
Overload issue 48 april 2002

contents

credits & contacts

Editor: John Merrells
merrells@acm.org
241 Heartwood Lane,
Mountain View,
CA 94041-11836,
U.S.A

Website: http://www.accu.org/

Readers:
Ian Bruntlett
IanBruntlett@antiqs.uklinux.net

Mike Woolley
mike@bulsara.com

Phil Bass
phil@stoneymanor.demon.co.uk

Mark Radford
twonine@twonine.demon.co.uk

Thaddaeus Frogley
Thaddaeus.frogley@creaturelabs.com

Membership and subscription
enquires:

David Hodge
membership@accu.org
31 Egerton Road
Bexhill-on-Sea, East Sussex
TN39 3HJ, UK

Advertising:
Peter Goodliffe
ads@accu.org
4 Malvern Road
Cherry Hinton
Cambridge CB1 9LD, UK
01223 518579

Thinking about “reuse” by Allan Kelly 5

The C++ Template Argument Deduction by Andrei Iltchenko 9

Exceptional Java by Alan Griffiths 15

C++ Exceptions and Linux Dynamic Libraries by Phil Bass 18

From Mechanism to Method - Function Follows Form by Kevlin Henney 19

Template Titbit - A Different Perspective by Phil Bass 23

4

Overload issue 48 april 2002

Editorial
Engineering Notebooks

I read an article in 1994 espousing the wonders of keeping a work jotter. I tried it for a week or two,
but like diary keeping after new years day, it was a good idea that just wouldn’t take hold.

Then I started working with a compulsive work diarist. He’d trained as a scientist, and consequently
knew more about the ear canal of the common cricket then your average software engineer. Thankfully
he also knew more about software engineering then your average software engineer too. He had an
array of A4 books on his shelf, neatly labelled and dated. Every meeting, decision, conversation,
thought, was written up, in the style of the scientific method, with a green tortoise shell fountain pen.
Consequentially his knowledge of our product, its history, and who said what, where, and when was
encyclopaedic.

Spurred by this inspiration I resolved to start an engineering notebook at the start of my very next
major project. Two years later I bought myself the thickest A4 notebook available and set out to
document my journey through a major piece of software development. I approvingly noticed that my
VP of engineering carried a notebook to keep track of the many intertwined projects within our division.
But, her notebook was A10. Size matters. My notebook was too big. It couldn’t be with me always.
My entries petered out.

Three years later, at the inception of my next project, I went for a midsize, thin, A5 college notebook.
Success! I have now been a compulsive note taker for two years. And, I’m not going back to my
unenlightened self.

I find it serves multiple purposes for me, over different time frames. In the short-term, day-to-day and
week-to-week, I mostly maintain to-do lists, and project status information. Interspersed with this is some
commentary, and description of problems that arise, the possible directions to take, and the currently
preferred solution.

In the mid-term, month-to-month, I scan back through the pages seeking threads of thought that went
un-concluded. Or, for a reminder of the problems that were hastily swept under the carpet in the interests
of unhindered forward progress. [The code written in the rush of pub lunch confidence.]

In the long-term, year-to-year, I get some historical perspective over how the project progressed, both
of the team and of myself. Writing my end of year appraisal is no longer the soul-searching agony of:
‘what the hell have I been doing all year, all that time and only a few thousand lines of code to show for
it.’ I now have a day-by-day, blow-by-blow record of what I was doing.

Reading your own forgotten words a year later can be quite enlightening. From how incredibly insightful
you can be about the final form of the project, to how incredibly naïve and deluded you were on how
much effort it would actually take.

Professional advancement comes from considering feedback about your performance, from your
management, from your peers, and from your own introspection. There’s none as devout as the redeemed,
so I fervently recommend the maintenance of an engineering notebook. Start yours today.

I
t was years before I started keeping notes. Even in my college days I rarely took notes,
relying on handouts and memory instead. In my first few professional jobs I just did my

day-to-day thing. I had the one project, and I always knew what state it was in. I felt no
need of notes. I was foot-loose, fancy free, and unencumbered.

Apologies

Apologies to Björn Karlsson for two mistakes made in the development and presentation of his Boost
article published in Overload 47. Firstly, a draft of the article was published in place of a more polished
final revision, and more noticeably the header and byline of the article were omitted. Graciously Björn
has accepted our apologies and has offered to write a follow up article covering one of the boost libraries
in more detail. I hope that other boost library authors will follow suit in discussing their fine work within
the covers of Overload.

John Merrells
merrells@acm.org

Notes

http://www.meadweb.com – My brand of notebook. I suggest green for work, and blue for your
Overload articles ;-)

Copy Deadline

All articles intended for publication in Overload 49 should be submitted to the editor by May 1st, and for
Overload 50 by July 1st.

5

Overload issue 48 april 2002

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Thinking about “reuse”
By Allan Kelly

Call me a heretic if you like, but it seems to me that “reuse” –
that Holy Grail of software coders – seems to be a false idol. I’m
not alone in this, Kent Beck and the Extreme Programming
crowd have been denying reuse for several years in their efforts
to “do the simplest thing that works” and Kevlin Henney
[Henney2002] has questioned some assumptions too.

What is happening here? Well for me the serious doubts set in
last year when reviewing Generative Programming by Czarnecki
and Eisenecker [Czarnecki+2000]. For me, their cure was worse
than the disease!

Further, times are changing and so are the economics of
software. We are no longer confined to traditional models of reuse.
The development of web services means there are new models
appearing. Got a good library of chemical simulators? Why not
SOAP enable it and charge per use from your web server? And why
not experiment with new ways of funding development? Chris
Rasch has suggested using the bond market to fund software
development [Rasch].

How do we get here?

The appeal of reuse is obvious – especially if you have to pick up
the bill for software development. If we could just reuse what we
have already done…

This was one of the early promises of object-orientation. The
idea was that objects represented some kind of entity, which would
be applicable in more than one program. As Czarnecki and
Eisenecker point out, the idea that reusable objects would simply
drop out of a system development proved false.

It transpires that producing an object usable in more than one
system is very difficult, in some cases more than double the
effort. Czarnecki and Eisenecker introduce the idea of
“designing for reuse” and “designing with reuse”. (I agree with
them on everything up to this point. Beyond this, my problem
with Generative Programming is that I don’t see how their
solutions can be used in a real world environment. Much of the
code they produce comes dangerously close to being
unmaintainable.)

This division seems to recall ideas of the “problem domain” and
“solution domain”: in analysing the problem domain we identify
and create objects which could be reused, when working in the
solution domain we take these prefabricated modules to create our
solution.

It appears that finding the right granularity for reuse is somewhat
difficult: function level reuse gave way to object reuse and object
reuse has given way to component reuse. (The word module is so
malleable that I’m deliberately avoiding it here.)

All the time reuse seems almost within our grasp. The truth is,
as an industry we reuse more code than ever before. We make

6

Overload issue 48 april 2002

extensive use of code libraries, code-generating wizards (which are
basically a form of meta programming), cut-and-pasted code, and
packaged applications with macro languages or automation
interfaces. So maybe we are not giving ourselves credit where credit
is due.

So, why do I say reuse is a false
idol?

There are two things wrong with reuse as we generally talk about
it. First, I think we need to look at the costs of reuse. Second,
reuse is a vague term; not only does it depend on who is using it,
but it covers a multitude of ideas.

The cost of reuse

Sometimes costs are obvious: Joe will be tasked with creating a
reusable library of widgets, so the cost is Joe’s salary for the six
months of development. More often the cost of reuse is hidden.
As a developer you will decide to make your object slightly more
generalised than it needs to be, or you will allow for some
obvious enhancement which is not yet required. In effect you are
doing more work than you need to, so the cost is perhaps 20% of
your salary.

In either case you should have some idea of when the payback
will come – a few weeks? months? Are you sure the payback will
come at all? Even if it does come, who will see the benefit?

In addition to the financial cost there is the cost of work
foregone. If a less generalised object had been produced in half the
time you would be free to move onto the next work item.
Economists call this “opportunity cost”, it is the cost of not doing
something else.

Building more generalised code, frequently (but not always)
leads to more complex code. By its nature this is more prone to
errors and more difficult to maintain.

Further, can we be sure that the additional as yet unused
functionality is tested as well as the functionality that is to be used?
If I create a Widget class with three methods, and then I decide to
add an extra three methods (which I’m sure we are going to need
in future) do I test the second three as completely as the first three?

There are other issues with this scenario:
● If we change the class before we get to use the three extra

methods do we need to change them?
● If Fred takes over the class from me, won’t he be wondering what

is going on?
● If we need to port the class, or rewrite it, or refactor it, we have

twice as many methods to work with than we actually need.
If these methods aren’t used we have wasted our time writing
them. Even if they are used, between creating them and using
them we have to support them, they represent the “cost of carry”
– to borrow another term from economists.

Finally, consider those three methods again. When they are
finally used they aren’t even being reused – they are being used for
the first time! Sure, the Widget object is being reused but are we
putting the cart before the horse here?

What does reuse actually mean?

The next problem with reuse is the very word itself. In part this
varies according to your perspective. If I create my Widget class
for program Foo, and I use it again in program Bar, then I have
reused it because I have used it before. But if you were to write
program Bar are you reusing Widget or just using it?

Adding “re” to the front of the word “use” doesn’t actually buy
us very much. When you got on the number 65 bus this morning,
were you using the bus to get to work? Or were you reusing the bus
to get to work?

OK, maybe I’m playing semantic games here but when we talk
about code reuse we cover a lot of ground:

Reuse in the car industry
The car industry has many differences to the software industry.
Most obviously in production costs; once your magnum opus
software is complete production costs are minimal, just the cost
of CD duplication or server bandwidth. In the motor industry
completing the design is but the first stage: production costs
dominate.

In recent years just in time assembly lines and lean practices have
revolutionised car production, while increased competition between
manufacturers has led to increased product diversification and a
reduction in the lifetime of models. Consequently, competitive
advantage rests with those manufacturers that can produce a diverse
range of frequently updated models. This places the onus back on
design.

In an effort to reduce design costs manufacturers have turned to
reuse: within seven years Volkswagen moved from making 30
different models on 16 floorpans to 54 models on 4 floorpans [The
Economist, 27th April 2000], look how the Passat is an Audi A4, is
a Skoda Octavia.

With this background Cusumano and Nobeoka [Thinking
Beyond Lean, Freepress, 1998] have looked at the design process,
and in particular how design reuse is enabling car companies to
meet this challenge. Although Thinking Beyond Lean was published
in 1998 its lessons are not dated and provide valuable insights into
reusing design and transferring technology between projects.

Almost as vindication, since 1998 we have seen platform sharing
as a major factor behind the Renault-Nissan, Mercedes-Chrysler-
Mitsubishi and Ford-Mazda-Volvo link ups.

Cusumano and Nobeoka identify four development models,
three of which involve transferring technology:
● New design : “projects that primarily develop platforms from

scratch”
● Concurrent technology transfer: “a new project begins to borrow

a platform from a base preceding project before the base project
has completed the design work. Generally, this transfer occurs
within two years”

● Sequential technology transfer : “a project inherits a platform
from a base project that has finished the design work”

● Design modification : “a project that replaces an existing product
without creating a new platform or borrowing a platform from
another production line”

I suggest that these models hold true for software development. A
car platform differs from a software framework in that a platform
is built for a specific product but may be reused with
modification; while a software framework is designed from the
start as a generic environment. Platforms provide greater focus
on the initial project.

Cusumano and Nobeoka concentrate on Toyota, and their use of
development centres and concurrent technology transfer of
platforms between Toyota and Lexus lines. Honda uses more

● using a third party library, maybe even the STL
● using code salvaged from the system we are replacing
● using code from a different project within the company
● developing two programs in parallel and sharing some code
This list could go on, but I hope you get my point. What is use?
And what is reuse? The term reuse is not just overloaded but is
actually pretty devoid of any real meaning!

So where does this leave me?

So far I’ve pointed out that reuse is a good thing. I’ve also claimed
that much of what we do in the name of reuse is wasteful. And
finally, I’ve attacked the word itself. So, where am I going with this?

Reuse has become too generalised, too much of a good thing. I
think we need some new words, some new terms, new ideas to
describe what we are actually talking about here.

OK, so we will end up sounding like management consultants,
but I don’t think one word can really cover all the things we use it
for. (And maybe, just maybe, we will see our salaries get a bit closer
to those of management consultants!)

What else can I say?

Now what I’m about to suggest may come across as jargon-
making, for which I apologise. However, jargon can serve a
useful purpose: to specifically identify an idea or concept. So
here goes, here are some terms and ideas.

Commodity

This is a word I like. I was already playing around with it in this
context before I saw Kevlin Henney’s use of the word in
Overload 47. If we are developing an object, a module, a
component, or whatever, which we are intending to use in several
places, commodity fits: we are developing a piece of software
which can be used in various ways.

Commodity also has a nice overtone of trading; we buy and sell
commodities. This highlights the commercial nature of most
software development.

Another benefit of commodity is that it implies certain properties,
interfaces and standards – some commonality. A television is a
commodity, we can be sure that in the USA it will use one standard,
and in England another – inconvenient yes, but a known issue. We
can develop DVD players to work with this interface for the TV,
we don’t need specialised sets.

Product has similar commercial overtones to commodity but
must be rejected for our purposes. The word carries too much other
baggage. It implies a complete, or completed, item. Commodity is
much more granular.

Technology Transfer

Although this term smells a lot like management-consultant-speak, I
think it is much more accurate than reuse. It clearly states what we
are talking about and is free of the baggage that reuse carries.

As the sidebar outlines, the term is already used elsewhere and
it can be expanded to describe the temporal characteristics of the
transfer.

There are two distinct forms of software transfer that can be
identified:
● Horizontal transfer: this is the sharing of common commodities

between diverse projects, e.g. when we use a strings library or a
threading library we are transferring technology horizontally.
The projects may have little business commonality but they have
a great deal of raw technology in common.

● Vertical transfer: this is the transfer of technology between
similar products, typically within a family of software. For
example, a bank that uses the same evaluation model for equities
options, foreign exchange trading and risk management is
transferring technology vertically.

7

Overload issue 48 april 2002

traditional matrix management practices, but has great success
sharing common platforms between more diverse products –
witness the Civic platform, which is also used for the CRX sports
car and CRV SUV while internationally the same platform was used
by Rover for several years. Elsewhere Chrysler’s continued use of
sequential transfer and design modification in the 1990s reduced
short-run costs, but led to an outdated product line that had
problems competing in the market.

From analysis to coding, software development is an exercise in
design, so comparisons with car design are highly relevant. Perhaps
the biggest lesson is: reuse does not just happen, you have to manage
it, you have to put processes in place to deliver reuse. (Which brings
us back to Conway’s law – “align process and design.”)

My experience is that most code-level reuse is bottom-up, it
comes from engineers designing a part to be reusable. Cusumano
and Nobeoka show how management can be aligned to this process
and how they can encourage it. If you want reusable software you
must align your process, engineers must know how to reuse,
management must be aligned.

Listing the lessons of Cusumano and Nobeoka would take an
article in their own right, better you go and read the book. However,
here are a few ideas:
● Look to design a product with a platform; plan for the platform

to be re-used, follow-on projects should overlap with the original
project

● Organise around product lines not functional abilities
● Use strong, autonomous, project managers to drive projects

forward
● Physically co-locate project teams together
● Integrate R&D with product development
● Keep communication complexity to a manageable level
● The “company memory” approach does not work well, leading

to reuse of old components and infrequent replacement cycles
● Informal “tech clubs” can be used to promote reuse without

formal multi-project management.
● Written documentation is good for transferring component

knowledge but poor at transferring integrative knowledge;
perhaps worryingly, evidence shows that placing a lot of
emphasis on retaining prior knowledge can hamper innovation
and use of new technologies

Finally, sometimes we need to forget about reuse, sometimes
reinventing the wheel brings benefits. Mazda’s Miata (MX-5)
was developed by a “guerrilla team”, physically separated from
the main development groups, freed from reuse restraints, with a
mandate to produce a car to enhance Mazda’s image. Reuse is a
valuable tool, but it is not an end in its own right.

Few, if any, software projects are on the scale of designing a car,
still, there are useful lessons and ideas here. The software industry
is not an island, we must look to established business, management
and engineering models to understand and improve ourselves.

Vertical transfer usually relates to the application domain so it is
more common within organisations, while horizontal transfer,
which frequently relates to the system domain, is more common
between organisations. Program families, as discussed by Parnas
[Parnas1976], are akin to vertical technology transfer.

Most of the well-known libraries available to developers (e.g.
Boost, Rogue Wave Source Pro, Microsoft MFC, etc.) are horizontal
libraries. They deal well-known themes (threads, database
connectivity, GUIs, etc.) which developers are actually rather good
at solving because we deal with the same problems all the time.

A vertical library inhabits a niche that is less well known. For
example NAG’s libraries are less well known than Rogue Wave
because fewer people need advanced mathematical algorithms.
Even so, more developers know about NAG’s libraries than know
about, say, libraries for computing fuel consumption in cars,
because many developers have a mathematical background.

Integration

Integration is the process of embedding the transferred
technology into another development. We may want to
distinguish between a donor project (where the technology comes
from) and a recipient project (where the technology is used.)

Intellectual Property – IP

IP is the stuff that technology businesses are based on.
Increasingly, this is becoming a commodity as patent databases
are set up and companies are encouraged to place their property
on line for others to buy. In the hardware world this is established
practice – think of the way ARM has built an entire business on
the licensing of its CPU technology.

Software can travel the same road. Our intellectual property is
expressed in terms of source code, UML diagrams and
documentation – although a significant part is still locked up inside
developers’ heads.

When we use a third party library we are not just avoiding the
need to write some code ourselves – we are actively seeking to use
others’ work. For example, rather than try and understand the
mathematics behind optimisation theory I just go and buy the work
NAG have done; I use their intellectual property to save myself time
in development, testing and verification.

A word of warning though: some people have taken a dislike to
the idea of IP expressed in software. The problem is not with the
idea of IP itself, but with some of the patents granted, and enforced,
which are giving it a bad name.

Publishing

Once we start to think of source code as a commodity with the ideas
and work contained therein as intellectual property, it becomes
natural to think of publishing the work. Once our IP is expressed in a
commodity, which may be bought and sold, we need to publish it.

Publishing may be external, we may place an advert in Dr Dobbs
and request payments, or it may be internal, we may announce to
our company that we now have a library that performs some
business function, or may be just publishing at the level of our
development group.

Commissioning

To continue the publishing metaphor we may like to think of the
initial request as a commission. One could imagine a large
company, say a bank, identifying vertical application families

with common features, e.g. credit appraisal, and commissioning
one development group to develop a commodity solution which
other groups could also use.

Packaging

Once we have our intellectual property, we must ensure it is
packaged for delivery as a commodity for publication. We may
choose to package it as source code, a shared library, or a service
accessible over the internet. How we package it will in part be
determined by our revenue model, and by how we wish to divide
the market.

For example, look at the way Cola-Cola subdivides its market.
Although it is nominally selling the same product (sugared water
with flavouring) the pricing depends on the packaging. A 330ml
can (sold to people on the move) costs more litre-for-litre than the
2 litre bottle (sold in the supermarket to families at home) which in
turn costs much more, litre-for-litre, than the cola concentrate sold
to restaurants for sale with food – and where it is mixed with water
and marked up.

We may make our IP available as a SOAP enabled web service
and charge per use. We may repackage this as a DLL and sell it for
a fixed price to a large corporation. Finally, we may enter into
revenue sharing deals with other producers who compile our
commodity into their own.

Conclusion

That several people in the software industry are questioning
“The Holy Grail of Reuse” is probably a sign of a maturing
industry. Reuse is a worthy goal, and has its uses, but it should
not be all consuming. We must understand its costs and
implications.

Reuse will probably remain a general all embracing term, it is
too entrenched to go away, but we may be better served by coming
up with new labels for some of the ideas it covers. I’m not saying
my labels are the right labels or that they will stick but I’m starting
the debate.

Nor am I claiming that we can simply replace the word reuse.
We may try to do a mental “global replace ‘reuse’ with ‘technology
transfer’” but this wouldn’t change the real situation. We need to
change the way we think about our code and the way we use it.

Even without our own debate on what constitutes software reuse
the economics of software are changing. For many applications we
can now assume an Internet link which enables us to think about
pay-as-you-go and leasing models.

Allan Kelly
allan@allankelly.net

References

[Czarnecki+2000] Czarnecki & Eisenecker, Generative
Programming, Addison-Wesley, 2000
[Parnas1976] David Parnas, “On the development and design of
Program Families”, 1976, reprinted in Software Fundamentals:
collected papers by David L. Parnas, edited by Hoffman &
Weiss, Addison-Wesley, 2001
[Henney2002] Kevlin Henney, “minimalism : the imperial
clothing crisis”, Overload 47, February 2002
[Rasch] Chris Rasch, “The Wall Street Performer Protocol :
using software completion bonds to fund open source
development” http://www.firstmonday.dk/issues/
issue6_6/rasch/index.html

8

Overload issue 48 april 2002

The C++ Template
Argument Deduction

By Andrei Iltchenko

Introduction

With the increasing popularity of the Standard C++ library and
the STL, it is becoming more and more important for a C++
programmer to understand the underlying mechanics of generic
programming in C++. In this article I will look into the little
known details of template argument deduction, an area of the
C++ language that a lot of programmers find difficult to
comprehend and a knowledge of which is vital for using Standard
C++ efficiently.

This article is intended for experienced C++ programmers who
wish to know the exact and yet clearly explained details of how
argument deduction is done in the C++ language. Deduction of
template arguments is an incredibly vast area and covering it in
detail and in all its entirety in one article would be impossible, so I
chose to pick out the most frequently used contexts that call for
template argument deduction and explain them in detail rather than
gloss over all cases of use of argument deduction. The following
uses of argument deduction are covered in this article: “Deducing
template arguments from a function call expression”, “Deducing
template arguments when taking the address of a (member) function
template specialization”, “Deducing template arguments for explicit
specialization of a (member) function template”.

Template argument deduction only pertains to function
templates. This means that whenever you reference a specialization
of a class template, you need to explicitly specify all template
arguments. I will therefore refer to function templates only in the
remainder of the article.

Although there are different cases when the language calls on
template argument deduction, they are all based on deducing
template arguments from a type. So it is here that the discussion
will start.

Deducing template arguments from
a type

Template parameters come in three flavors: 1) template template
parameters (associated with a class template, which I will denote
as TT for the remainder of the article), 2) type template
parameters (associated with a type, denoted as T), and 3) non-
type template parameters (most often associated with a constant
value of integral or enumeration type, denoted as i).

To deduce a template argument from a given type means that
you have two types – a type-id that contains one or more template
parameters, I will call such a type-id P for the rest of the article
(some combinations of TTs, Ts, and is within one P are possible).
For the moment I will omit the details of how P is obtained, suffice
to say that in most cases it is one of the function parameters of a
function template declaration. The other type that you have is a
type-id that comprises no template parameters, which I will call A,
and an attempt is made to find a class template for a TT, a type for
T, and a value for i so that P becomes identical to A.

Example:
template<template<class> class TT, class T>
T* alloc(TT<T>& a) {

return a.allocate(16);
}

For this template P can be TT<T>. If the type-id A from which
we want to deduce TT and T is std::allocator<int>, then
argument deduction deduces TT to be std::allocator and T
to be int . This results in P becoming
std::allocator<int>, i.e. identical to A.

So far so good, but what kind of type can A be and what
combinations of TTs, Ts, and is are allowed in P so that template
argument deduction is possible on the template parameters that P
consists of? The first part of the question is easier to answer since
for template argument deduction the language allows A to be any
valid C++ type (not a constant reference to constant function, of
course). As for P, only the following combinations are allowed:

Where cv-seq designates any valid sequence of const and
volatile qualifiers, opt stands for optional, (T) designates a
list of function parameters where at least one parameter is T, <T>
designates a list of template arguments where at least one
template argument is T, and, finally, <i> designates a list of
template arguments where at least one template argument is i.
type refers to any C++ type which consists of no template
parameters, i.e. it does not depend on the template parameters of
the function template. The construct class-template-name
designates a name of a class template that is not a template
template parameter. For instance this is shown in the following
code snippet, where P can be std::allocator<T> and
class-template-name is thus std::allocator.

template<class T>
T* alloc(std::allocator<T>& a);

A few explanations are necessary to make sense of the above.
When there is more than one T in some of the combinations
shown, the Ts do not need to be the same type template

9

Overload issue 48 april 2002

P’s most specific Allowable form for P
type kind

Object type cv-seqopt T

Pointer type T*

Reference type T&

Array type T[integral-constant-
expression], type[i] , T[i]

Function type type(T), T(), T(T)

Pointer to data T type::*, type T::*, T T::*
member type

Pointer to member T(type::*)()cv-seqopt,
function type T(type::*)(T)cv-seqopt,

T(T::*)()cv-seqopt,
T(T::*)(T)cv-seqopt,
type(type::*)(T)cv-seqopt,
type(T::*)()cv-seqopt,
type(T::*)(T)cv-seqopt

Class template class-template-name<T>,
specialization class-template-name<i>,
(class type) TT<T>, TT<i>, TT<>

parameter. A good example that demonstrates this is the standard
object generator for pointers to member functions – the function
template mem_fun_ref. Here is one of its declarations (the
name mem_fun_ref is overloaded):

template<class R, class T, class A>

mem_fun1_ref_t<R,T,A> mem_fun_ref(R(T::*)(A));

Here P can be R(T::*)(A), which is a variant of
T(T::*)(T).

The second point that must be made about the allowable
combinations is that they can be applied recursively – any of the
24 forms shown can be used in place of T in forming other
permissible combinations, provided, of course, that the resulting
form is a legal C++ type-id. For instance P having a form of
type(T::*)(TT<T>,char)const is composed of
type(T::*)(T)const and TT<T> and is accepted by
template argument deduction (remember (T) designates a list
of function parameters where at least one parameter is T, so
(TT<T>,char) is a variation on (T)). The following function
template declaration clarifies this example further:

template<template<class> class Alloc,

class C, class T>

void dummy_alloc(

void(C::*)(Alloc<T>,char)const);

Here one possible form of P is void(C::*)(Alloc<T>)const.
If the corresponding A designates the type
void(Myclass::*)(std::allocator<int>)const , then
template argument deduction will deduce Alloc to be
std::allocator, C to be Myclass, and T to be int.

The forms involving template template parameters TT<T>,
TT<i>, TT<> require special elucidation. Each of these forms
specifies the use of a class template TT, i.e. a class template
specialization, meaning that whenever you use any of the above
three combinations in P, you need to supply the same number of
template arguments as the declaration of TT specifies, unless the
declaration of TT contains one or more default template arguments
in which case the trailing template arguments can be omitted. Note
that the angle brackets must be present even if all TT’s template
parameters have defaults. The following example demonstrates the
use of a template template parameter in P where TT has default
template arguments for all its parameters.

template<class T, template<class=T> class TT> >

void foo(int(*arr)(TT<>));

In this example P can be int(*arr)(TT<T>) and given A of
int(*)(std::allocator<int>) template argument
deduction will resolve T to int and TT to std::allocator.

Although there is a form TT<> among the allowable choices for
P, it shouldn’t be taken as a template template parameter with no
template arguments. In fact it just means that the list of arguments
doesn’t contain any other template parameters and must contain
non-dependent types, which is illustrated by the following example:

template<template<class, class> class Sequence>

void empty_sequence(Sequence<int,

std::allocator<int> >& seq) {

seq.empty();

}

When deducing template arguments for the above function
template one possible P is Sequence<int,
std::allocator<int> >, which corresponds to TT<>
since none of the arguments given to the specialization of
Sequence are dependent on the template parameters of the

function template empty_sequence. If template argument
deduction is supplied a corresponding A of the form
std::vector<int, std::allocator<int> >, it will
then deduce Sequence to be std::vector.

While on the subject of using the forms TT<T>, TT<i>, TT<>
in P, it is vital to point out that due to the language permitting to
use any of the 24 allowable forms recursively it is possible that a
type template parameter T is mentioned more than one time in P.
This is allowed and does not in any way affect the deducibility of
T. This is demonstrated by a slightly modified version of the
previous example:

template<template<class, class> class Sequence,

template<class> class Alloc, class T>

void empty_sequence(Sequence<T,

Alloc<T> >& seq) {

seq.empty();

}

In this function template, P can be Sequence<T, Alloc<T> >,
which is a variant of TT<T1,T2> (it is allowed to treat the form
TT<T> as TT<T1,T2> where T1 and T2 are type template
parameters with T2 being TT<T>, see the notes to the table of
allowable forms) where, as you can see, the type parameter T1 is T
and T2 is Alloc<T> . Given a corresponding A of
std::vector<int, std::allocator<int> >, template
argument deduction will be able to deduce Sequence to be
std::vector, Alloc to be std::allocator, and T to be
int in spite of the T appearing twice within the P. In fact it will
deduce T twice and, with above A, each time to the same type.

But what happens if P references a type template parameter
Tmore than once and the corresponding A supplies two different
types for each occurrence of T in P? For instance, in the previous
example if A had a form of std::vector<int,
std::allocator<char> >, then template argument
deduction would deduce T to have type int in one place and
char in the other. The language prohibits these scenarios and
deduction fails for P’s function template when the context
supplies such an A.

A careful look at the table of allowable forms reveals that it’s not
possible to form a qualified P by using them (even if the use is
recursive). This means that if you make P qualified, template
argument deduction is not possible for it. For example:

template<template<class, class> class Sequence,

template<class> class Alloc, class T>

void empty_sequence(T::Sequence<T, Alloc<T> >&);

In this code sample one possible P is T::Sequence<T,
Alloc<T> > and because of this P being qualified, template
argument deduction is not possible regardless of the form that
the corresponding A has.

As I said before, in forming P a standard conforming compiler
is allowed to replace T in any of the allowable forms with
another form from the table, but no such provision is made for
i. There are only four forms that contain i in the table, these
are type[i], T[i], class-template-name<i>, and
TT<i>. And in all these forms i is used as an expression that
has the form of a simple identifier. Thus, by strictly following
the rules it is not possible to get such P that would contain i in
a form different from a simple identifier. It follows that if you
have a P wherein i is used in an expression which doesn’t have
the form of a simple identifier, template argument deduction is
not possible.

10

Overload issue 48 april 2002

template<unsigned i>

void foo(int(&p)[+i]);

In this example P can be int[+i]. And no matter what form
the corresponding A has, no argument deduction is possible for
this P.

In a similar manner, no recursive use of the allowable forms
enables to get P of, for example, this form:
type(*)[sizeof(T)]. This is illustrated in the following
code snippet:

template<class T, template<class> class TT>

void foo(int(*arr)[sizeof(TT<T>)]);

Which again means that should argument deduction be presented
with such P, it will not deduce any template parameters in it.

In general, a P which is qualified or contains i involved in an
expression other than a simple identifier (that is, not used by itself)
or contains any other template parameter used in an expression such
as sizeof is conventionally called a nondeduced context. Having
such a P in a template declaration is not ill-formed, it’s just that
template argument deduction cannot deduce any template
parameters in that P regardless of the form of the corresponding
A. This effectively means that the template parameters that such P
comprises must be either explicitly specified or deduced elsewhere.
I’d like to note here that it is not possible to get a nondeduced
context by recursively applying only the allowable forms. When
consulting the table of allowable forms you should regard a
nondeduced conext as a non-dependent type, which is denoted there
as type.

Now that I’ve explained the concept of deducing template
arguments from a type, it is high time that I embark upon some of
the contexts that call on template argument deduction.

Deducing template arguments
when taking the address of a
(member) function template
specialization

It is not uncommon for C++ programmers to initialize an object
of type pointer to (member) function with an expression referring
to a (member) function. As is the case with non-template
(member) functions, (member) function template specializations
can be used in such contexts too, much like normal non-template
functions:

ptrdiff_t count_chr(const char* str,

const char ch) {

// using the specialization of the standard

// ‘count’ algorithm

ptrdiff_t (* pf)(const char*, const char*,

const char&)

= std::count<const char*, char>;

return (*pf)(str, str+std::strlen(str), ch);

}

One thing to remember here is that there are no implicit conversions
etween pointers to functions of different types and pointers to
member functions of the same class of different types. There must
be an exact match:

struct test {

void update1(char*, char*);

void update2(const char*, const char*);

void update3(const char*, const char*,

int=0);

};

void testing() {

// Error, no exact match

void (test::* pmf1)(const char*,

const char*) = &test::update1;

// OK

void (test::* pmf2)(const char*,

const char*) = &test::update2;

// Error, default arguments are not

// part of function type

void (test::* pmf3)(const char*,

const char*) = &test::update3;

}

Before plunging right into the nitty-gritty details of argument
deduction, it would be helpful if I clarified the meaning of the
term function template specialization, which has already been
used a number of times in this article (member function template
specializations follow the same conventions and will be omitted
from the following discussion).

A function template specialization is a use of a function template
name with a full set of template arguments that uniquely identifies
exactly one specialization. For instance in the code example above
std::count<const char*,char> is a specialization of the
function template count. Sometimes a set of template arguments
is given explicitly in a specialization and the number of arguments
in the set matches the number of template parameters of the
corresponding template, sometimes the set contains fewer template
arguments than the number of template parameters of the matching
function template, and sometimes it contains no template arguments
at all (even the angle brackets could be left out). Whenever some
or all template arguments are omitted, they must be deducible from
the context and the result of the deduction is a function template
specialization. When a full set of template arguments is specified,
no template argument deduction takes place.

The point is that a C++ programmer never deals with function
templates themselves (except, for example, when they declare, define
or explicitly specialize them). Most of the time it is a specialization of
a given template that a programmer uses. Below an earlier code
fragment has been modified to clarify the points that were made earlier:

ptrdiff_t count_chr(const char* str,

const char ch) {

// Using the specialization of the standard

// ‘count’ algorithm without specifying

// template arguments explicitly.

// 1. Name lookup finds the function template

// template<class InIter, class T>

// typename

// iterator_traits<InIter>::difference_type

// count(InIter first, InIter last,

// const T& val);

// 2. Template argument deduction deduces the

// template arguments to have types ‘const

// char*’ and ‘char’ respectively. Thus

// making the expression ‘std::count’

// equivalent to ‘std::count<const char*,

// char>’

//

ptrdiff_t (* pf)(const char*,

const char*, const char&) = std::count;

return (*pf)(str, str+std::strlen(str), ch);

}

11

Overload issue 48 april 2002

Returning to template argument deduction when taking the
address of a (member) function template, what I need to explain
is how P’s and A’s are formed when some template arguments are
not specified. The answer is surprisingly simple – there is just
one P and one A. P is the type of the initializer expression
(possibly converted to a type of pointer to function) and A is the
type of the object being initialized.

For instance in the code sample above:
P is typename iterator_traits<InIter>::
difference_type(*)(InIter, InIter, const T&),

which in terms of the conventions used in the table of allowable
forms is a variant of type(*)(T).
A is ptrdiff_t(*)(const char*, const char*,

const char&) and template argument deduction will be seeking
such types for InIter and T that will make P identical to A.

If the initializer expression was std::count<const
char*>, only one template argument would have to be deduced
(since one is specified explicitly), i.e. in that case P would be:

typename iterator_traits<const char*>::

difference_type(*)(

const char*, const char*, const T&)

It is easy enough to write the initializer in such a way that no
matching specialization could be found. For example the initializer
of the form std::count<char*> will result in P being:

typename iterator_traits<char*>::

difference_type(*)(char*, char*, const T&),

which doesn’t enable template argument deduction to make such
P identical to the corresponding A.

If the name of the function template whose address is being taken
is overloaded, then there are as many Ps as there are overloaded
function templates by that name and template argument deduction
will be performed against all of them with the same A. Those
templates for which deduction does not succeed will not be
considered further. If the initializer expression does not contain the
angle brackets, non-template functions will also be considered, i.e.
if the namespace std contained a function declaration:

ptrdiff_t count(const char*,

const char*, const char&);

this function would also be considered in the example above. It is
then up to overload resolution to decide which function template
specialization is the most specialized and choose it. Note that a
non-template function is always preferred to any function
template specialization, as a non-template function is considered
more specialized than a corresponding function template
specialization.

It is quite common for P to contain multiple references to the
same template parameter and my example with the standard count
algorithm showed it. The first reference was in the return type
iterator_traits<InIter>::difference_type, which
is a nondeduced context and is therefore ignored, meaning that
InItermust be deducible from its other occurrences in the P. The
second and the third appearances are the same and have the form
InIter. As the corresponding parts of A also constitute the same
type const char*, InIter can be deduced from either part to
be the same type. If they were different, for instance, if A was
ptrdiff_t(*)(const char*, char*, const char&),
then InIterwould be deduced to be const char* in one part
and to char* in the other. Whenever such a situation arises,
argument deduction fails. See the discussion on this issue in the
previous chapter.

Deducing template arguments for
explicit specialization of a
(member) function template

Consider the following piece of code in which two overloaded
declarations of the function template foo are defined:

template<class T>

struct example {

template<class U> // 1st member template

int foo(U);

template<class U> // 2nd member template

int foo(U*);

};

Now suppose I have an explicit specialization of the following
form in the same translation unit:

template<> template<>

int example<char>::foo(int*);

But which member function template is explicitly specialized
here? One possible answer is that it is the second one, but is it
really? The truth is that for explicit specializations of
(member) function templates, template argument deduction is
done in a way similar to that I covered in the previous chapter
– A is the function type of an explicit specialization named N
and P’s are the function types of templates with name N that
are members of the same scope as the explicit specialization.
Template argument deduction then makes an attempt to make
each of the P’s identical to A (for more on that see the chapter
“Deducing template arguments from a type” at the beginning
of this article). Those templates for which argument deduction
fails are not considered further. Those for which it does are
submitted to overload resolution and the latter makes a
decision as to which of the templates is more specialized than
the others. When it can make this decision, the explicit
specialization is considered to specialize the most specialized
template, otherwise the explicit specialization declaration is
ill-formed.

In the example shown A is int example<char>::
foo(int*). Given that the explicit specialization is a member
of the class scope example<char>, there are two P’s: P1 is
int example<char>::foo(U), and P2 is int
example<char>::foo(U*) . For P1 argument deduction
succeeds with U deduced to be int*. For P2 it succeeds too
resulting in U having type int . So both member function
templates are submitted to overload resolution for finding out
which of them is more specialized than the other, and the latter
selects the second, meaning that the explicit specialization
specializes the second member template.

When declaring an explicit specialization, it is possible to
explicitly specify some or all the template arguments of the
function template being specialized. The arguments will actually
be applied to the templates of the same name and scope as the
explicit specialization. This can come handy in influencing the
result of argument deduction. For example if the same
translation unit contains another explicit specialization of the
form:

template<> template<>
int example<char>::foo<int*>(int*);

Things will proceed as follows:
A is int example<char>::foo(int*),
P1 is int example<char>::foo(int*),
and P2 is int example<char>::foo(int**).

12

Overload issue 48 april 2002

13

Overload issue 48 april 2002

No argument deduction will take place at all since the two
member templates have just one template parameter and it has
been specified. Since P2 now has a different type from the type
of the explicit specialization it is no longer considered, thus the
explicit specialization specializes the first member template.

Deducing template arguments from
a function call expression

When name lookup finds a name in a function call expression to
denote a function template or a (non-special) member function
template and the call leaves one or more trailing template
arguments unspecified or has a form without the angle brackets,
template argument deduction comes into action:

int main() {

int data[] = {3, 0, -1, -3, 16, };

// Name lookup finds the function template

// template<class RandomAccessIterator>

// void sort(RandomAccessIterator first,

// RandomAccessIterator last);

//

// Template argument deduction deduces the

// template argument to have type ‘int*’.

// This results in a call to the function

// template specialization

// ‘void sort<int*>(int* first, int* last)’.

std::sort(data,

data + sizeof data/sizeof*data);

std::vector<int, std::allocator<int> >

container, empty;

// Name lookup finds the member function

// template

// template<class InputIterator>

// void vector<int,allocator<int> >::assign(

// InputIterator first, InputIterator last);

//

// Template argument deduction deduces the

// template argument to have type ‘int*’.

// This results in a call to the function

// template specialization

// ‘void vector<int,allocator<int> >::

// assign<int*>(int*, int*)’.

container.assign(data,

data + sizeof data/sizeof*data);

// Argument dependent name lookup finds the

// namespace scope function template

// template<class T, class Alloc>

// bool operator!=(const vector<T,Alloc>&,

// const vector<T,Alloc>&);

//

// Template argument deduction deduces T to

// be ‘int’ and Alloc to be std::allocator.

if(container != empty) container.clear();

}

Unlike the contexts requiring template argument deduction that I
looked at before, which were all more alike than different in
terms of how P’s and A’s were formed, this case is really
distinctive and you will see why shortly. It is also the most
frequently used form of template argument deduction, so I will
back its description up with more case studies.

The distinction from what I showed earlier is that when
deduction starts for a (member) function template: 1) there can be
more than one P, 2) the number of A’s is always the same as the
number of P’s. In fact, any function parameter which depends on a
template parameter that has not been explicitly specified (see the
earlier discussion on function templates and function template
specializations) constitutes a P. If all template arguments are
explicitly specified, there are no P’s and no argument deduction
takes place. If the i-th function parameter of a function template
qualifies as P (I will call it Pi for the rest of the article), then the i-
th argument of the corresponding function call expression is A
(which I will call Ai).

Different to the cases I covered before, here every Pi and Ai can
undergo a transformation before template argument deduction takes
place. Below are the details of how this process goes:

First every Ai is studied and:
● if Ai is a reference type, it is converted to the underlying type

of the reference and is considered an lvalue*;
● if Ai is an lvalue of array type and Ai is not a reference type, the

array-to-pointer conversion is applied to Ai;
● if Ai is an lvalue of function type and Ai is not a reference type,

the function-to-pointer conversion is applied to Ai;
● if Ai is not a reference type, top-level const and volatile

qualifiers are removed from Ai.
After that is done, every Pi is examined and:
● top-level const and volatile qualifiers (if any) are removed

from Pi;
● if Pi is a reference type, the underlying type of Pi is substituted

for it.
For the rest of this section, whenever I mention Pi or Ai, I’ll be
referring to their transformed versions.

With the information from the previous paragraphs in mind and
the example I presented at the beginning of this section, I can now
show how P’s and A’s are formed for the expression container
!= empty, for which name lookup finds the function template
operator!=(const vector<T,Alloc>&, const
vector<T,Alloc>&) as a possible candidate. This template has
two function parameters, which depend on the template parameters.
Both the function parameters are of reference type and are the same
and hence the underlying type of the references is used in
determining P’s – P1, P2 are const vector<T, Alloc>. The
corresponding A’s are also the same – A1, A2 are

* In fact, this is an important trait of C++ that has a broader
scope than deduction of template arguments from a function call
expression. The general rule is that before being semantically
analyzed every C++ expression that initially has a reference type
is converted to the underlying type of the reference and is
considered an lvalue. For example, given a conforming compiler,
the following piece of code will never trigger the assertion:

int main() {

int i, & ri = i;

assert(typeid(i) == typeid(ri));

}

14

Overload issue 48 april 2002

std::vector<int, std::allocator<int> > . Template
argument deduction then deduces T to be int and Alloc to be
std::allocator , which results in a call to the function
template specialization

bool operator!=<int,std::allocator>(

const vector<int,std::allocator>&,

const vector<int,std::allocator>&)

The fact that argument deduction makes each Pi identical to the
corresponding Ai has a major implication on calling (member)
function templates, for it leaves no room for user-defined
conversions on A’s. Here is an example:

#include <algorithm>

#include <functional>

#include <iostream>

struct example {

static void foo(int i) {

std::cout << i << ‘\n’;

}

typedef void fun_t(int);

operator fun_t*() const {

return foo;

}

};

int main() {

int data[] = {3, 0, -1, -3, 16};

example inst;

// std::for_each(data,

// data + sizeof data/sizeof*data,

// std::ptr_fun(inst));

std::for_each(data,

data + sizeof data/sizeof*data,

example::foo);

}

Let’s look at the lines that were commented out and the function
call expression std::ptr_fun(inst) in particular. What
happens there is that name lookup finds the following two
function templates in the scope of the namespace std:

template<class Arg, class Res>

pointer_to_unary_function<Arg,Res>

ptr_fun(Res(*)(Arg);

template<class Arg1, class Arg2, class Res>

pointer_to_binary_function<Arg1,Arg2,Res>

ptr_fun(Res(*)(Arg1,Arg2);

For the first function template there is one P and one A. P1 is
Res(*)(Arg), which, in terms of the conventions used in the
table of allowable forms, is a variant of T(*)(T). The
corresponding A1 is the type example. It is obvious enough that
there exist no such types for the template parameters Res and
Arg that would make P1 identical to A1. There is, however, a
user-defined conversion from an expression of type example to
type void(*)(int). If it was selected (like in the case of non-
template functions), argument deduction would deduce Res to be
void type and Arg to be int. But, as I said before, the
language prohibits this and argument deduction fails. Quite
similarly, template argument deduction fails for the second

function template. This all leaves the set of candidates submitted
to overload resolution empty, thus making the construct
std::ptr_fun(inst) ill-formed in the context shown
above.

Since you can always perform user-defined conversions inside
the body of a function template, the restriction of precluding user-
defined conversions on A’s can be easily circumvented. And a nice
example of that can, not surprisingly, be found in the Standard C++
library. Let’s take a look at the function object generator bind2nd,
here is its possible implementation:

template<class BinOp, class T>

binder2nd<BinOp> bind2nd(const BinOp& op,

const T& second) {

return binder2nd<BinOp>(op, typename

BinOp::second_argument_type(second));

}

When called, this function template deduces T to be whatever
type the second function argument has (except that it will
effectively strip the type of the second argument of the
possible const qualifier) and then explicitly converts it to the
type required. Here is a small program that shows how this
works:

#include <algorithm>

#include <functional>

#include <iostream>

#include <iterator>

struct example {

operator int() const {

return 3;

}

};

int main() {

int data[] = {3, 0, -1, -3, 16};

example inst;

std::transform(data,

data + sizeof data/sizeof*data,

std::ostream_iterator<int>(std::cout, “ “),

std::bind2nd(std::modulus<int>(), inst));

}

There’s also another way in which argument deduction from a
function call expression differs from the cases I looked at in
the previous sections. It differs in that it allows each Pi to be
not identical to the corresponding Ai . The following is
allowed:
● Pi can be more const/volatile qualified than Ai;
● if Pi is a pointer or pointer to member type, it can be a type to

which an expression of type Ai can be converted via a
qualification conversion;

● if Pi has one of the following forms: class-template-
name<T>, class-template-name<i> , cv-seqopt
class-template-name<T>*, or cv-seqopt class-
template-name<i>* it can be a type derived from Ai.

Of course, providing that it is possible to find such types for the
template parameters of Pi that Pi becomes identical to its Ai,
these three alternatives are not considered.

The example of the use of the function template bind2nd
that I just presented also demonstrates the case where P’s are
different from its corresponding A’s. Indeed, in the function call

15

Overload issue 48 april 2002

expression std::bind2nd(std::modulus<int>(),
inst) A1 is the type std::modulus<int> and A2 is the
type example. The corresponding P’s are: P1 is const
BinOp, P2 is const T. And template argument deduction
deduces BinOp to be std::modulus<int> and T to be
example, which results in a call to the function template
specialization:

binder2nd<std::modulus<int> >

bind2nd(const std::modulus<int>&,

const example&)

Given the way the deduction of template arguments from a
function call expression goes, some familiar techniques can give
surprising results. For example, the extensively studied in this
article function template bind2nd is written in such a way that
it does not allow either of its template parameters BinOp and T
to be deduced to be a const-qualified type. Think about it. The
same is true of, for example, the function template make_pair
from the standard header utility.

Conclusion

The three cases that I explained in this article are not the only
ones when the language uses template argument deduction. The
other cases of note are “Deducing template arguments of a

conversion function template”, “Partial ordering of (member)
function templates”, “Deducing template arguments for explicit
instantiation of a (member) function template”, and “Referencing
a (member) function template specialization in a friend
declaration”. Although not covered in this paper, these cases are
based on the same principles and I believe that the information
given in this article will assist the interested reader in mastering
them, should such a need arise. As a starting point I can say that
the topics “Deducing template arguments for explicit
instantiation of a (member) function template” and “Referencing
a (member) function template specialization in a friend
declaration” are nearly identical to what I explained in “Deducing
Template Arguments for Explicit Specialization of a (member)
Function Template.”

In any case, I’m now working on a follow-up to this article
wherein I plan to give details of how things stand with respect to
“Deducing template arguments of a conversion function template”
and “Partial ordering of function templates.”

I welcome any feedback from readers, which you can send
directly to me at the address below.

Andrei Iltchenko
iltchenko@yahoo.com

Exceptional Java
By Alan Griffiths

It must be approaching twenty years since I visited the computer
science department of the local university and on one of the
notice board spotted a chart for the next decade of development
in the industry. The feature of this that I remember was that every
odd year predicted “the end of Fortran” and every even year “the
end of Cobol”. As the author (and I) expected, these languages
are still thriving far beyond the end of that chart.

While to work in the software industry is to be exposed to
constant change there is much that is constant in spite of that
change. While we are regularly exposed to new tools (technologies,
languages, techniques, etc) our existing knowledge and tools remain
stubbornly useful. This is especially true when we distinguish the
fundamental ideas from work-arounds for a specific tool.

For some years I’ve been very happy with the use of exceptions in
C++ programs [Griffiths1999]. Recently I accepted a position at a
company working primarily in Java, and consequently had to address
the problems being encountered by developers using this language.

Received wisdom

Before I go on to describe the problems encountered by my new
colleagues, let me revisit the “received wisdom” of the Java
development community. This is represented clearly by the
following quote from “Thinking in Java” [Eckel2000] (similar views
are expressed by other sources):

Keep in mind that you can only ignore RuntimeExceptions
in your coding, since all other handling is carefully enforced by the
compiler. The reasoning is that a RuntimeException
represents a programming error:

An error you cannot catch (receiving a null reference handed to
your method by a client programmer, for example).

An error that you, as a programmer, should have checked for in
your code (such as ArrayIndexOutOfBoundsException
where you should have paid attention to the size of the array).

It is sensible to use RuntimeExceptions to report programming
errors – the availability of a call-stack aids reporting them meaningfully.
The fact that they can be handled far up the call stack makes
implementing an application-wide policy for handling them easier than
trying to do so at every point an error is detected. (Examples of policies
from different types of application domain are: to abort the current
operation, to restart the subsystem, or to terminate the process.)

However, the “received wisdom” very clearly directs a developer
towards using ordinary, checked exceptions (i.e. those not derived
from RuntimeException) in the design of an application. The
use of RuntimeExceptions is discouraged: “programming
errors” do occur; but – beyond having a policy for dealing with
them when detected – we should not be creating a design to cater
for them! (Trying to cater for bugs only leads to hard to test code
that is, itself, a breeding ground for bugs.)

The difference between theory and
practice…

The developers that I joined had attempted to apply this guidance
and run into a number of problems. However, because of pressure
to “just write the code” no attempt had been made to formulate a
workable design policy. Letting developers struggle on
independently can waste a lot of time over the course of a project
– so I called a meeting of the programmers on the team I was
working with to discuss the problems they were having with
exceptions.

We’ll be examining more of the problems they described in the
rest of this article – this section deals only with those that bear
directly on the above theory (that checked exceptions should be
used for everything that isn’t a programming error). Before
proceeding, I want to make it clear that this development group isn’t
the only one to experience these problems. They are in good
company – as I confirmed at the ACCU Spring conference last year.
It seems that this theory doesn’t work in practice.

The relevant problems described fall into three categories.

16

Overload issue 48 april 2002

Breaking encapsulation

Consider the example of a factory method that is responsible for
creating objects. From the point of view of the client code there is
no obvious reason why it should fail – so the interface doesn’t
have a throws clause. From the point of view of an
implementation that retrieves objects from a database it is
necessary to handle SQLExceptions. For the sake of this
discussion let us assume that these reflect something catastrophic
– like connectivity to the database being lost.

The SQLExceptions we are considering are not the result of
programming errors. Accordingly, we are exhorted not to propagate
them as unchecked exceptions. On the other hand we cannot handle
them locally (except by the unhelpful expedient of returning a
null reference). This leaves two options: either adding a throws
clause to allow the factory method to propagate an
SQLException or throwing our own exception (normally one
that “wraps” the original exception).

Either approach places a burden on the client code – which
will generally be in no better position to handle the error than
the factory method itself. (Clearly, this is an iterative argument;
but, somewhere far up the call stack there will be some code that
manages the error.)

Loss of information

The strategy of “wrapping” exceptions prior to propagating
them, alluded to in the last section, has the unfortunate side
effect of making it difficult to detect the distinction between
different problems programmatically. Essentially, one ends up
with the situation that all that the programmer can be sure of
is that “something went horribly wrong”. Admittedly, that is
often enough but it occasionally limits options. For example,
how can one decide if is it worth retrying the operation that
failed?

The alternative strategy (of allowing the original exceptions to
propagate) can lead to a similar loss of information. Writing
multiple, nearly identical, catch blocks is tedious and a potential
source of the familiar maintenance issues caused by “cut and paste”.
Sooner or later, someone just writes “catch (Exceptions
e)” – forgetting the (usually unintended) side effect that this also
catches RuntimeExceptions.

Information overload

Depending upon whether exceptions are allowed to propagate or
are “wrapped” two things can happen. Either, an increasing and
incoherent set of exceptions begin to appear in the throws clauses
of methods dependent on others – until developers get fed up
with this insanity and introduce “throws Exception”. Or,
nearly every method has code to catch exceptions propagated
from the methods it depends upon, “wrap” them in a new
exception that makes sense within its interface and throw the new
exception.

The theory sounds bad enough but, in practice, there is another
thing that happens (although no developer admits to doing this
intentionally). That is to consume an inconvenient exception by
catching and ignoring it.

If these problems that occur in practice are not enough to justify
considering alternatives there is a further difficulty: you may be
coding to a function signature that doesn’t allow you to throw any
checked exceptions. This can happen when you are implementing
an interface that you don’t control (for example Comparator).

Fundamental ideas

In C++ I use exceptions to report problems that it is
unreasonable to expect the immediate client code to deal with. In
particular, the example of the factory function described above
seems to satisfy these criteria: The part of the system that knows
how to deal with loss of the database connection is likely to be
many layers away from a factory function that retrieves objects
from a database.

The problems related in the last section suggest that this
approach isn’t working – so either the approach is wrong or it is
being implemented incorrectly. There are many differences between
C++ and Java but there are also lots of similarities between them.
Specifically, there are enough similarities in the exception handling
mechanisms that I’d expect to use Java Exceptions for the same
things that I’d use C++ exceptions for.

What the problems identified above illustrate is the ways in
which Java checked exceptions are not like C++ exceptions.
Declaring a checked exception places an obligation on the caller of
a method to do something explicit with the exception – and that is
precisely what isn’t desired. What is desired is to transfer program
flow in an orderly manner to some point far up the call stack.

There is something in Java that looks far more like my familiar
C++ exceptions than Java’s checked exceptions: Java’s unchecked
exceptions. To me they looked like the answer – it doesn’t take
much thought to conclude that approaching the above scenario by
wrapping the SQLExceptions in an unchecked exception causes
none of the above problems.

I outlined this approach at the meeting, and there was general
consensus that it made sense, but a number of concerns were
expressed: mostly regarding the choice that exists between the two
exception-handling mechanisms. One of the senior team members
agreed to use his notes from the meeting to draft a guideline
“exceptions strategy” paper. This would be reviewed at a
subsequent meeting when everyone had had an opportunity to think
about it. (It is a good idea to review such solutions a few days later
– it is very easy to be seduced by an attractive idea and overlook a
killer issue during a brainstorming session.) The current version of
this paper is included below.

Later on that day I was approached by one of the more
thoughtful team member who was concerned that while he
couldn’t see anything wrong with what I was suggesting he
couldn’t find any books – or reference material on the internet
– that agreed with it. I’m always pleased to be approached like
this as I can be wrong, and much of the value of such meetings
is lost if people don’t think and research for themselves. In this
case, I view this as a reflection of the immaturity of the Java
community – the hype surrounding the language often gets in
the way of recognising an issue and finding a solution. It took
the C++ experts from 1990 (when they were introduced as
“experimental” in the ARM [Stroustrup1990]) to 1997 (when
the C++ standard library was revised to specify its behaviour in
the presence of exceptions) to get a consensus on how to use
exceptions.

I knew from my experience with C++ that there are ways to write
code that works in the absence of the compiler prompting the
developer to deal with exceptions. Indeed, I knew the fundamental
ideas used in managing exceptions in C++ could also be applied to
Java: I presented a translation of them at the ACCU conference
2001 [Griffiths2001]. (Anyway, it isn’t the first time I’ve disagreed
with authority – and it surely won’t be the last!)

17

Overload issue 48 april 2002

One more problem

There was one more significant problem that had been observed
in a number of existing systems. In these, it had been found to be
difficult to handle the errors reported via exceptions effectively.
This was believed to be a result of every type of failure reported
being reported using the same exception type – albeit with
different message text. (If this sounds to you like the java.sql
package and ubiquitous SQLException then you won’t be
surprised that this was mentioned.) The problem was actually
worse than with the java.sql package since many parts of the
system delivering differing types of functionality threw this same
exception, and there was no equivalent of the well established
(and fixed) set of SQLState values to deal with.

To address this we concluded that there needed to be guidance
covering the choice of the specific exception to use. By requiring
any exceptions specified in throws specifications to belong to the
package that propagates them we hoped to discourage this habit.
And, by checking conformance to the guidelines as part of the class
design review, we encouraged a careful consideration of the
contract between client code and implementation.

Exceptions policy

Following the review meeting the team adopted the suggested
policy document. (It was updated to clarify it then and a couple
of times later, but has remained close to the original discussion.)
It reads as follows:

Background

There is at present no clear-cut policy for Java Exception
Handling within any of the current OPUS Java systems. This has
caused inconsistencies in the use of Exception Handling and
these have resulted in problems.

This document addresses the use of two categories of exceptions:
checked exceptions and unchecked exceptions.

Checked exceptions provide a mechanism for ensuring that the
caller of a method deals with the issue they report. (Either by
explicitly handling the exception, or by propagating it.)

Unchecked exceptions should only be considered for “long-
distance” exception propagation. (To enable reporting of fairly
catastrophic events within the system.)

To support these options all exceptions raised within the system
will be subclasses of either OpusException (which extends
Exception) or of OpusRuntimeException (which extends
RuntimeException). These provided the facility to wrap
exceptions.

Guidelines

It is the responsibility of the Class Designer to identify issues that
would result in a checked exception being thrown from a class
method. Those reviewing the class design check that this has
been done correctly. Exception specifications are not changed
during implementation without first seeking agreement that the
class design is in error.

Exceptions that propagate from public methods are expected to
be of types that belong to the package containing the method.

Within a package there are distinct types of exception for distinct
issues.

If a checked exception is thrown (to indicate an operation failure)
by a method in one package it is not to be propagated by a calling
method in a second package. Instead the exception is caught and

“translated”. Translation converts the exception into: an appropriate
return status for the method, a checked exception appropriate to the
calling package or an unchecked exception recognised by the
system. (Translation to another exception type frequently involves
“wrapping”.)

Empty catch-blocks are not used to “eat” or ignore exceptions.
In the rare cases where ignoring an exception is correct the empty
statement block contains a comment that makes the reasoning
behind ignoring the exception clear.

In practice

This policy seems to have worked well both in terms of being
followed without much difficulty by the original team members
and for induction of new team members. Subsequently, other
teams have also adopted it. To that extent it has been a success.
However, it isn’t the end of problems with the use of exceptions.

The remaining problems are much more manageable and fall
into two categories:]

Catching exceptions at too low a level – rather than allowing
them to propagate, they are caught by a piece of code that doesn’t
have sufficient context to deal with them effectively; and,

Catching too general a range of exceptions – for example, rather
than catching OpusException and SQLException separately,
and handling each, there is a single catch clause for Exception
that then uses instanceOf to identify the exception type.
Sometimes such code fails to take account of the possibility of
RuntimeExceptions – and “eats” them.

These problems are not as widespread as those reported
originally – indeed the majority of developers on the project are
unaware of them. Both of these issues reflect poor coding technique
and can be addressed by educating developers. This education could
have occurred seamlessly as part of the project had we instituted
code reviews; but I chose to postpone introducing them in favour
of other process changes.

Conclusion

Java developers are rightly encouraged to use unchecked
exceptions with caution. However, the current wisdom is too
extreme. Unchecked exceptions in Java correspond to exceptions
in C++, Smalltalk and C# – and shold be used in the same way:
sparingly.

It seems that I’m not the only one to have doubts about this.
Shortly after I wrote the first draft to this article Kevlin Henney
pointed out that Bruce Eckel had opened discussion on the same
point [Eckel].

Alan Griffiths
agriffiths@microlise.co.uk

References

[Eckel2000] Bruce Eckel, Thinking in Java, Prentice-Hall Inc,
2000, ISBN 0130273635
[Eckel] Bruce Eckel, “Does Java need Checked Exceptions?”,
http://www.mindview.net/Etc/Discussions/

CheckedExceptions

[Griffiths1999] Alan Griffiths, “Here be Dragons”, Overload 40
or http://www.octopull.demon.co.uk/c++/dragons/
[Griffiths2001] Alan Griffiths, “Exception Safe Java”, ACCU
Spring Conference, 2001
[Stroustrup1990] Bjarne Stroustrup, The Annotated C++
Reference Manual, Addison-Wesley, 1990

18

Overload issue 48 april 2002

C++ Exceptions and Linux
Dynamic Libraries
By Phil Bass

A Cautionary Tale

Once upon a time there was a bright young C++ programmer…
Well, not so young, actually. And, sadly, not bright enough to
know how to use C++ member functions in a Linux dynamic
library. I’ll tell you his poignant story in the hope that you can
avoid his mistakes.

A Little Knowledge

I will call this programmer “Phil” (not his real name, apparently).
Now, Phil had read the manual and he knew how to build a
shared library using gcc. Just pass the -fPIC flag to the
compiler (to generate position-independent code) and pass the -
shared flag to the linker (to generate a shared library). He also
knew how to load the library into his main program using
dlload(), get the address of a function or data item in the
library using dlsym(), check for errors using dlerror() and
close the library using dlclose(). Now, dlsym() takes the
name of a symbol and returns its address. But what is the name of
a C++ member function? Typically, it is a mangled version of
something like “Isotek::SignalMonitor*
Isotek::SignalMonitor::create()”. Not only is this
quite a lot of typing, it is also tricky to find the mangled name
and it will change with the slightest change to the function’s
name or interface.

Clever Clogs

“No sweat,” thought Phil, for he had solved that problem
when creating plug-in libraries for Win32 operating systems.
The trick is to have the plug-in library insert its objects into a
suitable registry when it loads. The main program creates the
registry, loads the plug-in library and uses the objects that
magically appear in the registry. No symbol look-ups required.
Perfect.

Well, not quite. There was a two-way dependency between the
main program and the plug-in library which, in Win32, meant that
linking was a real pain. But Phil had another trick up his sleeve.
Move the registry into its own shared library. Now both the main
program and the plug-in library can be linked with the registry
library in the normal way. The operating system automatically loads
the registry library when the main program is started and it’s already
there when the plug-in library loads.

Pride Before The Fall

So, Phil built the registry library, the plug-in library and the main
program, ran a test and saw that it was good. The main program
found the object created by the plug-in library and correctly
called its member functions. The problem of calling C++
functions with mangled names in Linux plug-in libraries was
solved.

Then Phil tested an error condition (as every good programmer
does). A function in the plug-in library detected the error and threw
an exception; the exception handler in the main program failed to
catch the exception and aborted. Phil checked his code carefully,
but there was no obvious coding error. He poked around in the
debugger, he tried to think of explanations for this behaviour, he

discussed it with a colleague, but to no avail. So, finally, as an
experiment, he tried to catch the exception within the function that
threw it. The program still crashed. Exception handlers were not
invoked for exceptions thrown from a function in the plug-in
library.

Back To The Drawing Board

This was serious. Exceptions are often a good way of handling
error conditions. The C++ standard library throws exceptions.
Even the core language throws exceptions (bad_alloc and
bad_cast). Did this mean that we could only use a subset of
C++ in dynamic libraries? After more discussions and a search on
the Web Phil discovered that the problem had been mentioned in
a newsgroup post. The newsgroup thread contained just two
messages. The first provided code that demonstrates the problem;
the second said “but, it works for me”. The difference had to be
the compiler/linker switches. Sure enough, in a stripped-down
sample program, exceptions were not caught when the -
nostartfiles switch was provided, but were caught when
this switch was absent.

Unfortunately, Phil needed the -nostartfiles switch.
His strategy relies on the plug-in registering its objects when it
loads. To do this, the programmer provides a function with C
linkage called _init() and the operating system calls this
function when the library loads. The programmer may also
provide a _fini() function called when the library is
unloaded. But, the C/C++ start-up files contain _init() and
_fini() functions, too1. The -nostartfiles switch
prevents “multiple definition” errors from the linker by
suppressing the inclusion of the standard start-up files in the
executable file.

The Punch-Line

The moral of this story? Don’t supply your own _init() or
_fini() function in Linux dynamic libraries containing C++
functions that may throw exceptions. That rules out C++
functions that use new, std::vector, std::string (to
name but three), either directly or indirectly. And that doesn’t
leave very much.

Codicil

Phil fixed his problem by removing the leading underscore from
the _init() and _fini() functions in the library. The re-
named functions must now be called explicitly using dlsym()
to look up their addresses. Note, however, that only these two
functions need to be looked up by name and they are both simple
functions with C linkage and unmangled names2.

Phil Bass
phil@stoneymanor.demon.co.uk

1 I confess I don’t know what the _init() and _fini()
functions in the start-up files do. Presumably they perform some
initialisation of the C/C++ library and this includes initialisation
of the exception handling mechanism.

2 Thaddeus Frogley suggested a simple class that loads a dynamic
library and makes the init()/fini() calls via dlsym().
Good idea. Thanks, Thad.

19

Overload issue 48 april 2002

From Mechanism to Method
– Function Follows Form
By Kevlin Henney

Is programming the manufacture of code? I would suggest that of
all the metaphors applied to the development of software,
manufacturing rates as perhaps one of the least useful and most
harmful. Where in the manufacturing metaphor is the idea that
programming is an act of communication? And not just with the
compiler. Code is more often read than written, and writing code
is just that: writing. You are an author with an audience: Today it
may be just you and the compiler, but tomorrow it will include
others… Which includes you: the “What was I thinking when I
wrote this?” or “Which idiot wrote this? … Oh” syndrome.

This perspective lends a quite different weight to the use of
language features in a program. In C++ we have a formal notation
for working with concepts as close to or as far from the metal as
we chose. The compiler cares little for how clearly we write the
code, how fit for purpose it is, or how we work in teams to develop
systems. It cares only for the well-formedness of the code as C++
(or at least the compiler’s closest approximation). All those other,
non-functional considerations are about code as a means of
communication with others.

C++ offers an extensive shopping list of mechanisms. It is left
to the programmer to make sense – and sensible use – of these,
bringing method and clarity to bear on the expression of code,
coding to communicate intent idiomatically to others. But too often
we find that code looks like, well, code: a cipher whose key is
known privately and exclusively to its author – and sometimes, alas,
even this much is not true.

Overloading – especially operator overloading – is one of those
mechanisms that, when first encountered, can raise eyebrows and
open mouths. This response comes in two opposing flavours:
“Great! I can see that we could use this all over the system” or “Oh
no, I don’t think that’s for us. Sounds different to what we normally
do… too radical”. The former can often lead to the most cunning
of ciphers with the clarity of hieroglyphics (pre Rosetta Stone); the
latter to verbose code that misses the effectiveness of established
idioms and the benefits of template-based generic programming.
There is, however, a centre ground of practice between these two.

Principles

Express coordinate ideas in similar form.
This principle, that of parallel construction, requires that expressions
similar in context and function be outwardly similar. The likeness of
form enables the reader to recognize more readily the likeness of
content and function. Strunk and White [Strunk+1979]

This advice works as well with the written keyword as it does with
the written word. It expresses the idea that similar constructs should
have similar meanings, a goodness of fit between intent and
realization, interface and implementation, reader and writer. This
principle of substitutability [Liskov1987] is often expressed with
respect to inheritance and runtime polymorphism [Coplien1992],
but applies equally well to the compile-time polymorphism you
have with conversions, overloads, and templates [Henney2000a].

Common Name Implies Common
Purpose

The principle that overloaded functions work to similar ends is
the one that makes the most sense of this feature. As a practice it

frees programmers from mangling names to distinguish otherwise
similar functions with differing argument lists (this is the job of
the compiler).

Following well-established conventions, where possible, clearly
makes sense. For instance, the standard C++ library establishes a
common set of names and semantics, conventions clarifying that
empty means “is empty?” not “to empty”, clear means “to
clear” and not “is clear?”, etc. Note that judgement and
resourcefulness are still needed:
● The standard defines a relatively small set of names, clearly not

enough to cover your whole domain of application.
● The standard is not always consistent in its use of names, e.g.

the unhelpfully named get member function in auto_ptr is
a query without a side effect, whereas get on a
basic_istream is a query with a significant side effect.

● There are other well-established sources of terminology that provide
names you can draw upon. There may be times these clash with the
standard. For example, depending on context, begin yields an
iterator or initiates a transaction. It is for you to determine whether
or not such overloading of meaning, as well as name, is clear.

Operator Underloading

Whatever care is applied to the use of named function
overloading applies doubly so to operator overloading. It can be a
fertile ground for fertile imaginations. An opportunity to
communicate clearly or to resurrect a Tower of Babel.

The built-in types both set expectations in the reader and offer a
spec for the writer: “When in doubt, do as the ints do”
[Meyers1996]. As with any style principle, this one is elasticated:
operator+ for the standard basic_string is not
commutative, but its meaning is clear nonetheless. Bitshift
operators, operator<< and operator>> , for I/O stream
insertion and extraction stretches the elastic taut by an appeal to
scripting notations. However, the long history and established
presence in the standard library qualifies this idiom as effectively
built-in. Do not assume the same distinguished fate awaits any other
‘creative’ operator deployment! So, as a corollary, it may be worth
considering that when in serious doubt, do not do it.

In deciding the suitability or otherwise of operator overloading,
keep in mind that it only really makes sense for value-based
[Henney2000b] rather than indirection-based objects. Value-based
objects represent fine-grained information concepts, typically live
on the stack or embedded within other objects, and are passed
around by copy or const reference. Syntactically this emphasizes
their value and allows easy use of operators. Indirection-based
objects, by contrast, represent more significant chunks of system
information or behaviour, typically live on the heap, and are passed
around by pointer. Syntactically this emphasizes their identity but
makes use of operators awkward: having to dereference the pointer
explicitly before being able to use an operator somewhat defeats
the intended transparency of operator overloading.

Smart Pointers

One of the most common C++ idioms involving overloading is
the SMART POINTER, ranging from reference-counted pointers to
the essentially simple but surprisingly intricate standard
auto_ptr. However, it is a common myth that all smart
pointers are concerned with memory management, and that all
smart pointers support operator-> and operator* as their
pointer-like operations.

20

Overload issue 48 april 2002

The Three Rs

Use determines definition, and clearly not all smart pointers are
intended for the same use. We can consider operators for pointers
in three categories, the three Rs: (de)referencing, relational, and
arithmetic. According to purpose, we can select if and how we
provide these:
● Dereferencing comes in the familiar forms of operator*

and operator->, as well as the less familiar and often
overlooked operator->* [Meyers1999] and
operator().

● Relational operators make sense for pointer or smart pointers
that have a natural ordering, such as raw pointers in the same
array or random access iterators. Having only equality (and
hence inequality) comparison makes sense for many other
pointers, such as reference-counted pointers. They typically test
for identity rather than value, which is why auto_ptr does not
support such comparison: Exclusive ownership means that in a
well-formed system auto_ptr equality comparison will
always return false.

● Pointer arithmetic, such as operator++ and operator+,
makes sense for smart pointers that encapsulate some concept of
interval or progression, such as iterators.

Function Objects

A common piece of advice offered to developers making a
transition from procedural to object-oriented code is that a
class should not model a function. Such classes are often
named as actions, and typically sport a principal or single
member function named “do such and such”. While this
advice does guard against a common pitfall, it is not always
poor practice. Those that have taken this rule of thumb to
heart as a legalistic rule need to unlearn a little to appreciate
how objects can encapsulate tasks and, in particular, mimic
functions. The CO M M A N D pattern [Gamma+1995]
demonstrates the power of task-based objects. The FUNCTOR

idiom [Coplien1992] focuses on functional objects that
overload operator() to achieve the appearance and
transparency of use of conventional functions.

The standard library provides for the use of function objects
with generic functions and templated containers, categorizing
them as unary or binary functions. It also defines specific function
object classes – e.g. less for ordered comparison – and function
object adaptors – e.g. pointer_to_unary_function to
wrap up naked function pointers. The Boost library [Boost]
extends this with other function object classes, adaptors, and the
nullary function category, for function objects taking no
arguments.

Re-member

As an example of a function object class, focusing on the nullary
form for void returning functions, Listing 1 shows code for a
member function adaptor. You may have already come across the
mem_fun_t family of adaptors in the standard library. However,
there are key differences:
● A remember_function bundles a target object together with

a member function pointer for later callback through nullary
operator(), whereas a mem_fun_t object simply holds a
member function pointer and uses the argument to
operator() as its target.

● Although it is of little practical consequence for a nullary, void-
returning function, a variant for constmember functions is not
required because the member pointer’s type is parameterized as
a whole.

● The target pointer type need not be a raw pointer: smart pointers
supporting operator->* will also work.

● The member pointer type need not be a member function pointer:
a member data pointer that points to a nullary function object
will also work.

The remember template function is a helper that simplifies
composition of remember_function objects,
automatically deducing the parameter types in the manner of
make_pair for pair , bind2nd for binder2nd, or
ptr_fun for pointer_to_unary_function and
pointer_to_binary_function.

Generalized Function Pointer

The need for event-driven callbacks, such as timer-triggered
actions, is often met with pointers to functions or an
implementation of OBSERVER [Gamma+1995]. The former
approach is fine for simple event handlers:

class timer {
public:

void set(const time &delay,
void (*callback)());

...
};

But it is inflexible, handling only functions and not context
objects. The OBSERVER-based solution introduces a base class that
a concrete handler class must implement:

template<typename target_ptr_type,
typename member_ptr_type>

class remember_function {
public:
remember_function(target_ptr_type on,

member_ptr_type call)
: ptr(on), member(call) {}

void operator()() const {
(ptr->*member)();

}
private:
target_ptr_type ptr;
member_ptr_type member;

};

template<typename target_ptr_type,
typename member_ptr_type>

remember_function<target_ptr_type,
member_ptr_type>

remember(target_ptr_type on,
member_ptr_type call) {

return remember_function<target_ptr_type,
member_ptr_type>(on, call);

}

Listing 1. Function object class and helper for binding
target object and member function pointer.

21

Overload issue 48 april 2002

class handler {
public:

virtual void run() = 0;
...

};

class timer {
public:

void set(const time &delay,
handler *callback);

...
};

However, this introduces a level of indirection that leads to
additional memory management responsibilities, and imposes an
intrusive base class participation on users for what is a relatively
simple scenario. Using arbitrary objects or functions for callback
would be preferred. Overloading multiple set member functions
in timer is a kitchen-sink solution, leading to a wide interface
that attempts to please all people and an awkward timer
implementation.

Function objects at first appear to offer a route out: A nullary
function pointer or object could be passed in, including a
remember_function binding of member to target, and later
called back. A member template function would accommodate the
substitutability of all the variations:

class timer {
public:

template<typename nullary_function>
void set(const time &delay,

nullary_function callback);
...

};
However, this raises a fundamental problem: How does a
timer object later execute the callback passed in? Unlike
many examples of member template functions in the standard
library, this one does not execute the function or function
object immediately – it would not be much of a timer if it did!
The timer needs to store the callback for later use. Without
parameterizing the whole timer class on the
nullary_function type, rather than just the set
member, this does not appear to be possible. Templating the
whole class is undesirable because it means that for each
different type of callback, a different timer class instantiation
is needed.

A further problem with the member template approach is that a
member template function cannot be declared virtual. This
would be significant if the timer class were an abstract rather than
a concrete class, i.e. an interface to timer features rather than a
single implementation. The attempt to decouple both the
mechanism of the timer and the target type like this would lead to
the following illegal code:

class timer
{
public:

template<typename nullary_function>
// illegal

virtual void set(const time &delay,
nullary_function callback) = 0;

...
};

On the Outside

It is possible to resolve the tension in the design by approaching
it from a different angle. We can take a step back and ask what
simple interface to timer would also simplify its
implementation. What is needed is some kind of abstraction of a
function pointer that is both generic and generic: generic in the
sense of supporting the generic programming style of the STL,
and generic in the sense that it is general purpose and easily used
in any context:

class timer {
public:

void set(const time &delay,
const function_ptr &callback);

...
};

To satisfy the requirements for simplicity in timer and our
expectations of a function pointer, function_ptr needs to
support syntax for initialization, assignment, and execution.
Listing 2 shows such an interface.

On the Inside

This is all very well, but it has yet to solve the problem fully:
It looks nice, but how is i t implemented? How can a
function_ptr object hold arbitrary representation,
constrained only by the requirement that it must support an
operator() with no arguments? The technique used is
based on the EX T E R N A L PO L Y M O R P H I S M pattern
[Cleeland+1998], in particular the use of inheritance and
runtime polymorphism to adapt template-based genericity for
value-based objects through a level of indirection
[Henney2000b]. Listing 3 opens up function_ptr to show
this collaboration in practice, including the conversion (i.e.
initialization) from any arbitrary nullary function object or
pointer.

Clone Me

function_ptr is a value type, so it stands to reason that it
should support copying through construction and assignment – an
identity form of inward conversion [Henney2000b]. The body of
a function_ptr cannot be copied directly because of the
decoupling of interface from implementation, which leads to the
polymorphic copying, or cloning, technique shown in Listing 4.

class function_ptr {
public:
function_ptr();
function_ptr(const function_ptr &other);
template<typename nullary_function>
function_ptr(nullary_function function);

~function_ptr();
function_ptr &operator=(

const function_ptr &rhs)
void operator()() const;
...

};

Listing 2. Smart function pointer interface.

22

Overload issue 48 april 2002

The assignment operator uses the COPY BEFORE RELEASE idiom
[Henney1998] for exception- and self–assignment-safety. A non-
throwing swap could also be used for this [Sutter2000], but for
this article the interface to function_ptr is being kept small
and based only on operators.

Call Me

The final piece of the jigsaw is to dereference a
function_ptr – fetch and execute. A raw function pointer
supports dereferencing through operator*, which is the
identity operation on a function pointer, operator(), which
can be called directly on a function pointer without using
operator*, but no operator-> . This is the model that
function_ptr should follow, and does so in Listing 5. For a
null pointer, the execution assumes that for no function there is
no function, as opposed to undefined behaviour as per built-in
pointers.

Remember Me?

A focus on forms of substitutability – in this case derivation,
overloading, and templates, each a way of establishing an
interface – can decouple a system, allowing greater suppleness
and clearer code. Putting it all together, we can put together a
simple scenario based around the proposed timer interface.
Consider the interface to a device that can be turned on or off at
particular times, e.g. a heating or an air conditioning system:

class device {

public:

virtual void turn_on() = 0;

virtual void turn_off() = 0;

...

};

The following example combines the concepts and features
presented so far:

void set_up(device *target, timer *scheduler,

const time &on, const time &off) {

scheduler->set(on,

remember(target, &device::turn_on));

scheduler->set(off,

remember(target, &device::turn_off));

}

class function_ptr {
public:
function_ptr()

: body(0) {}
template<typename nullary_function>
function_ptr(nullary_function function)

: body(new adaptor<nullary_function>
(function)) {}

~function_ptr() {
delete body;

}
...

private:
class callable {
public:

virtual ~callable() {}
virtual callable *clone() const = 0;
virtual void call() = 0;

};
template<typename nullary_function>
class adaptor : public callable {
public:

adaptor(nullary_function function)
: adaptee(function) {}

virtual callable *clone() const {
return new adaptor(adaptee);

}
virtual void call() {

adaptee();
}
nullary_function adaptee;

};
callable *body;

};

class function_ptr {
public:
...
function_ptr(const function_ptr &other)

: body(other.body
? other.body->clone()
: 0) {}

function_ptr &operator=(
const function_ptr &rhs) {

callable *old_body = body;
body = rhs.body

? rhs.body->clone()
: 0;

delete old_body;
return *this;

}
...

};

class function_ptr {
public:
...
void operator()() const {

if(body)
body->call();

}
function_ptr &operator*() {

return *this;
}
const function_ptr &operator*() const {

return *this;
}
...

};

Listing 3. Smart function pointer representation
and basic construction.

Listing 4. Smart function pointer copying.

Listing 5. Smart function pointer dereferencing and calling.

23

Overload issue 48 april 2002

Conclusion

There is little that excites programmers’ passions more than
discussions of style, but there is little that helps them more than
common understanding. Overloading is a powerful feature whose
reasoned use underpins many idioms at the heart of the modern
C++ programmer’s vocabulary: smart pointers, function objects,
iterators, etc.

Within each of these idioms there is variation for expression
rather than any simplistic, one-size-fits-all, cookie-cutter rule. A
function object will support some form of operator(), and a
smart pointer must support some form of dereferencing, but this
does not by necessity include operator->, as demonstrated by
function_ptr, a smart function pointer.

Kevlin Henney
kevlin@curbralan.com

References

[Boost] Boost library website, http://www.boost.org.
[Cleeland+1998] Chris Cleeland, Douglas C Schmidt, and Tim
Harrison, “External Polymorphism”, Pattern Languages of
Program Design 3, edited by Robert Martin, Dirk Riehle, and
Frank Buschmann, Addison-Wesley, 1998.

[Coplien1992] James O Coplien, Advanced C++: Programming
Styles and Idioms, Addison-Wesley, 1992.
[Gamma+1995] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.
[Henney1998] Kevlin Henney, “Creating Stable Assignments”,
C++ Report 10(6), June 1998, also available from
http://www.curbralan.com.
[Henney2000a] Kevlin Henney, “From Mechanism to Method:
Substitutability”, C++ Report 12(5), May 2000, also available
from http://www.curbralan.com.
[Henney2000b] Kevlin Henney, “From Mechanism to Method:
Valued Conversions”, C++ Report 12(7), May 2000, also
available from http://www.curbralan.com.
[Liskov1987] Barbara Liskov, “Data Abstraction and Hierarchy”,
OOPSLA ‘87 Addendum to the Proceedings, October 1987.
[Meyers1996] Scott Meyers, More Effective C++: 35 New Ways
to Improve Your Programs and Designs, Addison-Wesley, 1996.
[Meyers1999] Scott Meyers, “Implementing operator->* for
Smart Pointers”, Dr. Dobb’s Journal, October 1999.
[Strunk+1979] William Strunk Jr and E B White, The Elements
of Style, 3rd edition, Macmillan, 1979.
[Sutter2000] Herb Sutter, Exceptional C++, Addison-Wesley,
2000.

Template Titbit
– A Different Perspective

By Phil Bass

Background

Oliver Schoenborn’s article, “Tiny Template Tidbit”, in Overload
47 illustrates some of the wonderful things you can do with
templates. I particularly liked the way it described the thought
processes Oliver went through when designing some curve-fitting
software and his clear explanation of the problem he set himself.
Whilst reading an earlier draft of “Tidbit” a slightly different
solution occurred to me, which I shared with Oliver before
publication. With the deadline approaching there wasn’t much
time for discussion, so we agreed that I should write up those
ideas that seemed interesting, but that were not strictly relevant to
Oliver’s article.

Recap

The “Tidbit” article used a fitCurve() function template to
illustrate the techniques of interest:

template <class CoordContainer>
Curve fitCurve(

const CoordContainer& coords) {
// ...
// set coord1 to first Coord in coords
// set coord2 to second Coord in coords
Coord c = coord1 + coord2;
// ...

}
The challenge was to make this template work for containers
whose elements are: points, objects that contain a point, or
pointers to any of those types.

Oliver called his point class “Coord”. The key to his solution
was a getCoord() function template that returned the Coord
corresponding to a given container element. Different
specialisations of getCoord() were defined for different types
of element.

// General function template
template <class PntClass> inline
const Coord& getCoord(const PntClass& p)
{ return p.coords; }

// Partial specialization for pointers
// to things
template <class PntClass>
const Coord& getCoord(const PntClass* p)
{ return p->coords; }

// Complete specialization for Coord
inline
const Coord& getCoord(const Coord& p)
{ return p; }

// Complete specialization for pointer
// to Coord
inline
const Coord& getCoord(const Coord* p)
{ return *p; }

This version of the getCoords() function template covers
element types that are: Coord, pointer to Coord, something
containing a ‘coords’ data member, and pointer to something
containing a ‘coords’ data member. It doesn’t cover elements whose
Coord is accessed via a member function. For this, a getData()
function template was introduced and the appropriate getCoord()
specialisations were re-written in terms of getData().

24

Overload issue 48 april 2002

template <class PntClass>
const Coord& getCoord(const PntClass& v) {
return getData(v, &PntClass::coords);

}

// partial specialization for pointers
template <class PntClass>
const Coord& getCoord(const PntClass* v) {
return getData(*v, &PntClass::coords);

}

template <class PntClass>
inline
const Coord& getData(const PntClass& pp,

Coord PntClass::* dd) {
return pp.*dd;

}

template <class PntClass>
inline
const Coord& getData(const PntClass& pp,

const Coord& (PntClass::* mm)() const) {
return (pp.*mm)();

}
This is a neat and, as far as I know, original idea that makes it
possible to use either data members or member functions
interchangeably in generic functions.

Suggestions

I made three suggestions:
1. pass a pair of iterators to the curve-fitting function rather than a

const reference to a container,
2. use a traits class to extract the co-ordinates from objects of

arbitrary type and
3. use a curve-fitting function with “external state”.
Oliver liked the traits idea, but found it didn’t give him what he
wanted. And, from his perspective, the other two suggestions just
weren’t relevant to the problem at hand. After some thought I
realised that it was all a question of your point-of-view. As
Kevlin Henney often points out, the solution to a problem
depends on the context. Oliver had chosen the context of a
specific project; I was thinking of a general-purpose library.

Let’s look at these ideas in a bit more detail.

Iterator Range or Container?

Passing a pair of iterators to the fitCurve() function is more
general than passing a container, but it’s often less convenient for
the calling code. An iterator range allows containers without
begin() and end() functions to be used (such as arrays) and
makes it easy to fit a curve to a subset of the points in a given
container. On the other hand, it means passing two parameters
instead of one.

For a general-purpose library flexibility is very important.
Oliver’s project doesn’t need that much flexibility, so ease-of-use
dominates the trade-off. Context matters here.

Traits Classes or Function
Templates?

The “Tidbit” article shows how to write some generic
components that support containers in which the element type is

in one of four fairly general categories. In that article Oliver
makes the point that this may not be general enough for a library
and I agree. What I had in mind was a traits class template that
defines a mechanism for accessing the co-ordinates of a point
class. The following template and partial specialisation illustrates
the idea for points in the X,Y plane.

// The general version of the point
// traits class.
template<typename point_type>
struct point_traits {
static double x(const point_type& p) {
return p.x();

}
static double y(const point_type& p) {
return p.y();

}
};

// A partial specialisation of the point
// traits class for pointers.
template<typename point_type>
struct point_traits<point_type*> {
static double x(point_type* p) {
return p->x();

}
static double y(point_type* p) {
return p->y();

}
};

The general version of the template provides co-ordinate access
functions for point classes having member functions x() and
y(). The partial specialisation does the same for pointers to
classes with x() and y() member functions. For any other type
of point class the user would have to define a further
specialisation of the traits template. For example:

// A complete specialisation of the point
// traits class for POD_Point.
struct POD_Point { double x, y; };

template<>
struct point_traits<POD_Point> {
static double x(const POD_Point& p) {
return p.x;

}
static double y(const POD_Point& p) {
return p.y;

}
};

The point_traits<> member functions are similar to
Oliver’s getCoord() functions. They are template functions
and their purpose is to extract information from some sort of
point object. They are used in the curve fitting algorithm in a
similar way. My implementation of a least-squares line
algorithm, for example, contains the following lines:

template<typename point_type>

void add(point_type point) {

double x = point_traits<point_type>::x(point);

double y = point_traits<point_type>::y(point);

// ...

}

25

Overload issue 48 april 2002

In principle, the traits member functions could be
implemented in terms of another function template, like
Oliver’s getData(), which would make it possible to
handle both data members and member functions out of the
box. I prefer not to do this, though. The traits mechanism is
general enough to be used with arbitrary types of point object
and the inconvenience of having to define a traits
specialisation for point classes without the x() and y()
access functions is small. In fact, the lack of support for data
members could even be seen as an advantage – it should
encourage the use of fully-fledged, properly encapsulated
point classes. More importantly, though, I wouldn’t want the
name of a member of a class in the client code to appear in my
library functions the way ‘coords’ appears in Oliver’s
getCoord() functions. If we were to do this in a general
purpose library what would we call the member? ‘coords’,
‘point’, ‘m_2Dpoint’, ‘xyPoint_’, … The list is endless!

Of course, if you are working on a project that already has to
deal with a variety of point classes, some of which use data
members, the need for extra traits specialisations could be a
nuisance. But, then again, how many different point classes do you
want to use in the same application? Not many, I think.

Once again, context matters.

External or Internal Algorithm
State?

The only curve fitting algorithm I am familiar with is the
least-squares line and its 3-dimensional cousin, the least-
squares plane. In fact, the least-squares line can be defined as
follows:

A straightforward implementation of this formula in code
involves four totals (? xi, ? yi, ? xixi and ? xiyi) and a point
count. Old fashioned C++ code might look like this…

// Initial data.
struct Point {double x, y;};
Point point[20] = { ... };
unsigned n = 0;
double x_sum = 0, y_sum = 0,

xx_sum = 0, xy_sum = 0;

// Accumulate sums for each (x,y)
// point...
for (int i = 0; i < 20; ++i) {
++n;
x_sum += point[i].x;
y_sum += point[i].y;
xx_sum += point[i].x * point[i].x;
xy_sum += point[i].x * point[i].y;

}

// Calculate slope and offset.
double m = (n * xy_sum - x_sum * y_sum)

/ (n * xx_sum - x_sum * x_sum);
double c = (y_sum - m * x_sum) / n;

The algorithm reminded me of the standard accumulate function,
so my first thought for a least-squares function in the modern
style was modelled on std::accumulate().

// A line in the X,Y plane.
class line;

namespace least_squares {
// The current state of the least-
// squares line algorithm.
struct state {
state() : n(0), x_sum(0), y_sum(0),

xx_sum(0), xy_sum(0) {}
operator line() { ... }
// ...
unsigned n;
double x_sum, y_sum,

xx_sum, xy_sum;
};

// Fit a least-squares line to the
// (x,y) points in [first,last)
template<typename iterator_type>
state fit(iterator_type first,

iterator_type last,
state = state());

}
The curve fitting function is given an initial state and returns a
new state after accumulating points in the iterator range
[first,last). This is what I have called a “function with external
state”. The default initial state corresponds to no points
accumulated.

The state class has a conversion operator that provides an
implicit conversion to a line. The combination of external state and
conversion operator makes it possible to fit a least-squares line in
several stages.

using least_squares::state;
using least_squares::fit;

state algorithm_state =
fit(point, point + 10);

line best_fit_line =
fit(point + 10, point + 20,

algorithm_state);
Unfortunately, there are several unpleasant features in this
design. The state class has public data and an implicit
conversion operator. Passing the state into and out of the
fit() function by value leads to unnecessary copying. And
the simple case of fitting a least-squares line to all the points in
a container carries the excess intellectual baggage of the state
object.

In thinking about these points I finally settled on a design
offering two interfaces that differ in generality and convenience.
The less general/more convenient interface is provided as a single
template function, least_squares::fit().The more
general/less convenient interface is provided as two classes:
least_squares::state and
least_squares::add_point . The point traits idea has
been retained to allow the underlying implementation to adapt to
different point classes.

Given a set of points (xi,yi), where i = 1..n, the least-squares
line through those points is given by y = mx + c, where:
m = (n? xiyi - ? xi? yi) / (n? xixi - ? xi? xi) and
c = (? yi - m? xi) / n

26

Overload issue 48 april 2002

// Summary of least-squares components

// for the X,Y plane.

class point;

class line;

template<typename T> struct point_traits;

namespace least_squares {

// General interface.

class add_point;

class state;

// Convenient interface.

template<typename iterator_type>

line fit(iterator_type first,

iterator_type last);

}

The state class is at the heart of this new design. It now properly
encapsulates its data and provides a minimal interface. It has just
two member functions: one to add a point and one to create a line.

// The state of the least-squares

// line algorithm.

class least_squares::state {

public:

state();

template<typename point_type>

void add(point_type point);

::line line();

private:

unsigned n;

double x_sum, y_sum, xx_sum, xy_sum;

};

The add() function uses the point traits template to extract
individual co-ordinates from each point, calculates new values
for the four totals and increments the point count.

template<typename point_type>

void least_squares::state::add(

point_type point) {

++n;

double x =

point_traits<point_type>::x(point);

double y =

point_traits<point_type>::y(point);

x_sum += x;

y_sum += y;

xx_sum += x * x;

xy_sum += x * y;

}

The line() function calculates the slope and offset of the least-
squares line and returns a line object. At least two points must have
been accumulated before this function is called. The pre-condition is
checked using assert(), here; throwing an exception or the use of
a policy class might be more appropriate for a real library.

::line least_squares::state::line() {

assert(n > 1);

double m = (n * xy_sum - x_sum * y_sum)

/ (n * xx_sum - x_sum * x_sum);

double c = (y_sum - m * x_sum) / n;

return ::line(m, c);

}

The state class actually provides everything we need to find the
least-squares line for a set of points. On its own, however, it is

slightly inconvenient to use. The programmer using the curve fitting
library needs to iterate through the points, either by writing a loop
or by passing a suitable function object to std::for_each().
The add_point class provided by the library is just the right sort
of function object for std::for_each(). Its function call
operator simply calls the state:add() function.

class least_squares::add_point {

public:

add_point(state& s) : algorithm_state(s) {}

template<typename point_type>

void operator() (point_type point) {

algorithm_state.add(point);

}

private:

state& algorithm_state;

};

With this convenience class, even the general interface to the
least-squares algorithm becomes quite easy to use, as the
following example shows.

using std::foreach;

using least_squares::state;

using least_squares::add_point;

// Find the line that best fits

// point[0]..point[19].

state best_fit_data;

for_each(point, point + 20,

add_point(best_fit_data));

line best_fit_line = best_fit_data.line();

The alternative interface just wraps up these three lines of code in
a template function.

template<typename iterator_type>

line least_squares::fit(iterator_type first,

iterator_type last) {

state algorithm_state;

std::for_each(first, last,

add_point(algorithm_state));

return algorithm_state.line();

}

The previous curve fitting example can now be re-written as a
one-liner, which I leave as an exercise for the interested reader.

So, my answer to the external/internal state question is, “Both”.
The general interface uses external state in the form of an add_point
function object; the convenient interface keeps the algorithm state
entirely within the fit() function. Once again, context matters, and
this time the library can not guess which is the more important.

Final Thoughts

The curve-fitting code presented here illustrates how Object-
Oriented Programming and Generic Programming can work
together. The least_squares::state class obeys the principles
of OOP; the fit() function is a generic algorithm. Together they
provide a safe, flexible and efficient software component.

The difference between Oliver’s code and mine comes down to
the context of the problem. It’s like spelling. The dictionary in my
version of Microsoft Word says “tidbit” is an error and offers “titbit”
as the correct spelling. My Chambers dictionary has both spellings.
Context matters!

Phil Bass
phil@stoneymanor.demon.co.uk

