
Overload issue 49 june 2002

contents

credits & contacts

Editor: John Merrells
merrells@acm.org
241 Heartwood Lane,
Mountain View,
CA 94041-11836,
U.S.A

Website: http://www.accu.org/

Readers:
Ian Bruntlett
IanBruntlett@antiqs.uklinux.net

Phil Bass
phil@stoneymanor.demon.co.uk

Mark Radford
twonine@twonine.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Membership and subscription
enquires:

David Hodge
membership@accu.org
31 Egerton Road
Bexhill-on-Sea, East Sussex
TN39 3HJ, UK

Advertising:
Peter Goodliffe
ads@accu.org
4 Malvern Road
Cherry Hinton
Cambridge CB1 9LD, UK
01223 518579

Writing Extendable Software by Allan Kelly 6

More Exceptional Java by Alan Griffiths 9

Programming With Interfaces In C++ by Chris Main 13

Building Java Applications by Vaclav Barta 16

An Overview Of C#.NET by Jon Jagger 18

Letter To The Editor 25

The Scoping Problem by Allan Kelly 26

4

Overload issue 49 june 2002

Editorial
Methodologies

At the start of my computing experience, before any formal computing education, my methodology was to
just hack everything into existence. I was programming, rather than engineering. I would assign myself a
project, perhaps a simple line drawing program, and then set about coding. My methodology was to start with
the part of the program that I knew least about. That way, if that piece defeated me, I would have wasted the
least amount of time on the project. But, once the puzzle was solved, I would decide that the rest of the program
was pretty obvious, and therefore there wasn’t much point in completing it, so I might as well just move onto
the next project.

Much later, at university, I learned about SSADM [1] and various lecturer-devised methodologies that seemed
very suitable for building large payroll applications. They didn’t seem to offer much for my day-to-day software
engineering projects. My experience was with very small teams (a team of one), short term (midnight-6am), with
a well-defined customer (me and my friends). My products were games. I spent four years porting and enhancing
a variety of bulletin boards, chat systems, and multi-user dungeons. [2]

After graduation, I was straight off onto the games industry proper, at that time predominantly the vocation of
small groups of underpaid youths in cramped quarters having a whale of a time making up crazy stuff all day. My
chums and I were ensconced in a one room, fourth flour, lower Chelsea, studio that was reputed to have once been
the office of a popular beat combo named the Rolling Stones. [3] Our methodology? Write a proposal, tart it about
some publishers, code like crazy, beg for more money, code like crazy, beg for more money, etc.

I had to grow up a bit after that, and went to work on some terminal emulation software. It was all OO, so I
dusted off my Booch and OMT books. OOP had always seemed pretty natural for me, so the methodologies made
sense, but the process didn’t do much for me. I just went through the motions. The diagramming notations were
great though; a common language for communicating ideas efficiently and effectively.

Then I joined a small research and development company that was staffing a project. They were an independent
start-up that used the RAD [4] approach to produce a demonstration product. A dozen engineers spent a year
building a working demo to show off to investors and customers. This was a great success, Mr Gates said he
thought it was ‘very cool’ and wanted to be a customer, so the company was sold to an American corporation.

They were a largish, established, telecommunications supplier, so the system was to deliver telecom level
reliability. The project was blue sky; a paradigm shift in voice messaging. It was to be the next generation system
to replace two aging product lines. There was plenty of money to invest, and plenty of time to do it right. This was
an ideal opportunity to try a more formal engineering approach.

The project was already staffed with three teams of seven when I joined. We proceeded to write documents for
six months. Yes, six months. We wrote functional specifications for the user facing components and detailed design
documents for all the systems’ components. Each document was based on a standard template to ensure that every
engineer considered issues such as performance, testing, and internationalization.

As each document was completed it went to a five-person review team, each person having a distinct role in
the review: author, two readers, scribe, and a moderator. The readers would raise defects against the document,
which were recorded by the scribe. The moderator ensured that the correct process was followed, and that nobody
got too upset. The review process would repeat until all defects had been dealt with to the satisfaction of the readers.

This was very formal, and more than some could take (me included). When no one was looking I would Alt-
Tab out of Microsoft Word/Rational Rose and hack some code until I was happy my design was going to work.
But this alternating between the abstract and the concrete was a valuable way to ground myself and prevent me
from designing a castle in the air.

This is all very well, but did it work? Yes, and no. Yes, the software was developed as designed, and pretty much
on time, without any serious unforeseen complications arising. And the software has provided a very solid
foundation for the past eight years of functional enhancements. To my continued amazement my original code is
still largely intact.

I
n a recent issue of CVu, Pete Goodliffe wrote an excellent article surveying the history

of popular methodologies. In this editorial I would like to chart my own personal journey
through that history to discover where I now stand.

But the project did fail in a couple of respects. Firstly, for political expediency, management, against the advice
of engineering, signed off on a poor quality design for one component. None of the engineers wanted to build the
component, so a contractor was brought in. He did his best, but at the end of the project we had to junk his work
and redesign and rebuild it from scratch. Secondly, the business has never been much of a success. The product
still doesn’t have many customers. But, it did help the company sell itself, again, to an even bigger company.

That was a natural point for me to move on, and, having had a taste of America, I decided to move to Silicon Valley
to do the Internet thing. I thought I had missed the big boom of software development, and didn’t see another one
coming down the pike. I can recall thinking that $35 was far too much to register a domain name, and, in any case,
that would be a pollution of the namespace. How would the inter-network be paid for now that the US government
had backed out? By attaching an advert to each packet, or message, or something, we joked. Chuckle. Sigh.

I ended up at Netscape working on a server product. I had never experienced such contrasts between projects.
That was where I realised the inverse relationship between code quality and profitability. I went from a four year
project with a formally designed object-oriented architecture written in the most advanced C++, which made very
little money, to a project with twelve month cycles with little design or expressible architecture written in the most
awful C I’d ever witnessed which, of course, made more money than you could imagine. There was little regularity
between anything, there was no data encapsulation, everything messed with everything else’s privates; it was an
orgy of code.

Their success came from moving quickly. If it worked it shipped, it didn’t need to look pretty. We had internal customers
who were very demanding and vocal. We had a very small and tightly nit team that intimately understood the problem
domain. We had a program of continuous build and test cycles. We had no formal process of any kind, just gut feel and
rule of thumb. If a concept was too hard to explain on a white board in a couple of minutes, then an email was needed,
if that didn’t suffice then a document was needed. All team communication, within and between teams, was via mailing
lists, and internal web sites. When Kent Beck’s XP book appeared the content seemed very familiar to us. [5]

Of course, as the project matured, and grew larger, it became exponentially harder to add new features to the
code base. We spent increasing amounts of time rewriting swathes of code to componentise the system, and to try
to cram the jinni back into the bottle.

I’ve now come full circle, and am back to the team of one, working at home, often in the evenings, on distributed
semi-structured database systems. Not MUDs this time, but XML databases. Oddly enough, they have quite a lot
in common.
Summary

So, what I’ve learned on this journey is to solve the hardest problems first, and that CASE tools draw nice diagrams.
That writing documents works, if you have lots of time, and that having a good architecture in place provides a
long-term development foundation. And, finally, that solving real problems is better than writing nice code, and
that team communication is critical to project success.
New Reader

Richard Blundell has been dabbling with computers for a quarter century, but has been developing software
professionally for half that time. His beginnings were in Basic and 6502/Z80 machine code on Commodore Pets
and TRS-80s. He progressed through the likes of Pascal, Fortran, C and even things like PostScript, on PCs, Vaxen
and Sparc systems. Today he is Principal Developer for a management consultancy company in Surrey, developing
business visualisation software in C++ for the Windows platform. Some of his interests include:
security/cryptography, DIY, extreme programming, gardening, algorithms, Linux.

John Merrells
merrells@acm.org

Notes
[1] Structured Systems Analysis and Design Method, a methodology favoured by the public sector in the UK.
[2] Essex Mud, Abermud, TinyMud, LPMud, Hunt, Sun of Bullet.
[3] To my knowledge the phrase ‘popular beat combo’ was coined by a barrister in response to a judge’s query as
to who ‘The Beatles’ were. ‘I believe they are a popular beat combo m’lud’.
[4] Rapid Application Development.
[5] Extreme Programming Explained, Kent Beck, Addison Wesley.
Copy Deadline

All articles intended for publication in Overload 50 should be submitted to the editor by July 1st, and for Overload
51 by September 1st.

5

Overload issue 49 june 2002

6

Overload issue 49 june 2002

Writing Extendable Software
By Allan Kelly
“A hallmark - if not the hallmark - of good object oriented design

is that you can modify and extend a system by adding code rather
than hacking it.... In short, change is additive, not invasive. Additive
change is potentially easier, more localized, less error-prone, and
ultimately more maintainable than invasive change.”

John Vlissides, The C++ Report, February 1998
This is one of my favourite quotes about software development –
and I should apologise for mentioning it in more Overload
columns than perhaps I should. By the time I originally read this
quote I already had several systems under my belt, I had already
read the seminal Design Patterns (Gamma 1995) and many,
many other books so the essence of the quote shouldn’t have
come as a surprise to me but it did. Vlissides pinpoints and
explicitly states something that is only implicit in a lot of writing.

You could view the entire contents of the GoF book as recipes
for extensible code. Maybe, but it was never spelt out quite so
explicitly.

Here, I’d like to spend a bit of time talking about what extendable
code means to me, and look at some mechanisms for creating
extendable systems.

What is extensible code?

One could argue that all code is extensible because all software is
infinitely flexible. If we wished we could change our washing
machine control software into a nuclear power station control
system – we could do it, but it just isn’t the best way to do it.

All software is infinitely modifiable, this is a big big problem
because the point at which change is impractical is down to
individuals’ judgement. The decision is based on one’s experience
with the software, overall experience of software and your current
business environment.

While it is possible to change and modify all software, only
software which keeps its original shape and absorbs additions
gracefully is truly extensible.

For example, I once worked on an evaluator for electricity futures
contracts. To add a new type of contract meant: adding a big chunk
of evaluation code, changing the user interface, changing the main
control loop, adding a new case statement to half a dozen evaluation
routines, and a myriad of minor changes throughout the code base.
Many of the evaluation routines looked something like this:

double ContractPaymentMultiplier
(int contractType) {

switch (contractType) {
case 1 : return 1;
case 2 : return 0.9;
....
default : assert(false);

}
return 1;

}
True, this is C not C++ code, a properly object-oriented system
wouldn’t be like this but not all C++ is properly object-oriented1.

Yes, OO supports extensibility better than procedural code but it
doesn’t force extensibility.

A system built like this can be changed, you can add to it but it
involves intrusive changes in many places. Before you could add
anything to this software you had to hack it. To borrow a metaphor
from the days of 640K limited MS-DOS2, the software could be
expanded, but it could not be extended.

An extendable system would allow the new contract to be added
without any changes to the existing source code. Realistically, we
may have to accept “minimum changes” rather than “any changes”
but the point is intrusive changes to existing code should be
minimised, let’s say three places at most – OK, I just pulled “three”
out of the air. One or two would be better, but if we are attempting
to separate the system elsewhere (e.g. GUI interface separated from
calculation engine) then centralising all changes at just one point
may break other abstractions.

If my contract evaluator was written as a truly extendable system
I may only need to write a couple of new objects: one to represent
the GUI aspects of the contract and one to represent the evaluation.
Next I would recompile my system with the new objects – maybe
I would need to add them to an existing list of contracts or maybe
there is some magic in the make process that would do this for me.

To emphasise the point: the system has been changed without
need to change the existing code – even though we may recompile
the code the existing code is unchanged.

This may seem obvious when I write it here but stop for a minute
and dwell on it. Can you do this with your current system? How
would your life be improved if you could make changes like this?
What would it mean if your system could be changed like this?
How can you do this?

When is code extensible?

There are three points at which code may be extended:
● compile time : change our source code to pick up new

functionality; this may mean adding new objects in new source
code files and changing a factory function.

● link time : arrange for changes to be picked up by the linker only;
this may involve some magic for new objects to be found, this
can be self defeating as it inevitably adds some obscurity to the
code and possibly the makefiles too.

● run time : dynamically loaded libraries were invented for this
sort of thing. This can also lead to obscurity in the code and
usually makes debugging more complex because you may have
to wait for a library to be loaded before you can set break points.

Although run time extension is truest to the idea of extendable
code (because you don’t change any of the existing code) I don’t
think this buys much over a good compile-time extension system.
Run-time extension has its uses, such as in very dynamic
systems, or non-stop applications but it also complicates version
tracking and configuration management.

Sometimes the simplest thing is to actually change some of the
existing code. What is simplest and best depends on your
circumstances. Actually adding a line and recompiling will be the
simplest solution.

1 In fact, the system I’m actually talking about was actually written in Pascal.

2 For those who don’t recall. MS-DOS was limited to 1Mb of accessible memory and 640K of user space. Initially to get beyond this Lotus, Intel
and Microsoft introduced a system of page swapping which allowed memory to be “expanded”, think of the memory map getting fatter as
different pages were swapped in and out of the 1Mb memory map. Eventually this system gave way to “extended” memory where the CPU could
access beyond 1Mb, instead of getting fatter the memory map got taller.

Mechanisms for extending code

Many of the classic design patterns are directly concerned with
allowing code to be extended with minimal intrusion. It is easy
to see how command, chain-of-responsibility and factory patterns
can be useful but patterns are not the end of the story. (If this
isn’t obvious have another look at the GoF book and think about
them for a few minutes.)

Interfaces and substitutability

The key to extensible code is common, well-known interfaces,
which allow one object, module or library to be substituted for
another – the Liskov substitution principle (see Martin 1996).
The program framework handles all objects in a common
fashion, no special cases are allowed, it is oblivious to the
concrete type of the object. The same idea lies at the heart of the
dependency inversion principle – see Griffiths.

In my extendable contract evaluator example, the framework
would ask the contract to evaluate itself, it has no need to know
anything about the contract class itself, only the interface for
communicating with the contract class.

State of the program – data model

One problem we quickly run into when adding new objects to an
existing system is that the objects must have access to the state of the
program, that is, the data contained in the system at the current time.

Again, think of the extendable contract evaluator example.
Before evaluating any contracts the system will load data models
of the supply and demand for the period the contracts are being
evaluated for. It is useful to centralise the data model for the system
so that all contracts have equal access to the data.

Since the data model is used by all contracts we need to ensure
it is accessible. The data model itself may be some easily accessible
object, which contains the pre-loaded data and configuration
information. All contracts have equal access to this data, there are
no special allowances for Contract X to have special access.

Separating the state out also makes it clear what is data, and what
is algorithms. This simplifies reasoning about the system.

Dynamically loaded .DLL/.so

Dynamic link libraries, shared libraries in Unix speak, are loaded
by an application at run time, often we are only interested in them
as libraries not their dynamic properties. However, most OSs
allow you to explicitly specify the filename of a library you wish
to load and, once loaded, use the functions contained within –
this provides a powerful extension mechanism.

You can write several DLLs, each with a common set of
functions, and decide which one to load and use at run time, thus
you can extend the program at run time.

However, this comes at a cost. Firstly, you must take more care
with your version management. Instead of having one large
executable to manage you now have several discrete libraries.

Secondly, you must add configuration details to your system so
it knows which DLLs to load.

Finally, there are portability problems. On Solaris the action of
loading a DLL places all symbols in the run-time symbol table so
extra care is required to ensure you don’t call a function with the
same name in another DLL, while Microsoft traditionally provide
a stub library to link against.

If we wish to load a DLL and call a function by name the process
is actually quite similar. On Windows we use LoadLibrary and
GetProcAddress, while on Unix we use dlload and dlsym
to the same effect.

COM & CORBA

Both COM and CORBA can be used to for extensible systems.
However, the literature on both emphasises different aspects of
each system. Essentially, both implement the loading of dynamic
libraries.

If your system already uses, or you plan to use either COM or
CORBA you can take full advantage to make your program
extensible. However, if you are only interested in their extensibility
properties I would advise against using either of them. There are
simpler techniques (some outlined here) which provide the same
benefit without the cost.

When I say cost I’m not talking about monetary cost – although
simply buying the literature on either product is expensive, and
purchasing a brand name ORB is not cheap – rather I am thinking of:
● both have steep learning curves : even if you know COM think

of the maintenance requirements
● both have a reputation for poor performance
● both force you to design your system around them
● both have reference counting problems
● both force you to get into IDL writing which may be overkill
● COM locks you into Microsoft systems
● CORBA code can become specific to one vendor’s ORB if care

is not taken

Poor-man’s COM

Even without using COM or CORBA you can pass objects out of
dynamic libraries you have loaded. All that is required is three steps:
1. Simply define an abstract base class, e.g.

class Base {
public:

virtual bool Action() = 0;
};

2. In each of your dynamic DLLs provide a concrete
implementation of this base class, e.g.

class Concrete : public Base {
public:

virtual bool Action() { return true; }
};

3. In each DLL provide a Factory function which returns a
pointer to your Base class, e.g.

Base* Factory() { return new Concrete; }
You can now write as many objects as you like, each packaged
inside a DLL, and choose which to load at run time.

Of course, should you decide to change the interface on the
Base class you will need to recompile everything in your system.
This is equally true if you change the IDL interface on a COM or
CORBA class.

Exception handling

It may not be obvious at first that exception handling has a part to
play in writing extensible code but it does, a very important part.

In the days before exception handling we typically had one file
with a large number of error codes in it, such as ErrorCodes.h3.

7

Overload issue 49 june 2002

3 On a side note I urge everyone to avoid using the word “error” in filenames. Grepping a long compiler log for errors is much easier if there are
no false positives.

Whenever a new error was added ErrorCodes.h needed
updating and, since every file in the system depended on
ErrorCodes.h, the entire system needed re-compiling.

By defining a hierarchy of exception classes derived from a
simple base we can allocate error codes and messages as needed.
We may still wish to provide each object with its sub-system code.

When a simple error code is passed up the call stack it is difficult
for the top-level code to take any special action without knowing
specifics about the circumstances. Contrast this with an exception
class, which can itself provide specific methods for such a
circumstance.

For example:
class ContractEvaluatorException

: public std::exception {

public:

virtual int SubSystem()=0;

virtual int SpecificCode()=0;

virtual const char* ExtendedDescription()=0;

virtual bool EvaluationComplete()=0;

virtual void StoreEvaluation()=0;

virtual bool IsFatal()=0;

};

...

int EvaluateAll(std::list<Contract> contracts,

DataModel& dataModel) {

for (int i=0; i<=contracts.size(); i++) {

try { contracts[i].Evaluate(dataModel); }

catch (ContractEvaluatorException& exp) {

cerr << exp.what()

<< “ in subsystem “ << exp.SubSystem()

<< “ code = “ << exp.SpecificCode()

<< “: “ << exp.ExtendedDescription();

LogError(exp);

if (exp.IsFatal()) throw;

if (exp.EvaluationComplete()) {

exp.StoreEvaluation();

}

}

}

}

The higher levels of the program are still ambivalent to what was
actually happening – beyond the fact that some contract was
being evaluated. Again, the exception system has allowed us to
separate the cause from the effect (see Kelly, 2000) - this is
dependency inversion at work.

State machines

State machines are particularly good at absorbing extra code.
The simplest state machines (a big switch statement and a whole
set of functions) can have extra states added with little pain but
beware, beyond a certain point the big-switch statement becomes
a pain to maintain.

More advanced state machines can be completely reconfigured
at run time and may use look up tables rather than hard coded
settings. Equally, I have read several articles on object based state
machines over the years.

One of my favourite features of state machines is that they are
very easy to debug and to explain to users. You can sit down with
a piece of paper and trace the route against a diagnostic printout, or
with a user who wants a change.

Putting it all together

This article draws heavily on my own experience. In these kind
of extendable systems I frequently find a large number of “action
objects.” These are C++ classes which exist for one purpose
only, indeed, as in the example above they may have just one
significant method called Action().

To keep these objects decoupled they are usually passed a means
of accessing the program state when they are action’ed. These
objects are ideal candidates for being placed in a queue and
processed sequentially. Sometimes the processing order is
important, sometimes the processing could be farmed out to worker
threads to allow several objects to be action’ed at the same time.

Another characteristic is that the actioning of the objects may
further populate the queue of objects to be action’ed. Sometimes
this is direct, the action method will actually add a new item to the
processing queue, other times it is indirect, the action method will
trigger some other process which results in the queue being
populated.

In fact, what I have just described is the Command pattern in a
slight disguise.

Example code

By the time this article appears I should have some example code
available on my web-site – www.allankelly.net. This
demonstrates the use of dependency inversion to allow
extensions to the code and poor-man’s COM system. At the
moment the code compiles on Windows 2000 using either Visual
C++ or GCC. Overtime I would like to extend this code in
several directions.

Summary

Extensibility is a worthy design goal. It is the goal of many
design patterns and development techniques but it is seldom
stated explicitly. Once we recognise extensibility as an explicit
aim it is not rocket science. There are a variety of mechanisms
for implementing it and with a little practice it becomes easy.

Of course even the most extensible systems suffer from sods-
law - change requests can always occur for items your didn’t expect
to need changing – the classic outside-context-problem4.

Allan Kelly
Allan.Kelly@bigfoot.com

References

Banks, Iain. 1996; Excession, Orbit, 1996
Bruntlett, Ian 2000; “User Defined Types: Qualities, Principles &
Archetypes”, Overload 39, September 2000.
Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995; Design
Patterns, Addison Wesley 1995 - also called the Gang of Four
book or GoF for short.
Griffiths, Alan; “Dependency Inversion”,
www.octopull.demon.co.uk/c++/dependency_inversion.html

Kelly, Allan 2000: “Error Handling and Logging”, Overload 35,
January 2000
Martin, R.C. 1996; “Liskov Substitution Principle”, C++ Report,
1996, www.objectmentor.com/resources/articles/lsp.pdf

4 From Iain Banks’ novel “Excession” (1996) – although as far as I
know Ian Bruntlett (2000) was the first to use Outside Context Problem
in connection with software.

8

Overload issue 49 june 2002

More Exceptional Java
by Alan Griffiths

At the ACCU Spring conference last year I took my exception-
safety pattern language [1] and redrafted the discussion of C++
idioms in Java. This wasn’t as simple as I had hoped, many of the
C++ techniques used have no equivalent in Java. The resulting
presentation met the goal of relating the pattern language to Java
and identified the necessary coding techniques. However, as Jon
Jagger commented, “it lacks the same sense of resolution” that
the C++ paper had.

The problem was that it raised a number of unanswered issues
regarding the use of Java exceptions. During the course of the
presentation these were discussed (with a lot of input from the
audience) without reaching a solution. The only clear conclusion I
could reach was that these were real problems that people were
experiencing.

A year has passed and now I have tried to address the issue of
how Java exceptions should be used in the companion article
“Exceptional Java” [2] and it is time to returned to the original
theme: that of writing exception safe code.

These two articles can be read separately, but each raises
issues that are addressed by the other. One final point, although
I arrived at the ideas presented in “More Exceptional Java” a
year before writing “Exceptional Java” I would recommend
reading it second.

A metaphorical landscape: the
heights of exception safety

To give you some orientation in the exception-safety landscape I
will first describe the principle landmarks: the heights of
exception safety. These are the goals that we will be seeking
during the discussion of implementation techniques, so if you are
prone to asking, “why are we doing this?” it will be worth
assuring yourself that you understand them first.

Let us begin with a program in which an exception is thrown and
consider the call stack: a method a has called another method b, b
has called c, and so on, until we reach x; x encounters a problem
and throws an exception. This exception causes the stack to unwind,
executing the code in finally (or catch) blocks, until the
exception is caught and handled by a.

I’m sure that the author of x has a perfectly good reason for
throwing an exception (running out of memory, disk storage, or
whatever) and that the author of a knows just what to do about
it (display: “Sorry, please upgrade your computer and try
again!”).

But exception safety is not about writing code that throws an
exception (method x) nor about writing code that handles it
(method a).

Exception safety is about writing the code that lies between
- writing all the intervening methods in a way that ensures that
something sensible happens when an exception propagates. It is
about writing the typical method m in the middle of the call
stack. If we want m to be “exception safe” then how should it
behave?

Consider the options: If m completes its task by some other
means (by using a different algorithm, or returning a “failed” status
code) then it would be handling the exception. That isn’t what we
are concerned with - we are assuming the exception won’t be
handled until we reach a. Since m doesn’t handle the exception we
might reasonably expect that:

1. m doesn’t complete its task.
2. If m has opened a file, acquired a database connection, or, more

generally; if m has “allocated a resource” then the resource
should not leak. The file must be closed, the database connection
must be released, etc.

3. If m changes a data structure, then that structure should remain
useable.

In summary: if m updates the system state, then the state must
remain usable. Note that isn’t quite the same as correct, for
example, part of a name-and-address object may have been
changed leaving mismatched name and address values.

These conditions are called the basic exception safety guarantee.
Take a good look at it so that you’ll recognise it later.

If you are new to this territory then the basic exception safety
guarantee may seem daunting. But not only will we reach this in
our travels, we will be reaching an even higher peak called the
strong exception safety guarantee that places a more demanding
constraint on m:
4. If m terminates by propagating an exception then it has made no

change to the state of the program.
The basic and strong exception safety guarantees were first
described by Dave Abrahams [3] to document an implementation
of the C++ standard library.

Note that it is impossible to implement m to deliver either the
basic or strong exception safety guarantees if the behaviour in the
presence of exceptions of the methods it calls isn’t known. This is
particularly relevant when the client of m (that is l) supplies the
methods to be called either as callbacks or as implementations of
virtual member methods. In such cases the only recourse is to
document the constraints on them.

If we assume a design with fully encapsulated data then each
method need only be held directly responsible for aspects of the
object of which it is a member. For the rest, the code in each
method must rely on the methods it calls to behave as
documented. (We have to rely on documentation in this case,
since in Java, as in C++, there is no way to express these
constraints in the code.)

As we proceed we’ll find frequent outcrops of the rock that
supports our mountains, which is named after the area in which it
is found and is called the no-throw exception safety guarantee, as
the name suggests this implies that the corresponding function will
never propagate an exception. Clearly operations on the
fundamental types provide this guarantee, as will any sequence of
no-throw operations. If it were not for the firm footing that these
outcrops of the no-throw exception safety guarantee provide we
would have great difficulty ascending the heights. Although this
was known and used in earlier work I think it was first made explicit
and named by Herb Sutter [4].

Do forgotten objects live on?

In Java objects are in a very real sense immortal - they do not die
- and are merely forgotten when there are no references to them.
This has a number of obvious advantages - in particular, one
cannot have a reference to an object that no longer exists (this is a
major element of the Java security model).

However, the basic and strong exception guarantees both refer
to “the system state” and it may not be obvious whether objects
awaiting garbage collection should be considered part of this. These
‘forgotten’ objects cannot be accessed and I propose to ignore them,
they are not part of the system state.

9

Overload issue 49 june 2002

Java exceptions

Java has both checked and unchecked exceptions and the
companion article “Exceptional Java” examines the
consequences of this. For the purposes of this article I claim that
both checked and unchecked exceptions must be considered
when reviewing code for exception safety. A method that doesn’t
catch an exception doesn’t care about the type of the exception,
particularly whether it is checked or unchecked, so throws
clauses are of little account when reasoning about exception
safety.

Why must unchecked exceptions be considered? Because they
can be thrown by x and caught by a. And the code that catches
them requires guarantees about the state of the system. If, for
example, it is going to restart the subsystem that encountered the
problem, then it needs to know that the subsystem died in an
orderly manner.

Throughout this article whenever I mention exceptions without
qualification I mean it in the inclusive sense, “either checked or
unchecked exception”.

Not considering unchecked exceptions is a frequent cause of
errors. Two factors contributing to this are: a tendency for
developers to rely on the compiler to indicate any failure to consider
exceptions, and that error handling is often omitted from
demonstrative code – as it obscures the point. Consider the
following example (widely quoted as a way to avoid flicker when
using the AWT):

public void repaint() {
Graphics g = getGraphics();
paint(g);
g.dispose();

}
It is possible for an unchecked exception to propagate from
paint(g), which would bypass the g.dispose()
statement. It is important that this doesn’t happen in a real
application as it releases system resources. It is not sufficient to
assume that the finalize method of the object formerly
known as g will release the resources as there is no guarantee
that the finalize method is called in a timely manner, or
indeed ever.

In Java the only way to guarantee that a method on an object is
executed is to call it before the object is forgotten. In code written
for a production environment I’d expect to see:

public void repaint() {
Graphics g = getGraphics();

if (null != g) {
try { paint(g); }
finally { g.dispose(); }

}
}

In this code fragment it should be obvious that the resources will
be released whether or not paint() propagates an exception -
look at the three significant steps: allocate, use, release and the
logic that binds them together.

While on the subject of finally, please use it idiomatically:
while it is legal to exit from a finally-block using return,
continue or break doing so defies the ‘principle of least
surprise’. The next programmer to work on the code (it may be you)
will expect that the exception continues to propagate. If the
exception may be handled say so: by using catch!

Factoring out ‘ALLOCATE-USE-RELEASE’

While repeatedly reproducing the same code in slightly
different contexts may be good for productivity by metrics such
as lines-of-code it is tedious and a possible source of errors.
Wherever paired operations (such as allocation and release)
need to surround a piece of code it may be useful to employ the
EXECUTE-AROUND-METHOD idiom [6]. This exists in a number
of languages and in Java it is expressed by passing an
anonymous local class to a method that allocates the resource,
passes it to a method in the supplied code, and finally release
the resource:

public class ExecuteAroundMethod {
private ListSelectionModel sel;

private interface Adjustment {
public void use(

ListSelectionModel sel);
}

private void executeAround(
Adjustment adjustment) {

sel.setValueIsAdjusting(true);
// ‘allocate’

try {
adjustment.use(sel);

// ‘use’
}
finally {
sel.setValueIsAdjusting(false);

// ‘release’
}

}

public void removeOdd() {
executeAround(new Adjustment() {
public void use(

ListSelectionModel s) {
for (int i = entries; —i != 0;)
if (0 != i % 2)
s.removeIndexInterval(i, i);

}
});

}
}

There is a trade-off here, we’ve ensured that there is only one
method to examine to ensure that paired operations always occur
correctly, but we’ve paid a price by introducing extra classes and
method calls.

Strong exception safety guarantee
– the frontal route

We are now going to look at strongly exception safe version of a
simple method. The following example is a translation from C++
of an example introduced as a test case by Tom Cargill. The
method we will examine, copy(), is one that aims to copy the
state of source to this:

10

Overload issue 49 june 2002

public class Whole {
private static class PartOne

implements Cloneable {
/* omitted */

}
private static class PartTwo

implements Cloneable {
/* omitted */

}

private PartOne p1;
private PartTwo p2;

public void copy(Whole source) {
/* What goes here? */

}
}

A (very naïve) implementation might be:
public void copy(Whole source) {
p1 = rhs.p1.clone();
p2 = rhs.p2.clone();

}

Is this exception safe?
If we make the reasonable assumption that the clone()

methods are themselves strongly exception safe then copy()
supports the basic guarantee. (This is also the case if the clone()
methods support the basic guarantee.) If the clone() methods are
not exception safe there is little that copy() can do to achieve
exception safety.

Only if the PartTwo.clone() method called in the second
line won’t throw an exception can this version of copy() support
the strong guarantee (after modifying p1 the system state has
definitely changed). Of course, the nothrow guarantee is an
unreasonable expectation of a clone() method, an ‘out of
memory’ exception is a possibility for any reasonable
implementation. On the other hand there is nothing to indicate that
modifying p1 alone will make the object unusable so we can claim
to meet the basic guarantee.

Now consider a slightly updated version that addresses the
problem of an exception being thrown by the second clone()
call:

public void copy(Whole source) {
PartOne temp = rhs.p1.clone();
p2 = rhs.p2.clone();
p1 = temp;

}

With the presumption that cloning does nothing that needs
reversing then an exception propagating from either of the first
two lines permits any changes to the system to be forgotten on
exit from copy(). This is the strong guarantee.

In the above we’ve assumed that cloning doesn’t do anything
that needs to be undone. This isn’t always true – for example
PartOne and PartTwo may own a resource that needs releasing.
Adding the complexity of ensuring dispose() methods are
called and generalise slightly (I wouldn’t normally expect to need
the checks against null for clone()but other methods used in
this context might):

public void copy(Whole source) {
PartOne t1 = rhs.p1.clone();

if (null != t1) {
try {
PartTwo t2 = rhs.p2.clone();

if (null != t2) {
try {
// examples of methods
// that might throw
t1.setParent(this);
t2.setParent(this);

// ********************************
// This is the pivotal point of the
// code - everything that could
// fail is before this point.
// Nothing that makes persistent
// changes to the state of the
// system is before this point.
// ********************************

// The following commits the
// change to the system state.
// Importantly it won’t throw.
PartOne swap1 = t1;
t1 = p1;
p1 = swap1;
PartTwo swap2 = t2;
t2 = p2;
p2 = swap2;

}
finally {
// either frees the original
// resources or of the
// temporary - depending
// whether we passed the
// pivot uneventfully.
t2.dispose();

}
}

}
finally {
// either frees the original
// resources or of the temporary
// - depending whether we
// passed the pivot uneventfully.
t1.dispose();

}
)

}

The code is structured in such a way that for each object creation that
succeed the dispose() method will be invoked. It will be
invoked on either the original instance if no exception is propagated
or the replacement instance in the case of an exception. The only
assumptions needed to demonstrate the strong guarantee being
attained are: no exceptions are propagated by the dispose() calls
and that the setParent() calls are themselves exception safe.

11

Overload issue 49 june 2002

This code structure once again shows the ALLOCATE-USE-
RELEASE idiom we observed earlier with a subtle variation, if no
error occurs then it’s a different resource that is released. This has
been described before in a C++ context[5] and goes by the name
ALLOCATE-BEFORE-RELEASE. (Strictly, the original reference refers
to COPY-BEFORE-RELEASE, a special case equivalent to the current
example.)

A close examination of the above example should make it clear
that when committing updates to the system state we need
operations that don’t throw exceptions. The assignments of
references used to swap the new state into the object are obviously
safe – they are guaranteed not to throw by the language, but if either
call to dispose() were to throw an exception then the strong
guarantee would be violated.

This is an area in which Java standard library documentation
is deficient, as it only addresses checked exceptions. Consider
the method Graphics.dispose() used in the first example:
could this propagate an unchecked ‘null pointer’ exception? I
hope not - but without documentation of this point we don’t
know.

A lower peak – the basic guarantee

On terrestrial mountains above a certain height there is a
“death zone” where the supply of oxygen is insufficient to
support life for long periods. Something similar happens with
exception safety: there is a cost to implementing the strong
exception safety guarantee. The technique illustrated above can
involve the creation of extensive duplicate data structure: the
additional objects created and the resources they allocate can
be expensive in both space and time. If repeated at all the
levels of our call stack the costs of doing this can suffocate an
application.

The alternative to changing a copy of an object is to change
the original and either accept that an exception could leave a
series of changes incomplete. The result is that either the system
will be in an unknown state or we must be prepared to back out
changes. For either approach what we need to know is that
nothing will go horribly wrong, the basic exception safety
guarantee.

To provide an example I’m going to elaborate on the previous
example by extending the class and adding a (potentially) large
container to the derived class:

public class BiggerWhole extends Whole {
private Properties parameters

= new Properties();

public void copy(BiggerWhole source) {
/* What goes here? */

}
}

Using the techniques we examined earlier we would take a
clone of source.parameters then call super.copy(),
and finally update parameters. If we decide that the cost of
creating a copy of parameters is unacceptable then we can
update it with the understanding that if an exception occurs
then we make no promise to the client code of the exact state
of BiggerWhole, the client code must take appropriate
action. Vis:

public void copy(BiggerWhole source) {

super.copy(source);
parameters.clear();

Enumeration e =
source.parameters.propertyNames();

while (e.hasMoreElements())
{
String key = (String)e.nextElement();
parameters.put(key,
source.parameters.getProperty(key));

}
}

At any point after super.copy() returns then the state of the
system has changed. However an exception is still possible.
However, if failing to update parameters completely leaves
the object in a sensible state then this may be acceptable.

Conclusion

The exception safety landmarks are useful in Java, as they are in
C++. The basic, strong and nothrow guarantees clearly make
sense and can be applied when writing or reviewing code. There
are techniques for writing code to these guarantees and these
have been demonstrated. While I must agree with those C++
developers who consider these techniques less elegant than those
available in C++ I see the principal issue to be the failure of a
significant part of the Java community to believe that the
problem they solve exists.

Ignoring a problem does not make it go away and as unchecked
exceptions can encapsulate rare but plausible events (e.g. out of
memory) and even exceptions explicitly thrown by the programmer
it is unreasonable to ignore them. It is unfortunate that they also
include that shouldn’t happen in a correct program.

The path that led Java to the current handling of unchecked
exceptions is paved with good intentions: rather than the JVM
having undefined behaviour when “bad things” happen the
behaviour is defined. But this has only shifted the problem, because
the programmer is not working with the raw JVM, but with library
code that doesn’t fully document its behaviour.

In addition to unchecked exceptions being undocumented, there
are no compile-time tools for verifying exception safety. This once
again leaves the problem with the developers, who must document
and check the requirements for themselves.

Alan Griffiths
alan@octopull.demon.co.uk

References

[1] Alan Griffiths, “Here be Dragons”, Overload 40
[2] Alan Griffiths, “Exceptional Java”, Overload 48
[3] Dave Abrahams, Exception Safety in STLPort,
http://www.stlport.org/doc/exception_safety.html

[4] Herb Sutter, Exceptional C++, Addison-Wesley,
ISBN 0-201-61562-2
[5] Kevlin Henney, “Self Assignment? No Problem!”,
Overload 21
[6] Kevlin Henney, Java Patterns and Implementations,
http://homepages.tesco.net/~jophran/UKPatterns/

plunk1/JavaPatterns.html

12

Overload issue 49 june 2002

13

Overload issue 49 june 2002

Programming with Interfaces
in C++
By Chris Main

In a previous issue of Overload [1], Lois Goldthwaite gave an
illuminating explanation of compile time polymorphism using
templates.

This has the advantage over run time polymorphism that it does not
require classes to be derived from a common base class to share an
interface, and that it does not incur the cost of a virtual function table.

It is usually pointed out that it suffers the disadvantage that
objects of different types with the same interface cannot be held in
a type safe container, since such containers do require contained
objects to share a common type.

However we can in fact get the best of both worlds since it is
possible to convert objects that share compile time polymorphism
into objects that share run time polymorphism. I infer from Kevlin
Henney’s article in Overload 48 [2] that the technique I describe
uses the External Polymorphism pattern.

First, a recapitulation of Lois’ classes:

// talkers.h (include guards not shown)

#include <iostream>

class Dog {

public:

void talk() const {

std::cout << “woof woof”

<< std::endl;

}

};

class CuckooClock {

public:

void talk() const {

std::cout << “cuckoo cuckoo”

<< std::endl;

}

};

class BigBenClock {

public:

void talk() const {

std::cout

<< “take a long tea-break”

<< std::endl;

}

void playBongs() const {

std::cout << “bing bong bing bong”

<< std::endl;

}

};

class SilentClock {

};

We can provide compile time polymorphism by means of a
function template, which can be specialised to adapt functionality
(in the case of BigBenClock) and to supply missing
functionality (in the case of SilentClock):

// talkative_generic.h

// (include guards not shown)

class BigBenClock;

class SilentClock;

template< class T >

void talkativeGenericTalk(const T& t) {

t.talk();

}

template<>

void talkativeGenericTalk(const

BigBenClock& bigBenClock);

template<>

void talkativeGenericTalk(const

SilentClock& silentClock);

// talkative_generic.cpp

#include “talkative_generic.h”

#include “talkers.h”

#include <iostream>

template<>

void talkativeGenericTalk(const

BigBenClock& bigBenClock) {

bigBenClock.playBongs();

}

template<>

void talkativeGenericTalk(const

SilentClock& silentClock) {

std::cout << “tick tock”

<< std::endl;

}

The equivalent interface in run time polymorphism can be
defined as:

// talkative_interface.h

// (include guards not shown)

class TalkativeInterface {

public:

virtual TalkativeInterface*

clone() const = 0;

virtual void talk() const = 0;

virtual ~TalkativeInterface(){}

};

We then need a mechanism for converting objects with the
compile time interface to this type. We can do this by means of a
factory class:

// talkative_interface_factory.h

// (include guards not shown)

#include “talkative_interface.h”

#include “talkative_generic.h”

[continued over page]

14

Overload issue 49 june 2002

[continued from previous page]
class TalkativeInterfaceFactory {

public:

// Callers should take ownership of the

// pointers returned by the public functions

template< class T >

static TalkativeInterface* convert(T* t) {

return new TalkativeImplementation<T>(t);

}

template< class T >

static TalkativeInterface*

copy(const T& t) {

return new TalkativeImplementation<T>(t);

}

private:

TalkativeInterfaceFactory();

TalkativeInterfaceFactory(const

TalkativeInterfaceFactory&);

TalkativeInterfaceFactory& operator=(

const TalkativeInterfaceFactory&);

~TalkativeInterfaceFactory();

template< class T >

class TalkativeImplementation

: public TalkativeInterface {

public:

TalkativeImplementation(T* t)

: t_(t), owner_(false) {}

TalkativeImplementation(const T& t)

: t_(new T(t)), owner_(true) {}

virtual TalkativeInterface*

clone() const {

return new

TalkativeImplementation<T>(*t_);

}

virtual void talk() const {

talkativeGenericTalk(*t_);

}

virtual ~TalkativeImplementation() {

if(owner_) delete t_;

}

private:

TalkativeImplementation(const

TalkativeImplementation&);

TalkativeImplementation& operator=(

const TalkativeImplementation&);

T* t_;

bool owner_;

};

};

The key to the factory class is the nested adapter class
template TalkativeImplementation in the private part.
This is derived from TalkativeInterface to give it the
required type. It is a template so that it can be instantiated
with any class T that supports the compile time
polymorphism; the required member function talk() is
implemented by using the function template
talkativeGenericTalk().

The factory provides two static public functions convert()
and copy() which use the TemplateImplementation
class template to perform the conversion (in the former by
sharing an existing pointer, in the latter by creating a new,
independent one).

For the sake of clarity I have used raw pointers throughout the
code. In practice I would use a reference counting smart pointer
everywhere there is a raw pointer. This would avoid the need for
the owner_ member variable and make the destructor of
TalkativeImplementation trivial. For a full discussion of
smart pointers see Alexandrescu [3]).

Here is some test code to show the use of the factory to build a
vector of talkative objects using copy():

// test_talkative.cpp

#include “talkers.h”

#include “talkative_interface_factory.h”

#include <vector>

#include <algorithm>

namespace

{

typedef std::vector<TalkativeInterface*>

Talkers;

struct Talk {

void operator()(const

TalkativeInterface* talker) {

talker->talk();

}

};

template< class T >

struct Destroy {

void operator()(const T* t) {

delete t;

}

};

}

int main(int, char**)

{

Dog aDog;

CuckooClock aCuckooClock;

BigBenClock aBigBenClock;

SilentClock aSilentClock;

Talkers talkers;

talkers.push_back(

TalkativeInterfaceFactory::copy(aDog));

15

Overload issue 49 june 2002

talkers.push_back(

TalkativeInterfaceFactory::copy(

aCuckooClock));

talkers.push_back(

TalkativeInterfaceFactory::copy(

aBigBenClock));

talkers.push_back(

TalkativeInterfaceFactory::copy(

aSilentClock));

std::for_each(talkers.begin(),

talkers.end(), Talk());

std::for_each(talkers.begin(),

talkers.end(),

Destroy<TalkativeInterface>());

return 0;

}

This produces the output:

woof woof

cuckoo cuckoo

bing bong bing bong

tick tock

One practical application of this factory class would be to
implement the Observer pattern [4]. In fact, it was Pete
Goodliffe’s series of articles on that subject [5] that set me
thinking about this in the first place. In this pattern, a Subject
maintains a list of Observers. With this factory class we would be
able to convert a variety of Observers, not necessarily sharing a
common base class, so that they could be added to such a list.
The convert() operation would be used in this case. The
following test code demonstrates the effect achieved by using
convert() rather than copy():

// guard_dog.h (include guards not shown)

#include “talkers.h”

#include <iostream>

class GuardDog: public Dog {

public:

GuardDog() : barkLoudly(false) {}

GuardDog& deterIntruder() {

barkLoudly = true; return *this;

}

void talk() const {

if(barkLoudly) {

std::cout << “WOOF WOOF” << std::endl;

}

else {

Dog::talk();

}

}

private:

bool barkLoudly;

};

// test_talkative.cpp

// other includes as before

#include “guard_dog.h”

// typedef Talkers, classes Talk and

// Destroy as before

int main(int, char**) {

GuardDog* aGuardDog = new GuardDog();

Talkers talkers;

talkers.push_back(

TalkativeInterfaceFactory::convert(

aGuardDog));

std::for_each(talkers.begin(),

talkers.end(), Talk());

aGuardDog->deterIntruder();

std::for_each(talkers.begin(),

talkers.end(), Talk());

std::for_each(talkers.begin(),

talkers.end(),

Destroy<TalkativeInterface>());

delete aGuardDog;

return 0;

}

This produces the output:

woof woof

WOOF WOOF

Chris Main
chris@chrismain.uklinux.net

References:

[1] Lois Goldthwaite, “Programming With Interfaces In C++: A
New Approach”, Overload 40, December 2000
[2] Kevlin Henney, “Function Follows Form”, Overload 48, April
2002
[3] Andrei Alexandrescu, Modern C++ Design, Addison Wesley
C++ In Depth Series, 2001
[4] Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley, 1995
[5] Pete Goodliffe, “Experiences of Implementing the Observer
Design Pattern Parts 1-3”, Overload 37, May 2000, Overload 38,
August 2000, Overload 41, February 2001

16

Overload issue 49 june 2002

Building Java Applications
By Vaclav Barta

This is an article about the boring process of running javac on
Java source files to obtain Java class files. It explains that it’s not
so simple (when you come down to it, it’s actually pretty
complicated), what has been done to make it seem simple and
what, in my opinion, should be done instead.

Dependency management

So, what’s so complicated about running javac? Well, making
class files may be the most obvious part of a Java build, but it’s
rarely the only one. In my experience (which is admittedly
limited, but I did work on more than one Java project), Java
projects are typically multi-language: more often than not, there’s
some legacy library which must be accessed through native code,
a CORBA IDL interface to be implemented, an XML DTD to
conform to and so on.There are many code generators producing
Java, and therefore much code to be generated before
compilation; and when the class files are compiled, they must be
packaged into jars (which may need to be signed), and then
there’s no limit to how complicated you want your automated
testing to be. I subscribe to the adage that “the program that has
not been tested does not work”, and even if you don’t, reflect on
the dynamic nature of Java (runtime checks for null pointers,
casts and so on) and ask yourself whether you really want your
users to be the first running your code... And if you want to test
what is delivered (as opposed to some other, quite similar code),
you need version control, and that should also mesh with your
build. Builds are hard, and Java builds are harder than average.

Of course, if a build does a lot of things, it shouldn’t do them
every time. Not only do I not want to run integration tests every
time I change a line - I don’t even want to package the jars. I want
to run the unit tests early and often and they must use class files
corresponding to my source files. Therefore the build must figure
out what needs to be updated (whether it’s one class file, or every
class using a changed constant) and build that and no more. In other
words, a serious build for Java applications must understand Java
dependencies. That is the problem; let’s look at some existing
solutions.

Current solutions

IDEs

The most common answer I get when asking about a project
build is, I’m sorry to admit, “Why don’t you just use JBuilder?” -
so my answer is practiced by now: JBuilder doesn’t scale. I
believe (I didn’t try) that it may be useful for a home-based
individual developer, but an environment which does not handle
multiple languages, multiple users and variant (at least unit test
vs. delivery) builds is simply not good enough for production
work. That should not be taken as criticism of JBuilder (in fact,
I’m told that some of its more irritating limitations have been
fixed in latest versions), but rather as a criticism of “visual”
environments in general. Large-scale software development
requires programmable tools, going beyond “what you see is all
you get”.

make

And indeed there are programmable build tools. The problem
of dependency management has been recognized (and solved)

long ago, and its solution is now a de-facto standard build tool:
make . From a popular manual [1]: “The make uti l i ty
automatically determines which pieces of a large program
needs to be recompiled, and issues commands to recompile
them.”

It would be perfect, if only it were true... Standard make does
not automatically handle dependencies (not beyond “$NAME.o
always depends on $NAME.c”), and in consequence, projects using
make either generate most of the content of their makefiles by
various add-ons (either make extensions, or external programs), or
just ignore the problem and build from scratch every once in a while
to flush the bugs out. A good overview of make problems can be
found (perhaps unsurprisingly) in the documentation of an
alternative build tool [2].

And if the general problems of makeweren’t enough to look for
alternatives, there are also Java-specific ones: make’s build model
is based on C compilation (source files are compiled to object files,
which are linked to make an executable), but Java doesn’t work that
way. Multiple class files can be generated from a single source,
circular dependencies are quite common and the generation of jars
is strictly optional.

Considering that the purpose of dependency analysis is to
minimize compilation time, it is worth noting that javac is very
slow to start up. For a few simple classes, it may not pay to check
dependencies at all - the startup time (or perhaps it is time javac
itself spends checking dependencies - see below) dwarfs time
actually spent compiling, and so it saves practically no time to
compile just part of the project.

On the other hand, there clearly are projects big enough that
javac should not compile all their sources, every time - there’s no
justification for build times going up linearly with the size of the
project. In theory, javac could handle dependency management
internally. In practice, that functionality (the -depend flag of
javac) existed in early versions of Sun’s JDK, but it has been
dropped in Java 2, and javac now recompiles only direct out-of-
date dependencies, when their sources happen to be found on
sourcepath or classpath. Sourcepath at least is an
explicit command-line argument, but the recompilation of source
files on classpath cannot even be turned off... Make has a
particular problem with this “feature”, because make builds
normally create derived files in the same directory where the source
is, and since javacmust be able to find the class files (to compile
other sources depending on them), it also checks the sources even
when it shouldn’t.

A model for a Java build

So, if the current solutions are unsatisfactory, what should be
done instead?

I believe that a Java-aware build tool should have language-
specific support (not only for Java, but for multiple languages - at
least C/C++) and that the support should be comprehensive.

The tool should know which class files are generated from
which sources (this is important for further derivation, i.e.
making jars), and which class files are required to compile
each source file.

The tool should handle circular dependencies, and even when
there aren’t any, it should compile more than one updated
source file at once (by default probably all sources in one
directory).

Overall, it’s a lot of “should” - are these requirements realistic?

17

Overload issue 49 june 2002

Enumerating derived files

In the simplest case, a Java source file defines one class; if that
class is public, it must have the same name as the file. But not all
classes are public, and non-public (top-level) classes can be
defined in any source file declaring classes of a given package.
Java also has inner classes, defined inside a top level class and
not necessarily having any name at all. As the JVM spec [3] says,
“Typically, a class or interface will be represented using a file in
a hierarchical file system. The name of the class or interface will
usually be encoded in the pathname of the file.” - but there are no
guarantees, and certainly no published algorithm to derive the
class file name. Sun’s “anywhere” (as in “run anywhere”) just
doesn’t seem to include Java environments from other
providers...

But at least the package part is clear: a package corresponds to
a relative directory. The absolute, top-level directories prepended
to the relative ones are listed (together with jars - in this context,
a jar is just a directory abstraction) in classpath, which is
specified by a command-line argument (for command-line tools)
or a user-settable option (for GUI applications), an environment
variable or some hardcoded default (good only for the system
classes). Pretty much everybody handles classpath the same
way.

For the name part, let’s get empirical: what class file names are
actually created by Sun’s javac? It appears that all inner classes
have names constructed from multiple segments, separated by ‘$’,
where the first segment is the name of their enclosing class. Named
inner classes (i.e. the only inner classes which can be referenced
from files other than the one defining them) simply concatenate all
names of their enclosing classes - for example, a class whose Java
name is:

pkg.name.TopLevel.Inner.NestedInner.
DeeplyNestedInner

is compiled into a file

TopLevel$Inner$NestedInner$
DeeplyNestedInner.class

(in the pkg/name directory). Anonymous classes use two or
three segments only. Unnamed classes have names constructed
from two segments, while local classes (i.e. named classes
declared in some method) need three segments (because local
classes with the same name may be declared in different blocks).
When there’s no good name for a segment, a number is used
instead; the numbers start from 1 and go up (when necessary to
keep the whole name of every defined class unique) as the source
is being parsed.

Overall, it seems possible to pry open the black box and get the
class file names generated from a given source - provided we have
a Java parser. Fortunately, Antlr is Java-based and (like any self-
respecting parser) parses its own programming language, so a utility
for this task is within reach.

Java source dependencies

When parsing Java sources, it is naturally also possible to
notice the used class names and construct a dependency graph.
The hard part is determining what is a class name (as opposed
to, say, field name - see Section 6.5 of the Java spec [5]).

Basically, a dependency analyzer must know about all classes
(on the classpath, and classes that may not exist yet, but are
defined in the project’s sources) and use that information to
determine the meaning of a name. Admittedly, the most
complicated scenarios should be rare - perhaps it would pay to
cheat a bit... Also, since classes accessible across packages have
one-to-one correspondence between their source file and class
file, ignoring inter-package dependencies (and always
recompiling all sources in an updated package) would
considerably simplify the analysis.

A proof of this concept (including a demonstration of problems
with file-level granularity) is werken.javad [6]. In my view, it
suffers from being a make add-on, but it certainly can serve as a
basis to build from - all code I wrote to research this article (and
don’t present it - it’s just not good enough) is based on
werken.javad.

Does anybody care?

So, technically, it seems possible to build a Java-aware build
tool - yet none exists. And I’m as guilty of it as anyone - I used
make to build my experimental code, and it did not work right.
New make replacements like Apache Ant [7] don’t do
dependency management at all. Is the problem of building Java
applications solvable, but just too hard to bother solving? IDEs
do try to solve it, but not very well (JBuilder, to pick my
favorite whipping-boy, does have some dependency
management, but it’s unreliable - it doesn’t handle files being
removed from the project, for example), and there is no
commercial build tool which isn’t an all-singing, all-dancing,
all-its-own IDE. I believe the problem is too hard for home-
made solutions, but also that there’s more Open Source Java
projects than any one company has, and that these projects
would profit from a Java-aware build tool. I believe they could
profit as much as the GNU [8] projects profit from autoconf [9]
- a piece of software whose development couldn’t have been
justified by competing Unix vendors precisely because their
customers find it so useful (to mix and match their software).

Any takers?
Vaclav Barta

vbar@comp.cz

References

[1] GNU make manual: http://www.gnu.org/
manual/make/html_node/make_toc.html

[2] CONS - A Software Construction System
http://www.dsmit.com/cons/stable/cons.html

[3] The Java Virtual Machine Specification:
http://java.sun.com/docs/books/vmspec/

[4] The ANTLR website: http://www.antlr.org/
[5] The Java Language Specification:

http://java.sun.com/docs/books/jls/

[6] The Werken Digital website: http://code.werken.com/

[7] The Jakarta Project website (Apache Ant):
http://jakarta.apache.org/ant/

[8] GNU website: http://www.gnu.org/
[9] GNU autoconf information and resources:

http://www.gnu.org/software/autoconf/

18

Overload issue 49 june 2002

An Overview of C#.NET
By Jon Jagger

.NET rests on the Common Language Infrastructure (CLI).
Microsoft, Intel, and Hewlett-Packard have jointly submitted
the CLI as an ECMA standard. The CLI is designed for
strongly typed languages and the CLI proposal has 5
partitions. Part 1 specifies the CLI foundation: the CTS, the
VES, and the CLS. The Common Type System (CTS)
specifies two CLI fundamental types: value types and
reference types. Compiling a C# program does not create a
regular executable file. Instead it creates a program in
Common Intermediate Language (CIL, specified in partition
3). A compiled C# program also contains a block of metadata
(data about the program itself) called a manifest (specified in
partition 2). This metadata allows reflection and effectively
eliminates the need for the registry. The job of the Virtual
Execution System (VES) is to translate the CIL into native
executable code (which can be done just-in-time or at
installation). The Common Language Specification (CLS) is a
set of rules designed to allow language interoperability. For
example, unsigned integer types are not in the CLS so your C#
modules must not expose unsigned integers if you want them
to be fully interoperable.

Hello World

The obligatory console Hello World in C# looks like this.
class HelloWorld {
static void Main() {
System.Console.WriteLine(

“Hello, world!”);
}

}
C# has a sensibly limited preprocessor. There are no macro
functions. What you see is what you get. A C# source file is not
required to have the same name as the class it contains.
Identifiers should follow the camelCasing or PascalCasing
notation depending on whether they are private or non-private
respectively. Hungarian notation is officially not recommended.
C# is a case sensitive language so Main must be spelled with a
capital M. A C# program exposing two identifiers differing only
in case is not CLS compliant. The CLS supports exception
handling and C# accesses these features using the
try/catch/finally keywords. Exceptions are used extensively in the
.NET framework classes. C# also supports C++ like namespaces
as a purely logical scoping/naming mechanism. You can write
using directives to bring the typenames in a namespace into
scope.

using System; // System.Exception

class HelloWorld {
static void Main() {
try {
NotMain()

}
catch (Exception caught) {
...

}
}
...

}

C# Fundamentals

Numeric Types

C# supports 8 integer types (not all of which are CLS compliant)
and three floating point types. The floating point literal suffixes
for these three types are F/f, D/d, and M/m (think m for money).

Type bits CLS? signed? sig figs

byte 8 yes no
ushort 16 no no
uint 32 no no

ulong 64 no no

sbyte 8 no yes
short 16 yes yes
int 32 yes yes

long 64 yes yes

float 32 yes 7
double 64 yes 15
decimal 128 yes 28

Figure 1: C# Integer Types
C# expressions follow the standard C/C++/Java rules of
precedence and associativity. As in Java, the order of operand
evaluation is left to right (in C/C++ it’s unspecified), an
expression must have a side effect (in C/C++ it needn’t) and a
variable can only be used once it has definitely been assigned
(not true in C/C++).

Checked Arithmetic

The CLS allows expressions or statements that contain integer
arithmetic to be checked to detect integer overflow. C# uses the
checked and unchecked keywords to access this feature. An
integer overflow throws an OverflowException when
checked. (Integer division by zero always throws a
DivideByZeroException .) Floating point expressions
never throw exceptions (except when being cast to integers). For
example:

class Overflow {
static void Main() {
try {
int x = int.MaxValue + 1;

// wraps to int.MinValue
int y = checked(int.MaxValue + 1);

// throws
}
catch (System.OverflowException

caught) {
System.Console.WriteLine(caught);

}
}

}

Control Flow

C# supports the if/while/for/do statements familiar to
C/C++/Java programmers. As in Java, a C# boolean expression
must be a genuine boolean expression. There are never any
conversions from a built in type to true/false. A variable

19

Overload issue 49 june 2002

introduced in a for statement initialization is scoped to that for
statement. C# supports a foreach statement, which you can use
to effortlessly iterate through an array (or any type that supports
the correct interface).

class Foreach {
static void Main(string[] args) {
foreach (string arg in args) {
System.Console.WriteLine(arg);

}
}

}
The C# switch statement does not allow fall-through behavior.
Every case section (including the optional default section)
must end in a break statement, a return statement, a throw
statement, or a goto statement. You are only allowed to switch
on integral types, bools, chars, strings and enums (these types all
have a literal syntax).

Methods and Parameters

C# does not allow global methods; all methods must be declared
within a struct or a class. C# does not have a C/C++ header/source
file separation; all methods must be declared inline. Arguments
can be passed to methods in three different ways:
● copy. The parameter is a copy of the argument. The argument

must be definitely assigned. The method cannot modify the
argument.

● out. The parameter is an alias for the argument. The argument
need not be definitely assigned. The method must definitely
assign the parameter/argument.

● ref. The parameter is again an alias for the argument. The
argument must be definitely assigned. The method is not
required to assign the parameter/argument.

The ref/out keywords must appear on the method declaration and
the method call. For example:

class Calling {
static void Copies(int param) { ... }
static void Modifies(out int param)

{ ... }
static void Accesses(ref int param)

{ ... }

static void Main() {
int arg = 42;
Copies(arg); // arg won’t change
Modifies(out arg); // arg will change
Accesses(ref arg);

// arg might change
}

}
C# supports method overloading but not return type covariance.
Unlike Java, C# does not support method throw specifications
(all exceptions are effectively unchecked).

Value Types

C# makes a clear distinction between value types and reference
types. Value type instances (values) live on the stack and are used
directly whereas reference type instances (objects) live on the
heap and are used indirectly. C# has excellent language support
for declaring user-defined value types (unlike Java which has
none).

Enums and Structs

You can declare enum types in C#. For example:
enum Suit {Hearts, Clubs, Diamonds, Spades}

You can also declare a user-defined value type using the struct
keyword. For example:

struct CoOrdinate {
int x, y;

}
Unlike C++, the default accessibility of struct fields is private.
You control the initialization of struct values using
constructors. You use the static keyword to declare shared
methods and shared fields. The readonly keyword is used for
fields that can’t be modified and are initialised at runtime. The
const keyword is used for fields (and local variables) that can’t
be modified and are initialised at compile time (and is therefore
restricted to enums and built in types). As in Java, each
declaration must repeat its access specifier.

struct CoOrdinate {
public CoOrdinate(int initialX,

initialY) {
x = rangeCheckedX(initialX);
y = rangeCheckedY(initialY);

}
public const int MaxX = 600;
public static readonly CoOrdinate

Empty = new CoOrdinate(0, 0);
...
private int x, y;

}
The built in value type keywords are in fact just a notational
convenience. The keyword int (for example) is an alias for
System.Int32, a struct called Int32 that lives in the
System namespace. Whether you use int or System.Int32
in a C# program makes no difference.

Operator Overloading

C# supports operator overloading. Enum types automatically
support most operators but struct types do not. For example,
to allow struct values to be compared for equality/inequality
you must write == and != operators:

struct CoOrdinate {
public static bool operator==(

CoOrdinate lhs, CoOrdinate rhs) {
return lhs.x == rhs.x &&

lhs.y == rhs.y;
}
public static bool operator!=(

CoOrdinate lhs, CoOrdinate rhs) {
return !(lhs == rhs);

}
...
private int x, y;

}
Operators must be public static methods. Operator parameters
can only be passed by copy (no ref or out parameters). One or
more of the operator parameter types must be of the containing
type so you can’t change the meaning of the built in operators.
The increment (and decrement) operator can be overloaded and
works correctly when used in either prefix and postfix form. C#
also supports conversion operators which must be declared using

20

Overload issue 49 june 2002

the implicit or explicit keyword. Some operators (such as simple
assignment) cannot be overloaded.

Properties

Rather than using a Java Bean like naming convention, C# uses
properties to declare read/write access to a logical field without
breaking encapsulation. Properties contain only get and set
accessors. The get accessor is automatically called in a read
context and the set accessor is automatically called in a write
context. For example (note the x and X case difference):

struct CoOrdinate {
...
public int X {
get { return x; }
set { x = rangeCheckedX(value); }

}
...
private static int

rangeCheckedX(int argument) {
if(argument < 0 || argument > MaxX) {
throw new ArgumentOutOfRange(“X”);

}
return argument;

}
...
private int x, y;

}

Indexers

An indexer is an operator like way to allow a user-defined type to
be used as an array. An indexer, like a property, can contain only
get/set accessors. For example:

struct Matrix {
...
public double this [int x, int y] {
get { ... }
set { ... }

}
public Row this [int x] {
get { ... }
set { ... }

}
...

}

Reference Types

Classes

Classes allow you to create user-defined reference types. One or
more reference type variables can easily refer to the same object.
A variable whose declared type is a class can be assigned to
null to signify that the reference does not refer to an object
(struct variables cannot be assigned to null). Assignment to
null counts as a Definite Assignment. Classes can declare
constructors, destructors, fields, properties, indexers, and
operators. Despite identical syntax, classes and structs have
subtly different rules and semantics. For example, you can
declare a parameterless constructor in a class but not in a struct.
You can initialise fields declared in a class at their point of
declaration, but struct fields can only be initialized inside a

constructor. Here is a class called MyForm that implements the
GUI equivalent of Hello World in C#.NET.

using System.Windows.Forms;
class Launch {
static void Main() {
Application.Run(new MyForm());

}
}
class MyForm : Form {
public MyForm() { Text = captionText; }
private string captionText

= “Hello, world!”;
}

Variables whose declared type is a class can be passed by copy,
by ref, and by out exactly as before.

class WrappedInt {
public WrappedInt(int initialValue)
{ value = initialValue; }

...
private int value;

}
class Calling {
static void Copies(WrappedInt param)
{ ... }

static void Modifies(out
WrappedInt param) { ... }

static void Accesses(ref
WrappedInt param) { ... }

static void Main() {
WrappedInt arg = new WrappedInt(42);
Copies(arg); // arg won’t change
Modifies(out arg); // arg will change
Accesses(ref arg); // arg might change
}

}

Strings

C# string literals are double quote delimited (char literals are
single quote delimited). Strings are reference types so it is easy
for two or more string variables to refer to the same string object.
The keyword string is an alias for the System.String
class in exactly the same way that int is an alias for the
System.Int32 struct.

namespace System {
public sealed class String : ... {
...
public static bool operator==(

String lhs, String rhs) { ... }
public static bool operator!=(

String lhs, String rhs) { ... }
...
public int Length { get { ... } }
public char this[int index]
{ get { ... } }

...
public CharEnumerator GetEumerator()
{ ... }

...
}

}

21

Overload issue 49 june 2002

The String class supports a readonly indexer (it contains a
get accessor but no set accessor). The C# string type is an
immutable type (just like in Java). The string equality and
inequality operators are overloaded but the relational operators
(< <= > >=) are not. The StringBuilder class is the
mutable companion to string and lives in the System.Text
namespace. You can iterate through a string expression using a
foreach statement.

Arrays

C# arrays are reference types. The size of the array is not part of
the array type. You can declare rectangular arrays of any rank
(Java supports only one dimensional rectangular arrays).

int[] row;
int[,] grid;

Array instances are created using the new keyword. Array
elements are default initialised to zero (enums and numeric
types), false (bool), or null (reference types).

row = new int[42];
grid = new int[9,6];

Array instances can be initialised. A useful initialisation
shorthand does not work for assignment.

int[] row = new int[4]{1, 2, 3, 4};
// longhand

int[] row = { 1, 2, 3, 4 }; // shorthand
row = new int[4]{ 1, 2, 3, 4 }; // okay
row = {1, 2, 3, 4}; // compile time error

Array indexes start at zero and all array accesses are bounds
checked (IndexOutOfRangeException). All arrays
implicitly inherit from the System.Array class. This class
brings array types into the CLR (Common Language Runtime)
and provides some handy properties and methods:

namespace System {
public abstract class Array : ... {
...
public int Length { get { ... } }
public int Rank { get { ... } }
public int GetLength(int rank) { ... }
public virtual IEnumerator

GetEnumerator() { ... }
...

}
}

The element type of an array can itself be an array creating a so
called “ragged” array. Ragged arrays are not CLS compliant. You
can use a foreach statement to iterate through a ragged array
or through a rectangular array of any rank:

class ArrayIteration {
static void Main() {
int[] row = { 1, 2, 3, 4 };
foreach (int number in row) { ... }
int[,] grid = { { 1, 2 }, { 3, 4 } };
foreach (int number in grid) { ... }
int[][] ragged = { new int[2]{1,2},

new int[4]{3,4,5,6} };
foreach (int[] array in ragged) {
foreach (int number in array) { ... }

}
}

}

Boxing

An object reference can be initialised with a value. This does not
create a reference referring into the stack (which is just as well!).
Instead the CLR makes a copy of the value on the heap and the
reference refers to this copy. The copy is created using a plain
bitwise copy (guaranteed to never throw an exception). This is
called boxing. Extracting a boxed value back into a local value is
called unboxing and requires an explicit cast. When unboxing the
CLR checks if the boxed value has the exact type specified in the
cast (conversions are not considered). If it doesn’t the CLR throws
an InvalidCastException. C# uses boxing as part of the
params mechanism to create typesafe variadic methods (methods
that can accept a variable number of arguments of any type).

struct CoOrdinate {
...
private int x, y;

}
class Boxing {
static void Main() {
CoOrdinate pos;
pos.X = 1;
pos.Y = 2;
object o = pos; // boxes
...
CoOrdinate copy = (CoOrdinate)o;

// cast to unbox
}

}

Figure 2: Boxing

Type Relationships

Inheritance

C# supports the same single inheritance model as Java; a class
can extend at most one other class (in fact a class always extends
exactly one class since all classes implicitly extend
System.Object). A struct cannot act as a base type or be
derived from. A derived class can access non-private members of
its immediate base class using the base keyword. Unlike Java
(and like C++) by default C# methods, indexers, properties, and
events are not virtual. The virtual keyword specifies the first

stack heap

pos.x 1 box

pos.y 2

1 .x
o @

2 .y

copy.x 1

copy.y 2 unbox

22

Overload issue 49 june 2002

implementation. The override keyword specifies another
implementation. The sealed override combination
specifies the last implementation.

class Token {
...
public virtual CoOrdinate Location {
get {
...

}
}

}
class LiteralToken : Token {
...
public LiteralToken(string symbol) {
...

}
public override CoOrdinate Location {
get {
...

}
}

}
class StringLiteralToken : LiteralToken {
...
public StringLiteralToken(string

symbol) : base(symbol) {
...

}
public sealed override

CoOrdinate Location {
get {
...

}
}

}

Interfaces

C# interfaces contain only the names of methods. Method bodies
are not allowed. Access modifiers are not allowed (all methods
are implicitly public). Fields are not allowed (not even static
ones). Static methods are not allowed (so no operators). Nested
types are not allowed. Properties, indexers, and events (again
with no bodies) are allowed though. An interface, struct, or class
can have as many base interfaces as it likes.

interface IToken {
...
CoOrdinate Location { get; }

}
A struct or class must implement all its inherited interface
methods. Interface methods can be implemented implicitly or
explicitly.

class LiteralToken : IToken {
...
public CoOrdinate Location {
// implicit implementation
get {
...

}
}

}

class LiteralToken : IToken {
...
CoOrdinate IToken.Location {
// explicit implementation
get {
...

}
}

}
You use the abstract keyword to declare an abstract class or
an abstract method (only abstract classes can declare abstract
methods). You use the sealed keyword to declare a class that
cannot be derived from. The inheritance notation is positional;
base class first, followed by base interfaces.

interface IToken {
...
CoOrdinate Location {
get;

}
}

abstract class DefaultToken {
...
protected DefaultToken(CoOrdinate

where) {
location = where;

}
public CoOrdinate Location {
get {
return location;

}
}
private readonly CoOrdinate location;

}

sealed class StringLiteralToken
: DefaultToken, IToken {

...
}

Runtime type information is available via the is, as, and
typeof keywords as well as the object.GetType()
method.

Resource Management

You can declare a destructor in a class. A C# destructor has the
same name as its class, prefixed with a tilde (~). A destructor is
not allowed an access modifier or any parameters. The compiler
converts your destructor into an override of the
object.Finalize method. For example, this:

public class StreamWriter : TextReader {
...
~StreamWriter() {
Close();

}
public override void Close() {
...

}
}

is converted into this: (You can use the ILDASM tool to see this
transformation in CIL.)

23

Overload issue 49 june 2002

public class StreamWriter : TextReader {
...
protected override void Finalize() {
try {
Close();

}
finally {
base.Finalize();

}
}

public override void Close() {
...

}
}

You are not allowed to call a destructor or the Finalize
method in code. Instead, the generational garbage collector
(which is part of the CLR) calls Finalize on objects
sometime after they become unreachable but definitely before
the program ends. You can force a garbage collection using
the System.GC.Collect() method. C# does not support
struct destructors (although CIL does). However, C# does
have a using statement which you can use to scope a
resource to a local block in an exception safe way. For
example, this:

class Example {
void Method(string path) {
using (LocalStreamWriter exSafe =

new StreamWriter(path)) {
StreamWriter writer =

exSafe.StreamWriter;
...

}
}

}
is automatically translated into this:

class Example {
void Method(string path) {
{
LocalStreamWriter exSafe =

new StreamWriter(path);
try {
StreamWriter writer =

exSafe.StreamWriter;
...

}
finally {
exSafe.Dispose();

}
}

}
}

which relies on LocalStreamWriter implementing the
System.IDisposable interface:

public struct LocalStreamWriter
: IDisposable {

public LocalStreamWriter(StreamWriter
decorated) {

local = decorated;
}

public static implicit operator
LocalStreamWriter(StreamWriter

decorated) {
return new

LocalStreamWriter(decorated);
}

public StreamWriter StreamWriter {
get {
return local;

}
}

public void Dispose() {
local.Close();

}

private readonly StreamWriter local;
}

Program Relationships

Delegates and Events

The delegate is the last C# type. A delegate is a named
method signature (similar to a function pointer in C/C++). For
example, the System namespace declares a delegate called
EventHandler that’s used extensively in the
Windows.Forms classes:

namespace System {
public delegate void EventHandler(

object sender, EventArgs sent);
...

}
EventHandler is now a reference type you can use as a field,
a parameter, or a local variable. Calling a delegate calls all the
delegate instances attached to it.

namespace Not.System.Windows.Forms {
public class Button {
...
public EventHandler Click;
...
protected void OnClick(EventArgs

sent) {
if (Click != null) {
Click(this, sent); // call here

}
}

}
}

All delegate types implicitly derive from the
System.Delegate class. You use the event keyword to
modify the declaration of a delegate field. Event delegates can
only be used in restricted, safe ways (for example, you can’t call
the delegate from outside its class):

namespace System.Windows.Forms {
public class Button {
...
public event EventHandler Click;

}
}

24

Overload issue 49 june 2002

You create an instance of a delegate type by naming a method
with a matching signature and you attach a delegate instance to a
matching field using the += operator.

using System.Windows.Forms;

class MyForm : Form {
...
private void initializeComponent() {
...
okButton = new Button(“OK”);
okButton.Click += new

EventHandler(this.okClick);
// create + attach

}

private void okClick(object sender,
EventArgs sent) {

...
}
...
private Button okButton;

}

Assemblies

You can compile a working set of source files (all written in the
same supported language) into a .NET module. For example,
using the C# command line compiler:

csc /target:module /out:ratio.netmodule *.cs

The default file extension for a .NET module is
.netmodule . A .NET module contains types and CIL
instructions directly and forms the smallest unit of dynamic
download. However, a .NET module cannot be run. The only
thing you can do with a .NET module is add it to an assembly.
An assembly contains a manifest (a module does not). The
manifest is metadata that describes the contents of the
assembly and makes the assembly self describing. An
assembly knows:
● the assembly identity
● any referenced assemblies
● any referenced modules
● types and CIL code held directly
● security permissions
● resources (eg bitmaps, icons)

You create a .NET DLL (an assembly) using the /target:library
option from the command line compiler (there are various other
options for adding modules and referencing other assemblies):

csc /target:library /out:ratio.dll *.cs

You create a .NET EXE (an executable assembly) using the
/target:exe options on the command line compiler (one of
the structs/classes must contain a Main method).

csc /target:exe /out:ratio.exe *.cs

Assemblies come in two forms. A private assembly is not
versioned, and is used only by a single application. A shared

assembly is versioned, and lives in a special shared directory
called the Global Assembly Cache (GAC). Shared assembly
version numbers are created using an IP like numbering
scheme:

<major> . <minor> . <build> . <revision>

Shared applications that differ only by version number can co-
exist in the GAC (this is called side-by-side execution). The
particular version of an assembly that an individual application
uses when running can be controlled from an XML file. For
example:

...
<BindingPolicy>

<BindingRedir
Name=”ratio” ...
Version=”*”
VersionNew=”6.1.1212.14”
UseLatestBuildRevision=”no”/>

</BindingPolicy>
...

You can edit this config file to choose your binding policy. For
example:
● Safe: exactly as built
● Default: major.minor as built
● Specific: major.minor as specified.

Attributes

You use attributes to tag code elements with declarative
information. This information is added to the metadata, and can
be queried and acted upon at translation/run time using reflection.
For example, you use the [Conditional] attribute to tag
methods you want removed from the release build (calls to
conditional methods are also removed):

using System.Diagnostics;

class Trace {
[Conditional(“DEBUG”)]
public static void Write(string

message) {
...

}
}

You use the [CLSCompliant] attribute to declare (or check) that
a source file conforms to the Common Language Specification:

using System;

[assembly:CLSCompliant(true)]
...

You can use the [MethodImpl] attribute to synchronize a
method:

using System.Runtime.CompilerServices;

class Example {
[MethodImpl(MethodImplOptions.

Synchronized)]
void SynchronizedMethod() {
...

}
}

25

Overload issue 49 june 2002

The attribute mechanism is extensible; you can easily create and
use your own attribute types:

public sealed class DeveloperAttribute
: Attribute {

public DeveloperAttribute(string name) {
...

}
}
...
[Developer(“Jon Jagger”)]
public struct LocalStreamWriter

: IDisposable {
...

}

Summary

C# programs compile into Common Intermediate Language
(CIL). CIL types that conform to the CLS (Common Language
Specification) can be used by any .NET language. For example,
the types in the System namespace are implemented in the
mscorlib.dll assembly. Programs written in C#, in VB.NET, or in
managed C++, can all use this assembly (there isn’t one version
of the assembly for each language).

CIL programs are translated into executable programs either at

installation time or just-in-time as they are executed by the VES
(Virtual Execution System). The CLI (Common Language
Infrastructure – the CTS, the VES, the CLS, and the metadata
specification) is an ECMA standard and efforts are already
underway to implement the CLI on non Windows platforms (eg
http://www.go-mono.com).

C# is a modern general purpose programming language. It has
clear similarities to Java (reference types, inheritance model,
garbage collection) and to C++ (value types, operator overloading,
logical namespaces, by default methods are not virtual). It has no
backward compatibility constraints (as C++ does to C) and
avoids/resolves known problems in Java. The CTS (Common
Type System) makes a clear distinction between value types and
reference types. The more I use C# the more I like it and the more
I appreciate the careful and consistent decisions taken during its
design. C# is my language of choice for .NET development. In
roughly keeping to the allotted word count I have necessarily
omitted numerous important aspects of C#. Nevertheless I hope
this article has given you a flavour of C# and its relationship to
.NET.

Jon Jagger
jon@jaggersoft.com

Hi,
There was no mention in Overload 48 that my article, “Function
Follows Form”, was previously published online as part of the
CUJ C++ Experts Forum online. The omission is not major, but it
is worth pointing out that it appeared originally for November
2000 following the summer break after the untimely demise of
C++ Report. Its prior publication is relevant because in the nearly
two years since it was written - and much longer for the code and
basic design - a couple of things, albeit minor, have changed in
my thinking:
1. I used the name ‘function_ptr’ to represent the zero-
argument arbitrary function and function object adaptor with
smart pointer semantics. I now prefer the name
‘any_function’, which is more in keeping with my use of the
name ‘any’ for any arbitrary value, and the prefix ‘any_’ for
other wrappers in a similar style, e.g. ‘any_iterator’ and
‘any_string’.
2. In the article I mentioned that the technique of using a non-
templated base class to provide uniform access to a common

family of variations expressed as a derived class template was
based on the External Polymorphism pattern. I was careful to
ensure that I said “is based on” rather than “is” because at the time
I was not comfortable that the pattern’s intent was appropriate,
even though its structure was. Well, following some tentative
repetition of idea and the “three strikes and you’re out” approach,
I have decided that it is categorically not the right pattern to
reference. To the best of my knowledge, the pattern has not been
properly documented elsewhere, although it is used extensively. I
plan to document the pattern more thoroughly at some point,
either under the name Polymorphic Wrapper, which captures the
fact that it converts one form of polymorphism (templating) to
another (virtual functions), or as Parameterized Derived Class, a
more accurate albeit prosaic name. Generally it preserves the
degree of polymorphism, but reduces the compile-time
polymorphism by one axis to introduce one of runtime
polymorphism.

Kevlin Henney
kevlin@curbralan.com

Letter To The Editor

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

26

Overload issue 49 june 2002

The scoping problem
By Allan Kelly

It is a cliché of software development that every project is
understaffed with a deadline that is too tight, and maybe under-
resourced in terms of hardware and software too. I mean, have
you ever worked on a project where there where too many
programmers?

Jim McCarthy [1] suggests that every project is bounded by three
factors: features, time and resources (i.e. developers) – these form
the scope of the project: what do we need to do? how long have we
got? who’s doing it? Their product is a constant: if you want more
features you must either increase the time allowed or the number
of developers. Likewise, if you want a delivery sooner you must
either reduce the number of features or increase the number of
developers. But, as we know from Brooks’ law [2], increasing the
number of developers makes a project later; unfortunately Brooks’
law is not true in reverse: reducing the number of developers will
also make the project later. Brooks’ law can only be applied to a
given point in time.

I’d like to add two observations of my own to McCarthy and
Brooks:

Observation 1: Developers want to exceed the project
requirements. Sometimes this means they want to see a feature
which isn’t in the spec, sometimes it means they want to do
frivolous things like refactor the code, or make it more readable,
heaven forbid, some of them actually want to make the code re-
usable! Truth is, most developers believe they know best. Some of
us are even known to claim that this is a professional asset.

Observation 2: Developers are more likely to underestimate
the time taken to do a piece of work than they are to overestimate;
this is especially true when a developer wants to do a piece of
work.

I think from these observations flows the axiom: software
projects are naturally over-committed in terms of time and
resources.

If my observations have not convinced you, consider what would
happen if you turned around at your next project meeting and said:
“Well then chaps, looks like we’ve got four more weeks work and
then we’ll be finished a whole month early, well done.” Would the
reaction be:
● Launch a month early : pull that deadline back!
● Add in some more features, fix some more bugs : back to work!
● Fire the contractors, we can save some money and still get it done

on time.
● Congratulations: take a months paid leave.

I’d like to be bold and suggest Kelly’s first law of project
complexity:
Project scope will always increase in proportion to resources.

You see, I think projects are bit like programs: they will expand
to fill all the time and human resources available. This may be a
generalised case of Brooks’ law, in his case he adds more
developers, now the project scope increases to cover training new
developers too.

Every time a deadline is pushed back to allow more bugs to be
fixed you are increasing the scope too. Even if the project

introduced those bugs in the first place, fixing them was never on
the feature list.

With a loose deadline there is a tendency to try some new beta
OS, upgrade your compiler, or experiment with generic
programming or many other things. Yes, these all have a place. I’m
just saying you have to recognise the cost of all these things.
Introduce a breathing space between projects to do these things.

I don’t want to argue for arbitrary deadlines either. A deadline
picked from the sky and imposed is just as bad. Most projects have
a rough deadline before they ever start, given this the team needs
to look at the feature set and the resources, and balance all these
things.

A word of caution: a developer joining a project at mid-point
may not be aware of these discussions, it is important to explain the
schedule to them and even adapt it after hearing their views.

If all of this puts you in mind of short cycles you’re right.
Every time I work on a large project I am convinced that much
of the project could be achieved with less code, complexity and
effort.

This leads me to Kelly’s second law of project complexity:
Inside every large project there is a small one struggling to
get out.

Take a look at your project, why is it so big? Would you write it
the same if you were doing it again? Chances are you would not,
you have learned from what you have done, and you would re-
write it using less complexity and less code.

Writing a program is teaching the machine how to do something.
In doing this you come to understand the problem intimately and
inevitably see better ways of doing it. So much complexity is
unavoidable, but I suggest that much of it is avoidable if you merely
reduce the scope of the project.

OK, how do we reduce the scope of the project? Well, firstly
aim for minimalism [3] in design. Secondly, design extendable
systems. Write a core system to which you can add code, your
project may end up being big but it will still contain a micro-
kernel like element which make it easier to get to grips with:
embrace the words of John Vlissides [4] “A hallmark.... of good
object oriented design is that you can modify and extend a system by
adding code rather than hacking it.”

Next: keep your project and your team focused. Each project
iteration should have some Big Idea which you can drive towards.
This is good for morale too and you always know when you have
arrived.

And try this on your management: for every day the project
is finished early, everyone on the team gets half a day’s paid
holiday.

Allan Kelly
Allan.Kelly@bigfoot.com

References

[1] Jim McCarthy, Dynamics of Software Development,
Microsoft Press, 1995
[2] Fred Brooks, Mythical Man-Month, Addison-Wesley, 1974
[3] Kevlin Henney, minimalism : omit needless code, Overload
45, October 2001
[4] John Vlissides, The C++ Report, February 1998

