
Overload issue 51 october 2002

contents

credits & contacts

Editor:

John Merrells,
merrells@acm.org
808 East Dana St,
Mountain View,
CA 94041, U.S.A

Advertising:

Pete Goodliffe, Chris Lowe
ads@accu.org

Membership:

David Hodge,
membership@accu.org
31 Egerton Road
Bexhill-on-Sea, East Sussex
TN39 3HJ, UK

Readers:

Ian Bruntlett
IanBruntlett@antiqs.uklinux.net

Phil Bass
phil@stoneymanor.demon.co.uk

Mark Radford
twonine@twonine.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Website: http://www.accu.org/

Membership fees and how to join:

Basic (C Vu only): £15
Full (C Vu and Overload): £25
Corporate: £80
Students: half normal rate
ISDF fee (optional) to support Standards

work: £21
There are 6 journals of each type produced

every year.
Join on the web at www.accu.org with a

debit/credit card, T/Polo shirts available.
Want to use cheque and post - email
membership@accu.org for an
application form.

Any questions - just email
membership@accu.org.

STL-style Circular Buffers By Example, Part Two by Pete Goodliffe 5

Applied Reading - Taming Shared Memory by Josh Walker 11

Pattern Collaborations: Observer and Composite by Mark Radford 16

Book Review: Design Patterns by Ian Bruntlett 17

Extendable Software and the Bigger Picture by Allan Kelly 18

Mutate? or Create? by Alan Griffiths 27

Exception Handling in C# by Jon Jagger 23

Pairing Off Iterators by Anthony Williams 26

4

Overload issue 51 october 2002

Editorial - Software Quality

Have you ever experienced the phenomenon of reading what you intended to write instead of what you have actually
written? It’s the same situation when you have a piece of broken code that you stare and stare at but can’t see any errors.
You then show it to a peer, claiming that the compiler is busted, the microprocessor is messing up, and the laws of physics
no longer hold true. They look at it for ten seconds, go ‘ugh’, and point at ‘if(x=y)...’. I’ve extrapolated this mental assumption
upwards from the level of syntactic correctness to the level of semantic correctness. I assume that because I intended the
code to work, it must actually work. Thankfully, due to some introspection, and a few people politely, and not so politely,
pointing out that it would be nice if I tested my code properly, I am aware of my short-comings in this area.

But, I’m not the only person who is bad at testing; the majority of development organizations are bad at it too. I have
never discovered a development organization that conducts excellent testing. Most organizations are content to test to the
‘good enough’ level. I don’t believe the individuals involved intend to build a shoddy product, there’s just something wrong
with the way most people conduct testing.

Testing has always been a hard problem that few software engineering organizations put much intellectual effort into
solving. In evidence, we have the fact that most test groups spend much of their time executing test cases by hand. I’ve
experienced developer groups where the prevailing attitude was that all responsibility for testing lay with the Quality
Assurance group. The developers throw the release candidate over a wall; the testers kick it about for a while, and then throw
it back if they find something wrong with it. The cycle then continues, seemingly endlessly, until the QA manager and the
engineering manager resolve their differences over a drunken fistfight in the carpark. [1]

A common solution to poor product quality is to throw more testers at the problem. Microsoft demonstrates that this
doesn’t work. They have a very high ratio of testers to developers, yet still produce ‘good enough’ quality products. Are they
unwilling to produce quality products? I don’t think so.

Another problem is that the role of test engineer is not well regarded by the software engineering profession at large. Most
testers I’ve worked with don’t want to be test engineers. They want to be developers. For them the test group is a stepping-
stone into the sustaining engineering, or development engineering groups. I’m in favour of career progression, but when
everybody wants out and nobody wants in there’s a problem.

Is the software quality problem due to testers just not being very good at testing? I don’t think so. I’ve encountered some
very smart and highly productive, dedicated and motivated testers.

I’ve talked to colleagues with an Electrical Engineering background about their experience of testing in hardware
development organizations. They have told me that test engineering is a well-respected role that is staffed by engineers who
are just as qualified as engineers in the development organization, and that testers are involved in all phases of the development
process to ensure that the product can be efficiently tested for correctness.

The point to learn here is that testability has to be designed into the system, and the engineering group bears the
responsibility for doing that. Typically the development engineering team doesn’t think much further than unit testing. More
upfront thought needs to be put into integration and system testing at the specification and design stages of development.

I’ve tried to reflect this lesson into my current project. I’ve thought about testing right from the beginning of the
development process. There’s a line item on the product requirements that states that the product must be easy to test.
The design and implementation follow through against this by exposing interfaces specifically for testing. In this case
our user interface is a C++ API, so the test interface we chose was a scripting language. The scripting API includes methods
that expose some of the internals as text strings, so that the test cases can make assertions about the internal state of the
system.

I don’t know the solution to the software quality problem, and I’m not sure if anyone really does, but there are a few small
things that we could be doing to improve matters. In summary, designing testability into the system allows us to fully leverage
the QA group and therefore improve software quality.

Apologies

In Overload 50 I mistakenly published a draft version of Pete Goodliffe’s STL-style Circular Buffers article. There were
a few minor errors in the text, which have been corrected in the online version, which can be found on Pete’s website. [2]

John Merrells
merrells@acm.org

[1] That’s a slight exaggeration.
[2] http://cthree.org/pete/circularbuffer.1.pdf

I’m dreadful at testing code, as I rarely bother to do it. Yeah, yeah, I know that I should.
It’s just a mental blind spot that I have.

Copy Deadline
All articles intended for publication in Overload 52 should be submitted to the editor by November 1st, and for Overload 53 by
January 1st 2003.

5

Overload issue 51 october 2002

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

STL-style Circular Buffers By
Example, Part Two
by Pete Goodliffe

In the first part of this series [1] we started to look at how to
implement a template container class in the style of the C++
standard template library (STL). The example container we’re
working with is a circular buffer. We started off by writing a
minimal circular buffer class, and through a number of exercises
refined this basic class until we had a mostly STL-like container
class.

We’re still not quite there yet. By the end of this article we’ll
have covered all the necessary ground, and our container class can
truly be used like any other STL container.

As in the previous article, the approach adopted here is to present
a number of exercises for you to perform. This is more than a
clumsy article-writing device. Experience shows that you only
really learn something when you try to actually do it. You can read
around a subject as much as you like; it’s only when you pick up
tools and start applying what you’ve read, when the metaphorical
rubber hits the hypothetical road, that you really solidify your
knowledge. These exercises are then a good opportunity to learn in
a practical way. Put as much effort into them as you want to get out
of the article.

So where are we?

So far we have a template container class with forward and
reverse iterators. Unlike traditional circular buffer
implementations we’ve provided operator[] for random
access; this is largely to provide the iterator’s implementation.

You can download an example copy of the code this far from
http://cthree.org/pete/cbuf.html .

More constructors

Amongst the functions that we still need to implement for our
circular_buffer class are a number of constructors. As an
analogue, think about vector . I t has a several useful
constructors. So off we go…

Exercise #1
What operations does a C++ compiler automatically generate
for a class? How do you prevent this from happening?

The compiler will automatically generate
l

a default constructor, which just calls the default constructors for
the class’ members and bases,

l
a default copy constructor, which performs a member-wise copy
of all data members, and

l
a default comparison operator, which performs a bitwise
comparison of two objects.

Sometimes these defaults are fine and do just what we want.
Often when creating more adventurous classes (with dynamically
created data members) they’re not at all suitable and we have to
provide our own, or just prevent the compiler from emitting its
defaults.

If we provide our own versions, the defaults are suppressed. This
is of particular note for constructors – any constructor you provide,
no matter what signature it has1, will suppress the parameterless
default constructor. If you want to have a parameterless constructor
you will then have to provide it, even if it does exactly what the
compiler generated version would.

If you don’t want to supply the operations but the compiler
generated versions are wrong, you can suppress them by declaring
the functions, but not defining them. For this to make any sort of
sense, you should declare the functions as private members of the
class.

Constructor 1: Copy constructor

A copy constructor allows us to ‘clone’ objects. It allows us to
write:

// for some existent circular_buffer<int>
// called cbuf;
circular_buffer<int> copy_of_cbuf1(cbuf);
circular_buffer<int> copy_of_cbuf2 = buf;

Both of these copies are created using the copy constructor.

Exercise #2
What signature does the copy constructor have? Will the
default version suffice for circular_buffer? If not, write
an appropriate copy constructor.

1 Actually, modulo any tempate constructors.

6

Overload issue 51 october 2002

We’re storing data in a dynamically created array, so the default
copy constructor is not appropriate. Consider what would happen
if we wrote:

{
circular_buffer<int> cbuf1(100);
circular_buffer<int> cbuf2(cbuf1);

}
The default copy constructor will copy the array pointer,
array_. Now both circular buffer objects use the same array,
which is plainly nonsensical. Things get worse, though. At the
end of the block scope cbuf2 will first be destroyed. The
destructor calls delete [] array_. It is now an ex-array.
Next the cbuf1 destructor is called. It will attempt to delete the
same array which is now pushing up the daisies, a plainly wrong
operation; and one that is potentially disastrous.

Our replacement copy constructor can look something like the
following:

circular_buffer(
const circular_buffer &other)

: array_(
new value_type[other.array_size_]),

array_size_(other.array_size_),
head_(other.head_),
tail_(other.tail_),
contents_size_(other.contents_size_)

{
std::copy(other.begin(),

other.end(), array_);
}

Did you hand-roll your own loop for the copy operation? It pays
to use standard library facili t ies where you can. This
implementation works most of the time, but there are some
lurking problems that we’ll come back to later.

Constructor 2:
Iterator-based template constructor

The vector class has a nice constructor that takes two forward
iterators defining a range, as the initial contents of the container.
Although not strictly required, we can have some of that
goodness, too.

Exercise #3
Implement a constructor with the following signature:
template <class InputIterator>
circular_buffer(InputIterator from,

InputIterator to);

Here we’ll have to consider what initial size our buffer should
take. We could make this value an extra parameter, but that makes
the interface less flexible and more lumpy. We could require that
the supplied iterators are random access iterators and make some
decision based on the value of to-from. Again, this requirement
makes the code less flexible. Or we can try some other scheme.

It is possible to implement this constructor if we provide another
function, reserve that ensures we have a specified capacity. The
vector class has this capability. Whilst it makes a bit more sense
as a member function of vector (since by definition vectors
can grow), we can make good use of it here.

template <class InputIterator>
circular_buffer(InputIterator from,

InputIterator to)
: array_(new value_type[100]),

array_size_(100),
head_(0),
tail_(0),
contents_size_(0) {

while (from != to) {
if (contents_size_ == array_size_) {

reserve(static_cast<size_type>(
array_size_ * 1.5)); // (*)

}
push_back(*from);
++from;

}
}

The initial capacity value has been picked arbitrarily. I’ll leave
the implementation of reserve up to you. The choice of
multiplication factor at the point marked (*) is interesting –
there has been plenty of research into this. For most situations the
value of 1.5 is practical, balancing the number of reallocations
required with the amount of ‘wasted space’ in the buffer.

Assignment operator

This differs from the copy constructor considerably, although you
might think it is doing the same job. That’s because the
constructor has to correctly create and initialise an entire object,
whilst the assignment operator has to deal with an already created
object; in our case memory has already been allocated.

Exercise #4
What signature does an assignment operator have? Write the
assignment operator for circular_buffer.

How did you do it? Be careful about the capacity of the buffer
parameter passed and the capacity of the buffer you’re assigning
to. There are two ways to implement this function. You’ll
probably have written something like the following:

circular_buffer &operator=(const
circular_buffer &other) {

clear();
// Ensure we have enough space
if (other.contents_size_

> array_size_) {
reserve(other.array_size_);

}
// Now copy the contents across
std::copy(other.begin(),

other.end(), array_);
head_ = 0;
tail_ = other.size();
contents_size_ = other.size();

}

We’ll see the ‘other way’ later. This little function has the
same lurking problem as the copy constructor. Can you see
what it is?

Use an allocator

The STL containers all take an additional template parameter,
the allocator. This class type abstracts the real concerns of
allocating, using, and releasing memory. The default library
std::allocator is implemented in terms of new and
delete, however other platforms may provide different
views of memory, be it pooled memory, garbage collected
memory, or whatever. By using an abstract allocator interface
we can avoid worrying about this sort of implementation
detail and also gain the benefits of these kinds of facilities for
free. Even if it weren’t required, it would be worth it.

So how do we need to modify circular_buffer? First we
add another template parameter with a default value. It goes at the
end of the template parameter list:

typename Alloc = std::allocator<T>
This requires us to include the <memory> header file, which
defines this default std::allocator template class. Now we
modify our list of container class typedefs, thus:

typedef Alloc allocator_type;
typedef typename Alloc::value_type

value_type;
typedef typename Alloc::pointer

pointer;
typedef typename Alloc::const_pointer

const_pointer;
typedef typename Alloc::reference

reference;
typedef typename Alloc::const_reference

const_reference;
typedef typename Alloc::size_type

size_type;
typedef typename Alloc::difference_type

difference_type;

Note we’ve added the allocator_type and we also modified
these other definitions, since the allocator now provides us with
all the correct definitions. Next, to work like any other STL
container we add a data member alloc_ of the allocator type
and, for consistency, we also add a new member function, thus:

allocator_type get_allocator() const {
return alloc_;

}

That’s the basic stuff out of the way. Next we need to make the
constructors and destructor call the allocator functions for their
memory management, rather than new and delete. Given that
the allocator class has the following functions, try exercise #5.

template <class T>
class std::allocator {

public:
typedef T *pointer;
typedef size_t size_type;
pointer allocate(size_type n,

/*hint parameter*/);
void deallocate(pointer p,

size_type n)
/* ... */

};

Note that the ‘hint’ parameter can be ignored for our purposes, it
defaults to zero and is usually unused. allocate returns space
for n objects of type T. It doesn’t initialise them. deallocate
frees the memory resource, but doesn’t destroy the objects.

Exercise #5
Alter the constructor, destructor, and reserve to use the
alloc_ member.

That’s not too onerous really. However, we’re beginning to see a
hint of the problem I alluded to in exercise #1 of the first article,
and this is the solution. The allocator does not initialise any
objects in the memory pool in the way that an array would. This
is crucial. Why? Well, it doesn’t matter too much for a container
of ints. But think about a complicated class with a slow
constructor. Creating an array of these objects is therefore a very
slow operation; an array initialisation will call the default
constructor to create an object at each array position. It’s
especially wasteful when you consider that you’ll ignore the
default construction, and use assignment to write the first value
you care about to each array element anyway.

That’s an awful lot of wasted array effort. It also introduces an
unnecessary dependency on the value_type: it requires that
there must be a default constructor in order to be able to allocate
the array. Now using this ‘allocator’ approach we are no longer
bound by this constraint, on top of not wasting effort constructing
useless objects. Bonus!

However, we will need to construct and destruct each object by
hand instead. This is the price we pay. Given that there are the
std::allocatormember functions below, answer exercise #6:

void construct(pointer p, const T &val)
{ new (p) T(val); }

void destroy(pointer p)
{ p->~T(); }

Note the use of placement new by the construct function.

Exercise #6
What further circular_buffer member functions need to
be changed to use construct and destroy?

push_back is the only function that needs to create new data
elements2. Rather than using assignment in this function, we call
construct. However, we don’t need to do this when the buffer is
full and we’re throwing away the data at the end of the buffer by
reusing the last buffer element. In this case we only have to assign to
the element as before. pop_front removes elements from the
container, as do clear and the destructor (are there any others in
your implementation?). These therefore need to use destroy. Note
that it will no longer be valid to use the std::copy algorithm as
we did before – it won’t take care of the object construction for us.

As a final allocator modification, we must now change
max_size. The allocator class provides this function itself. This
is logical enough since it knows how many objects could potentially
be allocated using its memory model. We therefore make our
max_size call the allocator’s.

7

Overload issue 51 october 2002

2 That is, if you implement the new constructors and assignment operator in terms of
push_back, which is a very reasonable design.

Exception safety

If our class is not exception safe, it’s of no real value in the
Real World. See the sidebar for a brief description of what’s
involved in writing exception safe code. We don’t have the
space here to really describe the subject, but we’ll take a look at
what we need to do to make our code bullet proof. As it stands
it is really not at all exception safe. In fact it’s downright
exception dangerous.

In truth, it’s a bit late in the development to be considering
exception safety. However, we really needed to have got this far to
have illustrations of the issues involved.

We’d like to provide at least the basic exception safety guarantee
in our member functions, and ideally we want to aim to provide the
strong guarantee in every method. Let’s quickly look at some of the
reasons why our existing container is dangerous. We’ll start at the
beginning: some constructors, for example, are a cause of resource
leaks.

Look at the copy constructor. The first thing it does is allocate
memory in the initialiser list. If this fails then a
std::bad_alloc exception is thrown and nothing leaks. This
is fine behaviour, and a good reason to put dynamically allocated
memory near the head of your list of variables (remember that data
members are initialised in the order of the class definition, not the
order you list them in the constructor’s initialiser list). None of the
other assignments might throw, so we’re safe in the rest of this
initialiser list.

However, on entering the constructor body, we loop around
copying elements. Any of the value_type object constructors
might throw an exception. Say we get half way through the copy

loop and a constructor fails. The failure exception propagates
through our constructor (so at least we’re exception neutral here),
and we leak the allocated memory. We’ve also created a number of
contained objects that we didn’t destroy – heaven help us if there
are dangerous side effects from this behaviour.

Tightening up cases like this is not actually going to be
impossible to do, since I’ve introduced facilities in a way that
allows exception safety (for example, separating front and
pop_front). We’ll just have to think carefully about each
member function. One of the golden rules when writing
exception safe code is that each function should have at most one
side effect, otherwise an exception safe implementation is
complicated. You can see then that writing exception safe code
does have an impact on your public API design, you have to
design it in from the start.

When people think about exception safety they imagine code
strewn with try/catch blocks. In fact this is far from the truth.
Our exception safe code will be practically free of these. The basic
technique we follow is to perform all potentially dangerous
activities ‘off to one side’ in a way that means they’ll get tidied up
neatly if anything fails. Once these dangerous activities are
complete we can then make the changes live using operations that
are known not to throw.

In order to do this we are going to need some operations that are
known not to throw. We asserted in the sidebar that our destructor
can’t throw. Now enter swap.

Exercise #7
Implement a member function swap(const
circular_buffer &) that is guaranteed not to throw.

8

Overload issue 51 october 2002

Whistle-stop Tour of Exception Safety
This is a subtle subject that has to be approached very carefully. We don’t have the time or space to do so in this article. So here’s
the nuts and bolts.

To be maximally useful our container classes need to be “exception safe.” No one’s going to argue there. But what does exception
safe actually mean? This has been a hot topic in the C++ community for some time, and only really recently has it been understood
to a reasonable depth.

Exception safe code works correctly no matter what exceptions come its way, for some definition of ‘correctly’ (we’ll define this
below). There is an additional constraint to consider when writing code like ours: exception neutral code propagates all exceptions
up to its caller; it doesn’t assume the meaning of any thrown exception and won’t consume it. This is important for our ‘generic’
container – the contained objects may generate all sorts of exceptions that we don’t understand. The container user will (well, should)
understand them and it’s therefore up to them to deal with these errors, not us. That’s what exceptions are good for, after all.

Now there are several different useful levels of exception ‘safety’. They are described in terms of guarantees to the calling code.
These guarantees are:

Basic guarantee: If exceptions do occur in a function (resulting from an operation we perform, or a call on one of our contained
objects) we will not leak resources. The container state will be consistent (i.e. it can still be used correctly) but we’ll not necessarily
leave in a known state. For example, say you have a container member function that adds 10 items to a container, and an exception
propagates through the function. We will guarantee the container is still usable, but maybe no objects were inserted, maybe all ten
were, or perhaps every other object was added. Container iterators may have been invalidated.

Strong guarantee: This is far more strict than the basic guarantee. Here we ensure that if an exception propagates through our
member functions the program state will remain completely unchanged. The object hasn’t been altered, no global variables changed,
nothing. All container iterators will therefore still be valid. In our example above, we can assert that no objects will have been inserted
into the container at all.

Nothrow guarantee: The final guarantee is the most restrictive. We guarantee that an operation can never ever throw an exception.
If we are ‘exception neutral’ then this implies that the function cannot call any function that itself might throw.

Which of the guarantees you provide in your code is entirely up to you. The more restrictive the guarantee, the more widely
(re)useable the code is. It turns out that in order to implement the strong guarantee in your member functions you will generally require
a number of functions that provide the nothrow guarantee (for example, see the use of swap in this article). Most notably every
destructor you write should always honour the nothrow guarantee. Always. Otherwise all exception handling bets are off.

It’s not too nasty. Note that we don’t bother to swap the allocator
objects. They should be identical if the circular_buffer
types are the same.

void swap(circular_buffer &other)
/* nothrow */

{
std::swap(array_, other.array_);
std::swap(array_size_,

other.array_size_);
std::swap(head_, other.head_);
std::swap(tail_, other.tail_);
std::swap(contents_size_,

other.contents_size_);
}

Although we’re providing the nothrow guarantee note that we
don’t put an empty exception specification at the end of the
function signature. We should try to avoid writing these when
we can, they can add unnecessary overhead to the running
code; they are more likely to make the compiler generate
much worse code than anything better. We know the function
won’t throw; we don’t need the compiler to check this for us
too.

Exercise #8
Using this perform work off to the side then make it live
idiom, go over each member function and modify it to
become exception safe (as strictly as possible). Do you need
any try /catch blocks at all? Look first at the simplest
constructor, then the push_back and pop_front
methods.

OK, that’s a big task. Let’s start with the basic constructor. It’s
actually already strongly exception safe. The only operation that
might throw is the memory allocation. This is fine, the
std::bad_alloc exception will propagate up and we won’t
leak at all. How must you alter the other constructors? I won’t
show you here, but note that you will actually need try/catch
blocks in this case. Next, push_back:

void push_back(const value_type &item) {
size_type next = next_tail();

// no state change yet
if (contents_size_ == array_size) {

array_[next] = item; // (*)
increment_head();

}
else {

alloc_.construct(array_ + next,
item); // (*)

}
increment_tail();

}

private:
size_type next_tail() {

return (tail_+1 == array_size_)
? 0 : tail_+1;

}

How is this different? Our interest is at the points marked (*).
We move the constructions/assignments to positions above any
other state manipulation. If an exception is thrown we haven’t
modified any other state. This is not quite a strong exception
safety guarantee, though: our container is now as exception safe
as the value_type’s constructor/assignment operators. This is
best we can do.

As a final example, we’ll consider the assignment operator.
We use a neat idiom here to ensure that we are strongly
exception safe:

circular_buffer &operator=(const
self_type &other) {

circular_buffer tmp(other);
swap(tmp);
return *this;

}

Can you see how neat this is? We do all the work ‘off to one side’
by creating a temporary object that looks like other. If that fails
(based on the fact the copy constructor is exception safe and
won’t leak) we will propagate the exception, but not have altered
our own state and not leaked, so we are strongly exception safe.
If it succeeds we ‘make permanent’ the change using two
operations that are known not to fail: swap, and the destructor.
We swap our current state with that of tmp so we now look as if
we’ve been ‘assigned to’. When tmp goes out of scope it is
destroyed, taking with it our old state.

A lot of the other functions are adjusted in similar manners.
We don’t have space to describe them all here. See my reference
code (in the Getting the code section below) for further
examples.

The long and short of exception safety is: you can’t
reasonably bolt it on after writing the code. You have to factor
it into the class’ design from the start. Well written exception
safe code shouldn’t need tonnes of try/catch blocks. If it’s
not simple and clear to read then something’s wrong. Generally
you’ll find that good ‘exception safe’ code is not just designed
to be safe in the presence of potential exceptions at the expense
of clarity and program efficiency – it will also be genuinely well
designed and thought out code.

Miscellany

There are still a few loose ends we need to tie up, and then
we’re done.

Insertion behaviour policy

Currently push_back will always accept new data, even if the
circular buffer is full. It does this by throwing away the oldest
data members. Perhaps our users don’t want this behaviour.

Exercise #9
Make this policy decision a template parameter. How much of
the class needs to change?

It turns out that this is a simple change, and costs very little. Just
add a new boolean template parameter (I called it the long
winded always_accept_data_when_full and gave it a
default value of true). You want to put this parameter before the
allocator definition to follow convention.

9

Overload issue 51 october 2002

The only other change needed is minimal: You need to make the
‘throw data away’ operation in push_back conditional on the
value of always_accept_data_when_full. If it’s false
we do nothing. Since this value is known at compile time, the if
statement will be optimised away.

Perhaps you’d like the function to throw an exception if the
buffer is full. That’s another policy decision, and I’ll leave it up to
you to work out how to do it.

This should lead us to consider how you would use a circular
buffer in the Real World. You will know the rate at which a producer
adds data to the buffer, and the rate and frequency at which the
consumer will work. Given this information you should be able to
calculate a reasonable size for the circular buffer. Obviously
throwing away data is really a last-ditch operation, and your use of
the buffer should prevent it if at all possible, so use the buffer
carefully!

A random access iterator

We wrote a bidirectional iterator in the previous article. It’s not
much work at all to make it a random access iterator, we just
need to add the following operations: + - += -= , plus the
following comparisons: < > >= <=. Some of these we’d already
started on.

Exercise #10
Convert the circular_buffer_iterator into a random
access iterator.

Don’t forget to change the iterator_tag.

Comparison

It would be useful to be able to compare two
circular_buffer classes.

Exercise #11
Implement operator== and operator!=. They only need
to compare two circular_buffers of the same type.
Should they be member functions or free functions?

There is no requirement for these functions to be members of
the container class, so by conventional C++ wisdom they
shouldn’t be. If your implementation required access to the
private members of the class then you introduced unnecessary
coupling.

There are two ways to implement the functions: the easy way
and the hard way. If you hand coded a comparison loop then you
did it the hard way. You can avoid a lot of the work by using
std::equal.

template <typename A,
bool B,
typename C>

bool operator==(
const circular_buffer<A, B, C> &a,
const circular_buffer<A, B, C> &b) {

return a.size() == b.size()
&& std::equal(a.begin(),

a.end(),
b.begin());

}

You can figure out operator!= from that. There’s one more
operator that the vector provides, which we can also provide:

Exercise #12
Implement operator< for the circular_buffer class.

Again, there’s an easy way and a hard way. This time the easy
way uses std::lexicographical_compare.

template <typename A,
bool B,
typename C>

bool operator<(
const circular_buffer<A, B, C> &a,
const circular_buffer<A, B, C> &b) {

return std::lexicographical_compare(
a.begin(),
a.end(),
b.begin(),
b.end());

}

Getting the code

Whilst I know you’ve been slavishly following the exercises I
know that you’ll want to see my reference implementation to see
how close you came to it. Or perhaps you just want an STL style
circular buffer class and can’t be bothered to write your own.

My circular_buffer class library is available from
http://cthree.org/pete/cbuf.html.

Conclusion

We’ve now created an entire template container class. It follows
the STL style carefully. Not only does this mean that we now
know how to write STL-like containers, it also means that anyone
using this circular_buffer class can pick it up with a
minimum of hassle. It behaves in a known way, can be accessed
as most other STL containers, and it is immediately compatible
with existing STL algorithms. Perhaps you’ve also gained a
respect for the work that has been put into the standard C++
libraries.

Hopefully you’ve enjoyed these articles, and by stepping through
the exercises you have now picked up some useful techniques that
can be applied to other code you write. Let me know if it’s been
useful.

Exercise #13
Take a well deserved break.

Pete Goodliffe
pete@cthree.org

References

[1] Pete Goodliffe, “STL-style circular buffers by example,”
Overload 50, August 2002, ISSN: 1354-3172.

10

Overload issue 51 october 2002

Applied Reading – Taming
Shared Memory
by Josh Walker

I consider myself something of a connoisseur of technical books.
I pride myself on my small but expanding collection. Of course,
an important part of maintaining a useful book collection is
knowing what information your books contain, so you can find it
when you need it. Though I often forget the details of a solution
I read about, I remember where I saw it, and what the original
problem was. My purpose in writing this piece is two-fold: to
show you how I solved a particular problem, and to point you at
the books I used along the way.

When I was given this task, some of the solution was already
defined. There was an existing architecture with a client and server
sending messages over TCP/IP. A requirement had arisen for an
additional client interface for CGI processes. Since each CGI process
is short-lived, creating a new socket connection in each process would
be too expensive. So the
idea was to route
messages through a
daemon that maintains a
persistent connection to
the server. Because the
daemon can be located
on the same Unix box as the CGI processes, the two can use an
Interprocess Communication (IPC) mechanism with less overhead
than sockets. This is where I started working from.

The first decision was to choose the exact IPC mechanism to use.
Unix has several, including pipes, fifos, sockets, message queues, and
shared memory. I ruled out pipes because they require a parent-child
relationship between processes, which I did not have. Fifos, like pipes,
are best suited for one-to-one communication, whereas I needed many-
to-one. I had heard that message queues were unnecessarily complex
and grandiose, so I was hesitant to use them. Shared memory, on the
other hand, is basically a free-form medium, and I was pretty confident
that it would be fast enough, so I started the implementation based on
shared memory.1 I’ll walk you through the basics of my solution below.

Shared memory is what the name implies; it is a portion of
address space that is shared between processes. Normally each
process has its own address space, which is entirely separate from
those of other processes. The operating system uses hardware to
map a process’s virtual address space onto physical memory. This
ensures that no process can access memory in another process’s
address space; so no process can disturb the integrity of another.
Shared memory is an exception to this system. When two processes
attach the same shared memory segment, they are telling the
operating system to relax the normal restrictions by mapping a
portion of their address space onto the same memory.

The definitive book on Unix IPC is “UNIX Network Programming”
by the late Richard Stevens [1]. Anyone doing heavy Unix should be
familiar with it. After consulting this authority, we see that getting
access to shared memory is a two-step process. First, a shared memory
identifier is obtained, using the shmget() system call. The segment
is identified by an integer key, and has a set of permissions controlling
which processes may read, write, or execute it, much like a Unix file.
The IPC_CREAT and IPC_EXCL flags control creation of the segment

if it doesn’t exist. Once a segment is created, it is available for use by
any process with appropriate permissions. After obtaining a segment
identifier, a process must attach the segment into its address space using
the shmat()call. The return from shmat() is the base address where
the segment was attached, i.e., the address of the first byte located in
the segment. The memory is now available for use just like any other
memory in the process’s address space. Here’s an example:

#include <sys/shm.h>

int main() {

int id = shmget(0x1000 /*key*/,

sizeof(int) /*size*/,

0600 | IPC_CREAT /*creation flags*/);

void* base = shmat(id /*identifier*/,

0 /*base address*/, 0 /*flags*/);

reinterpret_cast<int>(base) = 42;

}

After the call to shmat() above, the process’s address space
might look as shown in Figure 1 below.

The low-level C interface of shmget()2 and shmat(), with their
untyped integer handles and bit flags are just what you get with Unix
system calls. Now I have great respect for Unix and C, but sometimes
I want an interface with a little more structure...err...I mean class. So
we’ll wrap up some of the error-prone details in a C++ interface. Our
first step in building a set of C++ classes to handle shared memory will
be to encapsulate a shared memory segment:

class shm_segment {

public:

enum CreationMode { NoCreate, CreateOk,

MustCreate, CreateOwned };

shm_segment(int key, CreationMode mode,

int size=0, int perm=0600);

~shm_segment();

void* get_base() const;

unsigned long get_size() const;

void destroy();

private:

int key_;

int id_;

void* base_;

unsigned long size_;

bool owner_;

};

class shm_create_exception

: public std::exception {

public:

const char* what() const throw() {

return “error creating

shared memory segment”;

}

};

11

Overload issue 51 october 2002

1 Actually, I also had some prior experience using shared memory, so this may just be

a case of everything looking like a nail when all you have is a hammer.

2 Some people insist that all Unix system calls can be pronounced as they are written,
no matter how vowel-deficient they may be.

Figure 1: Address space after call to shmat()

This class simply
wraps creation
and destruction of
a shared memory
segment. The
CreationMode
argument
determines
whether the
segment will be created if it doesn’t exist. This corresponds to the
meaningful combinations of the IPC_CREAT and IPC_EXCL flags.
The CreateOwned option sets our owner_ flag, which we’ll use
to determine if the shared memory segment should be removed
when the shm_segment object is destroyed. It might be possible
to store a reference count and remove the segment only after all
processes are finished with it, but it’s probably best to have a clear
ownership policy instead. The implementation of shm_segment
is straight forward.

The shm_segment class makes it a little easier to get a segment,
but once it is created, there is still no internal structure to the segment;
it’s just a raw chunk of memory. In order to add more structure, we
will need a way to store pointers inside the segment. But this poses a
problem. Since each process may attach the segment at a different
base address, a pointer into the segment created by one process may
not be valid in another process; it may point somewhere else entirely.
To solve this problem, we will store offsets from the base instead of
raw pointers. We’ll create a simple pointer class for this purpose:

template<typename T>

class shm_ptr {

public:

shm_ptr();

shm_ptr(T* rawptr, const shm_segment& seg);

// compiler generated copy constructor and

// assignment are ok

T* get(const shm_segment& seg) const;

void reset(T* rawptr,

const shm_segment& seg);

private:

long offset_;

};

class shm_ptr_out_of_bounds

: public std::exception {

public:

const char* what() const throw() {

return “shm_ptr cannot be created

with address outside of segment”;

}

};

Notice that the only data member is an integer representing the
offset in bytes from the base address. This offset will have the
same meaning for all the processes using our shared memory
segment, so it can safely be stored in shared memory. Notice
also that our interface requires the user to pass the
shm_segment when accessing the pointer. This is somewhat
cumbersome, but it yields a general design where each process
may attach multiple shared memory segments. Alternatively,
shm_segment could be a singleton, which would make it
easier for shm_ptr to provide the usual indirection operators,
but I found this unnecessary.

Our shm_ptr gives us a safe way to store a pointer in shared
memory, but we don’t yet have a way to create that pointer. It would
be possible to choose arbitrary locations for data and manually place
it there with some pointer arithmetic, e.g.,

shm_ptr<char> buffer(reinterpret_cast<char*>(

mysegment.getBase()), mysegment);

shm_ptr<char> buffer2(reinterpret_cast<char*>(

mysegment.getBase())+1000, mysegment);

but I think we can all agree that this is too ugly and inflexible.
What we really need is a way to allocate objects in shared memory
with the ease of ordinary operators new and delete. To
accomplish this, we’ll write a shared memory allocator class:

struct shm_allocator_header;

class shm_allocator {

public:

explicit shm_allocator(const

shm_segment& seg);

void* alloc(size_t nbytes);

void free(void* addr);

void* get_root_object() const;

void set_root_object(void* obj);

const shm_segment& get_segment() const;

private:

const shm_segment& seg_;

shm_allocator_header* header_;

};

The interface provides alloc() and free() methods, as well
as methods to get and set a “root object.” The root object gives
us a fixed access point for processes to share objects. There is
also a get_segment() method to find out what shared
memory segment an allocator is using.

When I was writing my first implementation, and I knew I needed
an allocator, I remembered seeing one somewhere, and after flipping
through a few pages, I found Chapter 4 in “Modern C++ Design,”
which describes small object allocations [2].3 An example there gave
me enough information to sketch out my initial implementation. The
basic idea of an allocator is to store a control block in the memory
preceding the address returned to the user. This example used:

struct MemControlBlock {

bool available_;

MemControlBlock* prev;

MemControlBlock* next;

}

Starting from a root block, you just walk down the list of blocks
looking for one that’s free and big enough for the requested
allocation. The layout of memory looks as shown in Figure 2 above.

12

Overload issue 51 october 2002

3 Unfortunately, the small object allocator in Loki (the C++ library developed in [2])
appears to have a few unresolved implementation issues. If you choose to use it, you
may learn more than you ever wanted about allocators. However, this does not
detract from the value of “Modern C++ Design” itself.

Figure 2: Allocating memory

13

Overload issue 51 october 2002

Incidentally, Alexandrescu mentions the many tradeoffs
associated with memory allocators, and points us to Knuth’s
masterpiece for more details [3]. For some variety, I decided to
base our implementation on a section in “The C Programming
Language” on implementing malloc() and free(); it is a little
simpler to explain, and it gives me an opportunity to recognize a
classic (and still relevant) book [4]. The idea for the allocator is
the same, but the details have changed. Each block now stores its
size and a pointer to the next block.

struct shm_allocator_block {

shm_ptr<shm_allocator_block> next;

size_t size;

};

A header block stores a pointer to the beginning of a linked list of
free blocks:

struct shm_allocator_header {

shm_ptr<void> rootobj;

pthread_mutex_t lock;

shm_ptr<shm_allocator_block> freelist;

};

The free list is a singly-linked circular list of blocks not currently
in use. The list is linked in order of ascending addresses to make
it easy to combine adjacent free blocks. Here is the
implementation of alloc().

void* shm_allocator::alloc(size_t nbytes) {

scoped_lock guard(&header_->lock);

size_t nunits = (nbytes +

sizeof(shm_allocator_block) - 1)

/ sizeof(shm_allocator_block) + 1;

shm_allocator_block* prev =

header_->freelist.get(seg_);

shm_allocator_block* block =

prev->next.get(seg_);

do {

if (block->size >= nunits) {

if (block->size == nunits)

prev->next = block->next;

else {

block->size -= nunits;

block += block->size;

block->size = nunits;

}

header_->freelist.reset(prev, seg_);

return (void*)(block+1);

}

prev = block;

block = block->next.get(seg_);

} while(block !=

header_->freelist.get(seg_));

return NULL;

}

The code above walks
the free list looking for
a block big enough to
hold the requested
number of bytes. If
the block it finds is

larger than needed, it splits it in two. Otherwise it returns it as is.
If no block is found, it returns null. Size calculations are made in
units equal to the size of one shm_allocator_block. This
makes the pointer arithmetic a little simpler, and ensures that all
memory allocated will have the same alignment as
shm_allocator_block.

The implementation of free() is shown below:

void shm_allocator::free(void* addr) {

scoped_lock guard(&header_->lock);

shm_allocator_block* block =

static_cast<shm_allocator_block*>

(addr) - 1;

shm_allocator_block* pos =

header_->freelist.get(seg_);

while (block > pos

&& block < pos->next.get(seg_)) {

if (pos >= pos->next.get(seg_)

&& (block > pos

|| block < pos->next.get(seg_)))

break;

pos = pos->next.get(seg_);

}

//try to combine with upper block

if (block + block->size ==

pos->next.get(seg_)) {

block->size += pos->next.get(seg_)->size;

block->next = pos->next.get(seg_)->next;

}

else

block->next = pos->next;

//try to combine with lower block
if (pos + pos->size == block) {

pos->size += block->size;

pos->next = block->next;

}

else

pos->next.reset(block, seg_);

header_->freelist.reset(pos, seg_);

}

The block is inserted into its correct spot in the free list
(remember the list is sorted by address). Then we check for
adjacent free blocks. If any are found, we combine them with the
current block by just forgetting that the upper block exists and
increasing the size of the lower block.

So, after a few allocations and deallocations, memory might look
as shown in Figure 3 below.

We’ll also overload operators new and delete to work
with shm_allocator. The basic details for doing this, and some
pitfalls can be found in Item 36 of “Exceptional C++” [5].

Figure 3: Memory after allocations and deallocations

14

Overload issue 51 october 2002

void* operator new(size_t s,

shm_allocator& a) {

return a.alloc(s);

}

void operator delete(void* p,

shm_allocator& a) {

a.free(p);

}

We can overload new[] and delete[] similarly. The proper
syntax for calling overloaded operator new or delete may
be mysterious to you. Assuming we have already defined a class
Message, we can create a new Message object in shared
memory using:

Message* m = new (a) Message;

// a is a shm_allocator

The above is a new expression which calls our overloaded
operator new , followed by the Message constructor.
Destroying the Message object is not quite as simple:

m->~Message();

operator delete(m, a);

We must first make an explicit call to the destructor and then
deallocate the memory. Two steps are required because there is
no way to form a delete expression which calls an overloaded
operator delete. You’ll notice that the lines above are
equivalent to these:

m->~Message();

a.free(m);

So, one might be tempted to overload only operator new ;
however, it is very important that we overload operator
delete as well, because if the Message constructor throws an
exception our overloaded operator delete will be
automatically called. If there was no operator delete to
match the operator new used to allocate the memory, bad
things would happen.

We now have a general purpose allocator that we can use to help
us build arbitrary structures in shared memory. To demonstrate its
use, we’ll write our final class, a producer-consumer queue in
shared memory:

template<typename T> struct shm_queue_header;

template<typename T>

class shm_queue {

public:

shm_queue(shm_allocator& a,

size_t maxsize);

~shm_queue();

void push(shm_ptr<T> obj);

shm_ptr<T> pop();

size_t size() const;

private:

const size_t MaxQueueSize;

shm_queue_header<T>* header_;

shm_allocator& a_;

const shm_segment& seg_;

// disallowed (not implemented)

shm_queue(const shm_queue& copy);

shm_queue& operator=(const

shm_queue& rhs);

};

This is a basic queue, with simple push() and pop()
methods.4 The queue is created with a shm_allocator ,
which it then uses to allocate nodes. A maximum size is also
specified to ensure that the producer(s) don’t get too far ahead
of the consumer(s). The implementation is a singly-linked
list.

template<typename T>

struct shm_queue_node {

shm_ptr<T> data;

shm_ptr<shm_queue_node> next;

};

template<typename T>

struct shm_queue_header {

size_t size;

shm_ptr<shm_queue_node<T> > head;

shm_ptr<shm_queue_node<T> > tail;

pthread_mutex_t lock;

pthread_cond_t ready_for_push;

pthread_cond_t ready_for_pop;

};

Now, those pthread_xxx members give me a chance to
make my final recommendation: “Programming with POSIX
Threads” by David Butenhof [6] . This is an excel lent
introduction to threaded programming, and specifically,
Pthreads. “But wait a minute!” you say, “When did we
introduce threads into the picture?” Well, the primitives
needed to synchronize two threads (which inherently share
memory) are very similar to those needed to synchronize
processes using Unix shared memory. They are so similar, in
fact, that Pthreads provides a way to use mutexes and
condition variables in this scenario. If your system defines the
_POSIX_THREAD_PROCESS_SHARED macro, you can
place Pthread objects in shared memory i f you set the
pthread_process_shared attribute. This works on the
Solaris system I tested on, but is not supported on my Linux
system.5

For a little more demonstration of Pthreads, here’s the
implementation of our scoped_lock class:

#include <pthread.h>

class scoped_lock {

public:

scoped_lock(pthread_mutex_t* mutex) {

mutex_ = mutex;

pthread_mutex_lock(mutex_);

}

~scoped_lock() {

pthread_mutex_unlock(mutex_);

}

void wait(pthread_cond_t* cond) {

pthread_cond_wait(cond, mutex_);

}

4 Item 10 in [5] warns against returning objects in pop() methods. However, in this
case, it is not necessary to provide separate top() and pop() methods; since we only
store pointers the pop() operation cannot throw an exception while copying the return
value.

5 An alternative synchronization method is to use Unix semaphores instead of mutexes
and condition variables (semaphores can simulate either). I presented Pthreads here
because it is cleaner both conceptually and for implementation.

15

Overload issue 51 october 2002

private:

pthread_mutex_t* mutex_;

scoped_lock(const scoped_lock& copy);

scoped_lock& operator=(const

scoped_lock& rhs);

};

And, using scoped_lock , the implementation of
shm_queue::push():

template<typename T>

void shm_queue<T>::push(shm_ptr<T> obj) {

scoped_lock guard(&header_->lock);

while (header_->size

> MaxQueueSize) {

guard.wait(&header_->ready_for_push);

}

shm_queue_node<T>* node =

new (a_) shm_queue_node<T>;

node->data = obj;

node->next.reset(0, seg_);

if (header_->head.get(seg_) != 0) {

header_->head.get(seg_)->next.reset(

node, seg_);

}

else {

header_->tail.reset(node, seg_);

}

header_->head.reset(node, seg_);

++header_->size;

pthread_cond_signal(

&header_->ready_for_pop);

}

Finally, we’ll write a simple producer and consumer which use
shm_queue:

struct Message {

int sequence_num;

shm_ptr<char> message;

};

// main routine for producer

int main(int argc, char*argv[]) {

shm_segment seg(30000,

shm_segment::CreateOwned,

1000000);

shm_allocator a(seg);

shm_queue<Message> q(a);

int message_count = 0;

while (true) {

std::cout << “enter a message: “

<< std::flush;

std::string line;

std::getline(std::cin, line);

Message* m = new (a) Message;

m->sequence_num = message_count++;

m->message.reset(static_cast<char*>(

a.alloc(line.size()+1)), seg);

strcpy(m->message.get(seg),

line.c_str());

q.push(shm_ptr<Message>(m, seg));

}

}

// main routine for consumer

int main(int argc, char*argv[]) {

shm_segment seg(30000,

shm_segment::NoCreate);

shm_allocator a(seg);

shm_queue<Message> q(a);

while (true) {

shm_ptr<Message> p = q.pop();

Message* m = p.get(seg);

std::cout << “Message “

<< m->sequence_num

<< “ “

<< m->message.get(seg)

<< “\n”;

a.free(m->message.get(seg));

m->~Message();

operator delete(m, a);

}

}

There you have it: a way to access shared memory, allocate
objects in it, and pass them on a queue. So keep up with your
reading, and pay attention to the ACCU book reviews [7]!

Josh Walker
josh.walker@chutneytech.com

Acknowledgements

Special thanks to Satish Kalipatnapu and Thad Frogley for the
valuable comments they provided on drafts of this article. Any
errors that remain are mine alone.

References

[1] W. Richard Stevens: UNIX Network Programming, Volume 2:
Interprocess Communications, Prentice Hall , 1998,
ISBN 0-130-81081-9.
[2] Andrei Alexandrescu: Modern C++ Design: Generic
Programming and Design Patterns Applied, Addison-Wesley,
2000, ISBN 0-201-70431-5.
[3] Donald E. Knuth: The Art of Computer Programming,
Addison-Wesley, 1998, ISBN 0-201-48541-9
[4] Brian W. Kernighan and Dennis M. Ritchie: The C
Programming Language , Prentice Hall , 1988,
ISBN 0-131-10362-8.
[5] Herb Sutter: Exceptional C++: 47 Engineering Puzzles,
Programming Problems, and Solutions , Addison-Wesley, 2000,
ISBN 0-201-61562-2.
[6] David R. Butenhof: Programming with POSIX Threads,
Addison-Wesley, 1997, ISBN 0-201-63392-2.
[7] http://www.accu.org/bookreviews/public/index.htm

16

Overload issue 51 october 2002

Pattern Collaborations:
Observer and Composite
by Mark Radford

Patterns are a powerful tool in the software development
toolbox, because they provide documentation not only of
solut ions to problems, but solut ions that already have
successful track records. Therefore there are at least two
concrete ways in which they can help us to be more effective
in designing software:

First, we can draw on patterns as a source of documented
experience when doing our design. Second, seeing known patterns
occurring in software once we have designed it, leaves us with a
good feeling about what we have produced; that is, we can have
increased confidence that our design is sensible, because we know
we have used approaches that have already been proven to work
well!

I’m sure it will not be controversial to say that the best known
book about patterns within the development community in
general is the “GoF book” [Gamma+1995], a work presenting a
catalogue of twenty-three object oriented design patterns.
Patterns are at their most effective when working together in
collaboration, and while there is much to recommend this book,
it has the drawback of failing to point out many effective
collaborations.

There are a number of ways for patterns to collaborate. For
example, in their original (Alexandrian) setting each pattern was
an element of a pattern language [Alexander+1977]. Another way
involves patterns working together in teams , as Ralph Johnson
describes in his article “How Patterns Work in Teams”, an article
that can be found in [Rising1998].

Now, in object oriented software design, two (of the many)
problems that arise often are:
l

How can an object notify others of changes in its state?
l

How, at run time, a client can treat a group of objects uniformly
– that is how can the group be made to appear as one object from
the client’s perspective?

OBSERVER Pattern addresses the first of these, and COMPOSITE

Pattern the second – both being documented (and described more
fully) in the GoF book. This article is about these two patterns.
First, it will recap on the two patterns themselves by presenting a
brief summary of each. Second, it will describe how design can
potentially benefit from their collaboration.

OBSERVER Pattern

The purpose of the OBSERVER Pattern is to allow updates to the
state of an object to be notified to others automatically. The
following diagram shows the basic configuration.

SUBJECT is the role name for an object that is to notify others of
updates to their state, OBSERVER is the role name for objects that are

notified of state updates in their SUBJECT, and Update is the
method that serves as notification handler. In order to keep coupling
between SUBJECTs and OBSERVERs to a minimum, the role of
OBSERVER is crystallised as an interface.

COMPOSITEPattern

The purpose of the COMPOSITE Pattern is to allow clients to treat
objects and compositions of objects uniformly. The following
diagram shows the basic configuration.

All objects that are to be treated uniformly support the same
design type interface Component. An object that holds a collection
of COMPONENTs – COMPOSITECOMPONENT – also supports the
COMPONENT interface. The implementation of each method in
COMPOSITECOMPONENT simply forwards method invocations to each
object in the collection. Therefore, the client actually deals with a
collection of objects, but from the client’s perspective it deals with
one.

Collaboration

When it comes to implementing the OBSERVER Pattern, several
issues arise, but there is one in particular that is of interest here:
the SUBJECT must bear the weight of the “machinery” needed to
notify between zero and many OBSERVERs. Actually, it is fair to
put it more strongly: in order to allow itself to be observed, the
SUBJECT must commit the design sin of assuming a dual role, i.e.
its design role plus that of notifying OBSERVERs of state updates.
This issue can therefore be elevated to problem status, and stated
as follows: how can the S UBJECT be relieved of its extra
responsibility and consequent machinery?

Obviously the SUBJECT can not be relieved of all such machinery,
but the machinery can be simplified: instead of the SUBJECT talking
to between zero and many OBSERVERs, let it talk to only one – a
COMPOSITEOBSERVER! The diagram on the following page shows the
transformation in the configuration.

The SUBJECT’s collection of OBSERVERs is replaced by a one to
one relationship with a single COMPOSITEOBSERVER, used via an
association with the OBSERVER interface. This has indeed afforded
the benefit of the SUBJECT having a one to one association with a
single OBSERVER. Therefore, a COMPOSITEOBSERVER can now be
substituted transparently. However, this transformation has
consequences both in favour of it and against it. Consequences in
its favour are:

l
The SUBJECT is simplified by the separation of concerns – putting
it another way, although the (unavoidable) notification
machinery is still in the system, the configuration has been
transformed such that the SUBJECT is no longer burdened by it.

17

Overload issue 51 october 2002

l
The notification mechanism can be tested independently.

l
The SUBJECT can send update notifications without worrying
about the possibility of there being zero OBSERVERs: it’s up to the
COMPOSITEOBSERVER to handle it.

So far so good, but you don’t get anything for nothing. The
consequences against are:

l
The boundary of encapsulation has moved: the mechanism for
attaching and detaching OBSERVERs will leak into the client code.

Finally

The OBSERVER/COMPOSITE collaboration is just one of many
examples of collaborations between two or more (object oriented
design) patterns. Further, it is just one example of how the
OBSERVER Pattern can collaborate with others.

The collaboration solves one problem: that of the SUBJECT

being burdened by the OBSERVER notification mechanism.
However it brings with it another problem – that of mechanism
leakage. Perhaps collaboration with another design pattern such
as FAÇADE [Gamma+1995] could be used to address this
resulting problem...(?)

Mark Radford
mark@twonine.co.uk

References

[Alexander+1977] Christopher Alexander, Sara Ishikawa and
Murray Silverstein with Max Jacobson, Ingrid Fiksdahl-King and
Shlomo Angel, A Pattern Language: Towns, Buildings,
Construction, Oxford University Press, 1977.
[Gamma+1995] Erich Gamma, Richard Helm, Ralph Johnson
and John Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software , Addison-Wesley, 1995.
[Rising1998] Editor Linda Rising, The Patterns Handbook,
Cambridge University Press.

Book Review
Design Patterns by Erich Gamma,
Richard Helm, Ralph Johnson and John
Vlissides, Addison-Wesley, 1994, ISBN
0201633612
reviewed by Ian Bruntlett

This book (aka Gang of Four / GOF) is widely accepted as an
Object Oriented Design (OOD) classic. It comes in two parts.
Part One introduces patterns and presents case studies
(WYSIWYG document editor, maze game). Part Two is a
catalog of design patterns split into three purposes - creational,
structural, behavioral.

At times it says a lot of common-sense things (“One thing expert
designers know not to do is to solve every problem from first
principle”) but it is overshadowed by flowery language - I can
understand it these days but previously it was gobbledygook to me.
I think its talk of sending requests to an object when it refers to
invoking an object’s member function is part of the text’s Smalltalk
bias. It also refers to “abstract operations” when its talking about
virtual functions. On the other hand, I have been told that “The
Design Patterns Smalltalk Companion” was written for people
frustrated with this book’s C++ bias.

So far whenever Design Patterns have been used, I’ve always
seen a particularly impenetrable use of objects and inheritance - it
is small comfort but their second principle is “Favor object
composition over class inheritance”. To me C++ programmers have
to wear different hats, one being “syntax geek”, another being
“design geek”. If you don’t often indulge in being a design geek

then this book will often seem impenetrable and you should ask
questions on accu-general for guidance.

Creational patterns are dealt with first in the catalog. Some of
the patterns seem deeply rooted in the world of framework
development, something that the average developer is unlikely to
need. Some of the ideas are intriguing and I would appreciate more
examples of the creational patterns being used.

Structural patterns are dealt with next - they deal with how
classes & objects are composed to form larger structures. They
seem quite fun - Adapter (page 139) and Proxy (page 207) seem
quite familiar already.

The final part, behavioral patterns, deals with the abstracting of
algorithms and the assignment of responsibility. When I think of
algorithms I tend to think of things like binary searches or
quicksorts - this chapter is too flowery and abstract for me.

The conclusion states that this book is not the final word in patterns.
Personally, I believe that Pattern Oriented Software Architecture is the
book to read first, followed by Design Patterns, then Pattern Hatching
then the Patterns of Programming Languages books. And, perhaps,
one day Kevlin Henney will finish writing his patterns book.

This is an important, demanding book for anyone doing Object
Oriented Design. It will take careful study and application before
its true value is felt.

Ian Bruntlett
ianbruntlett@hotmail.com

Verdict : Highly recommended.

18

Overload issue 51 october 2002

Extendable Software and the
Bigger Picture
by Allan Kelly

My last two Overload contributions have described my
philosophy of extendable software, why it is important, and how
we can implement it in the code we write. But that isn’t the end
of the story, in fact that is just the start.

To create extendable systems you need space – space to write
the extensions in, space to practice your art, space to think. If you’re
cramped into a small directory tree on your disc, or squeezed by
working procedures, or forever fixing the build, you simply don’t
have the space you need. To this end extendable software is as
much about process as it is about code, and this is where things get
really interesting.

Extendable software naturally fits into an Agile development
methodology. I’ve started from the code level and I’m working up,
saying, “What do I need to do to support this style of code with my
processes?” The Agile methodologists have started from process
and are working towards code.

Software has a logistics tail (see side box). We ignore this tail
at our peril, if we are to keep advancing our development we must
pay attention to the build system, source code control, etc., etc.. If
not, this tail will eventually wag the dog – you’ll be so busy getting
things to build you won’t have time to fix the faults.

This article and the ones that follow are concerned with
aspects of that tail which I think are neglected: directory
structures, source code control, build systems and how these
build into a process.

Looking to the bigger picture

Embracing extensibility in your system architecture is only the start
of the story. It is worthless if you do not provide the support services
needed. So, a development process that embraces extensibility will
enhance the value of the source code that represents the architecture.
Both the logical and the physical architecture must be aligned to this.
Aligning the physical architecture means a coherent directory
structure, which will enhance the value of source code control,
which in turn enhances the build system.

This will remove uncertainty, thus improving repeatability and
contributing to a successful product. A successful product will
validate your process and architecture; we have a positive feed-back
loop (see diagram on next page).

Our process influences the logical design of a system (Conway’s
law), which obviously affects the physical design and coding, this
in turn affects the directory structure we use, which itself influences
our source code control, and finally we get to build our product.

And none of this happens in isolation, actions feed backwards
too, if you are hobbled by an ineffective source code control system
you will find your design warps. All of these items interlock.

For example, one of the tenets of Extreme Programming (XP) is
Continuous Integration, how can you hope to continuously
integrate if you don’t have a well-defined build process?

Too often we have been sold magic bullets, a development
process that doesn’t define an integration approach, or a source code
control system that doesn’t fit our process.

Enough!
In the name of extendable software we have to look at the bigger

picture.

The Software Logistics Tail
Have you noticed that when you start coding you can move fast,
laying down lots of code in a short time, but the more code you
lay down the slower your rate of progress becomes? Likewise,
when we think of a new feature we sometimes get the code
written quite fast, but other times a relatively small feature takes
an inordinate amount of time. Sometimes we get bogged down
with the practicalities of life, checking in, checking out,
building, fixing link problems, repairing our machine, dealing
with ripple effects, and so on.

Software development has a logistics tail, just like an army
advancing we need support, to move forward requires logistics
support. When an army advances the assault troops at the front of
the column need to be constantly supplied with fresh ammunition,
food, medical facilities and countless other items. History provides
many examples of armies that have advanced beyond their logistics
support - or failed to push home their advantage for fear of running
ahead of their logistics tail.

Paratroopers can capture objectives but they can’t hold them
alone. Assault troops may appear lightweight, fast and agile but
they won’t win the battle alone, they need heavy support and
logistics.

In software development the logistics tail contains source code
control systems, build systems, testers, system administration,
database administration, release mechanisms, customer support,
fault tracking systems and so on. Nor is it confined to activities,
the logistics tail exists inside our source code too.

We have to consolidate our gains if we are not to lose them. A new
feature may be demonstrated quite quickly, but we must ensure it is
placed within a well-defined program structure, we need to give it a

place, safely embedded in a library or DLL, not hacked onto some
oddball Windows message. It is not enough to capture a new feature,
we must secure it before we can move onto the next objective.

If we have some tricky code we treat it like a minefield, we don’t
hide this irritating detail in the hope that nobody will encounter it.
Instead we WRITE IT BIG, with a great big sign saying ‘Danger!’ –
not just a comment, but an assert, or better, a static assert, or maybe
we ensure code can only be called in the safe way.

Having a well-defined and reliable logistics tail means we can
move forward with confidence. Imagine working without a source
code control system, imagine working ‘manually’ – flipping the
‘read only bit’, slowly making changes to different files, manually
finding out who has the latest copy of any particular piece of code,
distributing our results – the problem is exponential in size. So
while setting up a CVS server may seem like a distraction from the
objective it is an essential part of securing the territory.

Of course this military analogy may seem somewhat dramatic,
nobody ever shot a software developer for failure to deliver on
time, but dramatic ideas allow us to visualise, and help produce a
clear, communicable idea.

Maybe a few of you reading this, will be thinking: ‘I want to be
the SAS of software development, get in, do the job and get out
fast’ - nice idea, and perhaps something to aim for. But don’t
forget that meticulous planning that goes into such operations, and
even the SAS couldn’t operate without a logistics tail of support
staff, helicopter pilots, ground crew, training and special
equipment. Perhaps ironically, the logistics tail becomes more
important if you want to be truly responsive and agile.

(Of course it helps if you know how to implement
polymorphism in 15 different ways with your bare hands.)

19

Overload issue 51 october 2002

Strategic fit

What we are actually talking about here is not just a process –
itself a much overloaded word in software – but a strategy which
will fit the various pieces of development tightly together and
interlock them, and lock software development into the company.
It may come as a surprise to some software developers but we are
not alone here, discussing business strategy Michael E. Porter of
Harvard Business School writes:

“What is Southwest’s [Airlines] core competence? Its key
success factors? The correct answer is that everything matters.
Southwest’s strategy involves a whole system of activities, not a
collection of parts. Its competitive advantage comes from the way
its activities fit and reinforce one another.

Fit locks out imitators by creating a chain that is as strong as its
strongest link.” Porter, 1996

Of course Southwest does have imitators, just look at Ryan Air
and EasyJet in Europe, but in its home market Southwest is the
success story of the American airline industry since deregulation.

To isolate one element of the development process, say writing
a specification, and divorce it from the process as a whole is wrong.
Each activity needs to be consistent with the other activities, Porter
calls this “first order fit”, he goes on to define second order fit as
“activities that are reinforcing” and finally, third order fit as
“optimisation of effort.”

We can’t expect to write extendable software in isolation, in fact,
we can’t expect to write any software in isolation. Nor can we
expect to look at software development isolated from the rest of the
organisation.

Process must accept addition

Our aim in an extendable system is to allow new features and
fixes to be implemented in new code. New code may contain
its own mistakes but the chances of introducing a fault into
existing code are reduced substantially. Let’s dwell on that for
a moment: how many occasions have you fixed some code
only to find a new problem has been introduced in the same
code? Would that fault have been introduced if the change
had been implemented in fresh code? Yes, the fresh code may
have its own faults but we expect new code to have faults and
hence test for it.

So, if we are to enhance our system through addition, our
development process must accept addition too.

There are two places addition may take
place: in existing files or in new files. The
former is often necessary, say, to add a new
method for an existing class, the later usually
implies we are adding new classes, we are
working with our architecture.

However, our development process and
environment can make these additions
difficult. Simplistic management using
lines-of-code as a metric can discourage
developers from making additions. This is
short sighted management, code
maintained under such a regime sprouts
control flags as functions are coerced to do
double duty, what should be two functions,
or even two classes, gets implemented as a
single function:

void CalculateInterest(int accountNumber,
bool isDeposit) {

if (isDeposit) {
// do deposit interest rate
// calculation

}
else {

// do current account
// calculation

}
}

It doesn’t take much foresight to see what happens when we get a
third type of account. Almost as obvious is the question: should
this be a class hierarchy?

The problem here is short sighted management who have either
failed to realise the relationship between process and code, or,
managers who are actively trying to architect the system
themselves. True, adding the control flag was a cheap way of
getting the functionality quickly – and hence improving profits –
but this has introduced future cost to the system. Unfortunately,
anyone who regards lines-of-code as a good software metric
probably isn’t going to be persuaded by such arguments.

New features, New files

The creation of new files should be a natural part of the software
process but it doesn’t always feel this way. One well-known
software house I know is proud of its ISO-9001 procedures that
include a paper audit trail for a system. Adding new files to the
system required a form to be filled in and signed off. This was a
sure fire way to ensure that existing files grow unnaturally large –
even if there where only a dozen or so files.

Similar things happen if we deny developers access to source
code control or don’t automate the build process. Buying each
developer a license for a top quality source code control system
may seem a little pointless, after all they only use it for a few
minutes each day, why not buy one license? Maybe, to keep our
paper trail accurate Fred can run the source code control, and
we can request files by e-mail, or signed form, and he can get
them out and e-mail them back? Or maybe just place them on
a shared drive?

This may all sound like a sick joke but I’ve seen it done.

20

Overload issue 51 october 2002

It is human nature to do the easy things and avoid the hard things.
If we want our system to grow in an orderly manner we can’t put
obstacles in the way of what we want to happen. Architecture
designed for extendability will fail if we don’t align our process. It
must be easy to integrate new code.

Paper trails and proxy results

One of the keys to alignment is to automate as much as possible,
thus making it easy to do the right things. If you really must have
a paper trail for all file changes then configure your source code
control system to produce the necessary documents. If you must
have sign-off before code enters the system, then use a promotion
model for your files. If your ISO-9001 procedures are getting in
the way then change them.

In the worst case the process documentation says one thing and
developers do it another way then fake the paper trail, sometimes
with management connivance and sometimes without their
knowledge. Once you’ve crossed this Rubicon code quality and
communication will rapidly deteriorate.

At the end of the day we want to deliver software, this means
writing code. It does not mean writing documents or conforming
to lines-of-code estimates. A process that emphasises such criteria
is targeting a proxy result rather than the end product. Not only is
the proxy the wrong measurement but it distracts us from our main
goal and is subject to manipulation.

Monitoring a proxy variable can have a place, take file version
numbers for instance. If our average file has undergone 10 revisions
but one particular file has undergone 30 then it is worth
investigating why. Revision number may be a proxy variable but
they are by-products of our normal working practice, we don’t
expend any extra effort to produce the revision number, thus, is less
susceptible to manipulation.

Overnight builds aka the batch build

One of the corner stones of any development should be an
automated batch build process. Having said that all development
processes need to be customised I’m saying categorically: create
an automated batch build and run it every night. I’m not alone in
this.

“In our global survey we found that 94% of successful companies
completed daily or at least weekly builds, whereas the majority of
less successful companies did them monthly or less often.” Hoch
2000.

“If you build it, it will ship. If you don’t, it won’t. ... I don’t mean
‘Build it once and ship it.’ I mean ‘Build it often and regularly.’ You
must get that product visible. Public.” McCarthy 1995.

And after all, what is XP’s continuous integration but a batch
build?

A repeatable build shows you can build your product. But there
is more to it than that. It shows that for all the hard work and money
thrown at the problem there is some kind of solution, not just
strange files on developers PCs. It even shows that there is
something that might ship sometime soon.

A regular build also acts as a restraint on developers. You
won’t check in some half-baked code that will break the build.
And if you do it is easy to see who did it. We don’t want to get
into blame culture here, we just want to encourage everyone to
be responsible.

And when something does break the build there is a clear audit
trail to find out why. There is usually a good reason and not always

because someone messed up. Why wait until you’ve finished
coding to see if all the bits fit together?

The build is also a ritual of software development. Human
civilisation is built on rituals, marriage, births, cards for this, cards
for that, and so on. Rituals give us anchor points in a changing,
uncertain world. A ritual build serves the same use.

The build provides a heartbeat to a project: you come to work,
you write code, you check it in, it builds, you start over again.
When the project won’t build there is usually something wrong.

As McCarthy says, make it public. Let everyone see it works,
e-mail the build log to the developers, display the latest build
number on a flashing sign in the lobby. Show you are active. It
easy for organisations to lose sight of the work of developers,
especially if you’re just a bunch of geeks sitting in Dilbert cubes.

But the build has to be automated. It has to be carried out by
machine – free of human interference. Human intervention
introduces a random factor. Automating the process proves it is
understood, proves it is repeatable. If you can’t automate it and
repeat it what does that say about the state of your project? Doing
a build is repetitive, boring, easily forgotten, time consuming. All
the things that humans don’t like and machines are good at.

So, how do we get there?

We have the pieces of a solution to hand but you are on your
own in putting them together. Yes, we have models we can
follow, but there are no guarantees that they will work for us,
in our environment. Quite the opposite in fact. Alistair
Cockburn (2002) says something similar “The level 3 listener
[an experienced practitioner] knows that all the published
software development techniques are personal and somewhat
arbitrary.”

In fact, Porter might argue that we must develop our own
methodologies! Implementing a given methodology may well
improve our operational effectiveness, which in turn improves our
ability to delivery value to our organisations...

“However, it [operational efficiency] is not usually sufficient. Few
companies have competed successfully on the basis of operational
efficiency over an extended period, and staying ahead of rivals gets
harder every day. The most obvious reason for that is the rapid
diffusion of best practice. Competitors can quickly imitate
management techniques, new technologies, input improvements,
and superior ways of meeting customer needs.

The second reason that improved operational effectiveness is
insufficient – competitive convergence – is more subtle and
insidious. The more benchmarking companies do, the more they
look alike.” Porter, 1996

So, even if we could successfully implement, to the letter,
SSADM, RUP, Yourdon, XP, or any other methodology it would
do us no good. Competitors could just copy us. What we need is
some unique strategy, methodology, which we have tailored to
our business needs.

Contrast Porter’s words with those of Goldman cited by Cockburn:
“Agility is dynamic, context-specific, aggressively change

embracing, and growth-oriented. It is not about improving efficiency,
cutting costs, or battering down the business hatches to ride out
fearsome ‘storms.’ It is about succeeding and about winning: about
succeeding in emerging competitive arenas, and about winning
profits, market share, and customers in the very centre of the
competitive storms many companies now fear.” Goldman, 1997.

[concluded at foot of next page]

21

Overload issue 51 october 2002

So, if you’re sitting back and saying “I have enough trouble
getting software written, never mind worrying about the
business” you may want to consider what role your software
plays in keeping your company competitive.

Software development is about business. It is about selling
products – directly or indirectly – so all the concerns of the business
are the concerns of the developers. As more and more business
depends on software development for their very existence (selling
it or using it) the very process of software development becomes a
key business function, and a key business discriminator.

It is easy to see how these kinds of arguments relate to shrink-
wrapped product software but this accounts for only a small
percentage of all software written. Increasingly companies are their
software. Many of today’s business processes would be impossible
without software, the process gives the business its competitive
edge, and without software to enable to the process there would be
nothing.

Where do I go from here?

You probably have most of the pieces you need from experience.
My last two articles have set out an approach, an attitude, toward
software that, hopefully, adds some more pieces to the jigsaw.
There is no shortage of literature on process but I hope you found
something new here.

What I think is missing, and where I want to turn my attention
next is the nuts-and-bolts of how we organise our source code
(directory trees and source code control) and how we get continuous
integration (the batch build) to work.

Actually, writing about build systems is something I’ve wanted
to do for a while and is surprisingly difficult. Part of the reason is
that it is incredibly difficult to write about in isolation from
directory structures and source control. However, I am conscious
that I promised ACCU-General a while ago that I’d write something
on build systems, hopefully, by the time you read this I’ll have late
drafts of the next two pieces available at
http://www.allankelly.net/writing.

Allan Kelly
Allan.Kelly@bigfoot.com

References

Beck, Kent, 2000, Extreme Programming Explained, Addison-
Wesley.
Cockburn, Alistair, 2002, Agile Software Development, Addison-
Wesley.
Goldman, S., Nagle, R., Preiss, K., 1995, Agile Competitors and
Virtual Organizations, John Wiley & Sons.
Hoch D.J., Roeding, C.R., Purkert, G., Linder, S.K., 2000, Secrets
of Software Success, Harvard Business School Press.
Mazzucato, Marinana, 2002, Strategy for Business , Sage
Publication / Open University.
McCarthy, Jim, 1995, Dynamics of Software Development,
Microsoft Press.
Porter, Michael E., 1996, “What is Strategy,” Harvard Business
Review, November/December 1996, reprinted in Mazzucato
2002.

Mutate? or Create?
by Alan Griffiths

“Who is the audience?” – is a key question to consider for any piece
of writing and one that programmers often forget to address. Just
because the language is C++, Java or Cobol doesn’t relieve the author
of the responsibility to consider the audience. The code that I write to
explore an idea for myself will look very different to the code I write
to illustrate the idea in an article and the code that uses the idea in a
production environment will look different to both of these.

It is interesting to hear some of the answers programmers give
when asked to describe the audience for whom they are writing. The
most common answer is to deny that the question is meaningful.
Other answers include “there isn’t one” and “the compiler”. And, to
judge from most of the code I see, this is the belief in even more
cases than the frequency of these answers suggests.

When I write production code the audience splits into two
categories: The main audience is those that will use it from their
code but there is also a smaller group who will maintain it. (And the
audience for this article also writes code for these audiences.)

What follows describes the meeting between a typical developer
and an audience that will be making use of it. The context of this
meeting is a review of the public interfaces to the classes in a
package prior to implementing them. Present at the review are
George (the author), Alice (the system designer) and Harris (another
programmer on the project). While this is a true account I have
coloured the events and changed the names.

What do we mean by “add”?

George, Alice and Harris filed nervously into the room. This was
the first review of “class designs” and none of them knew what to

expect. George had followed my instructions and supplied
Javadoc documentation of the package containing the classes
being reviewed. Everyone had a printed copy.

I recited the prayer customary on these occasions: “we are here to
help George improve his design, to identify issues he needs to consider
more fully; we are not here to score points or to do the design ourselves.”

The classes to be reviewed related to the manipulation of
measures that have values, units and dimensions (e.g. [100, metres,
length] or [5, kilos, weight]). Much can be (and has been) said about
combining disparate units and commensurate dimensions. It has
been said many times, by many people and in many places. I’m not
going to repeat it here! Instead, I want to focus on the discussion of
these two methods in the Value class:

class Value implements Cloneable {
public static Value add(Value a, Value b)
public Value add(Value v)
...

}
I have deliberately given the methods in this form - and not the
Javadocs that were reviewed - because I want you, the reader, to
think about the semantics you would expect from these methods
before reading on.

This link between the name and the semantics is where considering
the audience becomes important. A compiler is not critical of the choice
of names – it doesn’t care if a method called ‘add’ is used to print a
sequence of Goldbach prime pairs. A programmer, however, might
express surprise - even if there was documentation to that effect.

Alice had her opinion of what the add methods should do and,
when we got to the description of one of these methods, asserted

[continued on next page]

22

Overload issue 51 october 2002

that it “didn’t do what one would expect”. I hope you have formed
your own expectation of what these methods do. How does it
correspond to the following (the documented) behaviour?

/**
* returns a new Value containing a
* quantity that is the sum of the
* quantities held in ‘a’ and ‘b’
*/
public static Value add(Value a, Value b)
/**
* returns a new Value containing a
* quantity that is the sum of those held
* in the current object and that supplied
*/
public Value add(Value v)

Alice was not in disagreement about the first of these but the
second led to a lot of discussion. (In the end the description, the
signature and the name of the method all came in for criticism –
but we are getting ahead of the story.) To illustrate her point Alice
took possession of the whiteboard and produced the following
code fragment:

Value accumulate(Iterator i) {
final Value total = new Value();
while (i.hasNext()) {

total.add((Value)i.next());
}
return total;

}

(Actually, Alice’s code used shorter identifiers “V” for “Value”,
“t” for “total”, but she and I are writing in a different context and
code differently as a consequence.)

She claimed that this code has surprising behaviour. George
responded by asserting that “one shouldn’t use a method without
referring to the documentation”. Harris was in full agreement “I
don’t care what its called I can see what it does”.

George took over the whiteboard and suggested the ‘correct’
code:

Value accumulate(Iterator i) {
Value total = new Value();
while (i.hasNext()) {

total = total.add((Value)i.next());
}
return total;

}

I think that it is significant that no one queried what Alice
thought the original code should achieve. In claiming that it was
wrong George and Harris are missing the point - the
documentation of a method should support the name given, not
invalidate it. Alice suggested that the description should read
“adds the supplied value to the current value” or “adds the
supplied value to the current value and returns this”.

George’s correction leads to code that has the intended effect but
Harris observed that it creates numerous temporary Values. This
leads to the title question:

Should add mutate a Value instance? Or create a new Value?
With Alice’s change the user has the option of both behaviours.
Mutate:

total.add((Value)i.next());
or create:

total = Value.add(total,
(Value)i.next());

George accepted that the suggested behaviour would be useful,
but didn’t think that the mutating behaviour was reflected by the
name add – if you calculate “1 add 2” then neither of the
numbers changes to “3”.

Harris then suggested that the return type of this add method
should be void. His suggestion that the return type should be
void came from the desire to invalidate total =
total.add((Value)i.next());. This seemed reasonable
(but we’ll revisit this after hearing what George had been thinking
about name of the method).

At this point the meeting moved on to other matters. George took
the issues raised away to consider and later circulated a proposal
that resolved them.

After drawing an analogy with the + and += operators George
suggested that the correct name would be plusEquals.
Accepting this argument implies that the original static method
should also be renamed plus . In the light of this Harris is
concerned about the analogue of “i = i += 1;”. This is legal
(but clearly daft) for the primitive types and so, by analogy,
“total = total.plusEquals((Value)i.next());”
should also be legal.

Consequently, George proposed (and ultimately implemented)
the following:

/**
* returns a new Value containing a
* quantity that is the sum of the
* quantities held in ‘a’ and ‘b’
*/
public static Value plus(Value a, Value b)
/**
* Adds the supplied value to that
* contained in the current object.
* @return this
*/
public Value plusEquals(Value v)

Afterword

The discussion above took about 15 minutes and involved four
developers. It avoided any developer that used Value writing
code like Alice’s example and subsequently spending an
indeterminate amount of time looking for the problem.

The fact that the review forced documentation to be written for
the add method also prevented someone writing code like Alice’s
finding the problem and then “correcting” the add method to the
detriment of any code that used it as intended.

Are these changes important? Considered from the compiler’s
point of view it makes little difference. From the available
functionality it makes little difference. From the point of view of
providing an unsurprising interface that is easy to use effectively it
does make a difference.

Alan Griffiths
alan.griffiths@microlise.com

23

Overload issue 51 october 2002

Exception Handling in C#
by Jon Jagger

Painful Procedural Error Handling

In the absence of exceptions the classic way to handle errors is to
intertwine your statements with error checks. For example:

public sealed class Painful {

...

private static char[] ReadSource(

string filename) {

FileInfo file = new FileInfo(filename);

if (errorCode == 2342) goto handler;

int length = (int)file.Length;

char[] source = new char[length];

if (errorCode == -734) goto handler;

TextReader reader = file.OpenText();

if (errorCode == 2664) goto handler;

reader.Read(source, 0, length);

if (errorCode == -5227) goto handler;

reader.Close();

Process(filename, source);

return source;

handler:

...

}

}

This style of programming is tedious, repetitive, awkward,
complex, and obscures the essential functionality. And it’s too easy
to ignore errors (either deliberately or accidentally). There have to
be better ways. And there are. But some are better than others.

Separation of Concerns

The fundamental thing that exceptions allow you to do is to
separate the essential functionality from the error handling. In
other words, we can rewrite the mess above like this:

...

public sealed class PainLess {

public static int Main(string[] args) {

try {

string filename = args[0];

char[] source = ReadSource(filename);

Process(filename, source);

return 0;

}

catch (SecurityException caught) {...}

catch (IOException caught) {...}

catch (OutOfMemoryException caught) {...}

...

}

private static char[] ReadSource(

string filename) {

FileInfo file = new FileInfo(filename);

int length = (int)file.Length;

char[] source = new char[length];

TextReader reader = file.OpenText();

reader.Read(source, 0, length);

reader.Close();

return source;

}

}

There are several things to notice about this transformation.
l

The numeric integer error codes that utterly failed to describe
the errors they represented (e.g. what does 2342 mean?) are now
descriptive exception classes (e.g. SecurityException).

l
The exception classes are not tightly coupled to each other. In
contrast, each integer code must hold a unique value thus
coupling all the error codes together.

l
There is no throw specification on ReadSource . C# does not
have throw specifications.

However, by far and away the most important thing is how clean,
simple and easy to understand ReadSource is. It contains the
statements required to implement its essential functionality and
nothing else. There is no apparent concession to error handling.
This is possible because if an exception occurs the call stack will
unwind all by itself. This version of ReadSource is the “ideal”
we are aiming it. It is as direct as we can make it.

Ironically, exceptions allow us to get close to this ideal version
of ReadSource but at the same time prevent us from quite
reaching it. The problem is that ReadSource is an example of
code that acquires a resource (a TextReader), uses the resource
(Read), and then releases the resource (Close). The problem is
that if an exception occurs after acquiring the resource but before
releasing it then the release will not take place. The solution has
become part of the context. Nevertheless, this “ideal” version of
ReadSource is useful; we can compare forthcoming versions of
ReadSource to it as a crude estimate of their “idealness”.

finally?

The solution to this lost release problem depends on the language
you’re using. In C++ you can release the resource in the destructor
of an object held on the stack (the misnamed Resource Acquisition
Is Initialization idiom). In Java you can use a finally block. C#
allows you to create user-defined struct types that live on the stack
but does not allow struct destructors. (This is because a C#
destructor is really a Finalize method in disguise and
Finalize is called by the garbage collector. Structs, being value
types, are never subject to garbage collection.) Therefore, initially at
least, C# must follow the Java route and use a finally block. A first
cut implementation using a finally block might look like this:

private static char[] ReadSource(

string filename) {

try {

FileInfo file = new FileInfo(filename);

int length = (int)file.Length;

char[] source = new char[length];

TextReader reader = file.OpenText();

reader.Read(source, 0, length);

}

finally {

reader.Close();

}

return source;

}

This version has had to introduce a try block (since a finally
block must follow a try block) which isn’t in the ideal solution
but apart from that it’s the same as the “ideal” version of
ReadSource. It would be a reasonable solution if it worked.
But it doesn’t. The problem is that the try block forms a scope so
reader is not in scope inside the finally block and source is
not in scope at the return statement.

24

Overload issue 51 october 2002

finally?

To solve this problem you have to move the declarations of
reader and source outside the try block. A second attempt
might be:

private static char[] ReadSource(

string filename) {

TextReader reader;

char[] source;

try {

FileInfo file = new FileInfo(filename);

int length = (int)file.Length;

source = new char[length];

reader = file.OpenText();

reader.Read(source, 0, length);

}

finally {

reader.Close();

}

return source;

}

This version has moved the declaration of reader and source
out of the try block and consequently, inside the try block,
assigns to reader and source rather than initializing them.
That’s another difference (and two extra lines) from the “ideal”
version of ReadSource. Nevertheless, you might consider it a
reasonable solution if it worked. But it doesn’t. The problem is
that assignment is not the same as initialization and the compiler
knows it. If an exception is thrown before reader is assigned then
the call to reader.Close() in the finally block will be on
reader which won’t be assigned. C#, like Java, doesn’t allow
that.

finally?

Clearly you have to initialize reader. A third attempt therefore
might be:

private static char[] ReadSource(

string filename) {

TextReader reader = null;

char[] source;

try {

FileInfo file = new FileInfo(filename);

int length = (int)file.Length;

source = new char[length];

reader = file.OpenText();

reader.Read(source, 0, length);

}

finally {

reader.Close();

}

return source;

}

This version introduces null which isn’t in the “ideal” version
of ReadSource. Nevertheless, you might still consider it a
reasonable solution if it worked. But it doesn’t (although it does
compile). The problem is the call to reader.Close() could
easily throw a NullReferenceException.

finally?

One way to solve this problem is to guard the call to
reader.Close(). A fourth attempt therefore might be:

private static char[] ReadSource(

string filename) {

TextReader reader = null;

char[] source;

try {

FileInfo file = new FileInfo(filename);

int length = (int)file.Length;

source = new char[length];

reader = file.OpenText();

reader.Read(source, 0, length);

}

finally {

if (reader != null)

reader.Close();

}

return source;

}

Of course, the guard on reader.Close() isn’t in the “ideal”
version of ReadSource. But this is a reasonable version if only
because it does, finally, work. It’s quite different from the “ideal”
version but with a bit of effort you can refactor it to this:

private static char[] ReadSource(

string filename) {

FileInfo file = new FileInfo(filename);

int length = (int)file.Length;

char[] source = new char[length];

TextReader reader = file.OpenText();

try {

reader.Read(source, 0, length);

}

finally {

if (reader != null)

reader.Close();

}

return source;

}

In some cases you might be able to drop the null guard inside the
finally block but in general this is the best you can do with a finally
block solution. (Consider if file.OpenText returned null.)
You have to add a try block, a finally block, and an if guard. And if
you are using Java you have to do those three things every time.
And therein is the biggest problem. If this solution was truly
horrible and completely and utterly different to the ideal solution it
wouldn’t matter a jot if we could abstract it all away. But in Java
you can’t. The Java road stops here, but the C# road continues.

using Statements

In C#, the nearest you can get to the “ideal” version is this:
private static char[] ReadSource(

string filename) {

FileInfo file = new FileInfo(filename);

int length = (int)file.Length;

char[] source = new char[length];

using (TextReader reader = file.OpenText())

{ reader.Read(source, 0, length); }

return source;

}

This is pretty close. And as I’ll explain shortly it has a number of
features that improve on the “ideal” version. But first let’s look
under the lid to see how it actually works.

25

Overload issue 51 october 2002

using Statement Translation

The C# ECMA specification states that a using statement:
using (type variable = initialization)

embeddedStatement

is equivalent to:
{

type variable = initialization;

try { embeddedStatement }

finally {

if (variable != null) {

((IDisposable)variable).Dispose();

}

}

}

This relies on the IDisposable interface from the System
namespace:

namespace System {

public interface IDisposable {

void Dispose();

}

}

Note that the cast inside the finally block implies that variable
must be of a type that supports the IDisposable interface
(either via inheritance or conversion operator). If it doesn’t you’ll
get a compile time error.

using TextReader Translation

Not surprisingly, TextReader supports the Disposable interface
and implements Dispose to call Close. This means that this:

using (TextReader reader = file.OpenText()) {

reader.Read(source, 0, length);

}

is translated, under the hood, into this:
{ TextReader reader = file.OpenText();

try { reader.Read(source, 0, length); }

finally {

if (reader != null) {

((IDisposable)reader).Dispose();

}

}

}

Apart from the cast to IDisposable this is identical to the best
general Java solution. The cast is required because this is a
general solution.

Do It Yourself?

It’s instructive to consider what would happen if TextReader
didn’t implement the Disposable interface. The lessons from
this will show us how to implement Disposability in our own
classes. One solution is the Object Adapter pattern. For example:

public sealed class AutoTextReader

: Idisposable {

public AutoTextReader(TextReader target) {

// PreCondition(target != null);

adaptee = target;

}

// readonly property

public TextReader TextReader {

get { return adaptee; }

}

public void Dispose() {

adaptee.Close();

}

private readonly TextReader adaptee;

}

which you would use like this:
using (AutoTextReader scoped =

new AutoTextReader(file.OpenText())) {

scoped.TextReader.Read(source, 0, length);

}

To make things a little easier you can create an implicit
conversion operator:

public sealed class AutoTextReader

: Idisposable {

...

public static implicit operator

AutoTextReader(TextReader target) {

return new AutoTextReader(target);

}

...

}

which would allow you to write this:
using (AutoTextReader scoped =

file.OpenText()) {

scoped.TextReader.Read(source, 0, length);

}

struct Alternative

AutoTextReader is a sealed class intended, as its name
suggests, to be used as a local variable. It makes sense to
implement it as a struct instead of class:

public struct AutoTextReader : Idisposable {

// exactly as before

}

Using a struct instead of a class also gives you a couple of free
optimizations. Since a struct is a value type it can never be null.
This means the compiler can omit the null guard from generated
finally block. Also, since you cannot derive from a struct its
runtime type is always the same as its compile time type. This
means the compiler can also omit the cast to IDisposable
from the generated finally block and thus avoid a boxing
operation. In other words, when AutoTextReader is a struct,
this:

using (AutoTextReader scoped =

file.OpenText()) {

scoped.TextReader.Read(source, 0, length);

}

is translated into this:
{

AutoTextReader scoped = new file.OpenText();

try {

scoped.TextReader.Read(source, 0, length);

}

finally {

scoped.Dispose();

}

}

It should come as no surprise that I prefer the using statement
solution to the finally block solution. In fact, the using statement

[concluded at foot of next page]

26

Overload issue 51 october 2002

solution scores several extra points in comparison to the “ideal”
solution. A using statement
l

Works! It always releases the resource.
l

Is an extensible mechanism. It allows you to create an abstraction
of resource release. Creating your own resource releaser types
such as AutoTextReader is easy.

l
Allows you to pair up the resource acquisition with the resource
release. The best moment to organize the resource release is the
moment you acquire the resource. If you borrow a book from a
library you’re told when to return it as you borrow it.

l
Creates a scope for the variable holding the resource. Look
carefully at the compiler translation of a using statement and
you’ll see that it cleverly includes a pair of outer braces:

using (AutoTextReader scoped =

file.OpenText()) {

scoped.TextReader.Read(source, 0, length);

}

scoped.TextReader.Close(); // scoped is not

// in scope here

This is reminiscent of C++ declarations in conditions. Both allow
you to restrict the scope of a variable so it’s only usable when in
scope and is only in scope when usable. This is more than just a
syntactic nicety since any attempt to use a released resource
could well throw an exception.

Jon Jagger
jon@jaggersoft.com

[continued from page 25]

Pairing Off Iterators
by Anthony Williams

Introduction

Recently, a colleague approached me with an interesting problem; he
had two containers with corresponding elements, so the n-th entry of
container A was related to the n-th entry of container B, and he
needed to sort these containers so the elements of A were “in order”,
without losing the correspondence property, as in the figure below:

There are several solutions to this, each of which has its merits
and disadvantages, such as:
1 Create a third container holding either the numeric index, or some

form of iterator or pointer into the containers. This container can
then be sorted using a special comparison function that references
the original containers. Code that processes the data can then
either use the new container to index into the originals, or the
original containers can be re-shuffled to match the order specified
in the new container.

2 Copy the values into a container of pairs and sort that, possibly
using the self-sorting property of the Standard Associative
Containers, if appropriate

It was a third solution that really interested me – what my
colleague conceptually had was a container of pairs of values,
even if it was physically stored as a pair of containers of values;
why then couldn’t we treat the data as a container of pairs? This
would allow sorting in place, and intuitive access to the data. The
answer is: we can – just write an iterator adaptor that iterates
through both containers simultaneously, and returns a pair when
dereferenced; the pair of containers can thus be viewed as a
sequence of pairs of values. The rest of this article covers the
complexities hidden in that “just”.

Iterator Categories

To cover the original problem (sorting), we need only worry about
random access iterators, since std::sort requires random
access. However, the problem had me hooked, and I wanted a
general solution, with maximum flexibility, and all the
complexities that involved.

For maximum flexibility, we want our adapted iterator to be as
capable as possible, but no more – we cannot efficiently provide
more facilities than the underlying iterators. Therefore, we must
choose the most basic iterator category of the underlying iterators.
Since the iterator category tags other than
output_iterator_tag form an inheritance hierarchy, we can
use the implicit conversions applied by the ternary conditional
operator ?: to determine the most basic category – the return type
of a conditional expression where the two result expressions are
pointers is a pointer to the common base class of the pointed-to
classes, so the type of the expression

false ? (std::forward_iterator_tag*)0

: (std::random_access_iterator_tag*)0

is std::forward_iterator_tag*, for example. We can
then code to handle output iterators separately – if either of the
iterators is an output iterator, the result is an output iterator, unless
the other is an input iterator, in which case it is an error. This is all
handled by the CommonCategory class template, shown in
listing 1 – the categoryCheck functions and CategoryMap
class templates are shown in listing 2.

Meeting the Requirements

Having chosen our iterator category, we need to implement the
appropriate operations to fulfil the Standard Iterator Requirements
from Section 24.1 of the C++ Standard [1]. Most operations can
easily be implemented by forwarding to the corresponding
operations on the underlying iterators – the pre-increment
operator can be implemented by incrementing the underlying
iterators, for example. It is the dereference operator
(operator*) and the choice of value_type which is
complicated, as it depends on the iterator category. Input Iterators
may return by value, so if either of the underlying iterators is an
Input Iterator, we need to copy the result of dereferencing the
underlying iterators. On the other hand, the only operation
permitted on the result of dereferencing an Output Iterator is to
assign to it, so we cannot store a copy – the dereference operator
must return something which, when assigned to, assigns to the
result of dereferencing the underlying iterators. Finally, for all
other iterators, we need to return a reference that can be used to
access and update the elements of the underlying sequences.

The ValueForCategory class template assists us with our
choice – the PairIt iterator template just delegates to
ValueForCategory, once the appropriate
iterator_category has been determined, and this is

specialized for Input Iterators and Output Iterators, leaving the
primary template to handle the other cases.

Implementing the dereference operator for Input Iterators and
Output Iterators is actually quite straightforward. For Input
Iterators, the value_type can be a plain pair of values, the
elements of which are the value_type s of the underlying
iterators, and the dereference operator can just copy the values from
the underlying iterators into a pair held within the iterator, and
return a reference to that pair1. For Output Iterators, the
value_type is void, but the result of the dereference operator
is something quite different – an OutputPair that contains
references to the underlying iterators, and which dereferences and
writes to the iterators when assigned to. OutputPairs cannot be
copied, so our iterator’s dereference operator should return a
reference to an internal instance of OutputPair. The definition
of OutputPair is shown in listing 3.

Supporting Forward Iterators, Bidirectional Iterators and
Random Access Iterators is more complicated – the dereference
operator must return a reference to the value_type, which must
hold real references to the elements in the sequences covered by the
original iterators. Just to add complexity, we really want the
value_type to be Copy-Constructible and Assignable, and to
copy the values of the elements, not the references, as users
wouldn’t expect modifying copies of the values to affect the
originals; this implies that objects of the same class sometimes
contain references to data held elsewhere, and sometimes hold the
data directly. For this purpose, we define the OwningRefPair
class, which has references for its public data members, and
contains an internal buffer for the values – the references can either
point to external data, in which case the buffer is empty, or they can
point to the buffer, in which case the buffer contains instances of
the appropriate objects. The objects are stored in an internal buffer,
rather than on the heap, to avoid the overhead of dynamic memory
allocation; however, this does require care to ensure that the objects
are properly destructed, and to ensure that the buffer is correctly
aligned.

27

Overload issue 51 october 2002

template<typename Cat1,typename Cat2>

struct CommonCategory {

private:

enum {categorySize=sizeof(

helper::categoryCheck(

false?(Cat1*)0:(Cat2*)0))};

public:

typedef typename

CategoryMap<categorySize>::Type Type;

};

// specializations

template<typename Cat>

struct

CommonCategory<std::output_iterator_tag,Cat> {

typedef std::output_iterator_tag Type;

};

template<typename Cat>

struct

CommonCategory<Cat,std::output_iterator_tag> {

typedef std::output_iterator_tag Type;

};

template<>

struct CommonCategory<std::output_iterator_tag,

std::output_iterator_tag> {

typedef std::output_iterator_tag Type;

};

template<>

struct CommonCategory<std::input_iterator_tag,

std::output_iterator_tag> {

// no Type, because error

};

template<>

struct CommonCategory<std::output_iterator_tag,

std::input_iterator_tag> {

// no Type, because error

};

Listing 1: The CommonCategory class template

// Small, Medium, Large and Huge are types

// with distinct sizes

Small categoryCheck(std::input_iterator_tag*);

Medium

categoryCheck(std::forward_iterator_tag*);

Large

categoryCheck(std::bidirectional_iterator_tag*);

Huge

categoryCheck(std::random_access_iterator_tag*);

template<>

struct CategoryMap<sizeof(Small)> {

typedef std::input_iterator_tag Type;

};

template<>

struct CategoryMap<sizeof(Medium)> {

typedef std::forward_iterator_tag Type;

};

// etc.

Listing 2: The categoryCheck overloaded functions and
CategoryMap specializations

template<typename Iter1,typename Iter2>

struct OutputPair {

private:

Iter1& firstIter;

Iter2& secondIter;

OutputPair(const OutputPair&); // can’t be

// copied

public:

OutputPair(Iter1& firstIter_,

Iter2& secondIter_)

: firstIter(firstIter_),

secondIter(secondIter_) {}

template<typename SomePair>

OutputPair& operator=(const

SomePair& other) {

*firstIter=other.first;

*secondIter=other.second;

}

};

Listing 3: The OutputPair class template

1 We could return the pair by value, but for uniformity with the other types of iterators,
it makes sense to return a reference to an internal object.

For alignment, we use a union of an appropriately-sized array of
char, and an instance of align_t. align_t is itself a union of
all the fundamental types, and structs containing them. On most
platforms, this will have the most rigorous alignment of any type, so
(on most platforms2) the union of align_t and the array of char
is guaranteed to be correctly aligned for any type that has a sizeof
less than or equal to the size of the array3. The RawMem template union
uses the sizeof the template parameter as the size of the char array.

We can then cast the address of the char array in our RawMem
union to a pointer of the required type, and use it with placement

new to construct an instance of the specified type. At the
appropriate point, we can also manually invoke the destructor to
clean up the object – i.e. in the destructor of our object, we check
to see if the buffer contains an object or not, and invoke the
destructor if it does, since this is a fixed property of the
OwningRefPair object – either it contains the referred-to objects
in its buffer, or it doesn’t, this property doesn’t change during its
lifetime. In this case, the owned object is an OwnedPair; the
details are shown in listing 5. Since our value_types are
distinct, and have different construction syntax, we delegate the
actual task of construction and destruction to the
ValueForCategory template, to give a uniform interface to
PairIt.

28

Overload issue 51 october 2002

#include <rawmem.hh>

template<typename T,typename U>

struct OwningRefPair {

public:

T& first;

U& second;

typedef T first_type;

typedef U second_type;

private:

struct OwnedPair {

T first;

U second;

template<typename Val1,typename Val2>

OwnedPair(Val1& v1,Val2& v2)

: first(v1),second(v2) {}

};

utils::RawMem<OwnedPair> pairBuf;

const bool ownsFlag;

OwnedPair* getPairPtr() {

return reinterpret_cast<OwnedPair*>(

pairBuf.data);

}

template<typename Val1,typename Val2>

void createCopy(Val1& v1,Val2& v2) {

new(getPairPtr()) OwnedPair(v1,v2);

}

public:

OwningRefPair(T& first_, U& second_,

bool copy)

: first(copy ? getPairPtr()->first

: first_),

second(copy ? getPairPtr()->second

: second_),

ownsFlag(copy) {

if(ownsFlag) {

createCopy(first_,second_);

}

}

~OwningRefPair() {

if(ownsFlag) {

getPairPtr()->~OwnedPair();

}

}

};

Listing 5: The OwningRefPair class template

namespace utils {

template<typename T>

struct Struct {

T t;

};

class Unknown;

union align_t {

bool b;

char c;

short s;

int i;

long l;

wchar_t w;

float f;

double d;

long double ld;

void* vp;

void (*fp)();

void (Unknown::*mfp)();

Unknown* (Unknown::*mdp);

Struct<bool> sb;

Struct<char> sc;

Struct<short> ss;

Struct<int> si;

Struct<long> sl;

Struct<wchar_t> sw;

Struct<float> sf;

Struct<double> sd;

Struct<long double> sld;

Struct<void*> svp;

Struct<void (*)()> sfp;

Struct<void (Unknown::*)()> smfp;

Struct<Unknown* (Unknown::*)> smdp;

};

template<typename T>

union RawMem {

char data[sizeof(T)];

align_t align;

};

}

Listing 4: rawmem.hh (include guards omitted)

2 Platforms may arbitrarily choose to make the alignment of one particular user-
defined type distinct from that of any other types.

3 For an implementation that discards types bigger than the type we need the
alignment of, to avoid wasting space, see [2]

Putting together the fundamentals

Having pinned down the value_type for our iterator, and what
we get when we dereference it, we can put together a basic
version of our PairIt, as in listing 6. This highlights a couple of
issues. Firstly, we delegate all the type selection to the
PairItHelper template, so we can inherit from an appropriate
instance of std::iterator<> without having to specify all
the types explicitly. Secondly, even though std::iterator<>
defines all the required typedefs, we have to repeat them here,
so we can use them within the class definition; the base class is a
dependent name, so it isn’t searched during resolution of
unqualified names within the class. This begs the question of
whether or not we need to inherit from std::iterator<> at
all; some existing code expects all iterators that aren’t raw
pointers to inherit from std::iterator<>, and doing so
causes no harm. We also can reuse the memory management from
OwningRefPair , so we don’t have to rely on any particular
properties of the value_types of the underlying iterators,
except this time we delegate the construction and destruction to
PairItHelper as well. Note also that all the members are
mutable – this is because we don’t want to pass on any
requirements that the encapsulated iterators be non-const for
specific operations, and the cache needs to be updated in response
to dereferencing the iterator, which is a const operation.

Beyond the basics

Now that our i terator supports the basic operation of
dereferencing, we need to cover the remaining i terator
requirements from the C++ Standard. For Input Iterators, the
relevant section is 24.1.1, and table 72. This requires that in
addition to dereferencing, we also require:
l

Copy-construction,
l

Assignment,
l

Equality and Inequality operators, and
l

Pre- and post-increment operators.
These operations are also sufficient for Output Iterators, as they
cover all the requirements from section 24.1.2 and table 73.

In all cases, we can just defer to the underlying iterators, and
perform the operations on them. However, there is a consequence
for exception safety – since we know nothing about the effects of
the operations on the underlying iterators, including whether or not
they through exceptions, and whether or not the iterator types
support a non-throwing swap operation, we have to add a
disclaimer to the usage of our iterator – if an operation on a
PairIt throws an exception, then the iterator is to be considered
to have become invalid. If we don’t add this disclaimer, then it is
possible that the state of the iterator may become confused, as (for
example) one of the underlying iterators may have advanced, and
the other one not.

Another point to make is that copy-construction and assignment
should only copy the iterators, not the cache. This is to avoid
unnecessary copying of the cached data, which would only provide
an additional source of exceptions for no gain – the cache must be
regenerated every time the iterators are dereferenced anyway to
support Input Iterators that automatically advance when read (which
may not actually be allowed anyway). When dealing with non-Input
Iterators, the cached value is only a couple of references, so this
should add little performance penalty. The alternative is to have every
function that modifies the underlying iterators call emptyCache(),
and only call initCache() if the cache is not initialised.

Moving Forward

For the cases where both the underlying iterators are at least
Forward Iterators, we need to meet additional requirements, for
PairIt to also work as a Forward Iterator. These are given by
section 24.1.3 and table 74 of the Standard, and are actually
mostly semantic constraints, rather than operational constraints,

29

Overload issue 51 october 2002

#include <rawmem.hh>

template<typename Iter1,typename Iter2>

class PairIt : public

PairItHelper<Iter1,Iter2>::IteratorType {

private:

typedef PairItHelper<Iter1,Iter2> PairDefs;

typedef typename

PairDefs::ValueTypeDef ValueTypeDef;

public:

typedef typename

PairDefs::iterator_category iterator_category;

typedef typename PairDefs::value_type value_type;

typedef typename

PairDefs::difference_type difference_type;

typedef typename PairDefs::reference reference;

typedef typename PairDefs::pointer pointer;

private:

pointer getValuePtr() const {

return reinterpret_cast<pointer>(

dataCache.data);

}

void emptyCache() const {

if(cacheInitialized) {

ValueTypeDef::destruct(getValuePtr());

cacheInitialized=false;

}

}

void initCache() const {

emptyCache();

ValueTypeDef::construct(getValuePtr(),it1,it2);

cacheInitialized=true;

}

public:

PairIt(Iter1 it1_,Iter2 it2_)

: it1(it1_),it2(it2_),cacheInitialized(false){}

~PairIt() { emptyCache(); }

reference operator*() const {

initCache();

return *getValuePtr();

}

pointer operator->() const {

initCache();

return getValuePtr();

}

private:

mutable Iter1 it1;

mutable Iter2 it2;

mutable utils::RawMem<PairDefs::DeRefType>

dataCache;

mutable bool cacheInitialized;

};

Listing 6: A basic implementation of PairIt

so these are implemented automatically if the underlying iterators
are themselves Forward Iterators. The only additional operation
required is that PairIt must be Default-constructible , which is
trivially implemented.

If our underlying iterators are at least Bidirectional Iterators, we
should also implement the pre- and post-decrement operators to
maintain that level, as detailed in section 24.1.4 and table 75 of the
Standard. As for pre- and post-increment, these can be implemented
merely by forwarding to the underlying iterators:

PairIt& operator—() {

—it1;

—it2;

return *this;

}

Dereferencing at Random

If our underlying iterators are both Random Access Iterators, then
we have a whole swathe of additional requirements to support, as
detailed in section 24.1.5 and table 76 of the Standard. These are:
l

The arithmetic operators + and -,
l

The arithmetic assignment operators += and -=,
l

The comparison operators <, >, <= and >=, and
l

The subscripting operator [].
The arithmetic operators are trivial – just forward to the underlying
iterators. The comparison operators require a bit more thought –
what do we do if the first iterator is less than its partner, but the
second isn’t? – but the problems can be defined out of existence;
iterators can only be compared if they are in the same range. This
implies that one is reachable from the other. If the first and second
underlying iterators don’t give the same results when compared
against their partners in the PairIt we are comparing against,
then this can’t be the case, and the issue can be avoided – in fact,
we could get away with just comparing the first iterator in each
pair, so the comparison operators are also trivial. The subscripting
operator is easy, too – it[n] is just syntactic shorthand for
*(it+n), so we can implement it that way.

However, a bit more thought reveals that doing things the
“simple” way requires that all these operations are either member
functions or friends of PairIt, yet some could be implemented
in terms of others. For example, the idiomatic way of implementing
+ is to use += on a copy, as follows:

template<typename I1,typename I2>

PairIt<I1,I2> operator+(PairIt<I1,I2> temp,

std::ptrdiff_t n) {

temp+=n;

return temp;

}

The same applies to the comparison operators – all the others can
be implemented in terms of operator<. In fact, operator<
itself can then be implemented in terms of subtraction, since
these are Random Access Iterators, so the list of friends and
member functions is now down to:
l
operator+=,

l
operator-=,

l
operator- where both operands are iterators, and

l
operator[], which is required to be a member function.

Helper functions

Sometimes we don’t want to have to specify the precise type of
our iterators explicitly, because we’re creating a temporary object

to pass to an algorithm, and doing so requires excessive typing, if
it is possible at all. For this reason, we also provide a helper
template function makePairIterator that takes two iterators
as parameters, and returns a PairIt containing them. This
simple function and its use is shown in listing 7.

Of course, as written, this will copy the elements of the
containers to do the comparison, as the value_type of the
pair iterators is a custom pair type, as described above, so a
temporary std::pair has to be constructed. It is therefore
more efficient to write functor class with a template function call
operator:

struct MyPairComparisonFunctor {

template<typename PairType>

bool operator()(const PairType&,

const PairType&) const;

};

You could, of course, write a comparison function to take the
precise custom pair type in question, but this varies depending on
the iterators, so is not as straightforward as it may seem.

Conclusion

Implementing an iterator adapter to treat a pair of sequences
as a sequence of pairs is not a trivial task, though some of the
individual parts are; the biggest headache is deciding the
value_type and the re turn type for the dereference
operator.

However, it provides a genuinely useful service, and in
combination with other iterator adapters and function objects, can
be used to access data in intuitive ways, however it is stored.

Anthony Williams
anthony_w@onetel.net.uk

References

[1] ISO/IEC 14882, Programming Languages – C++.
International Standard, September 1998.
[2] Andrei Alexandrescu. Generic<Programming> :
Discriminated unions (II). C/C++ User’s Journal, 20(6), June
2002. Available online at
http://www.cuj.com/experts/2006/alexandr.htm.

30

Overload issue 51 october 2002

template<typename Iter1,typename Iter2>

PairIt<Iter1,Iter2> makePairIterator(

Iter1 it1,Iter2 it2) {

return PairIt<Iter1,Iter2>(it1,it2);

}

// use of makePairIterator

std::vector<int> src1;

std::deque<double> src2;

bool myPairComparisonFunc(

const std::pair<int,double>&,

const std::pair<int,double>&);

std::sort(

makePairIterator(src1.begin(),src2.begin()),

makePairIterator(src1.end(),src2.end()),

myPairComparisonFunc);

Listing 7: The makePairIterator helper function

