
Overload issue 50 august 2002

contents

credits & contacts

Editor:
John Merrells, merrells@acm.org
241 Heartwood Lane,
Mountain View,
CA 94041-11836, U.S.A

Advertising:
Peter Goodliffe, ads@accu.org
4 Malvern Road
Cherry Hinton
Cambridge CB1 9LD, UK
01223 518579

Membership:
David Hodge, membership@accu.org
31 Egerton Road
Bexhill-on-Sea, East Sussex
TN39 3HJ, UK

Readers:
Ian Bruntlett
IanBruntlett@antiqs.uklinux.net

Phil Bass
phil@stoneymanor.demon.co.uk

Mark Radford
twonine@twonine.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Website: http://www.accu.org/

Membership fees and how to join:

Basic (C Vu only): £15
Full (C Vu and Overload): £25
Corporate: £80
Students: half normal rate
ISDF fee (optional) to support Standards

work: £21
There are 6 journals of each type produced

every year.
Join on the web at www.accu.org with a

debit/credit card, T/Polo shirts available.
Want to use cheque and post - email
membership@accu.org for an
application form.

Any questions - just email
membership@accu.org.

Alternatives for Partial Template Function Specialisation
by Oliver Wigley 6

STL-style Circular Buffers By Example by Pete Goodliffe 8

Execute Around Method and Proxy Goulash by Alan Griffiths 14

Even More Java Exceptions by Jon Jagger 16

Template Metaprogramming: Shifting Down a Gear
by Andrew Cheshire 21

The Philosophy of Extensible Software by Allan Kelly 27

4

Overload issue 50 august 2002

Editorial - The Internet’s
Coming Silent Spring

Lessig has a gift for oration. His legal training and his many courtroom appearances have provided him with a
highly polished presentation style. The pace of his delivery is measured, with a poetic meter that is hard to identify.
The slides that accompanied his presentation were the most un-powerpoint-ey powerpoint slides I’ve ever seen,
and were so numerous, and so smoothly transitioned, that they took on a filmic quality. His voice, his presence,
and the visuals, combined to form a compelling platform for his message.

His talk, entitled ‘The Internet’s Coming Silent Spring’, presented the argument that the Internet is being undermined
by those that are threatened by the neutral and unrestrained innovation fostered by its network architecture.
Stories of the allowed

He introduced his topic by referring to a number of historical examples.
Firstly, he described the invention of FM radio by Edwin Armstrong in 1934. AM radio was plagued with static.

FM offered higher fidelity, and greater range, but FM threatened the established broadcasting industry, in the form
of RCA. RCA used the Federal Communications Commission (FCC) against Armstrong, by harassing him with
patent infringement suits, and forcing him to switch frequencies. Twenty-three years to the day after patenting
FM, Armstrong put on his hat, coat, scarf, and gloves, and walked out his apartment window, falling13 floors to
his death. FM radio was not allowed.

Secondly, Lessig referred to the invention of Packet Switching by Paul Baran of Rand in 1964. Packet Switching
was designed as a decentralized communications network that could survive nuclear attack. But, AT&T said: It
“will never possibly work” and we’ll be “damned if we’ll allow the creation of a competitor to ourselves.” The
Internet was not allowed.

Thirdly, Lessig described the website that gave instructions on how to teach a Sony Aibo to dance Jazz. Sony
invoked the Digital Millennium Copyright Act to have the code forcibly removed. Jazz was not allowed.

Lastly, Lessig told the tale of the Brothers Grimm and Walt Disney. The Grimm’s unpleasant stories had passed
into common property by the time Walt started making animated films. He quite legally borrowed from the stories
liberally. In 1790 an author of a work owned rights over that work for 14 years. In 1832 that term was increased
to 42 years, in 1909 to 56, in 1962 to 59, and then extended often until 1976 when it stood at 75 years. In 1998
the Sonny Bono Copyright Term Extension Act (aka the Mickey Mouse Protection Act) increased it to 95 years.
Thus, no one shall do to Disney what Disney did to the Brothers Grimm.
Societies and Architecture

Lessig went on to describe the architecture of the Internet as a simple network, with smart applications. The
benefit being that network users don’t have to ask AT&T’s permission in order to exchange information. The end-
to-end nature of the network architecture allows anyone to do anything with anyone. Furthermore, the number of
innovators increases from one to many, and the kind of innovations change from those that benefit the network
owner, to those that benefit the network users. For Example, the Internet was innovated by Vint Cerf and Robert
Kahn. The World Wide Web was innovated by CERN of Switzerland. ICQ was innovated by Israelis. HotMail
was innovated by Indians. What do they have in common? They were kids and non-Americans, and most
importantly they were not the owners of the network. These innovations were the consequence of the architecture.

Within society policies are agreed upon, and then codified within a body of law. By analogy the policies of the
Internet are its architecture, and the law of the Internet are the protocols and the code. The architectural policies
are implemented within the design of the protocols, and within the actual implementations of those protocols.

The Internet is the content that is delivered, the code that implements the protocols, and the physical media it
runs over; the cables and the spectrum. The code at the core of the network is being corrupted by the influence of

L
awrence Lessig received a standing ovation for his keynote presentation at Usenix
2002 in Monterey California. Lessig is a professor of law at Stanford Law School,

and a founder of the Stanford Center for Internet and Society. He is a cyberspace
lawyer [1]. Usenix is a venerable and aging conference for operating systems academics
and open source contributors. They are beardy Unix hackers [2]. I am beardless, and

unixless, but I attended anyway as part of the yearly company beano.

the corporations that control the content and the physical media. The core is being corrupted whilst policy makers
do nothing. They do nothing because of the framing of the debate.
Stolen Property

The debate is being framed in terms of property rights. Corporations own the property, and their property is
being stolen.

For example, innovators are broadcasting cable content over the Internet. Just as the cable industry broadcasts
network television content. That’s “blood sucked from our veins” say the cable bosses. It’s their property, and it’s
being stolen.

Another example is the Recording Industry Association of America (RIAA). They would rather have all
consumer devices modified to prevent copying, than provide a digital distribution channel. Napster is theft!

Some historical context helps to highlight the shift in policy that has occurred. At the start of the 20th century
there was a thriving sheet music business. Sheet music could not be copied and resold, as it was protected by
copyright. An innovator created piano rolls, which were not a copy of the music, but a new form of distribution,
so therefore the rolls were not infringing the right of any copyright holder. Piano rolls ‘napsterized’ sheet music.
Similarly cable napsterized broadcast television, and the VCR napsterized the film industry.

In the past the law was fitted to the technology. Today the technology must fit to the law of the past. The shift
is clear from the Napster case. The judge ruled that Napster must prove that their system was 100% free of
copyrighted material. By comparison the innovators of the VCR only had to show that there were legitimate legal
uses for their device. Would the VCR exist if the manufacturers had to prove that no one would ever use the device
to infringe copyright holders rights? No.

This policy change has occurred because corporations wish to minimize competition. They want to be in the
position of dictating which new technologies should be allowed.

The corporations want policy put into the code to protect their property.
Lessig believes that policy makers must be persuaded to acknowledge this policy change. The barrier is that

everyone supports the protection of property owner’s rights. Theft is after all wrong. But, reframing the debate
can break down the barrier.

Is it property, and should it be owned? Should the Ford Motor company own the highways? How well would
General Motors cars work on Ford Highways? The architecture of the Internet should be common property and
should not be owned, as neutral platforms build innovation.

Is the property being stolen? Creativity has always built upon the past. The rights of the owner must be balanced
with the rights of society. This is the precept upon which the patent system and the copyright system are based.
Creativity breeds innovation.

The Internet should be free, free in the way Richard Stallman means free. We, the innovators of the Internet,
should have the freedom to innovate, to tinker, to copy.
Silent Spring

Finally Lessig explained the meaning of the title for his talk. The book ‘Silent Spring’ was written by Rachel
Carson in the early sixties. She single-handedly took on the chemical industry to stop the uncontrolled use of
pesticides. A compelling chapter of the book describes a town where all life has been ‘silenced’ by the insidious
effects of DDT. Lessig’s ominous parallel is that if the attacks upon the core of the Internet are not defended, then
the Internet will be silenced.
Code and Other Laws of Cyberspace

In closing, if you’d like to pursue more of the thoughts and writings of Professor Lessig you’ll find information
on his website [1] and in his recent book [4], an excellent review of which was written by Mike Godwin [5].

John Merrells
merrells@acm.org

References
[1] http://cyberlaw.stanford.edu/lessig/
[2] http://www.usenix.org/
[3] http://aibopet.com/
[4] Code and Other Laws of Cyberspace, Lawrence Lessig, Basic Books.
[5] http://www.oreilly.com/news/lessig_0100.html Review of ‘Code and Other Laws of Cyberspace’, by Mike Godwin.

Copy Deadline
All articles intended for publication in Overload 51 should be submitted to the editor by September 1st, and for Overload 52 by
November 1st.

5

Overload issue 50 august 2002

6

Overload issue 50 august 2002

Alternatives for Partial Template
Function Specialisation
By Oliver Wigley

Whilst template classes can be partially and wholly specialised,
template functions cannot. Alexandrescu[1] presents a technique
to simulate partial template function specialisation so that a
uniform interface is preserved, and calls to the template
function(s) can be made in a generic way. Key to the solution is a
mapper type which the client code must use in the function calls.
This extra ‘type-to-type’ mapper rather clutters the interface with
what you might call an implementation detail. Here is a look at
the original proposal, followed by some possible alternatives.

Original Solution

Overloaded template functions are at the heart of the
‘specialisation’. A template struct is introduced (Type2Type)
which serves as an identifier to facilitate function lookup:

//from [1]:
template <typename T>
struct Type2Type {
typedef T OriginalType;

};

template <class T,class U>
T* Create(const U& arg, Type2Type<T>) {
return new T(arg);

}

template <class U>
Widget* Create(const U& arg,

Type2Type<Widget>) {
return new Widget(arg, -1);

}

Create() ‘new’s instances of Widgets or instances of
specific Widget -derived things. The Widget class
constructors have two arguments – the second being an int
which should be set to -1, and the derived classes’ constructors
all have just a single argument – hence the need for
specialisation. The flavour of Type2Type which is passed to
Create() determines which overload to use. The overload for
the Widget class requires Type2Type<Widget>, and the
completely generic version accepts Type2Type instances of
Widget-derived types[2].

//test code
#include <assert.h>
struct WidgConfig {int i;};
struct Widget {
Widget(const WidgConfig& setup,

int a) { assert(-1==a); }
};

struct SpecialWidget : Widget {
SpecialWidget(

const WidgConfig& setup)
: Widget(setup,-1) {}

};

WidgConfig cfg;
SpecialWidget* psw = Create(cfg,
Type2Type<SpecialWidget>());
Widget* wi = Create(cfg,
Type2Type<Widget>());

First Alternative

Alexandrescu initially suggests overloading by passing dummy
objects of the appropriate Widget type rather than the
Type2Type struct, but then dismisses it as it requires the
construction of potentially superfluous objects, incurring the
overhead of that construction – and there’s also the overhead of a
pass-by-value to consider:

//from [1]:
template <class T, class U>
T* Create (const U& arg, T/*dummy*/) {
return new T(arg);

}

template <class U>
Widget* Create (const U& arg,

Widget/*dummy*/) {
return new Widget(arg, -1);

}

If Create() is our only mechanism for getting instances of T
or Widget, then we will have difficulty calling it the first time
when we don’t yet have an instance to pass. With a little
tweaking, however, this does offer a feasible solution without the
problem of superfluous object creation. Pointer types could be
used to overload the function instead:

template <class T, class U>
T* Create (const U& arg, T*/*dummy*/) {
return new T(arg);

}

template <class U>
Widget* Create (const U& arg,

Widget*/*dummy*/) {
return new Widget(arg, -1);

}

Pass a pointer of the appropriate type and the correct function is
called. No extra constructors or copy constructors are now being
called and the template function is effectively specialised.
Overloaded lookup can go ahead courtesy of an
uncharacteristically welcome NULL pointer, so there’s no need to
worry about supplying a Widget instance that we don’t have
yet:

SpecialWidget* pSwi =
Create(cfg,
reinterpret_cast<SpecialWidget*>(0));

Widget* pWid =
Create(cfg,
reinterpret_cast<Widget*>(0));

As an extra, this approach offers new possibilities as we now
have the option to pass a valid object, which can be exploited by
either overload. Imagine the Widget class as a Window class:

template <class U>
Window* Create (const U& arg,

Window* parent) {
if(parent) {
Window* child =

new Window(arg, -1, parent);
return child;

}
else
return new Window(arg, -1);

} // [3]

This does offer an alternative style with extended flexibility, and
doesn’t require the Type2Type type.

Second Alternative

Whilst template functions cannot be partially specialised, we can
partially specialise template classes. It could help to make use of
the functor[4] idiom:

template <class T, class U>
struct Create {
T* operator()(const U& args) {
return new T(args);

}
};

template <class T>
struct Create <Widget, T> {
Widget* operator()(const T& args) {
return new Widget(args, -1);

}
};

WidgConfig cfg;
SpecialWidget* psw =
Create<SpecialWidget,WidgConfig>()(cfg);
Widget* pw =
Create<Widget,WidgConfig>()(cfg);

Although the function calls to Create might look rather esoteric,
this does also offer a generic interface and dispels the need for
extra types to be defined just to solve the original problem:

template <class T, class U>
struct Create {
T* operator()(const U& args) {
return new T(args);

}
};

template <class T>
struct Create <Widget, T> {
Widget* operator()(const T& args) {
return new Widget(args, -1);

}
};

SpecialWidget* psw =
Create<SpecialWidget,WidgConfig>()(cfg);
Widget* pw =
Create<Widget,WidgConfig>()(cfg);

Oliver Wigley
oliver.wigley@teleca.com

Footnotes & References

[1] Andrei Alexandrescu, Modern C++ Design, Addison-Wesley,
2001 (section 2.5)

[2] Microsoft Visual C++ 6.0 considers the call to
Create(cfg, Type2Type<Widget>) to be ambiguous, so
the code does not port. Explicit template arguments are needed
to coax it in the right direction, but consistency in the interface is
broken:

SpecialWidget* psw =
Create<SpecialWidget,

WidgConfig>(cfg,
Type2Type<SpecialWidget>());

Widget* wi = Create<WidgConfig>(cfg,
Type2Type<Widget>());

See MSDN Knowledge Base article Q240869 for bug
description. Also, if we try to specify explicit template arguments
for the other overload as well:
Create<SpecialWidget, WidgConfig>(cfg,
Type2Type<SpecialWidget>()), then VC++ is unable to
match the overload, generating compiler bug C2665. Strangely, it
actually matches the lookup when you call it with
Create<SpecialWidget>(cfg,
Type2Type<SpecialWidget>()).

[3] We still need to help Microsoft Visual C++ 6.0 to know which
function we want to call, by providing explicit template
arguments, so a generic and portable style is lost.

[4] Bjarne Stroustrup, The C++ Programming Language 3rd Ed.,
Addison-Wesley, 1997 (Section 18.4)

[5] Microsoft Visual C++ 6.0 lacks support for partial
specialisation of template classes. See MSDN Knowledge Base
article Q240866. In that case each possible variation (i.e.
constructor) for the Widget class would have to be fully
specialised with a Create class of its own:

#ifdef __MSVC__
template <>
struct Create <Widget, WidgConfig> {
Widget* operator()(

const WidgConfig& args) {
return new Widget(args, -1);

}
};
// and any other complete
// specialisations needed...

#else
// Create <Widget, T> implementation
// as before

#endif

7

Overload issue 50 august 2002

STL-style Circular Buffers
By Example

by Pete Goodliffe
I’ve always found that you don’t learn anything until you try to
actually do it. In this article I provide a practical chance to learn
some new C++ knowledge. If you fancy getting your hands dirty
here then you might pick up some valuable new techniques. This
is a gentle introduction to writing robust STL-like generic
containers.

Recently I needed a circular buffer to implement some low level
logic. These data structures aren’t exactly complicated to write, but
it got me thinking. That’s a dangerous thing at the best of times.
I’ve never written an STL-style container before, and I’d never
come across an STL-like circular buffer1.

With a somewhat gung-ho attitude I began to implement an STL-
compatible circular buffer class. I’m not going to say I’ve got it
perfect but I present here my journey of discovery in the hope that
it will be useful. You have the chance to cover a lot of the same
ground I did since I’ll take us on this journey via a few “exercises”
– just a little something to get you thinking.

Put as much effort into the exercises as you like. As with so many
things, the more effort you put into it, the more you’ll get out at the
end.

What is a circular buffer?

Before we delve into the murky depths of the STL let’s take a
quick refresher course in circular buffers.

There are a number of fundamental data structures in computer
science. The array is about as basic as it comes, its implementation
essentially requires a base pointer to some allocated memory, and
an index into it. You could perhaps argue a stack is even more basic:
if you don’t want to check for the location of top of the stack you
only need a single “current location” pointer. Textbook examples
of stack code are generally implemented in terms of an array,
though.

Coming hot on the heels of these two faithful friends is the good
old circular buffer. It looks like an array but has FIFO consumption
semantics2, can smell really quite like an array, but gives the
pretence of being infinite in size. How does it do this? This is where
the circular bit comes into play. The logical buffer is considered to
‘wrap around’ the physical array it is implemented inside. The
‘head’ and ‘tail’ of the buffer chase each other around the
implementation array.

The following diagram may help envision this.

-Circular buffers have a number of uses. For example, device
drivers that constantly receive data (like a serial port), and need
to buffer it often use circular buffers – acting as a data ‘producer’
for the client code. It is the client’s responsibility to consume the
data about as fast as it is produced to ensure that no data is lost.
This makes reasoning about the data exchange easier. The

circular buffer helps here since the producer (driver) only needs
to worry about adding data to the end of the circular buffer,
whilst the consumer only needs to worry about reading from the
front.

A simple C++ circular buffer class interface would look like this.
For the moment, let’s presume that the buffer just stores ints:

class simple_cbuf {
public:
enum { default_size = 100; };
explicit simple_cbuf(size_t size =

default_size);
~simple_cbuf();
size_t size() const;
bool empty() const;
int top() const; /* see below */
void pop();
void push(int new_value);

private:
/* whatever you want */

};

Note that here we separate top and pop. Some implementers
might like a single atomic top-and-pop function. However, this
approach keeps consistency with the STL vector-like interface
which will help later on. There is also a practical reason to split
the two functions – it makes exception safety issues easier to
reason about. More on this later.

Exercise #1
Implement this simple class API. At this stage it’s OK to store
the data in a dynamically created array3.

Hopefully that exercise made you wonder what to do in push
when the buffer is full. If we want to “pretend” to be of infinite
size then somewhere along the way some data will have to be
thrown away. There are two choices:
● throw away the new data, and leave the simple_cbuf state

unchanged, or
● throw away the data at the ‘front’ of the circular buffer and

replace it with the new ‘end’ data.
In practice the latter case is often required – this is the whole
point of the circular buffer (the first method is really rather like a
fixed size array, after all). It might be nice to provide a policy
option to select what behaviour you want. Our final solution will
allow us to make this choice with no extra cost.

Did you think about copy construction and copy assignment?
Basing our implementation on a dynamically created array will
mean that we’ll need to provide correct behaviour for these two
members. They must be either declared as private and
unimplemented, or added to the class’ public API.

Random access?

Now here’s an interesting usage question, the above minimal
interface doesn’t allow us to randomly access the buffer. In this
respect it just looks like a stack. This isn’t too hard to do, though
– try exercise two.

Exercise #2
Implement an operator[] for the simple_cbuf.

array start array end

Data empty space Data
back front

8

Overload issue 50 august 2002

New data is
added at the

“back” of the
circular buffer

Buffer starts
here. You read

from here

At end of physical
array it “wraps

around” to the start

This should be fairly simple to do, there’s just one thing to watch
out for. For maximum usefulness we need to provide two
versions of operator[]; one ‘normal’ version for non-const
objects, and one for const objects. This allows us to provide
assignment into the simple_cbuf. You should end up with two
functions whose signatures are thus:

int &operator[](size_t);
const int &operator[](size_t) const;

This is the canonical form of these functions, although for an
int–holding container we perhaps don’t need to pass a const
int& from the const operator[], we could get away with
just an int return type. We’ll stick with this because it’s good
practice.

Now we have something that looks a quite like an array, but with
more usual circular buffer FIFO characteristics.

With this kind of behaviour is this data structure genuinely
useful? Does it have any benefits over a plain array? Actually it can
be very useful, but it would be limited to a smaller set of problems
than something like, say, an STL vector.

Make it generic

So we now have a pretty complete simple_cbuf class, but it only
works for ints. The final introductory step is to make it generic.

Exercise #3
Add a line template<typename T> to the beginning of
the class definition and modify the code accordingly.
How much of the public API do you need to modify?

This really isn’t too onerous. Obviously if you were thinking
about separate cbuf.h and cbuf.cpp files you now want to
munge the function definitions into the header file, but it’s largely
a case of selectively replacing of ints with Ts.

The second question: “How much of the public API do you need
to modify?” is worth considering. For a simple integer circular
buffer you can pass parameters to push by value. However since
T could now be any class type you really want to pass by const&.
Also should top return a T by value, or by const&? The latter
makes more sense, since it prevents clients from being stupid with
a temporary object by writing something like:

cbuf.top() = T(); // meaningless; no part
// of cbuf would be modified by this,
// despite what it looks like

Our choice of return type for operator[]() const is now
also vindicated.

So now we have seen what a circular buffer is, how to use it and
how to implement a fairly basic example case. The rest can’t be that
hard, can it?

Moving towards the STL style

Now we’ll start to write an STL style container that’s based on
the class we’ve developed above. I’m going to presume at this
point that you’re familiar with using the STL and its definitions
of container class interfaces4. What do we need to provide to
make this circular buffer class more STL-like?
● standardised typedefs like value_type etc,
● standardised API names,
● iterators (forward, reverse, random access),
● use allocators for memory operations, and
● to be maximally useful, exception safe (and also exception neutral)

We’ll start adding this functionality in stages and consider what
we’re doing at each point.

Our implementation will start off template based, using a
dynamically created array as the internal data storage
implementation. So here’s the initial framework of our class, not
yet worrying about any of the above list of items to include. We’ll
flesh it out as we go along:

template <class T>
class circular_buffer {
public:
explicit circular_buffer(

size_t capacity = 100)
: array_(new T[capacity]),
array_size_(capacity),
head_(0), tail_(0),
contents_size_(0) {}

~circular_buffer()
{ delete [] array_; }

/* ... */
private:
T *array_;
size_t array_size_;
size_t head_;
size_t tail_;
size_t contents_size_;

};

Step 1: Some standard type definitions

To work with STL components we need to provide these
definitions in the public API of our class5:

value_type // The type of the
// container’s elements.

Pointer // A pointer to the
// element type.

const_pointer // As above, but const.
Reference // A reference to the

// element type.
const_reference // As above, but const.
size_type // The type used to index

// into the container.
difference_type // The type of the result

// of subtracting two
// container iterators.

Exercise #4
What should they be?

No rocket science yet. At this stage, my choice was:
typedef T value_type;

/* T is template param */
typedef T *pointer;
typedef const T *const_pointer;
typedef T &reference;
typedef const T &const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;

9

Overload issue 50 august 2002

Now the original framework code can be slightly modified – I’ll
change the variable and parameter types from size_t to
size_type and for array_ from T* to a value_type*. Is
this too picky? No, it will aid future maintainability. If one of
these definitions needs changing later (hint – it will) then the
change can be made in one place and apply to all the code we’ve
written.

Step 2: Appropriate function names
and implementations

Now, in the vectorAPI we have front, back, push_back,
pop_back and clear. We’d like those (or something akin to
them). We’ll clearly not provide pop_back, instead there will
be pop_front for good circular buffer measure.

Exercise #5
How would you implement these?
Take care over function signatures to ensure maximal
efficiency in the light of template types.

front and back are pretty simple. There’s just one thing to
watch out for here, appropriate const and non-const versions:

reference front()
{ return array_[head_]; }

reference back()
{ return array_[tail_]; }

const_reference front() const
{ return array_[head_]; }

const_reference back() const
{ return array_[tail_]; }

What happens if you call these when the circular buffer is empty?
It’s an invalid call and we define this to result in unspecified
behaviour . We could provide a ‘safe’ version of the
circular_buffer class later on that does checking, but we
don’t want to be burdened by it unnecessarily. It is up to the user
to call us in a consistent and valid manner.

The clear member function is also reasonably simple:

void clear()
{ head_ = tail_ = contents_size_ = 0; }

In order to implement the final two functions, I’d define these
private helper functions:

void increment_tail() {
++tail_;
++contents_size_;
if (tail_ == array_size_) tail_ = 0;

}
void increment_head(){
// precondition: !empty()
++head_;
—contents_size_;
if (head_ == array_size_) head_ = 0;

}

Now push_back and pop_front can be implemented along
the following lines. It’s actually a reasonably verbose

push_back implementation, but will show exactly how we
reason about the contents of the circular buffer, and where
head_, tail_, and contents_size_ fit into the equation:

void push_back(const value_type &item) {
if (!contents_size_) {
array_[head_] = item;
tail_ = head_;
++contents_size_;

}
else if (contents_size_ != array_size_)
{
increment_tail();
array_[tail_] = item;

}
else {
// We always accept data when full
// and lose the front()
increment_head();
increment_tail();
array_[tail_] = item;

}
}
void pop_front() { increment_head(); }

Again with pop_front we’ll insist the user only calls the
function when it is semantically valid, making our life a lot
easier. Don’t think we’re being unnecessarily lazy here; this is
exactly what the standard vector does!

For the record, can we coalesce some of that sloppy
push_back logic above? Indeed we can, if we apply a few other
minor modifications to the class:

void push_back(const value_type &item) {
increment_tail();
if (contents_size_ == array_size_)
increment_head();

array_[tail_] = item;
}

That looks nicer. To get here we have removed the special case of
an empty buffer. To cope with this we need to set the member
variables to a different pre-ordained state. The constructor and
clear should initialise tail_ and contents_size_ to zero
as before. head_ should now though be set to 1.

Step 3: More simple functions

You won’t get many points for these simple functions, but they
make for a consistent container API.

Exercise #6
Implement the following simple functions:
size_type size() const;
size_type capacity() const;
bool empty() const;
size_type max_size() const;

They’re all self explanatory except for max_size. This function
returns the largest possible size of the container. A reasonable
example implementation is:

10

Overload issue 50 august 2002

size_type max_size() const {
return size_type(-1) /

sizeof(value_type);
}

An alternative is to use
std::numeric_limits<size_type>::max().
However, this requires that we include the <limits> header
file and we’ll avoid that for the moment.

Step 4: Random access

We want to implement iterators, and this requires that we provide
general access to our circular buffer via operator[]. We
implemented this in exercise #2, so we need to move this over to
our new class. However, to be more thorough and more
vector-like we can observe that vector also provides the at
function, that provides a checked access, whilst the
operator[] only provides unchecked access.

Exercise #7
Implement both const and non-const forms of
operator[] and at for circular_buffer.

Now our circular buffer is randomly accessible we can move
onwards and upwards...

Step 5: Implement an iterator

In exercise #2 we said that it was debatable whether the
operator[] functions should have been added to the circular
buffer class. Certainly in a traditional circular buffer design you
wouldn’t have them. However, part of the point of this whole
exercise is to learn how to write a generic container that can be
iterated over, which will make it compatible with standard library
algorithms. Because of this we should be able to randomly access
data in the circular buffer.

If you hold to the view that buffer data may be read, but may not
be written by random access, then you will only implement the
const version of operator[] and only provide a
const_iterator. However, for the full STL “experience” we’ll
allow the non-const operator[] and provide both mutable
types of iterators.

We’ll start off by considering how to write a non-const forward
iterator, and work up from there.

The simplest example of an iterator would be for an array – the
iterator type would be a simple pointer. The “end” iterator would
be a pointer to one-past-the-end of the array. We can’t simply use
a pointer to iterate over our circular buffer, so we’ll have to define
our own class type. For obvious reasons we’ll call it
circular_buffer_iterator.

Exercise #8
What data members does circular_buffer_iterator
require?

To iterate over a circular_buffer effectively we only need
to know which the circular_buffer is and at what index we
currently stand. However, circular_buffer is a template
type so how can we refer to it? We’ll make the iterator a template
class too, dependant on the type of the circular buffer. We could
make it dependant on the value_type of the

circular_buffer, but we choose not to. Why? Because later
on we’ll add more template parameters to the container class and
that would make the alternative iterator implementation
prohibitively complex.

Should we store a pointer or reference to the
circular_buffer? They are equivalent for these purposes – if
a reference became stale the iterator could be considered to have
become invalid anyway, using the iterator would then be invalid.
However, since we need to implement operator== for the
iterator class, it’s easier to compare pointers, so that’s what we’ll
choose.

This means we start off with a class like this:

template<typename T>
// T is circular_buffer type

class circular_buffer_iterator {
public:
typedef T cbuf_type;
circular_buffer_iterator(

cbuf_type *b, size_t start_pos)
: buf_(b), pos_(p) {}

/* ... */
private:
cbuf_type *buf_;
size_t pos_;

};

There’s a lot of operations we need to define for this class. But
first, we need to add the appropriate typedef and functions into
circular_buffer class to meet STL requirements6:

typedef
circular_buffer_iterator<self_type>
iterator;

iterator begin()
{ return iterator(this, 0); }

iterator end()
{ return iterator(this, size()); }

We’ll have appropriately defined self_type, naturally.
STL iterators are required to define a number of typedefs.

These are:

iterator_category // See below.
value_type // Type of element

// iterator ‘points
// to’.

size_type // Container index
// type.

difference_type // Container difference
// type.

Pointer // Type of a pointer to
// element.

const_pointer // As above, but const.
Reference // Type of a reference

// to element.
const_reference // As above, but const.

Don’t they look suspiciously like the typedefs in the container
class? Does that give you a clue how to implement them?7 But

11

Overload issue 50 august 2002

what’s that iterator_category definition for? This is a
type as defined by the C++ standard that defines what operations
are valid on the iterator. We can choose what kind of iterator to
provide, and define it here. The simplest is a forward iterator, the
most comprehensive a random access iterator. For the moment
we’ll compromise: our iterator will be a bidirectictional iterator,
so we’ll set this to bidirectional_iterator_tag8.

Exercise #9
What operations should an iterator support? How do you
implement them?

Obviously, we need to dereference an iterator. That means we
need to provide an implementation of operator* and
operator->. They’re not hard. The following code does the
trick:

T &operator*()
{ return (*buf_)[pos_]; }

T *operator->()
{ return &(operator*()); }

The other operations on an iterator type are reasonably simple.
We don’t have to do too much error checking; remember that
incrementing an iterator past end() is invalid and results in
undefined behaviour.

Exercise #10
For a bidirectional iterator we need to implement the follow
functions. How would you do this?

self_type &operator++()

self_type operator++(int)

self_type &operator—()

self_type operator—(int)

These are some simple random access iterator operations that
we can also implement here. How will you provide these?

self_type operator+(difference_type n)

self_type &operator+=(difference_type n)

self_type operator-(difference_type n)

self_type &operator-=(difference_type n)

bool operator==(const self_type &other) const

bool operator!=(const self_type &other) const

What are the differences between the two forms of
operator++ and operator—?

Answering the last question first, remember that these two forms
are pre- and post-increment/decrement (respectively). Take care
over the canonical forms of all of the above functions. As a
guide, here are the implementations of operator++,
operator+ and operator+= (for a suitable definition of
self_type):

self_type &operator++() {
++pos;
return *this;

}

self_type operator++(int) {
self_type tmp(*this);
++(*this);
return tmp;

}
self_type operator+(difference_type n)
{
self_type tmp(*this);
tmp.pos_ += n;
return tmp;

}
self_type &operator+=(difference_type n)
{
pos_ += n;
return *this;

}

operator== and operator!= are made easier since we
decided to store pointers to the circular_buffer and not
references.

Step 6: A const iterator

Exercise #11
How different from the above iterator interface is a const
iterator interface?

The answer is, not much. We’ll need to point to a const
circular_buffer, return const references to the buffer
data when deferenced, and that’s about it. It seems a little bit
of a shame to rewrite another class that is almost identical to
the one we already have. To prevent too much duplicated code
we can factor out the commonality. How best do we do this?
Write one class and move out the policy decisions to template
arguments.

Unfortunately it’s not quite as simple as defining the existing
template parameter T (circular buffer type) to be a const
circular_buffer. We need to determine the type of
reference to return (i.e. choose between circular_buffer’s
reference or its const_reference types). We can make
this another parameter, and we’re almost there. What we’ve got
now is:

template<typename T,
typename elem_type =
typename T::value_type>

class circular_buffer_iterator {
public:
/* ... */
elem_type &operator*();
elem_type *operator->();

};

Providing a default type for this means that our original
circular_buffer::iterator typedef is still correct.
The rest is the same, even the definitions of these operators. To
create a const iterator we just need to instantiate the iterator class
with

<const circular_buffer, const
circular_buffer::value_type>

12

Overload issue 50 august 2002

13

Overload issue 50 august 2002

There is only one problem left with our reverse iterator
implementation. You need to be able to convert from a non-
const iterator to a const one so we can write code like:

circular_buffer::const iterator i =
cbuf.begin();

where cbuf is a non-const circular buffer. The path of least
resistance for implementing this is to add another template
parameter T_nonconst (putting it after T), which is the same
as template parameter T, but without any const qualification. We
can then write the following few lines and get the desired
conversion:

circular_buffer_iterator (
const circular_buffer_iterator<

T_nonconst, T_nonconst,
dir, typename
T_nonconst::value_type>

&other)
: buf_(other.buf_), pos_(other.pos_) {}
friend class
circular_buffer_iterator<

const T, T,
dir, const elem_type>;

Naturally, we now add a typedef definition for
reverse_iterator to the circular_buffer class. We
can now do most normal iterator operations. One more thing to
consider for now...

Step 7: A reverse iterator

If we can iterate forwards then we can also iterate backwards.
Conventional STL containers provide this functionality,
returning reverse iterators from their rbegin and rend
member functions. A reverse iterator starts (logically enough)
at the last element in the container. Every time you increment
it, it will actually step back one element. rend points to the
‘one-past-the-front’ element of the container. Providing
reverse iterators means we can apply all the standard
algorithms backwards as well as forwards without writing any
new algorithm code.

Exercise #12
How would you modify the iterator class we’ve already made
to create a reverse iterator?

There’s two ways to do this. The easy way, or the hard way.
Choose! I took the high road, but we don’t have to when the low
road is perfectly acceptable. At first I created my own reverse
iterator class in a similar manner to the const iterator; cunning
additional template parameters.

However, to make our life that little bit easier the STL provides
an iterator adaptor that automatically creates a reverse iterator for
you, based on your forward iterator implementation. I noticed that
just a little bit too late, although I was pretty happy that my reverse
iterator looked so much like the standard library one! Using this
STL facility is by far the better option. It is likely to contain fewer
bugs (hopefully none), and will more likely behave in a manner our
users expect.

So how do we use this STL magic? Just add the following lines
to the circular_buffer typedefs:

typedef
std::reverse_iterator<iterator>
reverse_iterator;

typedef
std::reverse_iterator<const_iterator>
const_reverse_iterator;

That’s it. If you really want to understand what’s going on in the
reverse_iterator template class, think how you would
implement your own version. Consider how you would represent
rend() bearing in mind that our index type (size_type) is
unsigned and the one-past-the-beginning index would be –1.
Solve that conundrum and you’ve done the hard work of a
reverse iterator implementation.

What have we achieved?

So far we have created a circular buffer class that looks pretty
similar in API and usage conventions to the other STL containers.
This means that any C++ programmer can pick the class up and
use it pretty much immediately with no steep learning curve. It
also means that, thanks to the iterators we have provided, the
class can immediately be used with all the standard library
algorithms currently available.

Of course, there’s still more work we need to do…

Next time

We’ll look into working with standard library allocators and
knitting up exception safety issues. There are one or two more
functions to provide which we’ll look at too – look over what
we’ve done and see if you can work out what’s left.

Pete Goodliffe
pete@cthree.org

Endnotes

1. There may be a good reason; it’s a moot point whether such
a data structure is a genuinely useful thing. Still, why let that
stop us?

2. FIFO: First In First Out. You can only add data to the end of the
“array” and consume from the “front”. Imagine sending ping
pong balls down a thin vertical tube, the order you get them out
at the bottom is the order you put them in at the top.

3. If you don’t know why this might be a problem later on don’t
worry – you’ll find out soon enough. (Well, in the second part
of this series.)

4. If you want to view an online reference of the STL interfaces,
there is one publicly available from
http://www.sgi.com/tech/stl/.

5. Actually, there’s more (including iterator definitions) but we’ll
start here.

6. We’ll also have to add a const_iterator definition, but
we’ll come to that in the next section.

7. Whilst I typedef these here based on the container
typedefs, you can alternatively make your life easier by using
the std::iterator template class definition.

8. Don’t worry, we’ll make this a full random access iterator in the
next article.

14

Overload issue 50 august 2002

Execute Around Method and
Proxy Goulash
by Alan Griffiths

A recent design discussion resulted in a solution that has
elements with strong similarities to the “Execute Around
Method” and “Proxy” patterns while, in both cases moving
outside the scope of the usual descriptions of these patterns
[Henney2001, GOF1995].

This article presents the scenario we encountered as a pattern
story. It notes the similarities and differences to the canonical forms
of “Façade”, “Execute Around Method” and “Proxy” patterns; and,
raises the question “are these still the same patterns – or have they
been cooked beyond recognition?”

Intent

To grant access to specific functionality only between paired
operations.

Motivation

When updating large amounts of state it may be desirable to
ensure that “before” and “after” messages are sent to the owner
of that state so that any necessary preparation or cleanup may be
applied – or that concurrent operations can be inhibited.

Consider a batch update of the product lines available within a
system. A complete list of product lines is supplied by an external
source and used to create, amend or delete product lines available
within the system. Because the only indication that a product is to be
deleted is that no corresponding product line is supplied it is
necessary to accumulate information regarding the product lines
accessed during the update and to deal with deletions when the update
completes. (One of the delights of interworking with client’s “legacy
systems” is that, in this instance, they cannot provide perfectly simple
information – such as positive notification of deletes.)

Typically the product lines are stored as rows within an RDBMS
and accessed via a Broker class that provides the persistence
mechanism. The Broker provides a finer grained and more
extensive interface than is required by the needs of the application
and access is mediated by a Director that acts as a Façade
[GOF1995]. (In an EJB based system the Director would be a
stateless session bean and a Broker used in place of an entity bean
to avoid the cost of unwanted synchronisation.)

Because Java allows classes to grant privileged access to
package members it is possible (and not uncommon) to restrict
access to some Broker methods to the package and place both
Broker and Director in the same package. This adaptation of the
pattern enforces use of the Façade by classes outside the package
and allows protocols to be enforced. In particular declaring “start”,
“update” and “finish” methods with package access will limit the
code that calls them to the this package.

In keeping with its role as a Façade the Director should have the
responsibility of calling “start” and “finish” methods on the Broker
before and after processing of the batch update. However, receipt
of the update is not the responsibility of the Director and, in fact,
is driven by another part of the system entirely. (It might be possible
to wrap the processing of the input as an “iterator” passed to the
Director – however this would add complexity to the system.)

This leads us towards a variation of “Execute Around Method”
where the paired operations are “start” and “finish” method calls
(not resource allocation) and whose target is the Broker (not self

invocation on the Resource object as described by Kevlin Henney
[Henney2001]). We still have Kevlin’s Command object – but not
only has Resource been split into Director and Broker it is not passed
to the Command’s applyTo method (“run” in Kevlin’s paper).

However, we’ve not yet resolved the full context – as the
implementation of the Command interface still won’t have access
to the necessary Broker methods. But this is where our variation on
Proxy comes into play: we define a BrokerProxy class that, being
in the same package as the Broker, has access to the necessary
functionality and can implement public forwarding functions. It is
this (not a resource) that is passed to the Command’s applyTo
method by the Director. (To ensure that the Director isn’t bypassed
construction of the BrokerProxy is given package access.)

This usage of Proxy differs from that described in [GOF1995]
because additional functionality is exposed by the Proxy class.
Specifically it doesn’t substitute for a Broker. (I feel it is far closer
to Proxy than to Adapter or Bridge.)

Participants
● Broker (Broker) – supplier of the functionality to which access

is controlled
● Façade (Director) – responsible for enforcing the access control

protocol
● Command (Command) – declares a usage (applyTo) method

for the functionality
● ConcreteCommand (UpdateCommand) – user of the access

controlled functionality
● Proxy (BrokerProxy) – forwards calls to the Broker within the

controlled scope

Consequences

The client code in UpdateCommand.applyTo() has access
to the Broker.update() method via the BrokerProxy. The
Director is able to ensure that start() and finish() are
invoked at the appropriate points in the executeAround
method.

Sample code

The following code illustrates the implementation of this dish in
Java. We’ll assume that a product line comprises its name and
price:

public class Product {
private String name;
private int price;
public Product(String name, int price){
this.name = name;
this.price = price;

}

Command

applyTo(
BrokerProxy target)

UpdateCommand

applyTo(
BrokerProxy target)

Director

executeAround(
Command)

Broker

start()
update(Row)
finish()

BrokerProxy

update(Row)

<<imported>>

15

Overload issue 50 august 2002

public String getName() {
return name;

}
public int getPrice() {
return price;

}
}

A Broker class called ProductBroker manages the
persistent storage for products. It provides methods for
retrieving Product information, and for updating the product
table:

class ProductBroker {
// ...
List listProductNames() {
// ...

}
Product getProduct(String name) {
// ...

}
void startUpdate() {
// ...

}
void update(Product data) {
// ...

}
void finishUpdate() {
// ...

}
}

Because the broker doesn’t provide public access we provide
public access to the update method via the Proxy class:

public class ProductBrokerProxy {
// ...
public void update(Product data) {
broker.update(data);

}
}

The Command interface by which the client code supplies the
update logic is:

public interface ProductUpdateCommand {
public void applyTo(

ProductBrokerProxy target);
}

All of this is co-ordinated by the ProductDirector façade as
follows:

public class ProductDirector {
// ...
public void updateProducts(

ProductUpdateCommand command) {
final ProductBrokerProxy proxy =

new ProductBrokerProxy();
synchronized (this) {

broker.startUpdate();
command.applyTo(proxy);
broker.finishUpdate();

}
}

}

While there appear to be a lot of pieces to the implementation of
the final design the client code is clear and does not rely on
following a “start/update/finish” protocol for correctness.

public class UpdateProducts {
// ...

public static void main(String[] args)
{
// Set up some example data...
final Vector data = new Vector();
data.add(new Product(“beans”, 27));
data.add(new Product(“chicken”,

525));
// Process the example data...
final Iterator iter =

data.iterator();
director.updateProducts(

new ProductUpdateCommand()
{
public void applyTo(

ProductBrokerProxy target)
{
while(iter.hasNext())
{
target.update(

(Product)iter.next());
}

}
});

}
}

Acknowledgements

Thanks to Jason Martin and Andrew Rigley who: brought the
motivating example to my attention; allowed me to participate in
an interesting design session that led to the above resolution; and,
reviewed the draft article. Additional thanks are also due to Jason
who supplied the sample code on which the above fragments are
based.

Alan Griffiths alan.griffiths@microlise.com
Jason Martin jason.martin@microlise.com

Andrew Rigley andy.rigley@microlise.com

References

[Henney2001] Kevlin Henney, “Another Tale of Two Patterns”
Java Report March 2001 http://www.two-sdg.demon.co.uk/

curbralan/papers/AnotherTaleOfTwoPatterns.pdf

[GOF1995] Gamma, Helm, Johnson, Vlissides, Design Patterns
ISBN 0-201-63361-2

16

Overload issue 50 august 2002

Even More Java Exceptions
by Jon Jagger

A recap

In Overload 49 Alan Griffiths continued his exploration of the
exception safety landscape in the wilds of Java and looked at a
problem introduced by Tom Cargill; namely how to make a copy
of a whole object holding multiple parts in an exception safe
manner. In his article Alan ensured that if construction of the
whole object failed, the resources of all fully constructed parts
were released. He achieved this by careful use of try/finally
blocks and statement ordering - essentially, like this:

public class Part implements Cloneable {
...
public void dispose();

}

public class Whole {
...
public void copy(Whole other) {
Part t1 = (Part)other.p1.clone();
if (t1 != null) {
try {
Part t2 = (Part)other.p2.clone();
if (t2 != null) {
t1.setParent(this);
t2.setParent(this);

// pivot point

Part swap1 = t1;
t1 = p1;
p1 = swap1;

Part swap2 = t2;
t2 = p2;
p2 = swap2;

}
}
finally {
t2.dispose();

}
}
finally {
t1.dispose();

}
}

private Part p1, p2; // never null
}

A detailed look

Copy succeeds atomically (and returns) if nothing before the
pivot point throws an exception:
● The cloned parts are held in local variables t1 and t2. The

cloned parts are not used to set the p1 and p2 fields directly.
● The local variables are swapped with the fields only if they are

not null. This maintains the invariant that p1 and p2 are never

null (the calls to other.p1.clone() and
other.p2.clone() do not check other.p1 != null
or other.p2 != null).

Copy fails atomically (with an exception) if any of the methods
before the pivot point throw an exception:
● The finally blocks will dispose of any cloned parts.
● The exception will signal that the copy failed.
● The target of the copy will be unchanged.

A potential problem or two

One potential problem with copy as it stands is that if a
clone() call returns null there will be no exception, copy will
return, and the target of the copy will remain unchanged. This
means you don’t know the state of the object if the call to copy
returns (rather than throwing an exception). There are at least two
solutions to this problem:
● You could make copy return a boolean and return false if any

call to clone() returns null. (The finally blocks will still
dispose of any successfully cloned parts.)

● You could throw an exception if a call to clone() returns
false.

I prefer the latter option, partly because it fits with the exception-
for-failure model, but mostly because it just seems right. We’ve
already established that other.p1 and other.p2 are never
null and null simply isn’t a clone of something that’s not
null.

There’s another copy subtlety worth mentioning. It concerns
the calls to setParent . These calls nicely illustrate that a
whole-part relationship is, in general, a two-way relationship. If
you follow the code through carefully, you’ll see that once the
swaps have taken place, the cloned parts (now referred to by the
p1 and p2 fields) see the target of the copy (this) as their
parent (which is fine), but that the old parts (now in t1 and t2)
also see the target of the copy (this) as their parent. In other
words, if a Whole holds N parts then N*2 parts will
simultaneously think they’re in the same Whole. In reality, this
probably won’t be a problem because half of the parts are about
to be disposed of.

An interface: Disposable resource

The strategy I used in my attempt to progress through the jungle
is an interface. The Disposable interface embodies the
Disposal Method pattern – it creates a method you can explicitly
call to dispose of a resource at a known point in the code (this
interface is noticeable by its absence from the Java SDK).

public interface Disposable {
void dispose();

}

A specification: Stack of Disposable
resources

The next step is to create something that holds a stack of
Disposable objects. The purpose of this class will be to
hold a number of resources. I call it a stack because it
effectively plays the part of the control flow stack in C++.
That is, a stack in the sense of the opposite of a heap; the
stack that, in C++, holds local objects and calls their
destructors when they go out of scope. DisposableStack
is an example of the Composite pattern (although I don’t
actually require the composite in this article).

17

Overload issue 50 august 2002

public final class DisposableStack
implements Disposable {
public DisposableArray(int

fixedCapacity);
public void push(Disposable resource);
public void clear();
public void dispose();
...

}

A beginning

Now consider what would happen if Part implemented
Cloneable and Disposable (I will remove this assumption
later):

public class Part implements Cloneable,
Disposable {
...

}
With these pieces of the puzzle in place you can collapse the
multiple nested try/finally blocks in Whole.copy (one per
part) down to just a single try/finally block. Notice that
each resource is held twice, once in a local variable (eg t1, t2)
and once inside the DisposableStack (resources). The
trickiest part is the last three statements before the finally
block. These statements ensure that a successful copy (one that
passes the pivot point) disposes of the old Part resources just
swapped from p1, p2 into t1, t2:

public class Whole {
...
public void copy(Whole other) {
DisposableStack resources =

new DisposableStack(2);
try {
Part t1 = (Part)other.p1.clone();
push(resources, t1);
Part t2 = (Part)other.p2.clone();
push(resources, t2);
t1.setParent(this);
t2.setParent(this);
Part swap1 = t1;
t1 = p1;
p1 = swap1;
Part swap2 = t2;
t2 = p2;
p2 = swap2;
resources.clear();
resources.push(t1);
resources.push(t2);

}
finally {
resources.dispose();

}
}
private static void push(DisposableStack

resources, Part resource) {
if (resource == null) {
throw ...

}
resources.push(resource);

}

private Part p1, p2; // never null
}

If a call to clone() returns null, the attempt to add it to
the resources collection must throw an exception. We’ll
handle this in a Whole helper method rather than in
DisposableStack so that DisposableStack can stay
a general purpose class. If all the parts are cloned and added to
the resources collection, the part specific calls take place
(setParent) and then the swaps are performed. The swaps
must not throw an exception. After the swaps, the part clones
(not null) are in p1 and p2, and the old parts (also not
null) are in t1 and t2. The resources stack is cleared,
and the old parts are pushed in ready to be disposed of in the
finally block. The code tells us the critical exception
guarantees of the methods:
●
DisposableStack.clear() must never throw an
exception. This is because the call to clear() happens after
the pivot point.

● If a DisposableStack (eg resources) is initialized with
a constructor argument N, then after a call to
resources.clear() the next N calls to
resources.push(resource) must not throw an
exception. Again, this is because these calls happen after the
pivot point.

●
DisposableStack.dispose() should allow any
exception that arises from it to escape. DisposableStack is
a general purpose class and cannot judge the severity of a
disposal through an interface.

An implementation: Stack of
Disposable resources

How can we guarantee these constraints? You might think about
using a collection class such as ArrayList. Can ArrayList
methods throw exceptions? I’m not sure and I’m not going to
bother looking because there is a better solution: use an array.
This will not only give us complete control over exceptional
behaviour it will probably also makes the solution a little faster.
Notice that this version disposes of the resources in a last-in last-
out fashion (which seems appropriate), and also avoids the need
for any casting:

public final class DisposableStack
implements Disposable {
public DisposableStack(

int fixedCapacity) {
resources =

new Disposable[fixedCapacity];
at = 0;

}

public void push(Disposable resource) {
// PreCondition(resource != null)
// PreCondition(at < resources.length)
resources[at] = resource;
++at;

}

public void clear() {
at = 0;

}

18

Overload issue 50 august 2002

public void dispose() {
while (—at > 0) {
resources[at].dispose();

}
}
private final Disposable[] resources;
private int at;

}

A refinement: Null Object pattern

One glitch in this implementation is that if you push null, bad
things will happen. You could solve this by checking for null in
a push precondition. Another way is to use the Null Object
pattern, like this:

public final class NullDisposable
implements Disposable {
public static final NullDisposable

instance = new NullDisposable();
public void dispose() {
// all done!

}
}
public final class DisposableStack
implements Disposable {
...
public void push(Disposable resource) {
// PreCondition(at < resources.length)
resources[at] =

resource != null ? resource :
NullDisposable.instance;

++at;
}
...

}

A refinement: swap method

Something else that bothers me about this solution is the lack of a
swap abstraction. If you study Alan’s original code you’ll see that
the swap cannot be factored out because it swaps local variables
that are disposed in their following finally blocks. However,
at the cost of introducing a temporary object, it is possible:

public class Whole {
...
public void copy(Whole other) {
DisposableStack resources =

new DisposableStack(2);
try {
Whole copy = new Whole();
copy.p1 = (Part)other.p1.clone()
push(resources, copy.p1);
copy.p2 = (Part)other.p2.clone();
push(resources, copy.p2);
copy.p1.setParent(this);
copy.p2.setParent(this);
copy.swap(this);
resources.clear();
resources.push(copy.p1);
resources.push(copy.p2);

}

finally {
resources.dispose();

}
}

public void swap(Whole other) {
Part swap1 = p1;
p1 = other.p1;
other.p1 = swap1;
Part swap2 = p2;
p2 = other.p2;
other.p2 = swap2;

}
...
private Part p1, p2; // never null

}

Note that this “solution” requires a default Whole constructor
that creates an empty Whole object, that is, one that contains no
resources. The idea is that you create an empty whole object, and
then gradually fill it. If you’ve already implemented the default
constructor and it doesn’t do this you can simply create a private
constructor with a dummy argument.

public class Whole {
...
public Whole copy(Whole other) {
DisposableStack resources = new

DisposableStack(2);
try {
Whole empty = new

Whole(Empty.instance);
// as before

}
...

}

private static final class Empty {
public static final Empty instance =

new Empty();
}

private Whole(Empty unused) {
// all done

}
...

}

A bug: shallow swap

This would be a reasonable solution if it worked but
unfortunately it doesn’t. Before the swap, both objects are
well formed. The target of the copy (this) has its parts and
these parts know this is their parent. Similarly, the copied
object has its parts (clones of this’s parts) and these parts
know copied is their parent. All well and good! The problem
is that the swap only swaps the references; it’s a shallow swap
and it needs to be a deep swap. After the swap, the parts will
be referring to the wrong parents. To swap a whole you have
to be able to swap its parts. It’s not enough to just swap the
references.

19

Overload issue 50 august 2002

public class Part implements Cloneable,
Disposable {
...
public void swap(Part other) {
// swap all fields, must not throw
...

}
}

public class Whole {
...
public void swap(Whole other) {
// shallow
Part swap1 = p1;
p1 = other.p1;
other.p1 = swap1;
Part swap2 = p2;
p2 = other.p2;
other.p2 = swap2;
// deep
p1.swap(other.p1);
p2.swap(other.p2);

}
...

}

A refinement: copy constructor

Let’s stop for a moment to think about what we’ve just done.
We’ve created an empty object so that we can gradually fill it
with cloned parts. And remember that we’re doing this so we can
implement the copy method. With a little reflection the idea of
using a copy constructor suggests itself. That way, we won’t have
to worry about the initial state of the object we’re creating. (If
you’ve already implemented the copy constructor and it doesn’t
do this you can simply create a private constructor with a dummy
second argument as before). Should the copy constructor be
public? Well, copy method is public so it seems reasonable.

public class Whole {
...
public Whole(Whole other) {
DisposableStack resources =

new DisposableStack(2);
try {
push(resources,

p1 = (Part)other.p1.clone());
push(resources,

p2 = (Part)other.p2.clone());
p1.setParent(this);
p2.setParent(this);
resources.clear();

}
finally {
resources.dispose();

}
}
...

private Part p1, p2; // never null
}

A final piece: copy method

With this copy constructor in place, the obvious (but wrong) way
to write the copy method is as follows:

public class Whole {
...
public void copy(Whole other) {
Whole copy = new Whole(other);
copy.swap(this);

}
}

The problem is that copy does not dispose of the old parts after
the swap. This is not C++ remember! Luckily we have exactly
the right tool to fix this problem: DisposableStack.

public class Whole {
...
public void copy(Whole other) {
DisposableStack resources = new

DisposableStack(2);
try {
Whole copy = new Whole(other);
copy.swap(this);
push(resources, copy.p1);
push(resources, copy.p2);

}
finally {
resources.dispose();

}
}
...

}

A refactoring: resources as a field

This is now a reasonable solution. However, there is one last
refactoring we can perform before returning to the assumption
that Part implements Disposable. It revolves around the
observation that there is a lot of pushing going on! A possibly
more natural approach would be for the pushes to happen only at
construction and for the clear to happen only at “disposal”. The
way to achieve this is to make the DisposableStack a field instead
of a local variable. There are a number of points to note in this
solution:
● If there is no exception the copy constructor retains the

references to the parts. The assumption is that all the
constructors will do this. To do this you need a Boolean
variable because there is no way to query whether an
exception is currently pending. (Another noticeable omission
from the Java SDK; interestingly, I’ve been told that it is
possible to determine whether an exception is pending if you
drop down to the JVM level.)

● The copy method makes a copy using the copy constructor.
If this succeeds it swaps itself with the copy. It then disposes
of the parts of its old self (which of course are now held in
the copy because the swap method swaps the resources field
too). An issue you might like to consider is the possibility of
an exception arising from the call to
copy.resources.dispose . Should this exception be
caught and suppressed? How valuable is the simple model of

20

Overload issue 50 august 2002

use this would afford? Is it a deep philosophical truth (and
holds in all applicable programming languages) that
exceptions should never arise from destruction/finalization?
Or is disposal different because the object being disposed is
still in scope?

● It’s noticeable how the ResourceStack is playing the role of
a stack-based local variable in languages like C++ that supports
scope based resources.

public class Whole {
...
public Whole(Whole other) {
boolean exception = true;
try {
push(p1 = (Part)other.p1.clone());
push(p2 = (Part)other.p2.clone());
p1.setParent(this);
p2.setParent(this);
exception = false;

}
finally {
if (exception) {
resources.dispose();

}
}

}

public void copy(Whole other) {
Whole copy = new Whole(other);
copy.swap(this);
copy.resources.dispose();

}

public void swap(Whole other) {
// shallow
DisposableStack swap0 = resources;
resources = other.resources;
other.resources = swap0;
Part swap1 = p1;
p1 = other.p1;
other.p1 = swap1;
Part swap2 = p2;
p2 = other.p2;
other.p2 = swap2;
// deep
p1.swap(other.p1);
p2.swap(other.p2);

}

private void push(Part resource)
if (resource == null)
throw ...

}
resources.push(resource);

}

private DisposableStack resources =
new DisposableStack(2);

private Part p1, p2; // never null
}

An assumption revisited:
Part Disposer

Now let’s return to the original assumption. What if Part does
not implement the Disposable interface? Simple, just use an
Adapter.

public final class PartDisposer
implements Disposable

public PartDisposer(Part adapted) {
// PreCondition(adapted != null)
adaptee = adapted;

}
public void dispose() {
adaptee.dispose();

}
private final Part adaptee;

}

Fine, but how do you use the adapter? There is a final trap we
must take care not to fall into. The obvious (but flawed) way to
use this adapter is as follows:

public class Whole {
...
private void push(Part resource) {
if (resource == null) {
throw ...

}
resources.push(new

PartDisposer(resource));
}
...

}

The problem is that if the creation of a new PartDisposer
throws an exception the copied Part will not be pushed onto the
resources stack. There are a number of ways to fix this. One
is via a careful use of a try /finally block in the
Whole.push helper method:

public class Whole {
...
private void push(Part resource) {
if (resource == null) {
throw ...

}
try {
resources.push(

new PartDisposer(resource));
resource = null;

}
finally {
if (resource != null) {
resource.dispose();

}
}

}
...

}
[continued at foot of next page]

21

Overload issue 50 august 2002

Conclusion

Has it been worth it? Is this version useful? As always there are
opposing forces. This version is something of a sledgehammer
cracking a nut when the number of parts is small. But as the number
of parts increases, so does the depth of the try/finally nesting, and so
the more attractive this version becomes. However, it does so at the
cost of creating extra objects. It’s also noticeable that this version
involves a lot less work if the Part classes implement the
Disposable interface, thus avoiding the need for Adapters.

It’s also important to consider that Java programs normally express
copying through the creation of new objects rather than emulating deep
assignment. Perhaps it’s best to think of this solution to Tom Cargill’s

whole-part copy problem as showing just one way to use the
DisposableStack class. The important thing, as Alan says, is that
the exception safety guarantees make sense in Java and should be
applied when writing or reviewing code. The problem is that the Java
language offers almost no in-built support for this activity.
DisposableStack is a class that can help.

In design, as in life, you learn more from making the journey
than you do from reaching the destination. I look forward to more,
as yet, unvisited trails.

Jon Jagger
jon@jaggersoft.com

Template Metaprogramming:
Shifting Down a Gear

by Andrew Cheshire

Template metaprogramming (MP) in C++ is a powerful
technique but the syntax used can be obscure and difficult to
understand. Here I propose an alternative approach in which a
subset of the standard C++ language is used to write template
metaprograms in a natural and familiar style.

This article assumes either an understanding of template
metaprogramming or a pretty good ability to absorb new ideas. If
you want to read up on the topic before reading this article: see [1]
online for Todd Veldhuizen’s historical paper and some useful links;
and [2] for a recent Overload article on the subject.

There are a number of forms of MP but in this document we
use only the general-purpose one presented in Andrei
Alexandrescu’s Modern C++ Design [9]; I will refer to this form
of MP as AMP.

Template Metaprogramming

C++ template-metaprogramming uses standard features of the
language to achieve computation in the type-domain, at
compilation time.

This means that computation is done on types rather than on
values. This may sound bizarre but in practice it can aid both in
design abstraction and in time/space efficiency. Applications of
MP include high-performance numerical computing [3], matrix
computation [4], reflection [5], dimensional analysis [6] and static
configuration [7].

However, despite the power of the technique it isn’t really used
in the mainstream, and it’s been 8 years since Erwin Unruh wrote
the first MP program [8].

This may be due in part to a lack of suitable C++ compilers in
the past but another reason must be that MP is not a designed part
of the language: it’s really an accident resulting from the interaction
of several language features. And – as so often happens when
something is used for other than its intended purpose – MP code
can be obscure and difficult to understand.

factorial Example

Let’s start by implementing the factorial function as a template
metaprogram.

Here is a standard implementation of the factorial function:

int factorial(int n) {
if (n==1) {
return 1;

}
else {
return n*factorial(n-1);

}
}
...
// example call
int x = factorial(5);

The two branches of the conditional statement return the two
possible outcomes:
● when n==1 the function simply returns 1
● when n!=1 the function returns the result of calling itself

recursively with an argument of n-1
Here is an MP implementation of the factorial function1:

// definition
template<int n>
struct factorial {
enum {RET = n*factorial<n-1>::RET};

};
// partial specialization
template<>
struct factorial<1> {
enum {RET = 1};

};
...
// example call
enum {x = factorial<5>::RET};

The definition and partial specialization of the factorial class
template here give the two possible outcomes:
● when n!=1 the result is given by the result of instantiating itself

recursively with a template argument of n-1
● when n==1 the result is simply 1

1 The historical use of enum in this context was originally a
workaround for compiler limitations. On a compiler that supports the
latest version of the standard “const int RET = 1;” is not
only perfectly legal, but perhaps a more idiomatic usage

22

Overload issue 50 august 2002

Compare the possible outcomes of the function with those of the
class. Although the factorial class looks very different from the
factorial function they have the same logical structure :-
● return 1 if the parameter is 1
● return n times the factorial of n-1 otherwise
The big difference between the two implementations is that the
template computation happens at compile-time instead of when
the program is run. Integer results of template computations are
available as compile time constants, for example, in the
expression factorial<5>::RET. This means that, for
example, you could declare an array like this:

int buffer[factorial<5>::RET];
Types can be manipulated at compile time too, using typedef
to name intermediate and final results in the same way that enum
(or const int) is used to name integer values. There’s an
example which uses types later in the article.

The MP Execution Model

If you want to know what happens – in general – when you run a
program in a given language you need to know its execution
model: a specification of what happens when a program written
in the language is run on a conforming implementation.

My first acquaintance with the idea of an execution model for
MP was a talk by Gabriel Dos Reis at ACCU 2001 [10] in which
he showed how C++ template metaprograms could be modelled in
the Scheme language. Scheme is a good model for MP because
both languages’ execution models are essentially those of functional
programming languages.

Dos Reis talked about M-values (M stands for meta) being the
MP equivalent to values in most programming languages. An M-
value is a type or anything else that can be manipulated at compile
time.

AMP M-values:
1. template instantiation plays the role of a function call
2. template partial specialization provides conditional branching
3. enums set local aliases for complex expressions and return

integer results
4. typedefs set local aliases for complex types and return type

results
This information is summarized in Table 1.

If you look back to the MP implementation of the factorial
function you will see that it uses features 1, 2 and 3 with these
pieces of code:
1. factorial<n-1>::RET
2. template<> struct factorial<1>
3. enum {RET = 1}
Using these language features sophisticated programs can be
written (even a Lisp interpreter [11]) but it’s not easy: the syntax
is unhelpful and the programs can’t be effectively debugged (you
can’t single-step through a compilation ...).

Modelling AMP in Another
Language

The C++ MP code in the factorial example and in Listings 1 and
2 can be difficult to follow but the abstract execution model is
very simple. It has single assignment (variables are initialised on
declaration and cannot be modified thereafter), conditional
selection (choice, as in switch or if), but no iteration (no
for, while or do loops – recursion is used instead).

Given the simplicity of the execution model we can consider
writing programs in a source language with a more suitable syntax
than C++ MP code. Programs written in this source language could
be automatically translated to the correct C++ MP code.

But which language? A functional language such as Scheme or
Haskell would have the right sort of execution model, but would
not be taken up by many C++ programmers.

Instead I propose that we actually use a subset of C++ itself as
the source language, which I’ve called typeshift. This will by
definition be familiar to C++ programmers and there are other
advantages, as we shall see.

Here’s the factorial example in typeshift :-

int factorial(int n) {
switch(n) {
case 1:
return 1;

default:
return n*factorial(n-1);

}
}

Feature MP Implementation Example Code
conditional branching template partial specialization template<typename T>

struct Setup { /* code for general case */ };

template<>

struct Setup<Null> { /* code for T==Null */ };

// OR

template<int N>

struct Factorial{ /* code for general case */ };

template<>

struct Factorial<0> { /* code for N==0 */ };

integer expressions enum enum {N=Length<T::Tail>+1};

set integer alias enum
return integer results enum enum {value=N};

call MP “functions” template instantiation typedef Next<T>::value NextType;

set type alias typedef
return type result typedef typedef Next<T>::value value;

Table 1: AMP Execution Model

23

Overload issue 50 august 2002

It is, of course, the same code as the standard factorial function
we gave earlier (which should be no surprise).
This code is similar but not identical to the factorial function we
gave earlier. It uses switch instead of if because typeshift
will not initially support if.

The point of typeshift is this: you write a program in the
typeshift language and then use a translator to convert it to C++
MP code. The translator would convert the above factorial program
to this MP program (again, this code is identical to that of the earlier
example):

// definition
template<int n>
struct factorial {
enum {RET = n*factorial<n-1>::RET};

};
// partial specialization
template<>
struct factorial<1> {
enum {RET = 1};

};

So now you can write a program in something resembling
everyday C++ and have it converted to a template
metaprogram.

Now this is just a tutorial example: a MP factorial program isn’t
very practical because it has to be recompiled every time you want
to compute a different factorial. An MP program is only useful if

you can make use of the results of the compile-time computation
when the program is run. Later on we’ll look at an admittedly
abstract but genuinely useful example of template
metaprogramming.

typeshift

typeshift is a small subset of C++. We take only those features
which are required to support the AMP execution model:
● classes/structs with simple data and function members
● variable initialisation
● switch statements
● return statements
We do, of course, need to be able to represent types so that we
can support template type-parameters. You might think that this
is where it gets complicated, but in fact it doesn’t – in “real” C++
types are very different from values but in typeshift they are
quite similar: everything is just an M-value.

typeshift uses distinguished identifiers like type, fixed_type and
template_type to declare variables (and subclasses) which to
represent types and such variables behave as they do in MP.

This execution model of AMP as supported by typeshift is
shown in Table 2 [next page] which you will want to compare with
Table 1. Remember that this is only the first version of typeshift:
over time its syntax and semantics will be extended to make it even
easier to write template metaprograms.

I have not yet looked into mapping other forms of MP into
typeshift but I hope that we will only need to add a few more
features of C++ to the language for it to be able to model any current
use of MP.

Typelist Example

Here’s an example of MP which uses types. Listings 1 and 2 are
an implementation of the typelist data-structure from
Alexandrescu [9] (not actually his implementation). They
demonstrate how AMP can be used to implement a simple type-
data-structure (a linked list of types) and a type-function which
finds the length of such a list.

Listings 3 and 4 [next page] implement the same program, but
in typeshift.

The .h file in Listing 3 is very different from the .h file in Listing
1 but if you read them while referring to Tables 1 and 2 you should
be able to follow how the two sets of code correspond.

// typelists – standard approach. This

// particular approach even works on MSVC 6.0.

namespace typelists {

// a list of types, each element has a head

// and a tail - the head is one of the types

// in the list, the tail is either another

// list of types or Null

template<typename HeadT, typename TailT>

struct List {

typedef HeadT Head;

typedef TailT Tail;

};

// terminates type lists

struct Null {};

// - find the length of a type list -

// ... the general case – the length is 1

// more than the length of the tail

template<typename T>

struct Length {

enum{RET=Length<typename T::Tail>::RET+1};

};

// ... the case of Null – the length is zero

template<>

struct Length<Null> {

enum {RET = 0};

};

};

Listing 1: tm1.h

// try out typelists – standard approach

#include <iostream>

#include “tm1.h”

using namespace typelists;

int main() {

// declare a type list

typedef List<int, List<double,

List<char, Null> > > basictypes;

// compute the length of the type list. the

// whole right-hand side below is evaluated

// at compile time (the result is 3)

int n = Length<basictypes>::RET;

std::cout << “n = “ << n << std::endl;

return 0;

}

Listing 2: tm1.cpp

24

Overload issue 50 august 2002

One important difference between the two sets of code is the
namespace: it was typelist in the original C++ MP but is
metatypeshift::meta::_typelist in the typeshift

code. This is because we propose to signal the presence of
typeshift code by enclosing it in a distinguished namespace
whose name begins with typeshift::meta, or in a
namespace derived from this. An enhanced C++ compiler or
external tool can use this to pick out the typeshift code from the
“normal” C++ code.

The .cpp file in Listing 4 is practically identical to the .cpp
file in Listing 2 – only the namespace identifier and the name
for the null list-terminator are different. This is because I don’t
propose changing the syntax of references to the names in the
generated C++ MP code (at least, not yet) because that is going
to be rather more difficult to handle than just transforming the
definition.

Coins Example

In [10] Gabriel Dos Reis gives an example from Abelson &
Sussman [12] of a coin-counting program, first of all in Scheme
and then in C++ MP code. Given an amount of money (in
pennies) the program returns the number of ways in which
change can be given using British coins.

Dos Reis’s C++ MP code along with a test rig is given in Listings
5 and 6.

I translated it into typeshift and this (again, with a test rig) is
given in Listings 7 and 8.

Feature typeshift Implementation Example Code
conditional branching switch switch(T) {

(on types) case Null: // code for T==Null

default: // code for general case

};

// OR

switch(N) {

case 0: // code for N==0

default: // code for general case

}

integer expressions expression int N=Length(T.Tail)+1;

set integer alias definition
return integer results return return N;

call MP “functions” function call syntax type NextType=Next(T);

set type alias type definition
return type result return return NextType;

Table 2: typeshift Execution Model

// typelists – typeshift approach

#include <ts_runtime.h>

namespace typeshift {

namespace meta {

namespace _typelist {

// a list of types, each element has a head

// and a tail - the head is one of the types in

// the list, the tail is either another list of

// types or fixed_type::null

struct List {

// constructor

List(const type& HeadT, const type& TailT)

: Head(HeadT), Tail(TailT) {}

// members

const type& Head;

const type& Tail;

};

// - find the length of a type list -

int Length(const type& T) {

switch (T) {

// the case of fixed_type::null – the length

// is zero

case fixed_type::null:

return 0;

// the general case – the length is 1 more

// than the length of the tail

default:

return Length(dynamic_cast<const

List&>(T).Tail)+1;

}

}

}}};

Listing 3: tm2.h

// typelists – try out typeshift approach

#include <iostream>

#include “tm2.h”

using namespace typeshift::meta_::typelist;

int main() {

typedef List<int, List<double,

List<char, fixed_type::null> > >

basictypes;

int n = Length<basictypes>::RET;

// the generated code still uses RET

std::cout << “n = “ << n << std::endl;

return 0;

}

Listing 4: tm2.cpp

25

Overload issue 50 august 2002

// coins – C++ MP approach

// This code is reprinted by permission from

// Gabriel Dos Reis’ ACCU 2001 talk [10]

template<int coin_kind>

struct coin_value { };

template<>

struct coin_value<1> { enum {value = 1}; };

template<>

struct coin_value<2> { enum {value = 5}; };

template<>

struct coin_value<3> { enum {value = 10}; };

template<>

struct coin_value<4> { enum {value = 25}; };

template<>

struct coin_value<5> { enum {value = 50}; };

template<int amount, int coin_kinds, bool stop>

struct count_change_helper {

enum {remaining_coins = coin_kinds - 1};

enum {remaining_amount = amount

- coin_value<coin_kinds>::value};

enum {value =

(count_change_helper<

remaining_amount, coin_kinds,

(remaining_amount <= 0 ||

coin_kinds == 0)>::value

+

count_change_helper<

amount, coin_kinds - 1,

(amount <= 0 ||

remaining_coins == 0)>::value)

};

};

template<int amount, int coin_kind>

struct count_change_helper<amount,

coin_kind, true> {

enum {value = (amount == 0) ? 1 : 0};

};

template<int amount>

struct count_change {

enum {value = count_change_helper<amount, 5,

(amount <= 0 || 5 == 0)>::value };

};

Listing 5: coinct.h

// coins – try C++ MP approach

#include “coinsct.h”

#include <iostream>

int main() {

const int amount = 23;

std::cout << “ways for “ << amount << “: “

<< count_change<amount>::value << std::endl;

return 0;

};

Listing 6: coinct.cpp

// coins – typeshift approach

#include <ts_runtime.h>

namespace typeshift {

namespace meta {

namespace coins {

int coin_value(int coin_index) {

switch (coin_index) {

case 1: return 1;

case 2: return 5;

case 3: return 10;

case 4: return 25;

case 5: return 50;

}

}

int count_change_helper(int amount,

int coin_kinds, bool stop) {

switch (stop) {

case true:

return (amount==0)?1:0;

case false: {

int remaining_coins = coin_kinds - 1;

int remaining_amount =

amount - coin_value(coin_kinds);

int value = count_change_helper(

remaining_amount, coin_kinds,

remaining_amount <= 0 ||

coin_kinds == 0)

+

count_change_helper(amount,

coin_kinds - 1, amount <= 0 ||

remaining_coins == 0);

return value;

}

}

}

int count_change(int amount) {

int value = count_change_helper(amount, 5,

amount <= 0 || 5 == 0);

return value;

}

}}}

Listing 7: coinrt.h

// coins – try typeshift approach

#include “coinsrt.h”

#include <iostream>

#include <sstream>

int main() {

const int amount = 23;

std::cout << “ways for “ << amount << “: “

<< typeshift::meta::coins::count_change(amount)

<< std::endl;

return 0;

}

Listing 8: coinrt.cpp

26

Overload issue 50 august 2002

If you compare the two sets of listings I think you will agree that
the typeshift version is clearer. But there’s more – typeshift is a
subset of C++ so we can actually compile and run a typeshift
program without translating it to C++ MP code.

Both programs can be built2 with gcc 2.91.66. When compiling
the C++ MP code pass -ftemplate-depth-99 to g++ to
maximise the size of the problem that can be handled.

When run with the same input the programs give identical results
so they are in some sense operationally equivalent. However, the
C++ MP code computes the answer at compile-time but the
typeshift code computes the answer at run-time.

This operational equivalence means that metaprograms can be
written in typeshift and tested and debugged in the value-domain.
Only then need the program be transformed to C++ MP code for
execution at compilation time.

Even typeshift programs that use types can be compiled, run and
debugged in this way using the typeshift ‘type’ class library.

Implementation

There are two ways of implementing typeshift:
● by extending a C++ compiler
● by writing an external tool
A C++ compiler essentially already has the mechanism to
compile typeshift because syntactically and semantically it is a
true subset of C++. Two changes would be needed:
● Only a subset of C++ features are allowed in typeshift so the

standard parser would need to be adapted to handle this restricted
“dialect”.

● The typeshift code needs to be transformed into the C++ MP
code before it is compiled in the normal way. This is a fairly
straightforward transformation.

There should be no impact on compilation outside the
typeshift::meta_xxx namespace because from the point
of view of code outside the namespace the names defined inside
the namespace are from the transformed C++ code. It is not
possible for code outside the namespace to “have any knowledge
of” the original typeshift code.

Implementation by an External Tool

A proof-of-concept typeshift pre-processor is currently under
development, and should be available from
http://www.typeshift.org when this article is published. It
will be downloadable in the form of source code for a C++ program
released under the GPL (GNU General Public License [13]).

Conclusion

Template metaprogramming has traditionally been viewed as an
esoteric and obscure area of C++, but using typeshift
metaprograms can now be written (and even debugged) in a
familiar language. Hopefully this will lead to metaprogramming
being used much more widely in C++.

Andrew Cheshire
andyc@intersystems.com

Acknowledgements

Many thanks to Gabriel Dos Reis for his advice and encouragement,
and also for his permission to quote the example program from [10].

Thanks too to Mark Radford for his invaluable comments and
suggestions, which have certainly made the article easier to understand.

References

[1] Veldhuizen, 1995: Template Metaprograms
(http://www.osl.iu.edu/~tveldhui/papers/Template-
Metaprograms/meta-art.html)
[2] Walker, 2001: “Template Metaprogramming: make your
compiler work for you” Overload 46
[3] Blitz (http://www.oonumerics.org/blitz/whatis.html)
[4] Generative Matrix Computation Library (http://www-
ia.tu-ilmenau.de/~czarn/gmcl/)
[5] Giuseppe Attardi, Antonio Cisternino: Reflection support by
means of template metaprogramming
(http://citeseer.nj.nec.com/451721.html)
[6] John J. Barton, Lee R. Nackman: “Scientific and
Engineering C++: Dimensional Analysis” C++ Report, vol 7 p39,
Jan. 1995
[7] Ulrich Breymann, Krzysztof Czarnecki, Ulrich Eisenecker:
Generative Components: One Step Beyond Generic Programming
(http://home.t-online.de/home/Ulrich.Eisenecker/dag.htm)
[8] Unruh, 1994: Prime number computation (ANSI X3J16-94-
0075/ISO WG21-462)
[9] Alexandrescu, 2001: Modern C++ Design (Addison-Wesley,
ISBN 0-201-70431-5)
[10] Dos Reis, 2001: Metaprogramming in C++
(http://www.cmla.ens-cachan.fr/~dosreis/C++/)
[11] Czarnecki, Eisenecker: metalisp.cpp
(http://home.t-online.de/home/Ulrich.Eisenecker/meta.htm)
[12] Abelson and Sussman, 1985: Structure and Interpretation of
Computer Programs (http://mitpress.mit.edu/sicp)
[13] GNU General Public License
(http://www.gnu.org/licenses/gpl.html#SEC1)
[14] Dos Reis, 2002: (personal communication)

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

2 MSVC6 won’t compile the C++ MP program because it does not support partial
template specialisation (I have not tried MSVC7)

The Philosophy of
Extensible Software

By Allan Kelly

In Overload 49 I wrote about extensible software, it’s a theme
I’m going to continue with for a couple more articles. If I
were to attempt to summarise my philosophy of software
development in one sentence it would probably be: Software
must stay soft, malleable. The discipline of extensibility is the
tool which best helps us achieve this. So, although I’m
declaring an intention to stick with software extensibility for a
little while, I’m actually intending to look at how we can keep
our software flexible and open to change.

How does software resist change?

In order to understand how we can keep our software malleable it
is worth considering how software loses this quality. After all,
when you start a new project, the world is your oyster, you can
take the project in any direction.

Ripple effect

A change in one module is just that: a change in one module of
the system. The principles of abstraction and data hiding tell us
that we should be able to make changes to hidden code which
have no side-effects elsewhere. Often though we find there is a
ripple effect.

If we drop a small stone into a pond we see ripples spread out
across the pond. The water surface is perfect for propagating
the effect. Software is, if anything, better than water at
propagating the effect. Changing the interface of a module
means we must make corresponding changes to the use of the
interface elsewhere.

Speaking of the interface means more than just the class
definition in some header file. This is the most clearly stated part
of the interface but it is like an iceberg, there is much we can’t see.
The compiler can check the function signatures but can it check the
comments?

Consider some code:

// SerialPort.hpp
// Read up to bufferSize characters from
// serial port
// store in buffer and return ptr to
// buffer
char* ReadSerialPort(char *buffer,

int bufferSize);
...

// SerialPort.cpp
// Read at least bufferSize chars from
// serial port
// store in buffer and return ptr to end
// of buffer
char* ReadSerialPort(char *buffer,

int bufferSize) {
assert(buffer != 0)
assert(bufferSize > 16)
...

}

The interface the compiler can check only forms part of the
interface. The comments form another vital part of the interface
and in this case they differ. Which set is correct? The developer
must break the abstraction and look under the hood to see what is
happening.

This is typically how a ripple starts, we’ve found something
which isn’t quite right, not so wrong it breaks the program but not
good either.

Both sets of comments fail to tell us that the buffer supplied
must be pre-allocated and at least 16 characters long. Sure, it
may seem logical to allocate the buffer before calling the
function but the C function time never worried too much about
this.

At one level this is implementation detail, at another level it is
interface, we can fix the comments, we can even change the
function signature to reduce the problems with this function:

// SerialPort.hpp
// Read up to bufferSize characters from
// the buffer
// store in buffer and return number of
// bytes read
// bufferSize must be at least 16 bytes
// return value < bufferSize

int ReadSerialPort(char *buffer,
int bufferSize);

Now we have created a ripple effect, not only this module but
several others will need recompiling. Wherever this function is
used we must now change the code, our change has slipped out of
our chunk. While it would be a pretty relaxed compiler that still
allowed you to write:

char* buf = ReadSerialPort(buffer, 32);

A developer in search of a quick fix may be tempted to
write:

char* buf = (char*)
ReadSerialPort(buffer, 32);

While static_cast will refuse this reinterpret_cast
has no such qualms, and as demonstrated the old-style casts are
still in the language and available.

The general rule of ripple effect is that he who made the ripple
has to stop it, you find yourself running around all over the code,
fixing ripples where they appear. This is all but impossible if you
don’t have a reliable build process – if you can’t integrate your code
easily then you can’t tackle these issues. A good source code
control system is essential in case things go wrong, or time runs
out, and you need to back out your changes.

Nor do we have perfect foresight, we may grep the code for
every instance of ReadSerialPort before we make our
change, but we can’t expect to find every case. Just searching
the code may be a bigger job than actually performing the
change. A logical directory structure is important here, if our
code is scattered over several dozen disparate directories on
different hard discs then what chance have we got of finding
it?

27

Overload issue 50 august 2002

Suppose we now find:

// pointer to general read function
typedef char*

(*ReadPortFunc)(char*, int);

// read function
char* ReadData(ReadPortFunc reader) {
int bufferSize = 256;
char* buffer = new char[bufferSize];
memset(buffer, 0, bufferSize);
return reader(buffer, bufferSize);

}

Instead of diminishing, our ripple has grown. We can fix this, but
suppose we find:

char* ReadUsbPort(char *buffer,
int bufferSize);

char* ReadKeyboardPort(char *buffer,
int bufferSize);

Do we fix these functions too? Or fudge it? The ripple is not just
a simple compile time fix now, it has uncovered a bigger
problem, and while we may have the code in a compilable state,
we (should) feel a certain moral commitment to fixing this
problem. The ripple has grown.

Ripples like this, and fear of ripples, is one of the main ways
code resists change.

Friction of change

The ripple effect demonstrates the friction that can occur when
changes are made. If these changes are within the same module
then the friction is less because the changes are not visible
elsewhere. The bigger the change, the more modules involved,
the greater the friction. When a system is changing rapidly,
dividing it up can be counter productive because there is a
constant friction as changes ripple out of one module and into
others.

But friction between modules comes in other forms too.
Where there are several developers on a project there is always
the opportunity for conflicting changes to happen. While
exclusive locking through source code control can help, it is not
a complete answer. At best it forces one developer to wait while
another completes a change, the second developer then has the
task of integrating the change with their requirements. Non-
exclusive locking systems can hide this problem until the second
developer checks their code in but the same problem
arises.

Either way, friction is generated because two developers must
co-ordinate their actions. If the developers are located in
different teams, or even different countries, the friction is much
greater still.

When a change introduces a new dependency into a module, say
a new file must be #include’d, the initial friction may be small,
a slightly increased build time. But when this changes the overall
dependencies of the module, and in particular if this introduces a
circular dependency the potential friction is greater still.

Observant readers may have noted the potential contradiction
is talking of “ripple effect” and “friction” – after all ripples occur

in frictionless water. Ripples are waves, and waves can only
occur when two modules share a common boundary. Such a
boundary propagates the wave – think of the way an earthquake
wave carries.

Sound waves cannot travel in a vacuum, likewise software
ripples cannot pass from one module to another if they are well
spaced. Since our modules don’t exist in isolation we can’t place
them in a vacuum, what we can do is try to minimise the friction at
the boundary and thus minimise wave propagation by allowing each
module to change without creating a wave beyond its own
boundaries.

Process roadblocks

Software takes on many of the attributes of the organisation and
process that creates it.

This idea is summarised as Conway’s law – although the exact
wording of the law differs. Jim Coplien’s process pattern of the
same name has the solution “Make sure the organisation is
compatible with the product architecture.”

Where an organisation is conservative and resists change their
software will too. This may manifest itself in many ways: a
business which resists change may create code which resists
change, or, it may mean managers refuse to allocate time for
modifications.

This can be a frustrating position for a software developer, they
may know of a bug, they may know how to fix it but they may be
refused permission to deal with it. Or, to fix it may require raising
a bug report, having the work prioritised, authorised, scheduled,
changed, tested, signed-off and released. Sure we need a process,
but we must not put the process before the product. In process-
centric organisations we find managers who know the price of
everything but the cost of nothing.

Some organisations refuse to recognise refactoring as an
exercise. “If it processes data, it can’t be broken, can it?”
“Reworking something means you made a mistake, right?”

Developers have refactored code since the beginnings of time,
but only with the publication of Martin Fowler’s book (2000)
has it been a respectable activity. Unfortunately, it is still not
an acceptable activity in many organisations. Failure to refactor
code makes it more rigid, as we put change upon change it
becomes inflexible and set in its way. Unfortunately it still
processes data.

This is like not servicing a car, it continues working, there is no
apparent problem, but the further you get beyond an oil change the
more damage is being done to the internals. Like a car, over time
software changes and without active attempts to improve the quality
it invariably deteriorates.

Development is a learning process

As we develop software we learn, we learn more about the
problem domain that the software addresses and we learn more
about our solution domain – the tools we have used to address it.
Naturally, this leads to new insights into both.

We also have time to dwell on problems and issues. We may
take a week to draw up an class hierarchy, but we have the rest
of our lives to rethink it and consider how we could have done
it better. This can make life hard for us if we come to believe
we made a mistake, or no longer agree with our original designs
– or just see a better way. Maybe what once seemed a brilliant
design now seems top heavy, or inefficient, or simplistic. Don’t

28

Overload issue 50 august 2002

be too hard on yourself, admit you made mistakes if necessary.
If we don’t do this we will not move forward, it is now us who
are resisting change.

How does extensibility work?

Extensibility works because it forces an approach to problems
based on:
● An up front design which allows for addition

This is not to make a case for big up front design – quite the
opposite in fact. Big up front design assumes you can design the
entire system up front. An extensible design accepts you can’t
design everything in advance, instead it provides a light
framework which can allow for changes.
In some ways this is similar to the STL separation of container
and algorithm. The STL doesn’t claim to know all the
algorithms that may be used with a container, but instead
provides a mechanism (iterators) which allow algorithms to
be added later.

● Additions to be made in small, incremental steps
It is possible to produce an extensible system where the
increments are big, take our command pattern example. The
commands could be small, “Put the kettle on”, rather than big:
“Take over the world.” If we make our commands too big we
lose the element of extensibility, the original problem is
relocated inside a single command, which is effectively the
entire system.

● Work elements to be separated into comprehensible units
Computers may run programs and source code may be
compiled by a tool, but it is humans who have to read and
understand the system. There is a human factor to all of this,
just because we can write an immensely complex piece of
code doesn’t mean we should. Anyone who has tried to
maintain by hand code that was originally produced by a code
generator will have seen this problem – indeed Perl scripts
exhibit the same problem at times. So, keep each unit at a
human level.

How does extensibility help?

To achieve these objectives we need to emphasis traditional
software development issues: high cohesion, low coupling,
interface-implementation separation, and we need to manage
our dependencies, and develop build procedures to perform
constant integration. This imposes a discipline on our
development.

Extensible design fits well with the principles advocated by the
Agile methodologies and iterative development. It allows
functionality to be implemented in small steps as required, thus it
dove-tails with the minimal implementation, iterative development
and frequent re-prioritisation often advocated by Agile
development.

In an extensible design we cannot afford for one chunk to be
too closely coupled with other chunks. The very essence of the
system is embracing change, it is accepted that additions will be
continual, if one chunk of the system resists such change it will
make the whole design unworkable. Thus, we have placed the
friction of change centre stage. Normally we would rather not
think about friction, it is a problem we want to go away. By
elevating the issue we are directly addressing it, the whole
system is designed around the idea of change through
addition.

If you are the kind of person who likes new, green-field, system
development this may sound pretty horrid. Basically, I’m
suggesting you lay minimal foundations of specification, design
and framework coding and make a quick dash for the maintenance
phase where you actually fit the functionality.

True, I hold my hands up, I agree. However, in my defence, I
claim I’m actually moving as much new development as possible
into the maintenance phase of the project. Extensible software
allows you to write new code well after your first release. Indeed,
if you find a chunk of functionality is difficult to understand, buggy,
or just not extensible throw it out and start again.

What is important is to get an up front design which can allow
for continued development. This is like a shipyard building the hull
and inner structure of a ship but leaving the fitting out and
completion of the super-structure until after launching. Once the
ship has enough structure to float it no longer need to monopolise
a slipway – indeed it may even be fitted out by a different yard.
Over the course of its life it will undergo continual maintenance
even as it plies the high seas with the occasional refit, which may
completely change its use.

Extensibility is not “reuse”

Extensibility is no magic bullet, it is just another technique in our
toolbox for tackling software development. Nor is it a code word
for “reuse”. True, many of the properties emphasised by
extensibility are the same ones preached for reusable code: low
coupling, high cohesion, modularity, but these properties are
advocated by most software engineering themes. Indeed, who
would argue for tightly coupled systems?

It may be that, having an extensible system, with malleable
code allows your technology to be transferred to another project
– many of the properties required of an extensible system make
transfer easier. One could easily imagine a word processor
system which offered a standard system and a beginner version
with fewer options, plus a professional version with more – the
same way Volkswagen sell the Golf in tandem with the Skoda
Fabia (low end), Audi A3 (high end) and specialisations like the
Beetle and TT.

But, such platform transfer is deriving from the minimalist camp
– “less is more” is the starting point. Extensible software
development is no license to add bells and whistles to your code in
the hope that someone may use them. Quite the opposite,
extendable software should be free of bells and whistles, it should
be minimal while allowing itself to be extended.

Striving for extensibility should imposes a discipline on
development leading to fewer, cleaner, dependencies, well defined
interfaces and abstractions with corresponding reduction in
coupling and higher cohesion.

I’ve been here before....

I tried at the top of this essay to summarise my software
development philosophy. Looking back at my contributions to
Overload in the last few years I can see this as a common theme.
To keep software malleable we must be aware of the dependency
structure of the program, this I addressed in Overload 41 when I
wrote about layering in software; dependencies start with include
files (Overload 39 and 40).

I believe inline functions reduce abstraction, increase
dependencies and generally complicate matters – hence my piece
in Overload 42. (If anyone ever produces a subset of C++ I’d lobby

29

Overload issue 50 august 2002

for inline functions to be first against the wall.). More recently my
pieces have looked at how we view software as models (Overload
46) or abstractions (Overload 47).

Extensibility of software happens in all sorts of ways, at different
levels within the system. It is important to have a view of your
software as a living, growing, entity.

And finally

Extensibility is a technique for reasoning about our software. It
is not new but it has been neglected as a technique in its own
right. In part this is because it is often an attribute of other
techniques – as noted in my previous essay it is implicit in many
design patterns.

The properties that make up an extensible system are not
confined to your source code – there are build systems, source code
control, bug tracking, documentation, team mangement, and more.
(I tend to call this the logistics tail and I’ll expand on that idea next
time.)

Extensible source code must be supported with extensible build
systems, directory trees, database access mechanisms, and so on.
These systems shine when we are able to embed within a process
that is aligned to the design, source code, management and
developers to form a logistic process which becomes a reinforcing
strategy.

Allan Kelly
Allan.Kelly@bigfoot.com

Bibliography

Conway’s Law comes in several different forms, Ward
Cunningham’s Wiki page gives several different forms at
http://c2.com/cgi/wiki?ConwaysLaw

Jim Coplien’s version of Conway’s law as a process pattern is at
http://www.bell-labs.com/user/cope/Patterns/

Process/section15.html

Fowler, M., 2000; Refactoring – Improving the design of existing
code, Addison Wesley, 2000

30

Overload issue 50 august 2002

