming it is unsuitable just to ignore
any error condition that may arise). Other mechanisms, such as
returning error codes or setting a global errno variable, have their
costs as well.

C++’s flexible, customisable iostream classes can add a large
amount of library code to a compiled program. Unless this flexibility
is needed, embedded programmers may prefer to use C-style stdio .
But I/O is not a major factor in many programs for embedded
environments, in any case.

There are some features of C++ that can surprise programmers new
to the language, and perhaps this is why superstitions have arisen that
C++ generates ‘unnecessary’ or ‘unpredictable’ code. Temporary
objects are created and destroyed at specific times determined by the
source code, although knowing what those times are demands
understanding of the underlying C++ semantics and language
mechanisms. Passing an object to a function by value, for example, calls
its (possibly expensive) copy constructor to create another object,
which is destroyed when the function exits. This can be avoided by
passing a const reference instead. Inheritance results in implicit calls
to base class constructors and destructors, and data members contained
within another class are similarly initialised and finalised as part of the
lifetime of the containing object. If those functions are defined to be
inline, a surprising amount of object code can result from an innocent-
looking variable declaration.

Speaking of inline , it has both advantages and disadvantages. The
popular wisdom is that inline functions make code larger but faster;
however, this is not necessarily true. For very small functions which are
used frequently, eliminating the overhead of setting up stack frames may
even cause the overall code size to shrink. But the main benefit of inlining
is that it enables optimisers to work their magic on larger stretches of code.
On the other hand, if binary compatibility with upgraded versions is
important, inlining is not advised.

Templates without Code Bloat
The C++ feature most often mentioned in the same sentence with ‘code
bloat’ is templates. But Meyers maintained that most so-called ‘template
code bloat’ arises from programmers’ misunderstanding how templates
work, or misusing them. He said flatly,

‘Templates are not only incredibly useful, but are becoming the primary
contribution of C++ to the world. You cannot be an effective C++
programmer in any domain if you don’t understand templates.’

The big advantage of templates is that they move overheads from runtime
to compile time – traditional object-oriented programming must repeatedly

22 CVu/ACCU/Features

23CVu/ACCU/Features

go through vtbls to recover type information which was known by the
compiler but then thrown away.

With most compilers, template functions must be defined in a header,
but that does not make them automatically inline unless they are
inside a class definition. Templates are not really source code; the
compiler uses them to generate source code, which it then turns into
object code. Code inside a template will indeed be duplicated in every
instantiation of the template, but this can be minimised by factoring
type-invariant code into a non-template base class or external function.
If less capable linkers leave duplicate instantiations in multiple
translation units, this can be prevented by explicitly instantiating
templates once only.

Somewhat surprisingly, Meyers made no mention of Embedded C++,
the subset of Standard C++ proposed by an industry group of (mostly
Japanese) companies in the semiconductor business. This subset omits
templates, exception handling, multiple and virtual inheritance,
namespaces, RTTI, and the mutable qualifier, with the rationale that
some of those features add unacceptable overhead to programs and the
others might confuse embedded programmers.

Low-level C++
Turning to specific issues of embedded programming, Meyers discussed
how to tell whether data values in a C++ program can be placed into Read
Only Memory (program instructions can always be put into ROM).
Variables whose value is known at compile or link time, and whose value
does not change, can be put into ROM, although some such objects can be
optimised away entirely. Compiler-generated data like virtual function
tables and the tables to support exception handling can usually be put into
ROM.

Programs for embedded environments often need to read from and write
to hardware registers. Typically these I/O registers can be found at fixed
locations in a program’s address space, and sometimes there are additional
status registers whose every bit conveys significant information. Rather
than go through low-level bit-twiddling, C++ allows this memory-mapped
I/O device to be represented as an object with a meaningful interface:

// ControlReg is a four-byte
// (size of int on this processor) register.
// if bit 0 is set, device is ready.
// if bit 2 is set, interrupts are enabled
enum { bit0 = 0x1, bit1 = 0x2, bit2 = 0x4 };
// can go up to bit31 = 0x80000000
class ControlReg {
public:

bool ready() const {
return regValue & bit0;

}
bool interruptsEnabled() const {
return regValue & bit2;

}
void enableInterrupts() {
regValue |= bit2;

}
void disableInterrupts() {
regValue &= ~bit2;

}
private:

volatile unsigned regValue;
};

Qualifying regValue with volatile indicates that its data may
change outside the control of this program and tells the compiler not to
optimise away or reorder accesses to the variable. Because the member
functions are small and implicitly inline, invoking them should be as
efficient as twiddling the bits directly.

Placement new is used to position the ControlReg object so that
regValue is reading the correct memory-mapped register. Placement
new is preferred to a raw cast of an address, because it invokes any
constructor that may be defined for ControlReg (but any destructor
must be explicitly called by the programmer):

ControlReg& cr =
*new(reinterpret_cast<void *>(0xFFFF0000))
ControlReg;

while (!cr.ready())
; // wait until the ready bit is on

cr.enableInterrupts();
if(cr.interruptsEnabled()) ...

As an enhancement, making ControlReg into a class template
would add flexibility – template parameters could be used to specify
the correct sized datatype for the underlying storage and the status bit
masks, so a single class definition could represent many types of
register.

High-level C++
Support for abstraction and encapsulation is the most powerful

motivation for moving from C to C++ for complex applications. The
ability to create new data types makes it easier to express designs in
code. But these abstraction mechanisms need not exact a penalty in size
or speed, said Meyers. C++ code can actually be more efficient than C.
Compiler-generated dispatching of virtual functions is often better than
common hand-rolled approximations in C code. The string
abstraction gives implementations the flexibility to improve
performance without changing interfaces: optimisations like reference-
counted strings and the ‘small string optimisation’ outperform
char*-based strings in some applications. Library design is also
evolving in the direction of greater efficiency and flexibility. STL-based
techniques like traits classes enable compile-time selection of more
efficient algorithms when possible, with fall-back options of not-quite-
so-efficient algorithms when necessary.

‘C++ was designed from day one,’ said Meyers, ‘to be competitive
with C in size and speed. There are well-known implementation
techniques that don’t waste space and time, and that are at least as
efficient as you could implement manually for equal functionality.
Compared to C code, C++ never loses and it typically wins.’

Lois Goldthwaite

References
[1] Scott Meyers, Effective C++, Addison-Wesley,

ISBN 0201924889
[2] Scott Meyers, More Effective C++, Addison-Wesley,

ISBN 020163371X
[3] Scott Meyers, Effective STL, Addison-Wesley,

ISBN 0201749629

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor disparage
any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is, by default,
assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not a letter or a review of
software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers, no material
can be copied from C Vu without written permission of the copyright holder.

Linux Server Series Part 2
Choosing Hardware
by Paul Grenyer <pjgrenyer@iee.org>
In this, the second part of my series on setting up a Linux Server, I am going
to look at what hardware is required for the server and some possible sources.
I’ll do this by describing the hardware I’ve decided to use, where it came from
and the problems I had. As the server is intended for home use the emphasis
will be on acquiring the necessary parts as cheaply as possible.

The first part of this series dealt with choosing a Linux distribution. I
looked at the various different distributions of Linux that people (from
accu-general) were using, and RedHat and SuSE came out on top as
the most popular. I concluded that I would set-up the server using RedHat
and then set up a second server with SuSE if there was enough interest.

RedHat Hardware Compatibility List
RedHat maintain a hardware compatibility list [1] on their website where
it is possible to search for particular pieces of hardware or generate a list
of all hardware compatible with a particular release of RedHat.

When I started looking for hardware for a Linux Server I didn’t expect
to have any problems. I have installed (RedHat) Linux on a number of
different PCs in the past ranging from 200MHz 32MB RAM Pentiums to
1.3GHz 385MB AMD Thunderbirds without any hardware problems (with
the exception of incompatible network cards and modems). Now that I’ve
come to put a system together for a particular purpose I had a few more
problems, which I finally overcame.

My system consists of the following:

Choosing Processing Hardware
The processing hardware is the processor, motherboard and memory. The
Official RedHat Linux x86 Installation Guide [2] does not state a minimum
processor speed or RAM size. I heard on one of the RedHat lists that
someone has RedHat 7.2 running on a 486 with 12MB RAM. I tried to
install it on a 100Mhz system with 16MB Ram and RedHat 7.2 refused to
install due to lack of memory. When I increased the RAM to 32MB it
installed without any problems.

I chose an AMD K6-2 300MHz because I happened to already have
one. Processors can be picked up second hand from computer fairs very
cheaply. The last fair I was at had 200Mhz processors from about £5.

Along with the processor I also had 64MB RAM and I upped it to
128MB by buying a brand new Dimm for about £15. Memory at the
moment (May 2002) is still very cheap brand new and probably isn’t worth
the risk of buying secondhand for the money that would be saved.

The motherboard I picked up second hand at a computer fair for about
£20. It came un-boxed with only a drivers CD and no cables. I already had
cables, but sets of motherboard cables can be picked up for as little as £10.

Should you need to identify an unknown motherboard, this can be done
from the BIOS string which, on AwardBios equipped systems, is normally

displayed in the bottom left-hand corner of the screen at start-up under
“Press DEL to enter SETUP, ESC to skip memory test.” The string from
the motherboard I bought is: 09/15/1998-SiS-5598-2AIIG3BC-00

A page on the Phoenix Technologies website [3] explains how to
identify the manufacturer from digits 7 and 8 of the penultimate part of the
string. In my case the digits ‘G3’ from ‘ 2AIIG3BC ‘ identify my board as
being made by GemLight. A search on google should then reveal the
manufacturer’s website and hopefully you should be able to identify the
board and get BIOS updates from there.

In my case [4] it wasn’t quite that simple as GemLight have gone out of
business and it took me a while to identify the company who had taken over
production and support of the board. My point is that if you’ve bought a cheap
motherboard and you need to identify it to upgrade the BIOS, get drivers or
manuals etc., it may not be straightforward but it is worth persevering.

Choosing Data Retrieval Hardware
The data retrieval hardware is the CD Rom Drive, Floppy Drive and Hard Disk.

The Official RedHat Linux x86 Installation Guide [2] suggests that any
SCSI or IDE (ATAPI) CD Rom drive should be just fine. I’ve never had
a SCSI drive to test. The IDE CD Rom drive I have used for this system
was an old one I’ve had for a number of years and hasn’t caused any
problems. The more up-to-date drives I’ve tried have also not given any
problems. CD Rom drives can be bought brand new for as little as £23 or
used for less from a computer fair.

Any standard 3.5 inch 1.44MB floppy drive should do the job. I picked
one up from a computer fair for £3.50. New they cost as little as £8.
However, if your motherboard is capable of booting directly from a CD
there is no real need for a floppy drive.

The Official RedHat Linux x86 Installation Guide [2] suggests that you
need a IDE hard disk, nothing more specific. It also mentions that for a
custom installation, such as the type we’ll be doing, for a minimal
installation you need 350MB and for a full installation you need at least
3500MB. I did a test custom installation with the partitions suggested in
the guide for the maximum required space which came to about 7500MB.

I originally started with a Western Digital 1.7GB IDE hard disk which I
picked up from a computer fair for £15 (although in hindsight it was
probably quite expensive for what it was) sharing IDE0 with the CD Rom
drive. Unfortunately the combination of motherboard, hard disk and
RedHat 7.3 caused an interrupt conflict which prevented RedHat 7.3 from
booting prior to installation. If I used a Seagate hard disk or RedHat 6.2
there was no such problem. However the Seagate disk I had was only
100MB and I wanted to use a more up-to-date release of RedHat.

To try and get around the problem I bought a brand new Maxtor 20GB
hard disk for about £50. This didn’t solve the interrupt problem. I tried
upgrading the BIOS, this didn’t solve the problem. Eventually I tried
putting the CD Rom drive on IDE0 and the Maxtor hard disk on IDE1 and
it worked just fine.

Choosing Networking Hardware
The networking hardware is the Modem and Network Interface Card (NIC).

Choosing a modem is very important and you will probably have to pay
a bit extra, because the chances are you will have to buy an external serial
modem as the majority of internal modems are what are known as
WinModems and will not work with Linux. WinModems rely on Microsoft
Windows to do some of their processing. This facility is not incorporated
in Linux and therefore, generally, you cannot use WinModems. To be
absolutely sure you have a compatible modem, buy an external serial
modem. Even some USB modems rely on Windows to do some of the
processing. I bought a brand new external serial modem for about £25.

The choice of Network Interface Card is also very important. I have tried

24 CVu/ACCU/Features

Component Make / Model

Processor AMD K6-2 300MHz

Motherboard GemLight GMB-P56SPC (on-board sound and
graphics)

Memory 2 x 64MB SDRAM 133

Hard Disk 20Gb Maxtor (5400rpm UDMA100)

CD Rom Drive Reveal 4 Speed

Floppy Drive Sony 3.5 inch Drive

Modem 56k Rockwell External Serial V90

Network Card Realtek NE2000 PCI

Monitor IBM Personal System/2 Monochrome Display
(approx 10 inch)

Mouse Generic PS2 3 Button Mouse

Keyboard Generic PS2

Case ATX Tower

Partition Partition Size

swap 256 MB

/boot 50 MB

/ 384 MB

/usr 4000 MB

/var 256 MB

/home 2500 MB

Total: 7446 MB

25CVu/ACCU/Features

several different NICs with Linux, including SMC Ultra and D-Link cards,
without any success. The only cards I’ve found to work are NE2000
compatible cards. I’m sure these are available cheaply at computer fairs, but
as an adequate 10MBs combo card brand new is only £8 I bought two (one
for my client PC as well). Combo cards come with both a BNC and RJ45
connector. I’m using the BNC connector as I have plenty of ready-made cable
and a hub (approx £80 new) is not required for more than two PCs.

Choosing Human Machine Interface Hardware
The man machine interface hardware is the mouse, keyboard and monitor.
I’ll also include the case here as there is no point in putting it in a category
of its own.

As this is a server, after installation and configuration of a SSH (Secure
Shell, an alternative to Telnet with encryption) server, a mouse, keyboard
and monitor should no longer be needed as the server can be completely
controlled via an SSH client.

The mouse will only be used during the actual installation as a server
does not require X Windows (more formally, the X Window System) or
any of the Window managers, such as KDE, which sit on top of it. If you
would prefer not to use a mouse at all there is a ‘text’ installation method.
RedHat 7.2 should support any serial or PS2 mouse. I suspect it may also
support USB mice during installation. I’m using a standard 3-button PS2
mouse. Brand new mice start from around £5.

RedHat 7.3 will also support any AT or ATX keyboard. Again I suspect
it probably supports USB keyboards during installation. I’m using a standard
generic PS2 keyboard. Brand new keyboards start from around £8.

You should be able to use any VGA or SVGA monitor with RedHat 7.3.
I am using an old monochrome monitor as I happened to have it spare. There
is probably no point in buying a monitor for the server as, mentioned above,
it is unnecessary to use one after installation. If you do decided to buy one,
basic monitors at computer fairs start at about £20, reasonable monitors start
at about £40 and brand new 15-inch monitors start at about £80.

A case obviously doesn’t need to be anything specific for RedHat 7.3.
Make sure you have enough room for all the hardware you need to put in
it and that you have an AT case for an AT motherboard and an ATX case
for an ATX motherboard. Also make sure that if you have a Pentium III or
better or an AMD Athlon or better processor and board, that the case has
a 300W power supply. You are unlikely to find one at a computer fair
second hand. New ones start from about £20.

In this second part of my Linux Server series I have described the
components needed for a Linux Server and discussed cost and possible
sources. I have assumed that the reader has enough knowledge to build the
PC and construct the cables. In the next part of this series I will be looking

at installing RedHat 7.3 and setting up SSH for remote access from a client
PC on the network.

Paul Grenyer

Price Summary

References
[1] RedHat Hardware Compatibility List:

http://hardware.redhat.com/hcl/
[2] Official RedHat Linux x86 Installation Guide:

http://www.redhat.com/docs/manuals/linux/
[4] Phoenix Technologies Motherboard manufacturer’s page:

http://www.phoenix.com/pcuser/phoenixbios/
motherboard.html

[5] Details of the manufacturer and the upgrading of my GemLight
motherboard can be found here:
http://www.paulgrenyer.co.uk/articles

Thank You. Thanks to Tim Pushman for his continued support throughout
this project.

Component Computer Fair Price New Price

Processor 200MHz from £5 AMD Duron from £35

Motherboard Socket 7 300Mhx from £20 Socket A from £80

Memory Buy New (£15) 64MB from £15

Hard Disk 1.7GB £15 20GB £50

CD Rom Drive Buy New (£23) £23.00

Floppy Drive £3.50 £8.00

Modem Buy New (£25) £25.00

Network Card Buy New (£8) £8.00

Monitor From £20 £80.00

Mouse Buy New (£5) £5.00

Keyboard Buy New (£8) £8.00

Case Buy New (£20) £20.00

Total: £167.50 £357.00

Self-Documenting Code
by Hubert Matthews <hubert@oxyware.com>

Given the recent heated interest in template metaprogramming to use
the compiler as a compile-time interpreter, I decided to see if I could get
the compiler not only to compile my program but also to write the
documentation for it too. To this end, I offer the following 4-line self-
documenting C++ program for use with the command-line version of
Microsoft Visual C++ version 5:

garp.cpp
garp.cpp(1) : error C2501: ‘garp’ : missing

decl-specifiers
garp.cpp(1) : error C2239: unexpected token

‘.’ following declaration of ‘garp’
garp.cpp(1) : error C2059: syntax error : ‘.’

Users of gcc 2.96 will no doubt be pleased to know that the corresponding
program is a one-liner:

foo.cpp:1:35: missing terminating ‘ character
Naturally, wishing to develop the program using Extreme Programming,

I tried to write the tests first. This proved to be difficult because of the
cyclic dependencies inherent in the domain, leading me to a truly iterative
development approach involving machine-generated code and test results.

Others might like to find more “efficient” and compact versions of this
program. Newton-Raphson iteration would be difficult, given the need to
differentiate the transfer function of the compiler (= d/dt ISO/IEC 14882)
and account for the attendent QoI noise, and we would also need to decide
on the level of tolerance (both machine and human) required for termination.

Perhaps the fractal nature of the problem will lead to brightly coloured
Mandelbrot-style pictures showing the variation of the stability of the
program over a range of possible input modifications. Bistable programs
with built-in persistence are also possible, even if the data density and
bandwidth are rather low. It is unclear how this might interact with version
control systems. Embracing change and “empowering the compiler” by
allowing it to influence its working conditions are also all very topical human
resource issues. My impression is that the inclusion of chaos theory into
most software processes would, however, go unnoticed.

Given the compile-time nature of the program, it can offer the strong
exception safety guarantee, assuming that the compiler doesn’t leak
resources and remains in a usable and uninstallable state if it (quite
justifiably) throws during compilation. Thread safety is another issue as
there appears to be no way short of file-level locking to avoid concurrent
modifications of the input program from interacting. Users should
therefore avoid the use of parallelised versions of make with this program.
Use of the technique for regression testing the compiler is also a possibility.

Related challenges are the “who can get the most error messages from
the smallest program” puzzle, and its corollary: “who can get the fewest
error messages from the largest program”. This last one is seemingly
particularly onerous for some programmers.

Given the self-documenting nature of the code, I believe comments are
unnecessary. Adding them is left as an exercise for the reader, as is printing
out a “this page is intentionally blank” header.

Disclaimer: The above programs have not been checked for viruses or
any other forms of self-replicating code. The author denies any
responsibility for the content of the code, including any claim to the
intellectual property allegedly contained therein.

PDF Problems - Can We
Learn From Them?
Silas Brown <ssb22@cam.ac.uk>

I have recently been struggling to print some PDF files. Since PDF is
supposed to be a highly portable document format that many readers will
be familiar with, I thought I’d describe my cases to see if we can learn
anything from the way the system failed.

Adobe’s Portable Document Format (PDF) is basically a compressed
version of PostScript, which is essentially a programming language that
outputs pages of graphics. Adobe’s Acrobat Reader decompresses and
interprets the PostScript and displays it on the screen or printer. It doesn’t
always do a very good job of on-screen display unless you’ve been careful
about what sort of fonts you use, but I’ll ignore that for now and concentrate
on the printing problems.

My first problem began when a Chinese friend wanted to renew her
visa, and needed to print a form which was stored in PDF format on the
Chinese Embassy website. She claimed that the PDF file was corrupted,
but that the Embassy were very unhelpful when she contacted them about
it. So she asked me to repair the corrupted file.

Actually, the PDF file was not corrupted, but it required Acrobat Reader
version 5 and the Chinese language pack. The university computers only
had version 4, and establishments of this size tend to take a while to
upgrade their systems; anyway, Acrobat 5 was at that time unstable
(especially the Unix version) and I ended up resorting to screen shots in
order to get the thing printed.

The first problem here is that the user was given no clear message to the
effect that a later version of Acrobat was required. The PDF format does carry
a version number, so why didn’t Acrobat 4 just tell you when you need a later
version, rather than print up some obscure error message that leads people to
think that the file was corrupted, or they did something wrong, or something?
I think it’s because Adobe forgot to change the number stored in the PDF file;
they just added more features. That shouldn’t have happened.

Secondly, the software that was used to produce the PDF file should have
made it clear that the file it was producing needed version 5 and the Chinese
language pack; then at least the Embassy would be aware of this. Also it
should have had an option to produce a backward-compatible file; it is true
that this would be larger because all the Chinese characters would have to
be embedded as graphics, but I’d have thought it would be a good idea in
some cases, especially if you’re targetting people in British universities
(which don’t always have the latest versions of everything and which don’t
always have Chinese support). I always manage to make Chinese PDFs
that do not require any special add-ons, so I know it can be done.

My second case involves the Times New Roman font. A friend in Germany
made a PDF file that mixed Times New Roman with some other font that
contained unusual accents; he used Times New Roman for all the non-accented
characters, and the other font for the characters with unusual accents. The
resulting typesetting was a little unusual but it was good enough.

The problem came when this file was printed. Printing with Acrobat 4 led
to rather a lot of characters being printed on top of each other, even though it
looked fine on the screen. What had happened was that Acrobat substituted
some PostScript font for Times New Roman, and the PostScript font that it
substituted didn’t have quite the same metrics, i.e. some of the characters were
slightly wider or narrower than Acrobat ‘thought’ they were. If the document
were entirely in Times New Roman then this might not have been noticible,
but because this font was tightly mixed with another, embedded one (a
specialist font that could not be replaced with a standard PostScript one), there
were collisions (characters printed on top of each other).

The only way around this problem using Acrobat 4 was to print the file
as graphics, but for some reason this resulted in much reduced quality.
Acrobat 5 did something better, but again the Unix version was very
unstable, and I had to do all kinds of tricks to get it to print without crashing
(such as putting the file through pdflatex, adding spare blank pages at the
front, and running Acrobat on different sorts of X server); I tried things
almost at random until it worked.

Of course, the document’s author seemed completely unaware of the
fact that he had produced a PDF that required version 5 and that didn’t print
properly on earlier versions, and was therefore less portable because
Acrobat 5 was not stable (at least at the time of writing) on so many
platforms as Acrobat 4 is. The principle of warning the user about version
dependencies applies here too. And I’m not convinced that this model of
font substitution is a good idea; why couldn’t the software that made the
PDF have used fonts that didn’t have these complications? It’s probably
some horrible artifact of Windows (this kind of thing doesn’t tend to happen
when you produce documents in the Unix world).

Am I being unfair to Acrobat by picking out obscure special cases? I
don’t think Chinese is that obscure (from a global viewpoint), and it is this
kind of thing that causes the need for a graphics-oriented distribution
format in the first place. After all, if you are sending text in a character set
that you know the target system supports, then you might as well send it
in a malleable, accessible format like a text file, unless you want to produce
camera-ready copy for a publisher whose typesetting you don’t trust. A
major reason for using a graphical format is that the target system does not
support the character sets you want to use, so I’d have thought that any
graphical distribution format should have this as a test case.

One final thing: Adobe have a website that allows PDFs to be converted to
HTML online, for the benefit of users with reading difficulties who need to get
the text into an alternative format. This is nice, even if it doesn’t always work
(in particular it doesn’t work with ligatures), but sometimes it complains that
it cannot convert a document because the document’s security settings prohibit
conversion. I wonder if the authors of such documents realised that they were
choosing security settings that had the side-effect of preventing blind people
reading their documents? They should probably have at least been informed
of this in the security dialog box. Security can be a touchy subject; if I contact
an author and ask them to change the security settings they sometimes think
I’m trying to pull off a computer crime or something (if they have the time to
deal with my request at all). Such is life in an ill-understood minority...

26 CVu/ACCU/Features

Uninitialised Variables in C:
What to Expect
Victoria Catterson <vic@cowlet.org>

Different things can be expected of uninitialised variables, depending on how
they were declared. Broadly speaking, there are three different sorts of
variables: static, and automatic variables, and dynamically allocated memory.
Each type will be uninitialised in a reliable, if not always useful, way.

Local and global variables can be of the static storage class. Local static
variables retain their value between function calls (even though they have only
block scope), and are declared with the static keyword. Global variables
are always static. If a global variable is declared with the static keyword
it has file scope, and is accessible only to functions within the same file. If a
global variable is declared without the static keyword it has program scope,
and is accessible to functions throughout the whole program. Even though the
static keyword is not used, program scope variables are still of the static
storage class. All static variables are initialised to zero [1]. They are also
guaranteed to be the correct type of zero, such as 0, NULL, 0.0, or {0}.

Uninitialised automatic variables are not as simple. Local variables
declared without the static keyword default to the automatic storage

class. Because they are allocated stack space when defined, they contain
whatever was previously on the stack at that location. This is unlikely to
be anything useful, so uninitialised automatic variables can be expected to
contain garbage [2].

The contents of memory which is dynamically allocated are also
unknown [3]. One exception to this is when the memory is allocated with
calloc , which sets all the allocated bytes to 0. However, care should be
taken with this, as 0 is not necessarily the same as NULL or 0.0. For this
reason, it is safest to use calloc only for integers or strings.

While it is useful to know what to expect from an uninitialised variable,
it is unadvisable to use variables without initialising them first. Certainly,
automatic and dynamic variables cannot be relied on to contain particular
values, and so must be initialised before anything useful can be done with
them. However, knowledge of what uninitialised variables look like can
be helpful when debugging. If a variable contains a really odd, unexpected
value, check it has been initialised correctly!

References
Kernighan and Ritchie, The C Programming Language, 2nd Edition,
[1] Section 4.9, Initialization, pg 85
[2] Section 1.10, External Variables and Scope, pg 31
[3] Section 7.8.5, Storage Management, pg 167

27CVu/ACCU/Python

Using Python’s Dynamic
Features to Encapsulate
Relational Database
Queries
Richard Taylor

Introduction

Connecting to a relational database is one of the most common things that
programmers expect any programming language to support. In this article
I hope to show how some of Python’s unusual dynamic features can be
used to provide a flexible interface to a relational database.

Python is well equipped with libraries which give access to many
RDBMSs, including Oracle, DB/2, Informix, PostgreSQL and MySQL as
well as interfaces to JDBC[1] and ODBC[2]. To ease the task of the
developer when moving an application between different databases, a
group of Python users and database module developers have collaborated
on the specification of a standard database access API known as the DB-
API, currently at version 2.0. Using the DB-API it is relatively simple to
port a Python program from one RDBMS to another, assuming that any
database features that the application uses are available on the target
database, of course.

The DB-API v2.0 has been around since 1999 and an introduction to it
can be found on the DB-API Special Interest Group at the Python web site
[3]. Rather than repeat a detailed guide to the DB-API, which can also be
found on the web site, this article will concentrate on the way in which a
simple object wrapper can be layered on top of the DB-API. This wrapper

provides an abstraction from the simple SQL procedural interface provided
by the DB-API. My own team uses this approach in our database code
because it provides some isolation from changes to the database schema
and places all of the SQL syntax in the one place. It also makes the main
application code more “Pythonic” by wrapping the database records with
objects.

This approach demonstrates how Python’s dynamic interpretation
features can be used to make an abstract interface that is highly flexible.

Using the DB-API
Listing 1 shows a simple example of using a DB-API database adapter, in
this case it is the PostgreSQL adapter psycopg[4]. psycopg is tuned
for highly multi-threaded applications and has proved very reliable in the
applications in which we have used it. The example code here should be
portable to any of the DB-API compliant modules, with the possible
exception of the connection string which is likely to be specific to each
database adapter.

This example creates a single table, inserts a couple of rows and then
pulls them back out. The DB API adaptor returns the result set as a list of
tuples. The final line is the output from running the script. You can see from
this example that the Python print statement understands how to turn
Python data structures into human readable form. This is very useful when
debugging an application, particularly because Python’s dynamic type
system means that you can be unsure of the type of the variable that is being
printed.

Wrapping the records
The low-level API used in Listing 1 provides all the functions required to
store and retrieve data in a database. However, littering an application with
literal SQL strings and duplicate code to unpack the records from the return

list can be tedious. In large applications it can also lead to
poorly maintainable code that is highly susceptible to
changes in the database schema.

The Record class in Listing 2 provides a object
that can represent one of the tuples in the return list
from the DB-API “fetchall” function. The class
constructor uses the description provided by the DB-
API to dynamically construct an object that appears to
have an attribute for each of the fields in the database
record. This is achieved through the use of the special
__getattr__ method. Python classes have a small
number of special methods which, if overloaded can
change the way an object behaves. __getattr__ is
called by the interpreter when an attempt is made to
access an undefined attribute of an object. This is
possible because Python objects hold references to their
attributes and methods in a special attribute called

Python Section
Python And C Vu

Paul Brian <paul1brian@yahoo.com>
Welcome back to the Python section of C Vu. In this edition we have an article by Richard Taylor that I feel clearly demonstrates three of Python’s most
powerful features - how well it is supported by third party add-ons such as its smooth support for almost any database, its ability to expose its internals
and change them on the fly, and touching upon list comprehensions, a nod towards the functional programming that is buried inside the language.

Like many of the best loved parts of working life, these language features are rarely encountered and rarely needed, but when they are needed, they
are so useful, so right, so easy, that they provoke a pleasing feeling of (self-)satisfaction. And perhaps a sigh of relief for having avoided doing things
the hard way.

For me, these useful little language tools remind me of why I got into computing in the first place. Something of the basic drive to at least understand
what shapes our world, just to feel that the inexplicable is just a bit more explicable, a bit more under our control, another tool stowed away neatly for
later use. Perhaps an echo of how it felt to discover rubbing two sticks can produce an ember - unexpected, useful and satisfying.

But enough waffling: please read on, try out the code and dip into Python. Even if it does not drag you back to why you started all this, I hope it
inspires you to add another notch to your bow.

Look forward to seeing you in the next edition.
Paul Brian

Sort of Python Editor

import psycopg

cnx = psycopg.connect(“user=postgres dbname=db_test”)
cr = cnx.cursor()
cr.execute(‘create table telephone (“name” text, “tel” text)’)
cr.execute(“insert into telephone values (‘Richard’, ‘12345678’)”)
cr.execute(“insert into telephone values (‘Steve’, ‘01002030’)”)
cr.execute(“select name, tel from telephone”)
cnx.commit()
result = cr.fetchall()

print result

[(‘Richard’, ‘12345678’), (‘Steve’, ‘01002030’)]

Listing 1 - Simple DB API example

28 CVu/ACCU/Python

__dict__. The interpreter interrogates this dictionary when an
attribute or method is accessed and if no match is found the
__getattr__ method is called. The __dict__ dictionary can be
manipulated directly at runtime to change the behavior of the object.
Careful examination of the code in Listing 2 will reveal how the
__dict__ attribute and the __getattr__method can be combined
to dynamically give an object attributes that correspond to the columns
returned by a database query. Listing 3 shows how this new Record
class can be used to encapsulate the records returned from the database.

The Record class in Listing 2 also defines a __setattr__ method.
This is another of Python’s special methods: it enables assignment to
attributes to be as dynamic as attribute access. However there is an
important subtle difference between __getattr__ and
__setattr__: whereas __getattr__ is called only when no
matching attribute can be found, __setattr__ is always called first
and only if __setattr__ raises an exception will the interpreter search

the rest of an object’s attributes. The alert reader will spot that this could
easily lead to an infinite recursion if the body of the __setattr__
method accesses an attribute of “self”. To alleviate this problem access to
the special __dict__ attribute does not cause a call to the
__setattr__ method. This one special case enables __setattr__
to be used effectively, if with some care.

Having provided the ability to assign new values to the database fields
of the Record class the obvious next step is to be able to write the updated
values back to the database. Listing 4 introduces a View class to manage
the information needed to construct update queries and provide select query
methods for a table.

The View class is fairly straightforward but there are a couple of
points worth noting. First, the record_class parameter to the
__init__ method is a class object not a class instance. In Python
class definitions are first class objects themselves and can be passed as
parameters just as their instances can. This enables a type of generic
programming. In the View class the record_class object is used
to instantiate the record objects in the fetchall function. Second,
the construct used in the return statement of the fetchall function,
denoted by the square brackets, is known as a list comprehension. List
comprehensions are a convenient way of constructing anonymous lists
and can be used as an alternative syntax to the functional programming
functions map and filter[5]. A full explanation of list
comprehensions can be found at [6].

Listing 5 shows a new version of the Record class that makes use of
the View class to implement an update method. The __getattr__ and
__setattr__ methods have been omitted because they are identical to
those in Listing 2. The update method writes the record fields back to
to the database. It is worth noting the use of copy.deepcopy in the
update method. As you would expect, simply assigning a dictionary to

class Record:
“””A simple class used to wrap the database records
returned from a DB-API compliant database module”””

def __init__(self, description, values):
“””The record constructor.

The description parameter should be the contents
of the cursor.description attribute after the call
to cursor.execute(). The values parameter should
be a list of field values in the same order as they
are returned from the cursor.fetchXXX() call.”””

The cursor.description attribute is a list of
tuples, where the first element of each tuple is
the field name. To make the name lookups a
little easier a list of field names is extracted
from the description.

field_names = [d[0] for d in description]

A dictionary of (field name, field value) pairs is
constructed, keyed on the field name. This is then
used by the __getattr__ and __setattr__ methods
to perform the field lookups. This must be
explicitly added to the __dict__ dictionary in
order to shield it from the __setattr__ method
defined below.

self._values = {}
for field_num in range (0,len(field_names)) :
self._values[field_names[field_num]] = \

values[field_num]

def __getattr__(self, attr):
“””This overrides the attribute access method to
look up attributes in database field names if they
are not found in the objects dictionary first.”””

if self._values.has_key(attr):
return self._values[attr]

raise AttributeError

def __setattr__(self, attr, value):
“””This overrides the attributes assignment method
to ensure that any assignments to database fields
are applied to the _values dictionary.”””

if self.__dict__.has_key(‘_values’) and \
self.__dict__[‘_values’].has_key(attr):
self.__dict__[‘_values’][attr] = value

else:
self.__dict__[attr] = value

Listing 2 - A simple Record class

cr.execute(“select name, tel from telephone”)
cnx.commit()
records = []
for row in cr.fetchall():
records.append(Record(cr.description, row))

for record_object in records:
print “Name = %s Tel = %s” % (record_object.name, \

record_object.tel)

Listing 3 - Using the Record class

class View:
“””A class to manage access to a database view.”””

def __init__(self, tablename, record_class):
“””The view constructor.

The tablename parameter should be a string holding
the name of a table that has already been created
in the database. record_class should be a class
object that provides the same constructor interface
as the Record class below. “””

self.tablename = tablename
self.record_class = record_class

def fetchall(self, cr):
“””Accessor method. Returns all of the records
in a table.

The return value is a list of record_class
objects populated with the table rows returned
from a select * query.”””

cr.execute(“select * from %s” % self.tablename)

return [self.record_class(self,cr.description, \
row_values) \ for row_values in cr.fetchall()]

Listing 4 - A simple View class

29CVu/ACCU/Python

a new name only creates a new reference to the dictionary.
copy.deepcopy creates a new dictionary with a copy of each element
of the original.

Listing 6 demonstrates how the View and Record classes can be
put together to access and manipulate the database records of a table
without ever explicitly stating what the fields of the record are. Additional
fields can be added to the tables without requiring any alteration to the
classes and no table specific SQL sytax is required in the main application
code.

Taking it further
By sub-classing View and Record it is very simple to add more
complex capabilities. For instance calculated fields could be added to
records or complex query methods added to views. By encapsulating
business logic in subclasses of View and Record it is possible to ensure
that such logic is as independent of the details of the database interface and
schema as possible. One technique that I have used in my applications is
to insert name mapping into the __getattr__ and __setattr__
methods when a database field name changes. This can enable such
changes to happen without altering any of the business logic that would
otherwise have to be kept in step.

The implementations of View and Record presented here are
obviously missing many useful features such as dealing with field types
other than strings, views that are made from joins across multiple tables,
inserting new records into tables etc. There is also no attempt to catch any
errors. However, hopefully I have shown how Python’s highly dynamic
nature might be used to add all of these features in a very flexible manner.

Final thoughts
This article has demonstrated how features such as dynamic attribute
lookup and class definitions as first class objects can be used to build
flexible abstractions in Python. I have used such techniques extensively in
the applications on which I have worked. However, I have also learned
through bitter experience that such techniques can cause faults that, because
Python has little compile time checking, only become apparent at run time
and can prove very hard to find. These problems can be alleviated with
judicious use of pre- and post-conditions on methods along with careful
use of exception handlers to recover from runtime errors.

Reading back through this article it also occurs to me that I may give
the impression that Python is full of special case rules and littered with
built-in method names. This is not the case. There are in practice only a
small number of special cases to learn and it is extremely rare to be tripped
up by a built-in method that you have overloaded by accident. Most of the
time Python can be used in blissful ignorance of the machinery that enables
the dynamic features that I have used in this article.

Richard Taylor

References
[1] JDBC: http://www.ziclix.com/zxjdbc/
[2] ODBC Module:
http://www.python.org/windows/win32/odbc.html

[3] Python Database API Specification v2.0:
http://www.python.org/peps/pep-0249.html

[4] Psycopg Home Page: http://initd.org/software/psycopg
[5] Functional programming in Python: http://www-

106.ibm.com/developerworks/library/l-prog.html
[6] What’s New in Python 2.0: http://www.amk.ca/python/2.0/

class Record:
“””A simple class used to wrap the database records
returned from a DB-API compliant database module”””

def __init__(self, view, description, values):
“””The record constructor.

The description parameter should be the contents of
the cursor.description attribute after the call to
cursor.execute(). The values parameter should be a
list of field values in the same order as they are
returned from the cursor.fetchXXX() call.”””

Remember the view object reference.
self.view = view

The description attribute is a list of tuples,
where the first element of each tuple is the field
name. To make the name lookups a little easier a
list of field names is extracted from the
description.
self.field_names = [d[0] for d in description]

A dictionary of field name, field value pairs is
constructed, keyed on the field name. This is then
used by the __getattr__ and __setattr__ methods
to perform the field lookups. This must be
explicitly added to the __dict__ dictionary in
order to shield it from the __setattr__ method
defined below. A second copy is created to be used
in the where clauses of update queries.

self._values = {}
self._original_values = {}

for field_num in range (0,len(self.field_names)) :
self._values[self.field_names[field_num]] \
= values[field_num]

self._original_values[self.field_names[field_num]] \

= values[field_num]

def update(self, cr):
“””Write back changes made to a record to the
database.

The cr parameter should be an open cursor object and
it is the responsibility of the caller to ensure
that commit is called on the cursor if autocommit
mode is not used.”””

s = “update %s set “ % (self.view.tablename,)

new_field_values = []
for field in self.field_names:
new_field_values.append(“%s = ‘%s’” \
% (field, self._values[field]))

s = s + string.join(new_field_values,’ , ‘) + “ \
where “

old_field_values = []
for field in self.field_names:
old_field_values.append(“%s = ‘%s’” \
% (field,self._original_values[field]))

s = s + string.join(old_field_values,’ and ‘)

cr.execute(s)

self._original_values = \
copy.deepcopy(self._values)

Listing 5 - Record class with with update method.

Create a new cursor
(assumes the lead in code from Listing 1).
cr = cnx.cursor()

view = View(“telephone”, Record) # Create a view
object for the telephone table.

records = view.fetchall(cr) # Fetch a list of all
records in the telephone table.

records[0].name = “new name” # alter a field in the
first record

records[0].update(cr) # write altered record back to db.

Listing 6 - Putting it all together.

Bookcase
Collated by Michael Minihane
<michaelm@pobox.co.uk>

Francis Glassborow writes:
The number of books available for review is
about the same now as it was two months ago. In
other words the inflow from publishers about
balances the outflow to reviewers.

Several publishers now send me everything that
they publish in the general programming and
computing area (one even sends me the medical
books they publish because getting the distribution
department to distinguish has proved impossible.

How long a book stays on my review shelves
waiting for a volunteer depends on how relevant
I think the subject matter may be. An unsolicited
book on Visual Basic is likely to be handed on to
Oxfam much faster than a book on a
programming methodology.

I have quite a lot of books on various aspects
of games programming that are looking for
reviewers. Perhaps we lack the number of
enthusiastic teenagers that ACCU used to have
and so there are fewer people interested in this
area. Perhaps that is something that members
might think about. The young (or old, when it
comes to that) enthusiast has always been
welcome in the ranks of ACCU. Perhaps some
of you might think about the young generation
and consider giving them a membership of
ACCU as a Christmas present. I know of several
current active members whose first membership
was a gift from an uncle, aunt or older sibling.

I would also like to encourage reviewers to
consider writing longer reviews for our website
together with condensed reviews (i.e. about the
current size) for printed publication.

If every member found time to do a review
every couple of years I would have more space
on my office floor. You would also find that you
became more critical of the books that are
published.

Well have a good Christmas and enjoy your
reading. Do not forget to write in if you think one
of our reviews is unfair (either to the author by
being unjustly critical or to the reader by having
been not critical enough). I note that one of the
books that the review below does not
recommend got 5 stars in no less than three
Amazon reviews (a fourth person questions
whether the reviews are genuine, which in view
of our reviewer’s opinion seems to be a point that
should be considered).

Francis
<francis.glassborow@ntlworld.com>

The following bookshops actively support ACCU (the first three
offer a post free service to UK members – if you ever have a
problem with this, please let me know – I can only act on
problems that you tell me about). We hope that you will give
preference to them. If a bookshop in your area is willing to
display ACCU publicity material or otherwise support ACCU,
please let me know so they can be added to the list
Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
The PC Bookshop (020 7831 0022)
orders@pcbooks.co.uk

C++
Object-Oriented
Programming in C++ by
Nicolai M. Josuttis (0-470-
84399-3), Wiley, 610pp @
£29-95 (1.67)
reviewed by Francis
Glassborow
When this book hit my desk a

sinking feeling went through me because I know
the author well and have a very high regard for
his writing and technical knowledge. The reason
for my reaction is that, as quite a few of you
know, I have finally got down to writing the book
for novices that I have long promised. I feared
that Nico might have stolen the very readership at
which I am aiming. I tell you this because I think
you are entitled to know that I might not be
entirely free from bias.

What worried me was the following
paragraph from the Preface:

The result is a book for all beginners who want
to learn and understand how to program in C++
as well as those programmers who want to get
the overall picture and take advantage of the
standardized C++ language and its standard
library.

I had not read very far into this book before I
relaxed and realised that I had nothing to worry
about. This quotation under the heading
‘Prerequisites’ in chapter 1 makes it clear (at
least in my view) that the above paragraph is
an excessive claim:

The principal prerequisite for understanding this
book is a degree of familiarity with the concepts
of higher-level programming languages. It is
assumed that the reader already knows terms
such as loop, procedure or function , statement,
variable, etc.

I do not think any reader can be familiar with
such terms and still be a beginner at
programming. They might well be newcomers
to Object Orientation and/or to C++, but
anyone with such familiarity is surely not a
newcomer to programming.

In fact this is a well-written, technically
correct but very traditional book on OO with
C++. Indeed, I would question the OO claim, as it
is very much a book about C++ programming.
Another claim that I think highly debatable is
found under How Should You Read this Book:

As this book introduces all language features and
their applications gradually, beginners should
simply read the book from cover to cover.

Note that, for example, the author covers
templates in 44 pages. That may well be adequate
for an experienced programmer who already has
some grasp of generic programming, but in my
opinion such coverage has little place in a book
aimed at genuine newcomers. Note that the
author claims to give complete coverage of C++
(which, of course, he does not) in a book whose
page count is 70% of Bjarne Stroustrup’s The
C++ Programming Language ’ 3ed. And the
pages are less densely packed with text (which
makes the book less daunting) so I guess that the
book is actually about half the size.

The book originated in German in 1994, and
went to a second and substantially revised edition
before being translated to English. At the time of
the original German first edition I guess that it was
a much better presentation of C++ than anything
then available in English (the main contenders
would have been the second editions of Stroustrup’s
The C++ Programming Language and the second
edition of Stan Lippman’s C++ Primer. However
putting a translation phase into this book means that
it now lags (in my opinion) behind such works as
Koenig and Moo’s Accelerated C++.

There is another weakness in using this book as
a study text; it has no exercises. Novices need
exercises to help them consolidate on their learning.

Perhaps you now understand why I felt it
essential to declare my interest before launching
into this review.

This book is a technically solid, excellently
written introduction to C++ for those with more
than a little programming expertise in one or more
other languages. It would make a good text to
accompany a course on C++ but I do not think that
it is adequate for the solo student trying to learn to
program in C++. Despite the author’s claim it is fast
paced and covers an immense amount. I think he
probably does not recognise just how much ground
is covered and just how much demand it places on
the reader’s prior experience.

On thinking about it, I have reached the
conclusion that the ideal reader will be one who has
acquired a smattering of knowledge of C++ from
other sources (such as bad courses, poor books etc.)
and knows that s/he needs to start afresh to correct
and consolidate their knowledge and
understanding. That, of course, means that it has a
vast potential readership. Regretfully many of them
will not recognise that this book is exactly what
they need to remedy the damage that has been done
to them by earlier misguided efforts to learn C++.
I think I might well suggest that those struggling
with university courses purporting to teach them
C++ might be particular beneficiaries of this book.
There the lack of exercises and relatively high pace
would be advantageous. For the rest, first time
students of C++ with a programming background
I would still recommend Accelerated C++. Those
who know nothing about programming will have
to be patient.

C# & Python
Practical Python by Magnus
Lie Hetland (1-59059-006-6),
Apress, 618pp @ £32-50
(1.54)
reviewed by Francis
Glassborow
As many of you will have
noticed, Python is becoming an

increasingly popular language to write books
about. This is not the place to speculate as to why
Python has attracted so much attention and not
just from newcomers but also from those who are
already experts in languages such as C++.

This is another book aimed at the person who
wants to learn about Python. You do need some
programming background because understanding

30 CVu/ACCU/Reviews

Reviews

31CVu/ACCU/Reviews

of programming fundamentals is implicit in the
text. I suspect that the author does not recognise
this and believes that the newcomer to
programming could learn to programme (with
Python) by studying this book. I guess someone
with talent and the willingness to work hard at
understanding might manage but this is not the
book for the average newcomer.

It is a thorough introduction to the
fundamentals of Python (and I will excuse the
author a degree of language bigotry, because it is
certainly milder than I have found from many
authors – particularly those introducing Java) Of
course, it is not an advanced text and only gives
you an appreciation of the language whilst
leaving you with a desire for some advanced
texts. (I do not know why advanced texts for C++
seem to outnumber the sum total of advanced
texts for all the other computer languages.)

I like the author’s style of writing; it is relaxed
and addressed directly to the individual reader.
My Python is not good enough to make any in
depth comments on the author’s source code,
however it appears to do what it is intended to do.
In the case of languages such as Python that is
probably a good enough test because unlike C,
C++, Java etc. that have multiple
implementations Python is effectively defined by
its implementation. That is available free.

How does it compare with other books aimed
at introducing Python? Well it largely depends on
how you weight such things as writing style (easy
going in this case), pace (relatively gentle), depth
(stays away from the highly technical), interesting
examples (well they aren’t inspired). Another
element that may matter to you is exercises. If
you are studying by yourself the fact that this
book does not have any exercises to help you
consolidate your learning may be a big negative.
On the other hand, if you were a teacher who
liked to set his/her own exercises that might be an
advantage.

Over all this is certainly a book to consider
if you have decided to learn Python.

C# Primer: A Practical Approach by Stan
Lippman (0 201 72955 5), Addison-Wesley,
392pp @ £34-99 (1.29)
reviewed by Huw Lloyd
The book’s title draws an obvious parallel to
Stanley Lippman’s well known C++ primer;
more importantly the title is also an accurate
reflection of its content.

The first half of the book describes C#
concepts. It provides a lucid description of all
the C# keywords rationale and their use with
appropriate examples. The reader is assumed to
have rudimentary programming knowledge.

The second half provides some exposure to
the .net programming environment: windows
forms, web forms, the common language
runtime (such as type reflection or meta data
manipulation) and a ‘Namespace’ chapter that
touches briefly upon many useful classes
provided by .net.

The narration is clear and reads well, although
many important aspects are written as footnotes
and may be interpreted as ‘small print’. The
version used at the time of print appears to be
V1.0.2914. All of the C# concepts discussed were
compatible with my slightly more recent version.

This book will not suffice as a C# reference,
for example, I would have preferred the index to

have been more thorough. If you are performing
some adventurous programming you will still
need detailed reference material (e.g. MSDN).

Overall I found this book to be a good
introduction into the C# language and the .net
environment. The minimum knowledge
required to implement frequently sought after
implementations is provided with a sufficiently
wide cross section of .net concepts that may be
quickly adopted to achieve many complex
programming goals. I am confident this book
will satisfy the curiosity of many new C#
programmers. Recommended.

Java etc.
The Java Developers
Almanac 1.4 vol 2 by Patrick
Chan (0 201 76810 0),
Addison Wesley, 1026pp @
£22-99 (1.30)
reviewed by Francis
Glassborow
This is the second volume

of a book that I reviewed earlier. It is only
just over a thousand pages. Most of these are
solid pages of the public and protected
interfaces of 22 packages that the book
covers. Yes, there are some examples in the
first third of the book, but they are the kind
of example that only genuinely helps those
who are fairly familiar with the material
already.

The thing that depresses me about this book
and its companion volume was that Java was
originally described as a language that was
substantially smaller than C++. That it is not
the fault of the authors of this book. They have
done the Java programming community a great
service by placing so much at their fingertips.

The publishers should be thanked for
keeping the price down (particularly as I
suspect that in a couple of years time they will
have to be replaced) and if you need this kind
of information you now know where to get it.

Professional JMS
Programming by various (1
861004 93 1), WROX*, 640pp
@ £38-99 (1.28)
reviewed by Chris Czarnecki
Since JMS provisioning
became mandatory in
J2EE1.3 application servers

and with EJB2.0 providing message driven
beans, the role of JMS in enterprise
applications has become more prominent.

This book provides an adequate reference on
the features and facilities of JMS for those
wishing to build robust, loosely coupled
asynchronous Java applications. The book
assumes knowledge of Java but to make the most
of the text, readers really must also be familiar
with JNDI, EJBs, Servlets/JSP and XML.

Less than a third of the book(200 pages) is
dedicated to covering the JMS API and the
JMS architecture. In these pages the reader is
provided with a clear introduction to what can
be achieved with the point-to-point messaging
and also the ‘publish and subscribe approach’.
Version 1.0.2 of the API is covered, the latest
being 1.1. In defence however, the book was
published in 2000.

The age of the book really shows in the
padding chapters (over 300 pages) with
sections on using JMS in web application,
EJBs, XML messaging and Mobile
applications with all the message providers
having updated their products from the ones
used in the examples.

In summary, this book provides a good
overview of the JMS API. However, it is spoilt
with a large amount of padding that is now out of
date and also in the context of the book mainly
unnecessary. This, together with a price of £38.99
means there are far better and cheaper JMS texts
available. Not recommended.

Introduction to Interactive Programming on
the Internet by Craig Knuckles (0 471 38366
X), Wiley, 423pp @ £23-95 (2.49)
reviewed by Christopher Hill
[see web]

Other Languages
mod_perl Developer’s
Cookbook by Geoffrey Young
et al. (0 672 32240 4), Sams,
645pp @ £28-99 (1.35)
reviewed by James Gordon
This is the sort of book I like,
easy to read, lots of code
examples, and even more

description on how things work. It starts easy
enough, installation of mod_perl and generation
of code. Each section handles a single subject
starting from the bottom and working up, again
from the most widely used to the more esoteric.
There’s a nice list of ‘almost’ all of the constants
and a list of resources at the back. The book is
backed up with examples on their web site.

The layout is clean and easy to read with
short code examples that are fully runable.

Modern Perl Programming
by Michael Saltzman (0 13
008965 6), Prentice Hall,
340pp @ £31-99 (1.25)
reviewed by Pete Goodliffe
This is a good, considered
introduction to Perl
programming. Presented in a

tutorial style, it has clearly been thought through
carefully, well arranged and laid out sensitively.

It begins with a well-paced introduction to
the language in chapters 1-7. This is not the
most suitable introduction for a new
programmer, but if you already know a
programming language reasonably well it is
pitched at the right level. There is no time
wasted by labouring points, but everything is
explained clearly and in sufficient detail.

In line with the book’s title, Perl references
and object-oriented programming in Perl are
given good coverage. The OO section will only
really make much sense to those who already
understand the principles, but with this
foundation it is a clear description.

Other ‘advanced’ topics covered include
network programming, writing CGI scripts, GUI
work, database interfacing and a crucial chapter
on Perl debugging. None of these chapters will
make you an expert in their field, but they are
each a good introduction to get you up to speed.

The one real downside to this book is inherent

in Perl itself; the language is so large and has such
a bewildering array of built-in functions and
extension modules that it’s difficult to cover them
all in a tutorial-style book and this book doesn’t.
When you get into some serious Perl
programming you’ll want to stray outside of the
scope of the text. That’s inevitable.

So we haven’t replaced the Camel book
here. The real shame, though, is that the book
doesn’t provide any further routes into
information available. Clear pointers to other
books, www.perl.com and www.perldoc.com
would be invaluable and most definitely a
description of perldoc (and how to use it)
should be mandatory. It would also be helpful
to have a section providing a quick overview of
some of the commonly used Perl modules, so
the reader could get a flavour of which wheels
have already been invented.

That said, this is still a recommended book,
take a look if you’re about to step out in Perl
development.

Perl & LWP by Sean Burke (0 596 00178 9),
O’Reilly, 242pp @ £24-95 (1.40)
reviewed by Joe McCool
[see web]

SVG Programming: The Graphical Web by
Kurt Cagle (1 59059 019 8), Apress, 586pp @
£35-50 (1.41)
reviewed by Roger Fretwell
[see web]

Embedded
Programming

Simulation Engineering by
Jim Ledin (1 57820 080 6),
CMP, 302pp+CD @ £34-00
(1.32)
reviewed by James Amor
As anyone who has worked
with them will know,
embedded systems are a

notoriously difficult beast to master. Simulation
Engineering aims to assist the developer by
introducing a set of engineering principles that
assist the design, development and testing of
the most complex embedded systems; in my
opinion this aim is definitely realised.

All major aspects of simulation engineering
are covered and Ledin does not shy away from
any complex principles, providing
comprehensive and relatively easy to
understand explanations. A myriad of subject
areas are covered including all areas of
embedded simulation, data visualisation and
analysis, verification and validation, software
tools and management issues; to list the
number of important principles introduced
would far exceed the space I have to complete
this review. The main criticism I have of this
book is that many areas are extremely difficult
to read, however this is mainly attributed to the
complexity of the techniques being introduced;
once these techniques are understood they
should form an indispensable part of most
simulation engineers knowledge base.

Upon initial assessment you may be put-off by
the prevalence of mathematical formulae
throughout the book, I would encourage you to

persevere as the book introduces a number of
important principles; however if you are not
particularly mathematically minded, Simulation
Engineering also provides evaluations and
information on software tools that will perform
these calculations for you and then explains how
to interpret the results! Some of these tools are
included on the bundled CD and walkthroughs of
their use provided in the text.

In summary I would say that this is a book
targeted primarily at reasonably experienced
embedded developers who are interested in
learning the principles of simulation engineering.
I would not recommend this title to complete
novices to the field, however anyone else with an
interest should find this book useful - providing
they have the perseverance necessary to read it!

Programming for Embedded
Systems by Dreamtech
Software team (0 7645 4954
5), Wiley, 533pp+CD @ £37-
50 (1.33)
reviewed by Pete Goodliffe
This is an ambitious book that
sadly misses the mark by some

way. It is ambitious in that it appears to have a
good coverage of different sorts of embedded
technology, but this comes at the price of being
overwhelming, superficial and too large.

It is split into two main sections. The first is an
overview of embedded software development.
The second (spanning pages 128-501, i.e. about
75% of the book) is a series of ‘examples’ of
embedded systems, showcasing a broad range of
technologies and problem domains.

The first section sets off to a dry and
somewhat slow start but doesn’t really dig in
deep enough. I think this should be the most
valuable part of the book (and could almost stand
alone from the later example chapters). It doesn’t,
presumably relying on the second section to spell
out a lot detail. The second section doesn’t.

The example projects miss the mark
somewhat and in fairness are sold too strongly -
they are hardly professional-quality applications.
Their presentation requires intense scrutiny to
glean much information and the examples fail to
highlight many of the particular problems and
specific approaches to embedded programming.

Although the book skirts through many
different environments, I was left wondering
where the VxWorks or pSOS examples were.
In fact a number of these examples are really
just small desktop apps that are ‘embedded’ by
running an embedded version of NT/XP.

The typesetting of the book is heavy and not
clean to the eye. The code has been laid out
without any consideration to the printed page.
A little reformatting would have aided clarity
greatly. The book’s organisation is peculiar in
places.

The authors often cave into industry hype and
trot out a lot of dogma without explaining or
thinking about what they’re writing. They have a
particular predilection for Java in this respect.

There is a supplied CD, containing material
for both Linux and Windows, which is a nice
touch. As with most such cover CDs it only
appears to contain freely available material -
Forte for Java, Java2 JDK 1.4, J2ME and
RTLinux. It does contain the book’s source
code, which is more useful.

However, this book consistently doesn’t
address ‘real’ embedded issues. We don’t need
the incomprehensible source code for a naff
MP3 player - the target audience should be able
to read API docs and work out how to build
one themselves. What’s needed are descriptions
of the real life balancing of performance issues,
some examples of the difficulty of debugging
in embedded environments, more on talking to
real physical devices and something on the real
concerns of working with RT OSes.

Overall, I wasn’t that impressed. The book
scratches many surfaces and presents a number
of examples that don’t really provide any
usable, digestible keys into embedded
development. It is reasonably expensive and
reasonably large and would benefit from being
a smaller, more targeted book, removing
unnecessary waffle and duplication.

OS and GUI
Programming

Windows Programming with
C++ by Henning Hansen (0
201 75881 4), Addison-
Wesley, 284pp @ £19.99
(1.50)
reviewed by David Nash
When I saw the title of this
book, I wondered which class

library it would use; the popular but oft-criticised
MFC, the popular alternative WTL, the ATL, or
even a home-grown system of classes.

I didn’t even consider that the book would
use no class library at all. In fact, with the
exception of one chapter, no C++ facilities are
used apart from declaring variables in the
middle of blocks and the occasional memory
allocation with new. The book teaches the
standard Windows 32 C API.

The exception comes in chapter 20, which is
dedicated to DirectX. In this chapter member
functions are called on C++ objects. However
no description of any of the classes being used
is given, the objects are accessed via pointers
obtained from standard C functions and the
functions simply called via those pointers.

The very first sentence of the book is in a
paragraph headed Requirements and reads, ‘You
need to have a good knowledge of the C++
language.’ I would dispute that – you need to
have a reasonable knowledge of the C language,
together with a very basic knowledge of the C++
language. The book then goes on to describe how
to use the Borland and Microsoft C++ compiler
to compile a simple program – something I would
have thought unnecessary in this book.

The method used by the book to teach
virtually all the way through is to show a
program listing then explain it. This is adequate
in some cases, but in many I feel not enough
explanation is given to what is being shown.

The book is split into three sections. The first
is a tutorial of most of the features of the Win32
API, explained using examples as I said above. It
covers many topics but I haven’t attempted to
determine whether that is exhaustive, but given
that the section ends on page 146 I doubt it.

The second section is somewhat
inexplicably called Take That! and is a
reference for a selection of the Win32 API

32 CVu/ACCU/Reviews

33CVu/ACCU/Reviews

chosen by the author to represent the
‘fundamentals’ plus the Graphics Device
Interface (GDI) functions and a few others.

The third section contains miscellaneous
extras including the chapter introducing
DirectX mentioned earlier, a tiny (1 1/2
sparsely populated pages) chapter on Unicode,
which simply lists the different versions of
Windows and recommends whether you should
use Unicode or not, one page attempting to
describe COM (yes, really – I couldn’t quite
believe it) and only in the final chapter is the
subject of compiling resource files mentioned.

If it weren’t for the copyright date of 2002
(2001 in Germany) I would have thought that
this was an old book hastily brought up to date
by the use of the C++ features mentioned. For
instance, when explaining the Windows
message loop, is it relevant these days to say
‘Applications in Windows are no longer run in
the same way as DOS applications’?

The book is part of a series by Addison-
Wesley called Nitty Gritty. It has been
translated from German (well enough, I might
add) and judging from the names of the authors
of the other books in the series, those books
will have been too. Unfortunately it doesn’t
come up to the standards we have come to
expect from that publisher.

According to the back cover the series is
supposed to teach the basic and most important
facts. I would say that it succeeds in introducing
the basic facts and for only £20 maybe we
shouldn’t expect more. However, I wouldn’t
recommend it and suggest that anyone looking to
begin using the Win32 API starts with the classic
Petzold rather than this book.

Designing from both sides
of the Screen by Ellen
Isaacs & Alan Walendowski
(0 672 32151 3), New
Riders, 336pp @ £34-99
(1.29)
reviewed by Christopher Hill
Think of the old butler in a

black and white movie; speaking when spoken to;
anticipating employer’s needs; remembering how
things were done last time; doing the job with out
complaining. Over time, the employer learns how
to make requests, spotting that she gets better
results if she asks one way rather than another,
picking up on his feedback. They develop a good
relationship and learn to work together without
noticing the interaction. They learn to collaborate.

The premise of this book is that there should
be a relationship of collaboration between the
user and the software. The software should allow
the user to quickly get into a state of flow, where
they can focus on the work that needs doing,
without having to stop and persuade the software
to do the task at hand. Isaacs proposes a number
of principles grouped under two main headings.

Don’t Impose – make every click count,
remember where they put things and remember
what they told you.

Be helpful – use visual elements sparingly,
make common tasks visible – hide infrequent
ones, give feedback, follow conventions, solve
problems – don’t complain or pass the buck, be
predictable and explain in plain language.

The book is split into two parts. The first part
describes the principles with many examples of

good and bad practice. The principles are easy to
grasp and are full of those ‘of course’ moments.
The second part takes the reader through the
development of a real project, from talking with
the customer to establish the requirement, through
to laying out the user interface using storyboards.
Only now are the programmers let loose to build
the software and the architecture to support the
user interface and we see how the initial problems
are resolved and for use throughout the project,
how to run Usage Studies.

A very easy to read book, yet packed with
useful ideas for building collaborative software.
Anyone designing and/or building any computer
user interface should read the first part of the
book and they will find they enjoyed the rest of
the book as well. Highly recommended.

Other Programming
Naked Objects by Richard
Pawson & Robert Matthews
(0-470-84420-5), Wiley,
275pp @ £32-50 (1.69)
reviewed by Francis
Glassborow
I recently got an email with
the title of this book as the

subject. I very nearly threw it away unopened
but I recognised the sender’s address and took
a risk on opening it. I only mention this to
highlight how careful people should be with
the subject lines of emails, particularly when
dealing with books whose titles have been
chosen to make you look twice.

A couple of years ago I first came across
‘Agile’ methodologies and it took me a while
to realise that ‘agile’ had been given a specific
meaning in programming, in other words it had
become jargon. It took me a little less time to
discover that ‘Naked Objects’ wasn’t just a title
to grab the eye, though I wonder if everyone
would feel comfortable to be seen reading a
book with this title plastered in large letters
across the cover. To clarify the issue let me
quote a paragraph from the introduction:

Naked Objects is an open-source Java-based
framework designed specifically to encourage
the creation of business systems from
behaviourally-complete business objects. In
fact, with the Naked Objects framework you
have no alternative but to make your business
objects behaviourally-complete. The reason is
that the framework exposes your core business
objects, such as Customer, Product and Order,
directly to the user. All user actions consist of
invoking methods directly upon those business
objects, or sometimes upon the object’s class.
There are no scripts, no controllers, nor even
any dialog boxes in between the user and the
‘naked’ objects. (Note: Wherever ‘Naked
Objects’ is capitalized we are referring to the
Java framework itself, and the term is singular.
Where it is uncapitalized we are referring to
business objects (plural) that are designed to
work with the framework, and so are exposed
directly to the user.)

This book is an excellent presentation of the subject
and the publishers have taken care to use colour in
various ways to help delineate various parts of the
book. The book is hardcover and printed on quality
stock. The contents start with a critical look at
object-orientation before introducing naked objects.

The author then introduces the Naked Objects
framework before spending some time on the
development process. It concludes with a brief
chapter on extending Naked Objects.

The book also includes a number of case studies
that help the reader put the theory into context.

There is good Internet support for the book
and if you want to learn a little more before
committing yourself to buying the book then a
visit to www.nakedobjects.org would be
advised. That is also the place to go if you are
merely curious even though the subject is
unlikely to have any application in your areas
of expertise.

Overall this book is aimed at the subset of the
Java Community that is concerned with business
programming. If this includes you, then I think
you should at least give the website a look and
then buy the book if you want to pursue the
subject.

Mastering Regular Expressions by Jeffrey E F
Friedl - Second Edition (0 596 00289 0),
O’Reilly, 460pp @ £28-50 (1.40)
reviewed by Joe McCool
[see web].

Pocket References
TOAD Pocket Reference for Oracle by Jim
McDaniel et al (0 596 00337 4), O’Reilly,
120pp @ £8-95 (1.45)
reviewed by James Gordon
[see web]

C# Language Pocket Reference by Peter
Drayton, Ben Albahari, and Ted Neward (0-
596-00429-X), O’Reilly, 118pp @ £8.95 (1.45)
reviewed by Francis Glassborow
[see web]

JavaScript Pocket Reference by David
Flanagan (0-596-00411-7), O’Reilly, 127pp @
£10-50 (1.42)
reviewed by Francis Glassborow
[see web]

Databases
Succeeding with Object Databases by Akmal
Chaudhri & Roberto Zicari (0 471 38384 8),
Wiley, 442pp @ £42-95 (1.16)
reviewed by James Gordon
This must be the hardest book I’ve ever tried to
read and I’ve tried to read it a number of times
before now. The book is a mix of high level
history of OO databases; samples of UML,
SQLJ, etc. and case studies. I think it is aimed
at people with a lot of OO and relational
database knowledge who want to turn their
hands to OO databases.

There are chapters on different databases,
i.e. Jasmine and Oracle and other chapters that
show code for accessing an Oracle database
using SQLJ and Java. The case studies range
from genetics to maps to railways.

The book is hardback which makes it a nice
looking book. It is very well written and if you
are looking for a detailed overview of OO
databases then this is a good book. If like me,
you’re more interested in designing and coding
OO databases this book is a hard slog but
worth it for the history.

Unix
Unix Weekend Crash Course
by Arthur Griffith (0 7645
4927 8), Hungry Minds,
383pp+CD @ £18.99 (1.32)
reviewed by Joe McCool
There’s something quaint
about this book. In the blurb
about the author we are told

‘Mr. Griffith was first introduced to UNIX in
1985, ...’ Then ‘Mr. Griffith spent several years
...’ and ‘Mr. Griffith’s most recent books
include ...’. Quaint.

Quaint too the suggestion that the reader grab
a unix terminal over the weekend and work his
way through Mr. Griffith’s 30 learning sessions.
If it is a weekend, chances are the reader will be
using some Linux variant, not Unix at all. His
default prompt will not, as Mr. Griffith claims, be
“#” or “%”. It is more likely to be something
much more informative, but none the less
confusing to the beginner. The bash shell will see
to that. (In the section on scripting, bash doesn’t
get a mention! It is by far the most commonly
used shell.)

Quaint too the suggestion that we mount the
supplied cdrom via: mount /dev/cdrom
/mnt/cdrom. Some unixes will whine that
/dev/cdrom doesn’t exist or /mnt. Quaint also the
suggestions that we simply copy the voluminous
software from the supplied CD and compile it up.
SCO Unix, for example, doesn’t even come with
a compiler. I couldn’t get the CD to work at all.

Books like this remind me of the ‘Get Rich
Quick’ spam emails I am bombarded with. There
is no free lunch. There is no quick way to learn
unix. Such is the nature of the beast, much more
than a weekend is needed to gain competence.

If you want to learn unix, borrow a Linux CD
from a friend, join your local user group,
subscribe to the newsgroups and jump in the deep
end. It is worth the effort. The money you’ll save
on buying this book can be spent on a fishing rod
and a box of worms. Worms are not so quaint.

Methodologies etc.
Advanced Use CASE
Modeling by Franf Armour
& Granville Miller (0 201
61592 4), Addison-Wesley,
425pp @ £26-95 (1.30)
reviewed by Silvia de Beer
A well written, well structured
informative book. The book

simply fulfils its promises and explains use case
modelling in all its facets. It would improve
knowledge and confidence of use case
developers. For small development projects, it
normally suffices to read any short introduction to
use case development, which can be found in
many books. However, if you find it difficult to
decide what to put in the use cases, to find a
balance between details and readability, this book
will help you reflect on your own use case
development process. Also, for those involved in
a larger development project, it can be productive
to have a better background understanding of the
purpose of use cases.

The main purpose of use case development
is to specify the requirements and besides that
one must not forget the non-functional
requirements. Use case modelling is not the

same as designing the architecture of a system
and a pitfall is to use the functional breakdown
directly in an object-oriented implementation.

It surprised me a bit when reading this book,
that there is actually very little about the notation
of use cases. I remember very well my first use
case development experiences, where there was
discussion about the direction of arrows. Of
course, the notation is explained in this book, but
there is actually very little to it. More importance
is put onto the fact that use cases should convey
the requirements and that they should be
verifiable by the client. The book describes well
how to start use case modelling and which
iterations could be taken. All explanations are
correctly supported by diagrams and tables and
supported by a case study throughout the book.

One of the confusing points about use case
development for me was always the use of
<<uses>> and <<extend>> relationships. The
book is based on UML 1.3, which removed the
<<uses>> relationship from the previous standard
and added the <<include>> relationship. In one
of the chapters the correct use and understanding
of those relationships is clearly explained, so no
need anymore for confusion.

Facts and Fallacies of
Software Engineering by
Robert L. Glass (0-321-
11742-5), Addison-Wesley,
195pp @ £22-99 (1.30)
reviewed by Francis
Glassborow
This is the latest title from a

well-known author in this subject area. Alan
Davis has this to say in his brief Foreword:

Bob has had a history of providing us with short
treatises on the many software disasters that have
occurred over the years. I have been waiting for
him to distil the common elements from these
disasters so that we can benefit more easily from
his many experiences. The 55 facts that Bob Glass
discusses in this wonderful book are not just
conjectures on his part. They are exactly what I
have been waiting for: the wisdom gained by the
author by examining in detail the hundreds of
cases he has written about in the past.

In the first four chapters (About Management,
About the Life Cycle, About Quality and About
Research) Robert Glass presents 55 ‘facts’. Each
is presented with a single sentence introduction
(e.g. fact 7: Software developers talk a lot about
tools, but seldom use them.) Under that heading
you will find four sections: Discussion,
Controversy, Sources and References.

The final three chapters (About Management,
About the Life Cycle, and About Education)
present 10 fallacies (for example, fallacy 3:
Programming can and should be egoless. and
fallacy 10: You teach people how to program by
showing them how to write programs.) are
presented in a similar format.

The author has a comfortable writing style
that makes it easy to read and understand. Of
course, the main reason for writing a book such
as this one is that much of the content will be
considered controversial by many of its
potential readers. I never advocate thoughtless
reading of technical books, and that includes
thoughtless rejection as well as acceptance.

The biggest problem is that different items
in this book are addressed to different

participants. By that I mean that the people
who have the power to respond to them vary
from managers, through system architects and
programmers to educators. This means that the
individual reader is only in a position to
respond to parts of the book. I hope that many
of you will read the whole of this book but not
then proceed on the basis that you are OK and
what really needs fixing is the work of other
types of participant.

This is a book that deserves to be widely
read by participants in software development,
and then discussed, understood and acted upon.

The Unified Process
Explained by Kendall Scott
(0 201 74204 7), Addison-
Wesley, 185pp @ £26-99
(1.30)
reviewed by Paul S Usowicz
As soon as I receive a book I
have a quick flick through

just to see what I can expect. It soon became
apparent that had I flicked through this book in
a bookstore I would not have purchased it. Not
because the book is no good but due to its
irrelevance to the way I currently develop
software.

The book is, in fact, extremely well written
and very clear with easy to follow guidelines
and I thoroughly enjoyed reading it. The whole
unified process is explained from start to finish
with pointers on what to look out for and some
useful examples. I found the sections on testing
to be extremely useful and full of common
sense.

So why is this book not for me? The whole
unified process is geared towards large
software developments. You need architects,
testers, coders, etc. Although these can be the
same person the overhead of the process is
probably too great for my one man, one-month
stand alone executables. If you run a large
software department, however, I can see great
benefits in adopting the process. I will hold on
to this book, however, as I will definitely refer
back to it if my projects increase in size.

My one bugbear with the book is that it
constantly refers to one of the author’s previous
books ‘UML Explained’. I don’t buy a book to be
told I really should buy another one as well.
Some of the diagrams are explained fully in the
other book and only referenced in this book. If the
explanation is necessary for a full understanding
then it should be reproduced in full.

Non-Programming
Hack Attacks Revealed 2ed by John Chirillo ((0-
471-23282-3), Wiley, 913pp+CD @£44-50 (1.35)
reviewed by Francis Glassborow
[see web]

Windows XP Annoyances by David A. Karp (0-
596-00416-8), O’Reilly, 565pp @ £20-95 (1.43)
reviewed by Francis Glassborow
[see web]

Unicode Demystified by Richard Gillam (0-
201-70052-2), Addison Wesley, 852pp @ £37-
99 (1.32)
reviewed by Francis Glassborow
[see web]

34 CVu/ACCU/Reviews

