
Volume 34 • Issue 6 • January 2023 • £4

Homework Challenge
Standard Report
Code Critique
Reviews
Membersʼ Info

The Human Touch
Pete Goodliffe
The Meaning of Words – Part 9
Francis Glassborow
Fluent C
Christopher Preschern
Reporting an MSvc Runtime Library Bug
Roger Orr

the magazine of the accu

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

Jan 2023 | {cvu} | 1

accu

The official magazine of ACCU
ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in a
good way. We are dedicated to raising the standard of
programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run a
respected annual developers’ conference, and provide
targeted mentored developer projects.

The articles in this magazine have all been written
by programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

{cvu}
Volume 34 Issue 6
January 2023
ISSN 1354-3164
www.accu.org

Editor
Steve Love
cvu@accu.org

Contributors
Guy Davidson, Francis
Glassborow, Pete Goodliffe,
Roger Orr, Christopher
Preschern

Reviews
Ian Bruntlett
reviews@accu.org

ACCU Chair
Geoffrey Daniels
chair@accu.org

ACCU Secretary
Robin Williams
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
PatrickMartin
treasurer@accu.org

Advertising
[Vacancy]
ads@accu.org

Cover
Photo by Tim Peck –
Shangri -La Hotel, Oman

Print and Distribution
Parchment (Oxford) Ltd

Original Design
Pete Goodlife

STEVE LOVE
EDITOR

Technical Debt is a Burden
Technical debt is a term often reserved for
problems in code: a new feature rushed into
the codebase, perhaps with less than optimal
testing, or a hasty design decision made before
all the facts are known. When time is short, we
accept the debt and promise ourselves that we’ll
revisit and improve it – pay it off – when we’re in
less of a rush. Sometimes that halcyon state doesn’t
happen, of course, and the debt lingers, accruing
interest in most cases in the form of making the
code harder to modify, maintain, or update.

Technical debt is something that something that exists
in our development effort that’s slowing us down, in
whatever way. Not all technical debt lives in the code. There
are many factors that can slow down progress on a project,
but addressing them in the same way as technical debt can
be harder to justify. For example, a development team might
observe that their tools are dated or out of support, but
updating to newer versions or a different tool chain would
almost certainly be very disruptive. However, the costs
of continuing with obsolete tools can be hidden. Being
stuck with an old version of a compiler might prevent the
team from taking advantage of modern language features,
but may also be an impediment to hiring new people. Old
or customized version control systems are another example
where an existing system may work well enough now, and
there’s no business case to move to a more well-known system.

The problem with the ‘no business case’ argument is that the business (whoever they are) most often
doesn’t know or care what tools are used, or even what they’re for, and will not suggest upgrading. The
immediate benefits of upgrading are usually dwarfed by the cost and effort of doing so. What is less often
considered is that obsolete tools are a form of technical debt, and are not only a continual burden on the
team, but an increasing one, accruing interest along with all the other debt in the project.

2 | {cvu} | Jan 2023

WRITE FOR US
Both CVu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!

Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim. On
request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author of an
article or column (not a letter or a review of software or a book) may explicitly offer single (first serial)
publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from CVu
without written permission from the copyright holder.

ADVERTISE WITH US
The ACCU magazines represent an effective,
targeted advertising channel. 80% of our readers
make purchasing decisions or recommend
products for their organisations.

To advertise in the pages of CVu or Overload,
contact the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and
we offer advertising discounts for corporate
members.

SUBMISSION DATES
CVu 35.1 1st February 2023
CVu 35.2 1st April 2023

Overload 174: 1st March 2023
Overload 175: 1st May 2023

Features
 3 The Human Touch

Pete Goodliffe looks at the
personal side of programming.

 4 The Meaning of Words – Part 9:
Libraries, Linkers and Loaders
Francis Glassborow explores
another set of computing terms.

 5 Fluent C
Christopher Preschern describes a pattern
for managing platform-specifc code in C.

 7 Reporting an MSvc Runtime Library Bug
Roger Orr shares his experience of
submitting a bug fix to Microsoft.

DIALOGUE
 9 Code Critique

Competition 139
Roger Orr shares
the results of the last
competion and details
of the next.

 12 Report on Homework
Challenge 13
Francis Glassborow
sets the next challenge.

 14 The Standard Report
Guy Davidson reports
from the world of
standard setting.

REGULARS
 15 Reviews

another book review for
your perusal.

 16 Members
‘View from the Chair’
and the reader survey.

Jan 2023 | {cvu} | 3

The Human Touch
Pete Goodliffe looks at the personal side of programming.

Two things are infinite: the universe and human stupidity;
and I’m not sure about the universe.

~ albert Einstein

Almost since the first programs were constructed we have
realised that programming is not a solely technical challenge.
It is also a social challenge. Software development is a

pastime that involves writing code with other people, for other
people to understand. It means working with other people’s
(variable quality) code, joining and leaving software teams, working
under your boss’ supervision, managing developers (which is rather like
herding cats), and so on.

Programming is a People Pursuit.

Many of the most enduring programming tomes are devoted to the people
problem, for example: The Mythical Man Month [1], and Peopleware [2].

Just as the people working with a codebase will inevitably shape the code
they produce, the people who work with you will inevitably shape you.

Purposefully place yourself beside excellent programmers.

That is, if you want to be an exceptional programmer then you must
consciously place yourself daily amongst people who are exceptional
programmers. It’s a really simple but profound way to make sure that you
improve your skills and attitudes.

We are products of our environment, after all. Just as plants need good
soil, fertiliser, and the correct atmosphere to grow healthily, so do we.

Spending too long with depressing people will make you feel depressed.
Spending too long with run-down people will make you feel tired and
lethargic. Spending too long with sloppy workmen will encourage you to
work sloppily yourself – why bother trying if no one else is? Conversely,
working with passionate individuals who strive to make better software
will encourage you to do the same.

By immersing yourself in the environment of excellent programmers you
will treat yourself to:
	� Enthusiasm that is infectious
	� Motivation that is inspirational
	� Responsibility that is contagious

Find people like that and marinate yourself in their company. Consciously
seek out the people who care about good code, and about writing it well.
In that kind of environment, you won’t fail to be nurtured and encouraged.

By working with high calibre developers you will gain far more than
technical knowledge; although that knowledge itself is very valuable.
You’ll enjoy positive reinforcement of good programming habits and
attitudes. You’ll be encouraged to grow, and be challenged to improve
in your weaker areas. This isn’t always comfortable or easy, but it is
worthwhile.

So make a point of seeking out the best programmers and work with them.
Design code with them. Pair program with them. Socialise with them.

What to do
You could make this kind of relationship formal with mentorship; indeed
many good workplaces try to put mentorship schemes into practice
formally. Carve out specific chunks of time to work together.

Or you may pursue it informally: get yourself assigned on the same
projects as great programmers. Move company to work with them. Go to

conferences, talks, or user groups to meet with them. Or just make a point
of hanging out with other great programmers.

As you do this, learn from them. Watch out for:
	� how they think and solve puzzles,
	� how they plan a route into problems,
	� the attitude they adopt when things get hard,
	� how they know to keep pushing on a problem, when to take a break,

or when try a different approach, and
	� their specific coding skills and techniques that you don’t yet

understand.

Know your experts
Consider carefully what you think an excellent programmer looks like.

You specifically don’t want to get alongside people who work too hard,
filling all the hours God sends with code. Those people are almost certainly
not the exceptional programmers! Managers often think that employees
who spend every waking hour on a project are the programming heroes,
but often this really hints at their lack of ability. They can’t get things
right first time, so they have to spend many more hours getting the code
to ‘work’ than was actually necessary.

Experts make it look easy and get things done on time.

20/20 hindsight
As I look back over my career, I realise that the most enjoyable and
personally productive times I’ve encountered have been when I’ve been
working alongside excellent, motivated, interesting developers. And
because of this, I will now always attempt to place myself alongside
people like that. I’ve learnt that they make me better at what I do, and I
have more fun whilst I’m doing it.

An interesting and beneficial side-effect of working with good coders is
that you are far more likely to end up working with good code. �

Questions
So ask yourself now:

1. Are you around people you think are excellent programmers right
now? Why? Or why not?

2. How can you move yourself nearer better coders? Can you move
projects or teams? Is it time to move company?

3. How can you tell who is an excellent developer, and who isn’t?

Identify some ‘coding heroes’ you’d like to learn from, and plan a way to
work alongside them. Consider asking to be mentored by them.

References
[1] Frederick P. Brooks (1995) The Mythical Man Month, Addison

Wesley. ISBN: 0201835959
[2] Tom Demarco and Timothy Lister (1999) Peopleware Dorset House

Publishing. ISBN: 0932633439

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net or @petegoodliffe

4 | {cvu} | Jan 2023

The Meaning of Words – Part 9:
Libraries, Linkers and Loaders

Francis Glassborow explores another set of computing terms.

I started out to write about linkers and loaders (in response to a reader
request). Then I realised that libraries were also part of this and
completed a nice trio of ‘L’ words. When I researched ‘program

libraries’ I was surprised to find that the concept predates computers. The
idea of a library of routines goes back to the days of Jacquard looms
that were controlled by punch cards. Cards for particular sub-patterns
were kept and could be assembled (linked) to make more complex woven
patterns before being loaded into the looms control system.

Charles Babbage picked up the idea of using punch
cards to store programs and proposed their use for
his Analytical Engine. For many reasons, mostly
political and economic, Babbage’s designs were never
built though parts of Difference Engines 1 & 2 and
a small part of the Analytical Engine were made. We
now know that his ideas and designs could have been
completed with the technology of the 19th century
as two complete working Difference Engine 2s were built over the final
decades of the 20th century. Care was taken to ensure that they were
manufactured to tolerances that could have been achieved at the time of
the original design. We had to wait over 100 years from the designs of
Difference Engine 2 and Analytical Engine until working computers were
designed and built in the middle of the 20th century.

From the earliest days of working computers, the idea of libraries of
routines that could be linked into a programmer’s code was alive and
well. In the early days, these libraries had physical form such as punched
cards or paper tape before they moved onto magnetic media (initially
magnetic tape but then to some form of disc storage). In those pioneering
days, all kinds of physical devices were used for memory. To some extent,
I think one of the more terrifying was the large magnetic drum memory.
Here again, we have surprises. Magnetic drum memory was the first
magnetic data storage. This data storage memory device was designed
and developed by the Austrian engineer Gustav Tauschek in 1932. Note
that date because it means that magnetic storage memory substantially
predates working computers. What is often missed is the amount of
kinetic energy that was stored in the rotating drum. If one had broken
loose from its bearings, it could have done a considerable amount of
damage. As an aside, note that high speed rotating devices have been
used for several decades for energy storage (an early example was using
a flywheel for regenerative breaking on buses).

The reason that long term storage was dominated by paper tape and
punched cards is simply a matter of cost. They are also much more
durable, but suffer in modern terms from a very low data density. It seems
that with each new phase of data storage – from clay tablets to modern
cloud storage – we have increased the density of data storage at the cost
of durability. I suspect that Babylonian clay tablets will still be readable
2000 years in our future. That is not going to be true of modern data
storage devices. It is already becoming difficult to read data from 5.25
inch floppy disks and almost impossible to read data from the previous
7 inch floppy disks.

So, back to libraries. These days, a program library is a collection of
routines (functions etc.) usually with a common theme from which
individual parts can be incorporated into the program you write. You need
some way to tell your compiler about the available contents. Languages
such as C and C++ do this via header files. Other languages use different
mechanisms, but the essential characteristic of a library is that it contains
the definitions of many elements and only some of those will be needed
in any given program.

We also break our programs up into separate units so
that we do not have to deal with million-line monoliths.
Somehow, these various bits have to be combined and
that is the job of a linker.

When a compiler converts your source code into
object code, it includes a list of function calls etc. that
have no matching definition. When a linker combines
several files of object code it tries to resolve these calls.

However, in most programs there will still be some unresolved calls. At
this point, the linker will search any libraries that have been provided to
attempt to resolve these calls. Sometimes these added definitions from
a library themselves include calls to functions that are not defined in
the current conglomerate. Single pass linkers (much more common in
the past) give a link time failure if there are any unresolved calls after it
has searched all the provided libraries. More powerful linkers repeat the
search until either all calls are resolved or no further resolutions have
been achieved in the latest iteration over the libraries.

If the linker is successful, it generates an executable.

However, some library routines are large and commonly used. Some
time in the 1980s, the idea of delaying some linking till execution time
(called dynamic linking) was developed so that libraries could be shared
across multiple programs running simultaneously. I think we should note
that in environments where only a single program is being executed,
shared libraries are more resource-expensive than statically linked ones.
You may be surprised to learn that most computers run only a single
program. Think of all the myriad devices in our world that use dedicated
computers. Your modern car has dozens of such devices. Static linking for
such devices is essential.

If you would like a more comprehensive summary of linkers, follow this
link ():

https://web.stanford.edu/~ouster/cgi-bin/cs140-winter13/lecture.
php?topic=linkers

So, your compiler and linker have created an executable but that program
has to get from its long-term storage into working storage. This is the job
of a loader.

I can recall using a mini-computer in 1982 where I had to manually load
the start-up program by using a set of switches on the console. I had
to set the 16 switches and press a button to load that instruction into
working memory and repeat the process a few times until a very primitive
program was complete. That program had a single purpose: it loaded a
more substantial operating program from an early hard drive (called a
Winchester) that provided basic input and output from a teletype machine
and supported access to the hard drive to load whatever program it was
that I wanted to use.

FRANCIS GLASSBOROW
Since retiring from teaching, Francis has edited CVu,
founded the aCCU conference and represented BSI at the
C and C++ ISO committees. He is the author of two books:
You Can Do It! and You Can Program in C++.

the idea of delaying
some linking till

execution time was
developed

https://web.stanford.edu/~ouster/cgi-bin/cs140-winter13/lecture.php?topic=linkers
https://web.stanford.edu/~ouster/cgi-bin/cs140-winter13/lecture.php?topic=linkers

Jan 2023 | {cvu} | 5

As multi-purpose computers have become ever more complicated, the job
of a loader has become more complex in execution but loaders are still
just programs to place your executable into working memory and then
hand over to your program to do whatever it is designed to do.

Just a final anecdote before I hand over to you to write and tell me about
any misconceptions I have revealed in the above.

Back in about 1984, I had a Sinclair Spectrum that was attached to a
floppy disk drive. I had written a version of Forth (it was called L-Forth
and was used by my students as it ran on both a Sinclair 48K Spectrum
and a Research Machines 380Z) that ran in the top 32K of the 48K
Spectrum’s RAM. That left the bottom 32K for the 16K ROM along
with 16K of RAM which could be used, among other things, to run small
Basic programs (and I had added a facility so that L-Forth running on a
Spectrum could call out to Basic running in that 16K – more useful than
you might think.)

My problem was that the minimal disk system wanted to use 4K bytes
and not just any 4K but specifically that located 40K into the RAM. That
was too large a proportion of the RAM I had available. I solved this by
writing a 128 byte position independent code fragment that swapped the
contents of the 4K block to disk and replaced it with the disk system.
When finished with the disk operations, the same PIC fragment reversed
the procedure.

Eventually I developed a suite of programs that could:

	� transfer data from tape to a disk

	� inspect the code of a game for 128 bytes of reusable memory (games
would have some working storage that I could borrow)

	� insert the PIC fragment in that space

	� insert the disk system into the game copying the replaced 4K to a
fixed location on the disk

Now I had a bootstrap loader.

1. Use the disk system to load the modified game code.

2. Use the PIC fragment within the game code to restore the 4K
borrowed for the disk system from the fixed location on the disk

3. Start the game.

Those days were a lot of fun as well as being very instructive.

As always, comments are very welcome and corrections more so. I have
always followed the principle that it is a condition of my sharing my ideas
and understanding that readers correct them as appropriate. �

Meaning of Words – Part 9 (continued)

Fluent C
Christopher Preschern describes a pattern for managing

platform-specific code in C.

C is widespread, in particular with systems where high-performance
or hardware-near programming is required. With hardware-near
programming comes the necessity of dealing with hardware variants.

Aside from hardware variants, some systems support multiple operating
systems or cope with multiple product variants in the code. A commonly
used approach to addressing these issues is to use #ifdef statements of
the C preprocessor to distinguish variants in the code. The C preprocessor
comes with this power, but with this power also comes the responsibility
to use it in a well-structured way.

However, that is where the weakness of the C preprocessor with its
#ifdef statements shows up. The C preprocessor does not support any
methods to enforce rules regarding its usage. That is a pity, because it
can very easily be abused. It is very easy to add another hardware variant
or another optional feature anywhere in the code by adding yet another
#ifdef.

Using #ifdef statements in such an unstructured and ad hoc way is the
certain path to hell. The code becomes unreadable and unmaintainable.
This article presents approaches to escape from that #ifdef hell and is
based on the book Fluent C [1] that shows this and other guidance in the
form of C programming design patterns that were elaborated at pattern
conferences [2].

Isolated primitives pattern
Context
Your code calls platform-specific functions. You have different pieces
of code for different platforms, and you distinguish between the code
variants with #ifdef statements. You cannot simply avoid variants
because there are no standardized functions available that provide the
feature you need in a uniform way on all your platforms.

Example
Let’s say you want to create a directory inside the home directory of the
current user and you want that code to work on Windows as well as on
Linux systems. Listing 1 (overleaf) is your first try for that using #ifdef
statements.

This code is not beautiful. The program logic is completely duplicated.
This is not operating system-independent code; instead, it is only two
different operating system-specific implementations sequentially put into
one function.

Problem
Having code variants organized with #ifdef statements makes the code
unreadable. It is very difficult to follow the program flow, because it is
implemented multiple times for multiple platforms.

When trying to understand the code, you usually focus on only one
platform, but the #ifdefs force you to jump between the lines in the
code to find the code variant you are interested in.

The #ifdef statements also make the code difficult to maintain. Such
statements invite programmers to only fix the code for the one platform
they are interested in and to not touch any other code because of the

CHRISTOPHER PRESCHERN
Christopher is a leading member of the design pattern
community and organizes design pattern conferences and
initiatives to improve pattern writing. as a C programmer at
the company aBB, he gathered and documented hands-
on knowledge on how to write industrial-strength code. He
has lectured on coding and quality at Graz University of
Technology and holds a PhD in computer science

6 | {cvu} | Jan 2023

danger of breaking it. But only fixing a bug or introducing a new feature
for one platform means that the behaviour of the code on the other
platforms drifts apart. The alternative – to fix such a bug on all platforms
in different ways – requires testing the code on all platforms.

Testing code with many code variants is difficult. Each new kind
of #ifdef statement doubles the testing effort because all possible
combinations have to be tested. Even worse, each such statement doubles
the number of binaries that can be built and have to be tested. That brings
in a logistic problem because build times increase and the number of
binaries provided to the test department and to the customer increases.

Solution
Isolate your code variants. In your implementation file, put the code handling
the variants into separate functions and call these functions from your main
program logic, which then only contains platform-independent code.

Each of your functions should either only contain program logic or only
cope with handling variants. None of your functions should do both.
So either there is no #ifdef statement at all in a function, or there are
#ifdef statements with a single variant-dependent function call per
#ifdef branch. Such a variant could be a software feature that is turned
on or off by a build configuration, or it could be a platform variant as
shown in the code in Listing 2.

Utilizing a single function call per #ifdef branch should make it
possible to find a good abstraction granularity for the functions handling
the variants. Usually the granularity is exactly at the level of the available
platform-specific or feature-specific functions to be wrapped.

Example resolved
Let’s apply that solution to the example that creates a directory (Listing 3).

Consequences
The main program logic is now easy to follow, because the code variants
are separated from it. When reading the main code, it is no longer
necessary to jump between the lines to find out what the code does on
one specific platform.

To determine what the code does on one specific platform, you have to
look at the called function that implements this variant. Having that code
in a separately called function has the advantage that it can be called
from other places in the file, and thus code duplications can be avoided.
If the functionality is also required in other implementation files, then the
Abstraction Layer Pattern has to be implemented.

No program logic should be introduced in the functions handling the
variants, so it is easier to pinpoint bugs that do not occur on all platforms,

because it is easy to identify the places in the code where the behavior of
the platforms differs.

Code duplication becomes less of an issue since the main program logic is
well separated from the variant implementations. There is no temptation
to duplicate the program logic anymore, so there is no threat of then
accidentally only making bug fixes in one of these duplications.

What’s next?
In this article, you saw one of many steps how to improve the platform-
specific example code for creating directories. Further steps would be to
put platform-specific code below an abstraction layer and have platform
variants on a code-file level to use tools like Make for distinguishing
between the variants. All these steps as well as patterns about other
topics relevant for C programmers, like error handling or API design,
are covered in the O’Reilly book, Fluent C [1]. With these patterns
and examples for their application, the book helps you further your C
programming knowledge to a level that allows you to write robust and
industrial-strength code. �

References
[1] Christopher Preschern (2022) Fluent C, published by O’Reilly (see

https://www.oreilly.com/library/view/fluent-c/9781492097273/),
ISBN 9781492097334

[2] Christopher Preschern ‘Patterns to escape the #ifdef hell’,
EuroPLop ’19: Proceedings of the 24th European Conference
on Pattern Languages of Programs, July 2019, published on the
ACM Digital Library and accessible from https://dl.acm.org/
doi/10.1145/3361149.3361151

void getDirectoryName(char* dirname)
{
 #ifdef __unix__
 sprintf(dirname, "%s%s", getenv("HOME"),
 "/newdir/");
 #elif defined _WIN32
 sprintf(dirname, "%s%s%s",
 getenv("HOMEDRIVE"), getenv("HOMEPATH"),
 "\\newdir\\");
 #endif
}
void createNewDirectory(char* dirname)
{
 #ifdef __unix__
 mkdir(dirname,S_IRWXU);
 #elif defined _WIN32
 CreateDirectory (dirname, NULL);
 #endif
}
int main()
{
 char dirname[50];
 getDirectoryName(dirname);
 createNewDirectory(dirname);
 return 0;
}

Listing 3

void handlePlatformVariants()
{
 #ifdef PLATFORM_A
 /* call function of platform A */
 #elif defined PLATFORM_B
 /* call function of platform B */
 #endif
}

int main()
{
 /* program logic goes here */
 handlePlatformVariants();
 /* program logic continues */
}

Listing 2

#include <stdio.h>
#include <stdlib.h>
#ifdef __unix__
#include <sys/stat.h>
#elif defined _WIN32
#include <windows.h>
#endif

int main()
{
 char dirname[50];
 #ifdef __unix__
 sprintf(dirname, "%s%s", getenv("HOME"),
 "/newdir/");
 #elif defined _WIN32
 sprintf(dirname, "%s%s%s", getenv("HOMEDRIVE"),
 getenv("HOMEPATH"), "\\newdir\\");
 #endif
 #ifdef __unix__
 mkdir(dirname,S_IRWXU);
 #elif defined _WIN32
 CreateDirectory(dirname, NULL);
 #endif
 return 0;
}

Lis
tin

g 1

https://www.oreilly.com/library/view/fluent-c/9781492097273/
https://dl.acm.org/doi/10.1145/3361149.3361151
https://dl.acm.org/doi/10.1145/3361149.3361151

Jan 2023 | {cvu} | 7

Reporting An MSvc Runtime Library Bug
Roger Orr shares his experience of

submitting a bug fix to Microsoft.

In code critique #138 the example code attempted to access an iterator
after it had been invalidated by erasing an earlier item in the vector.
The code critique problem description said: “But when I compile with

msvc in debug mode it aborts”. While the main ‘point’ of the code critique
was the access of an invalid iterator, the reason for the abort in MSVC is
a ‘missing’ debug mode check in <vector> the MSVC runtime library.

This made the code critique slightly more challenging, as the abort
doesn’t immediately give away the solution to the problem.

However, I thought that a public-spirited action would be to report
the problem to Microsoft (but only after the CC deadline had passed)
and originally I had intended to simply report the bug. But things have
changed recently with MSVC’s runtime library – the source code is
hosted publicly on github and so you can report issues and also raise P/
Rs (pull requests i.e.requests to merge your work into the main branch).

While doing this I thought it might be instructive to turn it into a CVu
article in case other people come across similar problems and are put off
reporting them.

The git hub repository
The Microsoft STL is hosted at https://github.com/microsoft/STL. The
source code for the problem uncovered by the code critique at the time the
Code Crique was written is visible at https://github.com/microsoft/STL/
blob/2f03bdf/stl/inc/vector#L45-L54 and looked like Listing 1.

The bug was that this->_Getcont() returned null after the vector
erase method is called, so dereferencing _Mycont in line 49/50 caused
an access violation.

Analysis
The Microsoft compiler defaults _ITERATOR_DEBUG_LEVEL to 0 in a
‘release’ build and to 2 in a ‘debug’ build.

Looking at the code in this header, and in <xmemory> where the iterator
base class is defined, reveals that the base class for the iterator in a debug
build (_Iterator_base12) contains a field _Myproxy which is set for
a valid iterator and set to null when _ITERATOR_DEBUG_LEVEL is 2 in
a private member function of vector, _Orphan_range_unlocked()
(which at this point was at line 2217):
 2216. } else { // orphan the iterator
 2217. _Temp->_Myproxy = nullptr;

Has someone already reported – or even fixed –
this issue?
The first check is that no-one has already reported the issue – raising a
duplicate bug report simply causes extra work for other people. I did a
quick search verious terms in the open issues and their titles and didn’t
find any that appeared to be relevant.

It doesn’t seem to be a hard problem to trigger, but since the debugging
iterator does give an error, via the resultant access violation, perhaps
this gives enough information to others hitting this issue that there was
insufficient motivation to try and resolve it.

Proposed resolution
The obvious fix here seems to be to add a check for _Mycont not being
null, just before it is dereferenced.

It must be checked after _Ptr is checked, as we don’t want to mask the
problem when a value-initialised iterator is dereferenced, and for such an
interator _Mycont will be also initialised to null in a debug build. See
Listing 2.

But wait ... there’s more
We are not done, however – whenever you find a bug it is almost always
worth checking to see if the same bug is repeated elsewhere. In this case,
there are three other methods in this class (_Vector_const_iterator)
that perform a similar check: operator->(), operator++(), and
operator--(). There is also a method in a related class, _Vector_
iterator, which performs the same check. (I missed this one in my
first analysis!)

There is also a similar, but not identical, check in an internal method,
_Verify_offset, which I didn’t cover.

Checking the code
I first of all forked the microsoft STL repository in github, using the Fork
button in the UI, to my own github account (https://github.com/rogerorr/
STL/) and then cloned this locally with the command:
 git clone git@github.com:rogerorr/STL.git
 --recurse-submodules

The README.md file in the STL project contains clear instructions for
building and running the tests for the runtime library. I already had a
suitable versions of cmake, ninja, and python on my laptop, so there was
in this case no need for me to fetch other programs before I began.

Following the instructions, I opened a command window using the ‘x64
Native Tools Command Prompt for VS 2022’ shortcut, changed to the
STL directory I had just downloaded and ran:
 cmake -G Ninja -S . -B out\build\x64
 ninja -C out\build\x64

45. _NODISCARD _CONSTEXPR20 reference operator*() const noexcept {
46. #if _ITERATOR_DEBUG_LEVEL != 0
47. const auto _Mycont = static_cast<const _Myvec*>(this->_Getcont());
48. _STL_VERIFY(_Ptr, "can't dereference value-initialized vector iterator");
49. _STL_VERIFY(
50. _Mycont->_Myfirst <= _Ptr && _Ptr < _Mycont->_Mylast, "can't dereference out of range vector
iterator");
51. #endif // _ITERATOR_DEBUG_LEVEL != 0
52.
53. return *_Ptr;
54. }

Lis
tin

g 1

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined aCCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.co.uk

https://github.com/microsoft/STL
https://github.com/microsoft/STL/blob/2f03bdf/stl/inc/vector#L45-L54
https://github.com/microsoft/STL/blob/2f03bdf/stl/inc/vector#L45-L54

8 | {cvu} | Jan 2023

I then ran some of the tests (by executing ctest in the out\build\
x64 subdirectory) to ‘kick the tyres’ for the build.

Now I created a branch in my local workspace, made my proposed
changes to the <vector> header in stl\inc and confirmed the tests
still passed. This took a long time – I went to bed leaving my machine
running – and the results were:
 Skipped : 397
 Unsupported : 2967
 Passed : 28716
 Expectedly Failed: 930
 Failed : 30

I was initially concerned, but on closer investigation the failed were all
tests of locale, so presumably were being caused by something about my
machine setup (or lack of it) – they certainly appeared to have nothing to
do with the changes to <vector> so I ignored these failures for now!

Did it work?
Of course, passing the tests only proved I’d not broken anything obvious,
not that the original problem was resolved. The original problem was in a
code critique, but it was a simple matter to extract a very small test case
that demonstrates the issue. In general, though, it can be quite a challenge
to simplify a program that demonstrates a bug to a minimal program that
still demonstrates the same bug.
 #include <vector>
 int main() {
 std::vector<int> v({0,1,2,3});
 auto iter = v.begin();
 v.erase(v.begin()); // invalidate iter
 return *iter; // access violation, rather
 // than an assertion
 }

ln this case, given what was changed, it would be enough to recompile my
test case with the modified <vector> header to check that the expected
assert now triggers. In more complicated cases, you’d need to link against
a changed library, too.

MS generate a batch script (set_environment.bat) in the build
output directory that you can run to insert the proper paths for the built
headers and libraries in the INCLUDE/LIB/PATH environment variables.

In this simple case, testing with the modified <vector> can be done
from the Visual Studio command prompt just by using:
 cl /I c:\projects\GitHub\rogerorr\STL\stl\inc
 /EHsc /MDd /Zi repro.cpp

When executed, we get the expected assertion, rather than an abort (see
Figure 1).

Raising a P/R
We now have everything we need to report the problem and raise a
P/R. First off I raised an issue, including the simple reproduction of the
problem and my analysis: https://github.com/microsoft/STL/issues/3281
This was straightforward.

I then raised a P/R in guthub from my branch to the Microsoft main
branch. The documentation says that the Microsoft Contributor License
Agreement bot will automatically request completion of the appropriate
document for a new contributor; this check passed automatically, which
I originally assumed might be because a prior NDA (Non Disclosure
Agreement) I have signed with MS associated with the same email
account, but subsequent comments indicate that the bot doesn’t trigger
for ‘sufficiently small’ changes.

The repository on github has been set up to run a range of tests on the
committed code automaticallly, giving improved confidence that the
change is not going to break something I failed to test!

Figure 2 shows a subset of the check output from the github page
https://github.com/microsoft/STL/pull/3282

A few comments were raised, and answered, and the P/R was approved
by three people and was ready to be merged. STL merged the work a day
or two later, and added the comment that the change will be in ‘VS 2022
17.6 Preview 1’.

It is quite gratifying to feel I have made a small improvement to a
compiler I use a lot.

Conclusion
I was very pleased by the way the process worked and how responsive
the MS engineers were – and I thank Nicole Mazzuca, Casey Carter, and
Stephan T. Lavavej for their rapid approvals; so I am encouraged that
getting bugs reported and fixed in the Microsoft STL is now much more
like the existing processes for gcc and clang. The advantages for the user
include transparency of the open issues, the ability to provide a P/R (and
to test it yourself), and the ability to achieve such a quick turn around. �

Fig
ur

e 1
Figure 2

45. _NODISCARD _CONSTEXPR20 reference operator*() const noexcept {
46. #if _ITERATOR_DEBUG_LEVEL != 0
47. const auto _Mycont = static_cast<const _Myvec*>(this->_Getcont());
48. _STL_VERIFY(_Ptr, "can't dereference value-initialized vector iterator");
XX. _STL_VERIFY(_Mycont, "can't dereference invalidated vector iterator");
49. _STL_VERIFY(
50. _Mycont->_Myfirst <= _Ptr && _Ptr < _Mycont->_Mylast, "can't dereference out of range vector
iterator");
51. #endif // _ITERATOR_DEBUG_LEVEL != 0
52.
53. return *_Ptr;
54. }

Lis
tin

g 2

https://github.com/microsoft/STL/issues/3281
https://github.com/microsoft/STL/pull/3282

Jan 2023 | {cvu} | 9

Code Critique Competition 139
Set and collated by Roger Orr. a book prize

is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
I’m puzzled by the behaviour of the vector iterator in the following
program (Listing 1). When I compile with gcc and msvc in release
mode I get what I expect, for example:

 *it1: 5 ptr: 000001F29EAFCDF8
 *it2: 6 ptr: 000001F29EAFCDF8
 *ptr: 6
 *it1: 6
 it1 == it2? true

But when I compile with msvc in debug mode it aborts:

 *it1: 5 ptr: 000001D6DE61F7A8
 *it2: 6 ptr: 000001D6DE61F7A8
 *ptr: 6
 *it1:

I was expecting that the iterator would behave like the pointer and
since what is that address has changed from 5 to 6, it’d simply
reference 6. I don’t understand how the behaviour of the const
iterator object it1 can have changed – I’ve not gone off the end of
the vector. (See Listing 1.)

Critiques
Paul Floyd < pjfloyd@wanadoo.fr>
It’s a long time since I used the MS compiler, though I do usually have it
installed just in case. This CC seems to be one of those cases.

First off, I tried this with clang++ and GCC, running with Valgrind and
Sanitizers. Not a peep. Then I tried with Visual Studio and reproduced
the problem. cppreference explains why there is a problem [1] and in
particular:

Invalidates iterators and references at or after the point of the erase,
including the end() iterator.

That means that erasing the third element will make an iterator to the
sixth element invalid.

If that’s the case then why is there no problem with clang++ or g++?
Getting out my PDF of ISO/IEC 14882-2012 (the C++11 standard) I see
that 24.2.1 para 10 says:

an invalid iterator in an iterator that may by singular.

This then refers to footnote 267 which says:

This definition applies to pointers, since pointers are iterators.
The effect if dereferencing an iterator that has been invalidated is
undefined.

My hand-waving expectation for what std::vector::erase does is

1. A memmove of the part of the vector that follows the erased
element(s) downwards so that they overwrite the erased element(s).
In this case, erasing the third element means that the 4th to 10th get
moved down to become the 3rd to 9th.

2. The size of the vector gets reduced by the number of elements
erased. In this case it’s the single iterator position overload of
erase that’s being used, so one element is erased and the size gets
decreased from 10 to 9.

Continuing to gesticulate, I also expect that an std::vector::iterator
is roughly synonymous with a pointer. g++, clang++ and Visual Studio
optimized builds seem to be doing all of the above, so after the erase it1
is still pointing to the same memory but the contents have been shifted
down so the contents of that memory will have changed from 5 to 6.

One minor thing at this point, the comment here
 v.erase(v.begin() + 2);
 // v = {0,1,2,3,4,6,7,8,9}

is wrong, that should be // v = {0,1,3,4,5,6,7,8,9} since the
3rd element (value 2) was erased, not the sixth one.

Getting back to what is going on in Visual Studio. With a bit of debugging
I see that _Orphan_range(_Whereptr, _Mylast); is being
called. This seems to clear all iterators that point to that range. The

#include <iostream>
#include <vector>
int main() {
 std::vector<size_t> v;
 for (size_t i = 0; i != 10; ++i) {
 v.push_back(i);
 }
 // v = {0,1,2,3,4,5,6,7,8,9}

 const auto it1 = v.begin() + 5;
 const auto *ptr = it1.operator->();
 // it1 => 5

 std::cout << "*it1: " << *it1
 << " ptr: " << ptr << '\n';
 v.erase(v.begin() + 2);
 // v = {0,1,2,3,4,6,7,8,9}

 const auto it2 = v.begin() + 5;
 // it2 => 6
 std::cout << "*it2: " << *it2 << " ptr: "
 << it2.operator->() << '\n';
 try {
 // ptr now points to 6 not 5
 std::cout << "*ptr: " << *ptr << '\n';
 // I expect it1 to also point to 6
 std::cout << "*it1: " << *it1 << '\n';
 // And I expect it1 to equal it2
 std::cout << "it1 == it2? "
 << (it1 == it2 ? "true"
 : "false")
 << '\n';
 } catch (std::exception ex) {
 // Never get here :(
 std::cerr << "Exception: " << ex.what()
 << '\n';
 }
}

Lis
tin

g 1

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined aCCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.co.uk

10 | {cvu} | Jan 2023

implementation code for this isn’t that straightforward, but it looks like it
is using a _Vector_val for vector elements which has a _Container_
proxy* which, amongst other things, contains a linked list of iterators.
So when the code tries to dereference it1 a debug only check tries to get
the container from the iterator. This container was cleared and nullptr
gets returned.

The std::vector code in question starts on line 45 of the vector
header file in VS 2022 17.3.6. It’s Apache 2.0 licensed, so I’ll copy it here
(ED: slightly reformatted for publication).
 _NODISCARD _CONSTEXPR20 reference
 operator*() const noexcept {
 #if _ITERATOR_DEBUG_LEVEL != 0
 const auto _Mycont =
 static_cast<const _Myvec*>(this->_Getcont());
 _STL_VERIFY(_Ptr, "can't dereference "
 "value-initialized vector iterator");
 _STL_VERIFY(
 _Mycont->_Myfirst <=
 _Ptr && _Ptr < _Mycont->_Mylast,
 "can't dereference out of range vector "
 "iterator");
 #endif // _ITERATOR_DEBUG_LEVEL != 0
 return *_Ptr;
 }

It’s a good thing that MS has added this extra checking code. Though I do
think that they could perhaps improve it a bit. At the moment, it checks
that the pointer is valid and that the pointer points to a valid element
within the range of the vector. They could add something like
 _STL_VERIFY(_Mycont,
 "can't dereference invalidated vector iterator");

(which would be between the two existing _STL_VERIFYs above).

The use of ptr circumvents this checking.

In order to ‘fix’ this problem:

1. Make it1 non-const

2. Re-assign it1 after the erase:
 v.erase(v.begin() + 2);
 it1 = v.begin() + 5;

Last thing, I did try the VS code analysis and it didn’t complain. Maybe
some tools will be able to detect this (since the vector changes are ‘static’
in the sense that a literal is used for the element to erase, and all of the
code is local to main).

Reference
[1] CPP Reference :

https://en.cppreference.com/w/cpp/container/vector/erase)

James Holland <jim.robert.holland@gmail.com>
The comment after the erase statement does not agree with the statement.
Assuming the code is correct, the comment should be
 // v = {0,1,3,4,5,6,7,8,9}

not
 // v = {0,1,2,3,4,6,7,8,9}

The student’s program first creates a vector of numbers between 0 and
9 inclusive. Then the iterator, it1, is initialised with a value that points
to the fifth element of the vector. The underlying pointer of the iterator
is then used to initialise a pointer. We now have an iterator and a pointer
both referring to the fifth element of the vector. All this is perfectly fine.
The iterator and the pointer are valid and can be used to obtain the value
of the vector’s fifth element.

The program then erases element 2 of the vector. The erase function
does this by shifting all the elements of the vector beyond element 2 down
one position and reducing the size of the vector by one. Anything that
was pointing to an object at element 2 now points to a different object.

Because of this, such iterators and pointers are considered invalid after
the erase operation.

The C++ standard states that erase:

Invalidates iterators and references at or after the point of the erase.

When in debug mode, MSVC adds code to a program with the aim of
detecting undefined behaviour including the use of invalid iterators. This
is why the program aborts when in debug mode, presumably with some
diagnostic message, as the use of invalid iterators has been detected.
When in release mode, no such code is added and the program produces
the expected result. By default, gcc does not provide the same level of
protection and so produces the expected result irrespective of the mode
it is in. To activate gcc iterator checking, define _GLIBCXX_DEBUG.
Apparently, MSVC and gcc do not provide similar checks for raw
pointers or references. Perhaps this is more difficult or impossible in the
general case.

It could be that a pointer or iterator at or beyond the erased element still
refers to a valid object and that no harm will come of reading the value
of this new object by means of the pointer or iterator. It could be argued
that the standard is particularly harsh in this respect. Nevertheless, as the
standard states that such iterators and pointers are invalid, dereferencing
them results in undefined behaviour.

One way to prevent entering the realms of undefined behaviour is to use
indexes as opposed to iterators. The troublesome statement could be
replaced by something like the following.
 std::cout << "v[5]: " << v[5] << '\n';

The programmer must still ensure that the index is within the range of the
vector in the general case, however.

Another way to solve the problem is to reevaluate the iterator, it1, after
the erasure. The student has done this with it2 just after the erase
statement.

The use of it.operator->() is interesting. It returns a pointer to
the object to which the iterator is pointing. This is what is required but
perhaps &*it would be simpler. Both forms generate exactly the same
machine code and, therefore, have the same effect.

It would appear that the student is attempting to use a try-catch block
to detect the use of invalid iterators and pointers. Unfortunately, this
approach will not work. By default, operator std::operator<<()
does not throw and even when configured to throw on errors an invalid
iterator or pointer will not be recognised as an error. Comparing for
equality invalid iterators will not throw an exception either.

The best recourse the student has is to compile the program in debug
mode and to define _GLIBCXX_DEBUG if using gcc. Any compiler errors
and warnings should be addressed. Once the program compiles without
warnings, it can be run and tested. Any run-time diagnostic messages
will indicate undefined behaviour and can be corrected. After thorough
testing and the correction of all run-time deficiencies, the program can
be compiled in release mode (and with _GLIBCXX_DEBUG not defined)
if desired.

Incidentally, the iterator it1 is declared as const. This means that it
cannot be modified to point to another object. This is consistent with the
behaviour of the student’s program. Additionally, the iterator is never
used to change the value of the object it points to. This feature can be
expressed in the code by declaring a const_iterator as opposed to an
iterator. This can be easily achieved, when using auto, by employing
cbegin() rather than begin().

As well as iterators, pointers can also be declared so that they can point
only to their initialised object. This is achieved by the use of const to
the right of the asterisk in the declaration of the pointer. In the case of the
student’s code, the declaration (and initialisation) becomes const auto
* const ptr = it1.operator->(). Note that having initialised
it1 with v.cbegin(), the const to the left of the asterisk in the

https://en.cppreference.com/w/cpp/container/vector/erase

Jan 2023 | {cvu} | 11

declaration of ptr becomes redundant. If the iterator cannot change its
pointed-to object, then neither can the pointer. The use of the redundant
const does no harm and may even enhance readability.

Instead of writing an explicit for-loop to set the elements of vector, v,
the following statements are preferred as, almost certainly, more efficient
machine code will be generated. Things will be even simpler when the
range-based iota is introduced in C++23.
 std::vector<size_t> v(10);
 std::iota(v.begin(), v.end(), 0);

Finally, exceptions should be caught by const reference. Therefore, the
statement in the student’s program should be:
 catch (const std::exception & ex)

Commentary
Visual Studio enables additional checking of standard library objects
when a debugging build is selected. Other compilers also have similar
functionality, but it may not be selected automatically. One reason for
this is that tracking the state of containers and iterators can rapidly get
very expensive and render such a build almost unusable; deciding which
checks you should get ‘by default’ is a design choice between various
competing forces.

For gcc this checking is not automatically selected, but you can enable
it by defining the pre-processor symbol _GLIBCXX_DEBUG, as James
explained above. The output that results for me looks like this:
 *it1: 5 ptr: 0x7fffcd050f58
 *it2: 6 ptr: 0x7fffcd050f58
 *ptr: 6
 /usr/include/c++/7/debug/safe_iterator.h:270:
 Error: attempt to dereference a singular iterator.

 Objects involved in the operation:
 iterator "this" @ 0x0x7fffd56e70a0 {
 type = __gnu_debug::_Safe_iterator ...
 state = singular;
 references sequence with type
 'std::__debug::vector<unsigned long,
 std::allocator<unsigned long> >'
 @ 0x0x7fffd56e7190
 }
 Aborted (core dumped)

The intent for MSVC is to get similar output, but it so happens that (as
Paul explained) the debugging code itself is missing a check and so the
program simply aborts. However, if you are in a debugger, the faulting
location does give a pretty clear indication of the problem with the code. I
considered this a bug in their debugging iterator – as did Paul Floyd – and
I have raised a P/R against the <vector> header to get this improved in
the future. (I didn’t raise the P/R until after the deadline for this CVu…) I
note that Paul’s proposed wording exactly matches mine – a good micro-
example of ‘independent development’ not resulting in independent code.

Compiler and library writers have put in a lot of effort to enable such
debugging, so knowing how to enable it for your own codebase can detect
quite a few problems when you are testing – and if you are able to build
your code with multiple compilers this can further increase the testing of
your code. Of course, other tools can also be used to help find problems
like this one, but those that are supplied as part of the compiler do have
certain obvious advantages! Paul’s experience with both valgrind and
sanitisers also shows that no tool seems to be able to find everything.

The code also demonstrates an advantage of using a class – the iterator
– over a raw pointer as the behaviour of the class can be customised to
provide additional checking much more easily than with a raw object. In
general programming at a higher level of abstraction can help tooling as
the intent of the constructs being used is clearer.

The Winner of CC 138
Both entries identified the root cause of the problem and also provided a
way to make the program valid.

They also noticed the incorrect comment in the code. Some comments
have a nasty way of ‘rotting’. When a comment describes behaviour of
the code itself – as here – one option would be to replace the comment
with code. In this example, which is a test case, that immediately makes
the code self-documenting.

James additionally went into a bit more detail about the various ways to
making an iterator (and a pointer) const-correct, which was useful. He
also pointed out the non-idiomatic catch statement which takes a copy
of the throw object, (although he did not explain why this is better – the
original code catches a ‘slice’ of the thrown exception object, which loses
information about the exception.)

On balance I felt that James’ critique was the better one, so I have awarded
him this issue’s prize.

Code Critique 139
(Submissions to scc@accu.org by Feb 1st)

I’m trying to implement mean and standard deviation in C but my
program is not printing what I expect. I also get different answers
with MSVC and GCC.

When running with input 1 2 3 4 5 6 7 8 9 10.

Expected: 5.5 3.02765

GCC: 5.500000 2.549510

MSVC: 5.500000 -256.000000

The code is in Listing 2.

You can also get the current problem from the accu-general mail list
(next entry is posted around the last issue’s deadline) or from the ACCU
website (https://accu.org/menu-overviews/journals-overview/).

This particularly helps overseas members who typically get the magazine
much later than members in the UK and Europe.

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char **argv) {
 double *ptr = malloc(argc * sizeof(double));
 for (int i = 1; i < argc; i++) {
 sscanf(argv[i], "%lf", ptr + i);
 }
 double mean = 0;
 for (int i = 1; i < argc; i++) {
 mean += ptr[i];
 }
 mean /= argc - 1;
 double variance = 0;
 for (int i = 1; i < argc; i++) {
 variance += pow(ptr[i] - mean, 2);
 }
 double stdev = sqrt(variance / argc - 1);
 printf("Sample mean: %lf, stdev %lf\n",
 mean, stdev);
 return 0;
}

Listing 2

https://accu.org/menu-overviews/journals-overview/

12 | {cvu} | Jan 2023

Report on Homework Challenge 13
Francis Glassborow reports on the last challenge

and sets another.

I have only had two submissions at the time of writing. I suspect this is
because I forgot to include a deadline. On average submissions arrive
at the deadline plus/minus two days so clearly having a submission

date is important.

The exception to the above is Silas whose submission is usually within
a couple of days of his receiving the print issue of CVu. This time he
promptly delivered a very terse solution in Python 3. That choice of
language was governed among other things by a desire to use Unicode
to represent the ‘digits’ (not sure that we have a word to refer to the
individual elements of a number that is neither in base ten (digit) or base
two (bit) – perhaps readers might like to contribute suggestions).

James Holland hit the unspecified but intended deadline with a submission
that is close to my basic expectations (my original program for my QL
was in Basic).

Let me outline a few ideas taken from my memory of the original
enhanced by more modern facilities.

As James noted, the string representing the number grows so we need an
expandable container. Though the problem is essentially a property of a
string representing a number, actually using a string is suboptimal as it
would need to be decomposed into individual characters (digits) to process
both reversing and, more importantly, addition. James noted that a C++
vector can be expensive to extend but seems to have missed the facility to
reserve space and so avoid expensive relocation when the vector needs to
grow. However, I think that vector is the wrong container exactly because
of its growth mechanism. C++ provides other standard containers that
have better performance when growing. My choice would be a deque
(double ended queue) but without benchmarking I cannot estimate how
that would perform against a vector with a very large reserve.

The issue raised by Silas is well answered by James. Actual printed
representations are only needed for input or output. Providing the
numerical values of the individual place rather than encoding these as
distinct symbols seems sensible. However, if you want a more traditional
representation for input and output (internally numerical representation is
clearly the right way forward) then my choice would be a lookup table to
map symbols to values.

Now, here is an idea from my original program: do not bother to reverse
the string! Assuming that the string has (n+1) digits simply process the
collection by adding element x to element (n-x) for values of x from zero
to (n+2)/2 (rounded down) and store the result in both position x and
position n-x. That assumes we are using a zero based position. If you find
this confusing, try using a paper and pencil to see how it works.

Note that the above procedure is independent of the base.

Now set a carry flag to zero and do a single pass from the units place
upwards checking each entry to see if it is >= the base. If it is, subtract
the base and increment the next entry by one (and set the overall carry
flag). After this pass check the carry flag. If it is still zero, you are done
– the result was a palindrome. Unfortunately, the existence of a carry
somewhere does not preclude the result being a palindrome (e.g. 47 +

74 = 121). I suspect that exceptions for longer strings are rare but not
non-existent (e.g. 407 + 704 = 1111). (It would be interesting to have the
program highlight these when they occur.)

We need to check the container by comparing each position x with
position n-x for x from zero to (n+2)/2 (rounded down). Actually, that
will include one superfluous comparison when (n+1) is odd. Note that
this requires exactly the same transversal as that used in stage 1 So, why
not combine them?

This gives our inner processing loop something like (using an old C++
for loop):
 bool palindrome = true;
 for bool carry = false;
 (i=0; i<= (n+2)/2; i++){
 if (digit[i] != digit[n-i] palindrome = false;
 digit[i] += digit[n-i], digit[n-i] = digit[i];
 }
 /* and now do the adjustment for base which may
 need an extra element for the container. */

As James observed, it makes more sense to have a big endian representation
with the largest place value at the end.

Enough from me.

From Silas Brown
Here’s a brief go at HW13 (Listing 1), fitting in 48 columns for publication.
The problem says to use characters for digits up to base 100, but there’s
only 95 characters in ASCII, so I’m using Python 3 for Unicode. I assume
no combining diacritics.

Thanks. Silas

Francis: any ordinary student who submitted that should definitely fail .

From James Holland
This has been quite a challenge for the student. I am informed that he
spent an inordinate amount of time writing and rewriting the code. An
enjoyable experience, no doubt. The student has come up with a way of
entering a number in just about any integer base. As it stands, the program
has no run-time human interface. The range of numbers to test, the
number base and the maximum number of iterations have to be entered in
the source code and the program compiled and run. The range of numbers
to be tested is entered with digits separated by a comma. This allows
numbers of any base to be entered. For example, 123456710 is equal to
14,13,4,14,1017 and so can be entered as {14, 13, 4, 14, 10}. The number
base is set by assigning the Number::base variable.

b=int(input("Base to use for the numbers: "))
if b<=36: c="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
else: c=input("Characters to use for digits: ")
assert b<=len(c), "Not enough characters provided"
assert len(c)==len(set(list(c))), "Duplicate char"
s=list(input("Starting number: ")) ; i,l=0,list
assert all(x in c for x in s), "Unknown character"
while not s==l(reversed(s)):
 t,u,n,r,z,s=s[:],1,0,l(reversed(s)),c.index,[]
 while t: n,u=n+u*(z(t.pop())+z(r.pop())),u*b
 while n: s,n=[c[n%b]]+s,n//b
 print ("".join(s)) ; i += 1
print (f"Palindrome after {i} iterations")

Listing 1

FRANCIS GLASSBOROW
Since retiring from teaching, Francis has edited CVu,
founded the aCCU conference and represented BSI at the
C and C++ ISO committees. He is the author of two books:
You Can Do It! and You Can Program in C++.

Jan 2023 | {cvu} | 13

The digits of a number are stored in a vector, each element being of
type int. The length of the vector is equal to the number of digits in the
number. When two numbers are added there exists the possibility of a
carry making the resulting vector one element longer. Adding the extra
element could cause the vector to reallocate memory. This is a relatively
time-consuming operation. It was, therefore, decided to create the result
vector with one extra element before performing the sum. If there is a
carry, the extra element would be used. If not, the extra element would
have to be removed. This could cause another problem. If the extra
element was at the beginning of the vector, all the other digits would
have to be shifted down one position if there was no carry. To alleviate
this problem, the extra element is located at the end of the vector. Now, if
there is no carry, the last element of the vector can be removed. This is a
fast operation as no reallocation occurs. Unfortunately, to have a sensible
number layout within the vector requires that the least significant digit
has to be at the beginning of the vector and the most significant at the
end. This is opposite to how one would normally represent the digits of a
number in a vector. To compensate, the order of digits has to be reversed
when entered and printed. This scheme seemed a good idea at the time but
any advantage has not been verified.

Although the program is not particularly user-friendly, it does provide a
basis from which a program more tailored to the user’s requirements can
be written (Listing 2).

#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
class Number{
public:
 Number(std::initializer_list<int> num);
 [[nodiscard]] bool is_palindrome() const;
 Number & operator++();
 void reverse_and_add();
 friend std::ostream & operator<<(
 std::ostream & os, const Number & num);
 friend bool operator<(const Number & lhs,
 const Number & rhs);
 inline static int base = 10;
private:
 std::vector<int> number;
};

Number::Number(const std::initializer_list<int>
num) : number(num){
 // Make sure all digits are less than the base.
 assert(std::ranges::all_of(num, [](const int i)
 {return i < base;}));
 std::ranges::reverse(number);
}
bool operator<(const Number & lhs,
 const Number & rhs)
{
 if (lhs.number.size() < rhs.number.size())
 return true;
 if (lhs.number.size() > rhs.number.size())
 return false;
 return std::lexicographical_compare(
 lhs.number.crbegin(), lhs.number.crend(),
 rhs.number.crbegin(), rhs.number.crend());
}
Number &Number::operator++(){
 auto iterator = number.begin();
 int carry = 1;
 while (carry == 1) {
 if (iterator == number.end()) {
 number.push_back(1);
 carry = 0;
 }
 else {
 if (*iterator + 1 == base) {
 *iterator = 0;
 ++iterator;
 }
 else {

Lis
tin

g 2

 *iterator += 1;
 carry = 0;
 }
 }
 }
 return *this;
}
void Number::reverse_and_add(){
 auto number_iterator = number.cbegin();
 auto reverse_iterator = number.crbegin();
 std::vector<int> result(number.size() + 1, 0);
 // Add an element in case of a carry.
 auto result_iterator = result.begin();
 int carry = 0;
 while (number_iterator != number.cend()) {
 if (const auto sum = *number_iterator +
 *reverse_iterator + carry; sum >= base) {
 *result_iterator = sum - base;
 carry = 1;
 }
 else {
 *result_iterator = sum;
 carry = 0;
 }
 ++number_iterator;
 ++reverse_iterator;
 ++result_iterator;
 }
 if (carry == 1) {
 *result_iterator = 1;
 }
 else {
 result.erase(result_iterator);
 }
 number = std::move(result);
}
std::ostream &operator<<(std::ostream & os,
 const Number & num){
 std::for_each(num.number.crbegin(),
 num.number.crend(), [& os](const int n) {
 if (n >= 10){ // If the digit cannot be
 // represented by the characters '0' to '9'
 os << '(' << n << ')';
 }
 else {
 os << n;
 }
 });
 std::cout << " base " << Number::base;
 return os;
}
bool Number::is_palindrome() const{
 return std::equal(number.cbegin(),
 number.cbegin() + ssize(number) / 2,
 number.crbegin());
}
int main(){
 const int limit = 10’000;
 Number::base = 10;
 for (Number number{0}; number < Number{2, 0, 0};
 ++number) {
 Number combined_number = number;
 int iterations = 0;
 while (iterations <= limit) {
 if (combined_number.is_palindrome()) {
 std::cout << number << " becomes "
 << combined_number
 << " which is a palindrome after "
 << iterations << " iterations\n";
 break;
 }
 combined_number.reverse_and_add();
 ++iterations;
 }
 if (iterations > limit) {
 std::cout << number
 << " did not become a palindrome within "
 << limit << " iterations\n";
 }
 }
 std::cout << "Finished\n";
}

Listing 2 (Cont’d)

14 | {cvu} | Jan 2023

I think that if this code was presented to the student’s tutor, it would be
realised that it was not written solely by the student and that significant
assistance was received. Providing the student understands and can adapt
the advice given then it is all to the good. We all seek ideas and inspiration
from the work of others, after all.

In conclusion
I think that Silas clearly wins on the basis of obfuscation. However, I like
James’ approach and it has much more potential for development. For
anyone who is not entirely up to date with their C++, note that James is
using the now authorised thousands separator.

If anyone reading this missed the unstated deadline. Please do send your
code in for publication next time.

Homework Challenge 14
This one works far better if you can do it with coloured output, but if you
cannot, black and white will do.

I suspect that most readers are familiar with Pascal’s Triangle but if you
aren’t you can find out what you need for this homework challenge at
https://en.wikipedia.org/wiki/Pascal%27s_triangle

You only need the first two paragraphs of that entry and the rest might
be overload for those whose mathematical studies were long in the past.

The challenge is to write a program that outputs the first 32 lines of
Pascal’s Triangle correctly formatted but using a finite or modulo
(sometimes called a clock or remainder) arithmetic. In these, you carry out
normal mathematical operations of add, subtract and multiply (division

is more problematical as the answers have to be derived from reversing
multiplication rather than using traditional division) and then reduce the
answer by the modulus. Confused? Well here are a few examples:

In modulus 7:
3 + 4 = 0
5 + 4 = 2
1 - 6 = -5 (which becomes 2)
4 × 4 = 2 (16/7 gives remainder 2)

For the purpose of this exercise, you only need to deal with addition. The
program needs to produce a well formatted output where the entries have
been reduced by the selected modulo, from 2 to 20. The more interesting
results are where the modulus is a prime number and the resulting patterns
are more clearly seen if you can colour code the output (from black for
zero to violet for the highest value).

This is an exercise that my maths students used to enjoy doing by hand.
It reveals some of the hidden patterns that Pascal’s Triangle is richly
endowed with.

By the way, if you had not realised, modular arithmetics are related to
representation in different bases where you discard all but the units place.
However, division is still more problematical – there is always an integer
answer but sometimes there is more than one.

Have fun and send your results to me at francis.glassborow@btinternet.
com by 1st February 2023, with the subject of the email being HW14.

Report on Homework Challenge 13 (continued)

GUY DAVIDSON
Guy Davidson is the Principal Coding Manager at
Creative assembly. He has been writing games for
about 75% of his life now. He is climbing through his
piano grades and teaching Tai Chi while parenting in
Hove and engaging in local political activism.

The Standard Report
Guy Davidson reports on the recent face-to-face

meeting in Hawai’i.

On November 7th, the third WG21 plenary of 2022 was convened in
Kona, Hawai’i. It was the first face-to-face WG21 meeting since
Prague in February 2020. It was also our first hybrid meeting, and

I would like to start by expressing my appreciation and gratitude for the
team of people who made it possible, and briefly describe the process.

Earlier in the year, the committee leadership decided to make hybrid
meetings work. An approach was trialled at CppCon in October,
which taught us a lot about how to conduct things and about the kind
of equipment we would need. Eventually, we ended up with slightly
different arrangements in each room. We had zoom meetings for each
room, but the cameras and microphones were configured according to the
audience and size.

It all worked quite well, really. I spent most of my time in the Library
Evolution Working Group (LEWG) where there were a couple of
microphones, a camera, and a screen shared for zoom participants
containing the topic under discussion. Participants were sufficiently
disciplined not to talk over each other or engage in side-conversations,
both of which make it very hard for people to participate remotely. The
general feedback from all participants was very positive, and although
there are still a few kinks to iron out, I foresee general improvement.

You should consider participating remotely. Prior to hybrid meetings you
would commit to spending a week away from your day job, arranging
flight, accommodation and subsistence, and making yourself useful over
the entire period. It is now feasible to simply join those sessions which are
relevant to you and which you can meaningfully contribute to.

Time zones and scheduling were problematic. Hawai’i is ten hours
behind GMT which meant that any afternoon sessions were out of reach
to all but the most heroic. Congratulations must go to Jonathan Wakely,
the chair of Library Working Group (LWG) and a UK resident who was
available throughout the meeting while remaining at home. While LEWG
stuck to its schedule, Evolution Working Group (EWG) was a little more
free flowing with its subject matter and some proposals were discussed
unannounced.

By the end of the week, 27 straw polls were scheduled for the closing
plenary. As you might imagine, being so close to the ship date for the next
standard, there were only subtle changes. Core Working Group (CWG)
offered 12 straw polls, of which nine were accepting defect reports and
amending the working draft appropriately, and three were National Body
(NB) comment resolutions. The last of these amends the behaviour of
range-based for loops.

I have singled this out for closer examination because it resolves a
somewhat confusing aspect of this feature. Particularly, the lifetime of
temporary objects in the for-range-initializer is extended until the end of
the loop. This improves the usability of the range-based for loop since

https://en.wikipedia.org/wiki/Pascal%27s_triangle

Jan 2023 | {cvu} | 15

Reviews
The latest roundup of reviews.

We are always happy to receive reviews of anything that may be of use, or of interest, to software
developers. The emphasis will tend to be on technical books, but we are also interested in less
technical works – for example the humanities or fiction – and in media other than traditional print
books.

Do you know of something you think deserves – or does not deserve – a wider audience? Share it
here. We’re keen to highlight differing opinions on the same work, so if you disagree with a review
here, do send in your own! Contact Ian Bruntlett at reviews@accu.org.

The Professional
Agile Leader
By Ron Eringa, Kurt Bittner and Laurens Bonnema,
published by Addison-Wesley Professional,
website: https://www.pearson.com/en-us/
subject-catalog/p/professional-agile-leader-the-
growing-mature-agile-teams-and-organizations/
P200000000238/9780137591510,
ISBN: 978-0137591510
Reviewed by Alan R Griffiths
Verdict: Recommended

I’m sure that many of you will, like me, have experience of introducing
Agile processes and ideas into organizations. My experience is that it
is possible to be effective in this at the scale of a software development
team, or of a few teams, and that it gets rapidly harder to make progress
as more of the organization is affected. Of course, I’ve usually seen
this from the point of view of a team member or practice lead within a
development group.

This book views the organizational transformation from a different
perspective: that of Doreen the CEO of an organization embarking on
an agile transformation. From this perspective, it explores many of the
reasons for the difficulties I’ve encountered and shows how, with the
right leverage, these can be resolved.

Doreen drives the transformation of that organization from a ‘traditional’
model to an ‘agile’ one. She is guided along the way by the CEO of
a new subsidiary that has already adopted agile thinking. Despite the

different perspective, I recognise many of the struggles along the way as
points at which organizations I’ve worked with have failed.

There are some minor failures along the way, but mostly successes;
to the extent that it almost seems too easy. Mostly, I have found it far
harder to get buy-in from senior management than it appears from the
‘conversations’ between the heroes of this book. However, the solutions
proposed are plausible, the results reasonable and, I’m sure, based
upon the experience of the authors. Expanding the discussions to the
extent that I have experienced in real life would have inflated the book
unreasonably.

This book gives a clear overview of an agile transformation in
an organisation with many of the real-life resistances that will be
encountered. It should not be mistaken for a complete guide to every
problem that will ever be encountered, but it does provide waymarks
that will guide the way.

I love it, it is not heavy going and gives me hope
of achieving more in the future!

destructors of some temporary objects are invoked later. See Listing 1 for
an example.

This change will now be detailed in Annex C of the standard, which
considers compatibility between older versions and the current version.

Meanwhile, in library, we decided to bring the Library Fundamentals TS
series to a close with version three. The rationale is that we now have a
train model where new versions are shipped every three years and the
need for a separate testing ground is less obvious. Delivering a feature
from the TS is simply a matter of importing it into the standard, so there
is no real need for it to continue to exist as a staging post. Its existence has
slowed the adoption of new library features located therein since it seems
to be a lower priority. LEWG will now standardise with confidence rather
than tentatively forward to an experimental holding area.

The concurrency TS, on the other hand, saw new features being added,
particularly byte-wise atomic memcpy from P1478 and asymmetric fences
from P1202. The remaining straw polls were NB comment resolutions.

The careful brevity of the work in Kona brings me to the end of this
shortened edition of the standard report. In the next edition I will discuss
the events of the Issaquah meeting, where we expect to ship C++23 to a
waiting world. I will also look at some upcoming proposals for C++26.
Do join me then.

void f()
{
 std::vector<int> v = { 42, 17, 13 };
 std::mutex m;
 for (int x : static_cast<void>(
 std::lock_guard<std::mutex>(m)), v)
 // lock released in C++ 2020
 {
 std::lock_guard<std::mutex> guard(m);
 // OK in C++ 2020, now deadlocks
 }
}

Listing 1

The Standard Report (continued)

https://www.pearson.com/en-us/subject-catalog/p/professional-agile-leader-the-growing-mature-agile-teams-and-organizations/P200000000238/9780137591510
https://www.pearson.com/en-us/subject-catalog/p/professional-agile-leader-the-growing-mature-agile-teams-and-organizations/P200000000238/9780137591510
https://www.pearson.com/en-us/subject-catalog/p/professional-agile-leader-the-growing-mature-agile-teams-and-organizations/P200000000238/9780137591510
https://www.pearson.com/en-us/subject-catalog/p/professional-agile-leader-the-growing-mature-agile-teams-and-organizations/P200000000238/9780137591510

16 | {cvu} | Jan 2023

accuACCU Information
Membership news and committee reports

View from the Chair
Geoffrey Daniels
chair@accu.org
Over the last few months I have noticed AI
models gaining more and more column inches
on news websites. I am someone who works in
computer vision, an area that heavily utilises
machine learning, so I thought it is about time
for me to give my view on our future robotic
overlords. So, take it away GPT-3…

The brief
Write an article for the ACCU titled a ‘View
from the Chair’, containing insights into the
world of software engineering. This article
should be about 500 words long and focus
on dissecting the topic: ‘recent machine
learning advances’. Include information
about the following topics: explainable AI,
trusting closed source systems, GPT-3 for
text generation, Stable Diffusion for image
synthesis, NERF for 3D modelling, solving
advent-of-code, and will AI replace software
engineers.

The article
As the chair of the ACCU, I have had the
opportunity to observe and participate in
the rapidly evolving world of software
engineering, particularly in the realm of
machine learning. In recent years, we have
seen a multitude of advances in this field,
and it can be difficult to keep up with all the
new developments. In this article, I will delve
into some of the most notable recent machine
learning advances and explore the implications
they have for the software engineering
industry.

One of the most buzzed-about advancements
in machine learning is explainable AI, which

refers to artificial intelligence systems that can
provide clear, understandable explanations
for their decision-making processes. This is
an important development because it allows
us to trust closed source systems, which
are systems whose inner workings are not
visible to us. With explainable AI, we can be
confident that the system is making decisions
based on logical reasoning, rather than relying
on black box algorithms that we cannot fully
understand.

Another notable advancement is the use
of GPT-3 for text generation. GPT-3, or
Generative Pre-trained Transformer 3, is a
language processing AI developed by OpenAI
that can generate human-like text with a high
level of accuracy. This has the potential to
revolutionize industries such as journalism,
where GPT-3 could be used to generate news
articles or reports. However, it also raises
concerns about the potential for AI to replace
human writers and journalists.

Stable Diffusion is another machine learning
technology that has garnered attention in
recent years. This AI system is designed for
image synthesis, meaning it can generate
realistic images based on input data. This
technology has the potential to revolutionize
industries such as film and video game
development, where it could be used to create
realistic 3D environments and characters.

NERF, or Neural Radiance Fields, is a machine
learning system designed for 3D modelling.
It can generate detailed 3D models of objects
based on input data, and has been used to
create realistic 3D models of everything from
furniture to human faces. This technology
has the potential to greatly streamline the 3D

modelling process, making it faster and more
efficient.

Another recent machine learning development
that has garnered attention is the use of AI to
solve advent-of-code challenges. Advent-of-
code is a series of programming challenges
that are released every December, and AI
systems have been used to solve some of
these challenges with impressive speed and
accuracy. While this is a great achievement for
AI, it does raise concerns about the potential
for AI to replace human programmers in
certain tasks.

Finally, the question on everyone’s mind is:
will AI replace software engineers? While AI
has the potential to automate certain tasks and
streamline processes, it is unlikely to fully
replace human software engineers. While AI
can handle certain tasks with greater speed and
accuracy, it lacks the creativity and problem-
solving skills that humans possess. In the end,
it is likely that AI and software engineers will
work together, with AI handling certain tasks
and humans handling others.

In conclusion, recent machine learning
advances have the potential to revolutionize
the software engineering industry. From
explainable AI to NERF for 3D modelling,
these technologies have the power to
streamline processes and automate certain
tasks. However, it is important to keep in
mind that AI is not a replacement for human
software engineers, and that the two will likely
work together in the future.

The reaction
Both terrifying and amazing.

Vote for your favourites:

 � Best in CVu

 � Best in Overload

Select up to 3 favourites
from each journal.

Voting open online at:

Best Articles 2022

https://www.surveymonkey.co.uk/r/ZJ3TF9P

https://www.surveymonkey.co.uk/r/ZJ3TF9P

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

Join ACCU
Run by programmers for programmers,
join ACCU to improve your coding skills

www.accu.org

A worldwide non-profit organisation

Journals published alternate months:

CVu in January, March, May,
July, September and November

Overload in February, April, June,
August, October and December

Annual conference

Local groups run by members

professionalism in programming

Join now!
Visit the website

	Technical Debt is a Burden
	The Human Touch
	The Meaning of Words – Part 9: Libraries, Linkers and Loaders
	Fluent C
	Reporting An MSvc Runtime Library Bug
	Code Critique Competition 139
	Report on Homework Challenge 13
	The Standard Report
	Reviews
	Membership news

