
Overload issue 53 february 2003

contents

credits & contacts

Editor:

John Merrells,
merrells@acm.org
808 East Dana St,
Mountain View,
CA 94041, U.S.A

Advertising:

Pete Goodliffe, Chris Lowe
ads@accu.org

Membership:

David Hodge,
membership@accu.org
31 Egerton Road
Bexhill-on-Sea, East Sussex
TN39 3HJ, UK

Readers:

Ian Bruntlett
IanBruntlett@antiqs.uklinux.net

Phil Bass
phil@stoneymanor.demon.co.uk

Mark Radford
twonine@twonine.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Website: http://www.accu.org/

Membership fees and how to join:

Basic (C Vu only): £15
Full (C Vu and Overload): £25
Corporate: £80
Students: half normal rate
ISDF fee (optional) to support Standards

work: £21
There are 6 journals of each type produced

every year.
Join on the web at www.accu.org with a

debit/credit card, T/Polo shirts available.
Want to use cheque and post - email
membership@accu.org for an
application form.

Any questions - just email
membership@accu.org.

Build Systems by Allan Kelly 5

Implementing the Observer Pattern, Part 2 by Phil Bass 10

From Mechanism to Method - Total Ellipse by Kevlin Henney 14

Indexing STL Lists With Maps by Silas S Brown 18

A Return Type That Doesn’t Like Being Ignored by Jon Jagger 20

C++rossword by Lois Goldthwaite 22

C++ Standards Library Report by Reg Charney 23

C++ Templates by Reg Charney 25

4

Overload issue 53 february 2003

Editorial

This is not sustainable. Over the past few years each issue has become harder and harder for us
to fill with quality articles. This is not because we reject low quality articles, but because we receive
fewer and fewer submissions.

The quality of the articles in this publication is due to the work of the Overload editorial board
readers. They do not act as a content filter rejecting submissions. They read, comment, discuss,
and re-read, re-comment, and re-discuss, until they feel that an article is up to the standard that
the Overload readership has come to expect. Given the choice between filling space with an item
of low relevance, or of dubious technical quality, and an empty space they go with the blank page
every time.

There is no quality hurdle that an author needs to clear. We gratefully accept all submissions
and guide the author through the development process from draft to published article. We offer
far more advice and help then any author would get from a commercial journal.

Some of the content shortfall is due to regular contributors moving on to other things. I think
that’s great. The ACCU alumni are writing for commercial journals, writing books, speaking at
conferences, being consultants, and contributing to open standards. We shouldn’t be relying on
them to fill the magazine. I like it that members can practice and hone their talents within the
ACCU and then move on to greater things.

Note that the ACCU fees are not magazine subscription fees. They are membership fees. That’s
an important distinction. The ACCU is a community of peers gathered together to benefit from
each other’s experiences. If Overload always contains the same few voices we’re only going to
be hearing from a small subset of our community.

I’m sure you’re tired of reading CVu and Overload editorials asking for articles so I’ll try to be
brief. You get out of this organisation what you put into it. You grow by challenging yourself. You
really understand something if you can explain it to somebody else. You do have something
interesting to say.

Your action item is to email me now. I want to hear what you want to read about in Overload
magazine. I want to hear about what you want to write about.

John Merrells

Copy Deadline
All articles intended for publication in Overload 53 should be submitted to the editor by January 1st 2003, and
for Overload 54 by February 14th 2003.

Note the earlier than usual deadline for Overload 54 - this is to allow us to produce the April journals in
time for the conference.

T
his issue of Overload has been a struggle for us to put together. At the deadline
we had only 11 pages of articles. The minimum we need is 24 pages. I wanted to
just skip this issue, but the ACCU committee was determined that we should

publish an issue, even if it was much shorter than usual. Thanks to the last minute efforts
of a few individuals we actually managed to author, source, review, revise, and publish
the rest of this issue within a week.

5

Overload issue 53 february 2003

Build Systems
by Allan Kelly

In my last essay I discussed the structure of the directory tree
containing source code, here I want to discuss the systems we use
to build source code. The directory tree structure plays an
important part in this. The structure we use to hold our source
code, and the mechanism we use to convert that source code into
programs are all part of the same problem.

Source code is the representation of everything you know about
the problem and solution domain, creating it is a process of blood,
sweat and tears, but unless you can turn it into executable programs
it is worthless. Before it can generate revenue it must be built.

First and foremost we must be able to build our source code. This
may seem obvious but there is nothing more depressing than being
given source code and finding we can’t build it. The .dspwon’t load,
or make bombs out immediately - or there just isn’t a make file.

It helps to ask two questions:
l Given a new PC how long does it take to get it building our

source?
l If we hire a new developer how difficult is it for them to build

the system?
One company I encountered considered it a rite of passage for a
new developer to build the server, this is quite adversarial and
depressing to a new developer.

Objectives

Let’s consider a few objectives for our build system:
l Reliable: no point in having a system that is slightly random.
l Repeatable: having a system that only works three out of four

weeks is no good.
l Understandable : build systems tend to become increasing

cryptic over time, especially if you use some of the more obscure
syntax of make.

l Fault aware: things will go wrong with our build system, we
don’t expect fault tolerance but we can aim for fault awareness.
When a build fails we would like as much information on why
and how as possible.

There are more objectives we may like to add over time: multi-
platform capable, automated, multiple build types (e.g. debug,
release), fast and so on but let’s start with a short list.

We need to think of the build system as part of the source code.
Makefiles are as much part of your system as any other source code
file, be it a .cpp, or .hpp. They should be subject to the same
source code control as any other file. Your makefiles are essential
to your applications.

And everyone should use the same build process, and the same
makefiles. It is counterproductive if you using one set of makefiles
and Joe using another set. What if you set the /GX options and he sets
the /O2 options? Subtle differences will emerge, subtle faults will
appear - they will even appear and disappear at “random” intervals.

Subtlety is bad
If it is different make it obvious - Write it BIG

Unfortunately this leads to a contradiction in the build system.
Developers want a system that is easy to use, integrates with our
tools, is fast, and does the minimal rebuild possible. However,
the build master wants a 100% repeatable process - no typing
make again if it fails the first time - and their definition of “easy
to use” is different from ours.

Where we have an overnight batch build we have slightly different
objectives again: speed is less of an issue, but automation is paramount.

Some of these difference can be easily resolved (e.g. have the
build master use the same build process as the overnight build,
maybe even take a release candidate from the overnight build),
other difference aren’t reconcilable and compromise is needed.

The clean build

When developing a build system my first milestone is:
l Given a clean machine, I should be able to install a set of

packages from a given list, get files from source code control,
and perform a build.

If we can’t do this, do we have any hope of ever building our
software? Consider the alternatives. Many of us have been
there, you start work at a new company and try and build the
code. It fails, someone says “Yes, you need to install Python”,
and you install Python. It fails. Then someone says “Yes, you
have to install version 2.1.” Next time it fails: “Can’t find
\boost\any.hpp”, after much searching you discover that
everyone else has BOOST_ROOT set in the environment but has
forgotten about it. And so on.

Once I can rebuild on a clean machine look to repeatability:
l Automate the build to happen at 1am every night.
(Does 1am sound OK to you? Or are your developers frequently

working until 2am? Are you really sure you want them checking in
when they are bleary eyed? I’m told that Apple used to have a rule
against check-ins later than 10pm. Perhaps more problematic than
insomniac developers is what to do when your development spans
multiple time zones, or when the build takes a long, long time.)

If you can’t automate your build how do you know it is repeatable?
How do you know it doesn’t rely on Pete blowing the tree away every
day at 3pm? Even if you document your build process (“install Visual
C++, download Boost, build the utils library, and build the application”)
how do you know the document is accurate and up to date? The
process should be the documentation.

While creating a repeatable build process you need to strive to
make the build aware of potential problems. Have it issue
meaningful messages if a package is missing, have it log output to
a file, even comment the makefiles!

With these elements in place we are half way to meeting the
objectives outlined above.

Environment variables

Variables, as always, are the key to capturing variance and the
same is true with environment variables. In the build system we
use them to express configuration details (where to find the
external tree), options (build debug or release), set defaults
(developers will default to debug builds, build master will default
to release and the overnight build should do both) and
communicate between the makefiles.

Unix folks have always been friendly with environment variables
while Windows people, on the other hand, see environment
variables as a hangover from the DOS day - who needs them when
you have the registry? However, they are just as important on
Windows machines as Unix machine for two reasons. First, they
communicate with the compiler and make much better than the
registry, and second, they provide a common mechanism so scripts
can be used on Unix too.

You can use an environment variable like PROJECT_ROOT
almost as well in Windows as in Unix. The project configuration
in the Microsoft IDE does its best to confuse you, the “project
settings” dialog is even more fiddly than the control panel and uses

6

Overload issue 53 february 2003

the $(PROJECT_ROOT) syntax like make and bash, and unlike
the Windows command line %PROJECT_ROOT% syntax.

Here is a section of my current .bashrc file:
export PROJECT_ROOT=f:/xml

export EXTERNAL_ROOT=f:/external/lib

export BOOST_ROOT=f:/external/boost_1_27_0

export GSOAP_ROOT=$EXTERNAL_ROOT/soapcpp-win32-

2.1.3

export BERKELEYDB_ROOT=$EXTERNAL_ROOT/db-4.1.15

I’m running the Cygwin toolkit for Windows which provides a
Unix-like environment. This gives me a rich shell environment -
far superior to the command shell provided by Microsoft. It is
also, give or take a drive reference, compatible with the bash
shell on my Linux box. Even when I’m not engaged in cross-
platform work I run a Unix shell, currently Cygwin bash but
MKS also do a good Korn shell.

Returning to the .bashrc section, I’m mostly defining
variables for third party tools and libraries in terms of previous
variables. Not always, because (a) I’m a little bit random myself,
(b) I sometimes try new versions of things and they may live in a
different place until I decide what to do with them. The important
thing is I have flexibility.

Now, take a look at a section from one of my make files:
ifeq ($(PROJECT_ROOT),)

$(error Error: PROJECT_ROOT not set)

endif

ifeq ($(EXTERNAL_ROOT),)

export EXTERNAL_ROOT=$(PROJECT_ROOT)/external

$(warning Warning: EXTERNAL_ROOT not set \

using default $(EXTERNAL_ROOT))

endif

ifeq ($(BOOST_ROOT),)

export

BOOST_ROOT=$(EXTERNAL_ROOT)/boost_1_26_0

$(warning Warning: BOOST_ROOT not set using \

default $(BOOST_ROOT))

endif

The makefile will check to see if it can find the important
variables. If it can’t find PROJECT_ROOT then all bets are off,
give up now. If it can’t find EXTERNAL_ROOT then make a
guess, as it happens the guess it will make here is bad but as long
as I’ve set in my environment it doesn’t really matter. What is
important is that the system is aware of a potential problem; it
issues a warning but attempts to carry on.

Next it moves on to check a long list of third party sources.
Again, if it can’t find them it makes an educated guess and gives
me a warning. In this way I don’t need to set a large number of
variables to get the build up and running, just a couple of key ones,
although I have the option to do things differently, to put my
external libraries somewhere else.

Importantly this is self documenting, if I need to know what third
party packages I should download I can look at the makefile, the
same file which will be used to find them when I do the build, the
makefile is the documentation.

Secrets of Make

The original Unix make program must have the most cryptic
syntaxes developed before the advent of Perl. Over the years it

has put many developers off using it - and sent many running into
the arms of Microsoft and their crippled make system using
.dsw and .dsp files.

There are two reasons to ditch your Microsoft build system in
favour of real make: first it is massively more flexible and powerful
(although it is also easier to shoot yourself in the foot). Secondly:
it allows you to construct true hierarchies, and perform recursive
builds. In contrast Microsoft provides only one level of depth - that
of grouping .dsp files in a .dsw.

There are several secrets about make you should be aware of
before continuing:
l GNU make (sometimes called gmake) is a very different creature

to the original Unix make, the old syntax is still there but there
is new simpler syntax which makes it far easier to program.

l Rules and variables (confusingly called macros) are the key to
a good makefile.

l Rules specify targets.
l Variables can be picked up from your shell environment, set on

the command line invoking make, or set within the make script.
l Rules can be specified in terns of environment variables. If the

environment variables change, the rules change, this includes
targets.

l By default, make will execute the first rule (target) it sees when
processing a makescript. Unless another target is specified on
the command line only the first rule will be processed, of course,
the first rule may cause other rules to be invoked. (By
convention this rule is usually called all.)

l The order of rules is not important - exceptions being the first
rule, duplicate rules and includes.

l You can include other makefiles in your makefile.
l If you include a file that does not exist, make will turn in on itself

to see if it knows a rule to create the file you want included
before it executes the first rule.

l Except rules invoked to find or generate include files, no rules
will be executed until all includes have been processed, then the
first rule encountered will be processed.

l Make comes with a set of in built, default, rules which are useful
for small programs but not much else. Many of these rules are
legacy rules (e.g. compiling .pas files) and it is usually easier
to disable them (with .SUFFIX) and specify your own.

l If things are too difficult to do in make you can always run a
shell script from within make.

Everything I talk about here is specifically about GNU make. Your
system may come with another make program, some of what I say
will still be relevant but not all. Since there as almost as many make
programs as there are compilers it is impossible to cover them all.

Before continuing let me point out that when I speak of build
systems, I’m talking about the whole build process, source code
extraction, build scripts, process and make files. When I talk of
make systems, I’m talking specifically about the make scripts which
run the compiler and other tools.

Make sandwiches

Make systems usually end up as a three layer sandwich. The first
layer specifies the environment variables to be used, this sets the
foundations of what is to come. The second layer is thin but
essential: it specifies the first rule. The third layer specifies
everything else, that is: the other rules needed.

We want our make system to be easy to use, ideally we should
just type make, and everything will be built. Or rather, when we

type make, we want everything in our current directory to be made,
and if necessary, anything below the current directory.

If no file is specified on the command line make will attempt to
process the file Makefile - there are several other names it will try
before or after this, e.g. GNUmakefile, so consult your
documentation.

Since the environment variables and rules are fixed it is this
element of the sandwich that changes, the makefile in our
immediate proximity is the filling in the sandwich, and it is here
that execution begins, this is the interesting bit between two bits of
bread. Most fillings will look very similar; they pull in the
definitions, specify the first rule, and then pull in the other rules.

From a command line, with our current directory containing the
makefile shown in figure 1, processing runs something like this:
1 Make is invoked and looks for Makefile, loading this file it

starts to process
2 First include MakeDefs.mk - this pulls in additional variable

definitions. This file is not local so we must specify where to
find it. If PROJECT_ROOT is not set it will fail. Importantly,
it cannot contain any rules as we want all to be the first rule
make encounters.

3 Encounter rule all and remember it is the first rule we have
encountered.

4 Include MakeRules.mk , store rules “as is”, and only
expand environment variables when the rules are
encountered.

5 Execute the first rule, all, and any that are implied by it, when
complete end.

Dependencies

One group of rules we need to specify is file dependencies, we
need rules which say Server.cpp depends on Server.hpp,
Tcp.hpp, Utils.hpp and so on. Given that a typical .cpp
file may specify half a dozen or more .hpp file this can be a
fairly large task so we don’t want to write these rules ourselves.
(If we don’t specify these rules then the compiler won’t get to
recompile Server.cpp after a change to Server.hpp.)

Luckily help is at hand. GCC provides the several command line
options (-M, -MG, -MM, etc.) to generate this information. Visual
C++ provides the /FD switch for something similar - although I’ll
freely admit I’ve never actually used this in anger, I have looked at

it well enough to say: it is not well documented
and doesn’t work like the GCC options.

My current make system uses makedepend,
which originated at Tektronix and MIT as part
of the X system. This comes as standard on
some Unix versions, if you don’t have it
already, or are using Windows it is easy to track
down a version on the net. Using the same
program on Windows and Unix means there is
no need for the makefiles to differ.

The default behaviour of makedepend is to
append the generated rules to any makefile it
finds in the current directory. This
complicates matters as files will appear to
change when there is no substantive change.
A better way is to use makedepend to generate
an additional makefile and include this. Since
make will look at its own rules for any file it
can’t include this becomes almost trivial.

In the MakeRule.mk file we can add a new rule:
export DEP_FILE=depends.mk

$(DEP_FILE):

@echo \# Generated dependencies file

>$(DEP_FILE)

@echo \# Never check this in to source

control >>$(DEP_FILE)

@echo \# Dependencies follow >>$(DEP_FILE)

makedepend -f $(DEP_FILE) \

-Y $(CC_OPTS) $(CC_INCLUDE) $(SRCS) \

-s"# Dependencies follow" > /dev/null 2>&1

grep ".o:" $(DEP_FILE)

| sed "s/\.o/\.obj/g" >>$(DEP_FILE)

Where SRC is a list of the source files to be processed, CC_OPTS
specifies the compiler options and $(CC_INCLUDE) is a list of
include paths.

In our local makefile we can add a new include after we include
MakeRules.mk:

include $(DEP_FILE)

When make can’t find depends.mk it will now know how to
generate it from the rule in MakeRules.mk. Be warned:
running makedepend can be time consuming.

The example rule has an additional grep command run once the
dependencies have been generated. This is to cope with platform
differences. On Unix object files are normally .o files, while on
Windows they are normally .obj files. Being a Unix program
makedepend will generate the rules in terms of .o files, for a
Windows compile these rules are pointless, there will never be an
.o file so the rules are never used. Unfortunately this means there
are no rules for .obj files. Hence the grep and sed to create
Windows equivalent rules. On a Unix system, the reverse is true
and the .obj rules will be ignored.

Recursive and clean

Although not shown here it is advisable to include some house
keeping targets. Typically a clean target will delete everything
that has been generated, .obj’s, .exe’s, .lib’s, etc. This can
be drastic so some other targets like cleanlib and cleanobj
can be included too which do lesser cleanups.

When we organise our directories as hierarchies we frequently
end up with makefiles that don’t run the compiler at all, instead they

7

Overload issue 53 february 2003

Figure 1 Makefile sandwich

MakeRules.mk
Specify the

other rules

Makefile
Specify the

first rule

MakeDef.mk
First lay the

foundations

%.obj:%.cpp

$(CXX) $(CXXFLAGS) –c –Fo$@ $<

%.obj:%.c

$(CXX) $(CFLAGS) –c –Fo$@ $<

...

include $(PROJECT_ROOT)/make/MakeDefs.mk

all: server.exe main.o –I comms –I …

include $(PROJECT_ROOT)/make/MakeRules.mk

export BOOST_ROOT=$(EXTERNAL_ROOT)/boost_1_27_0

export CC_INCLUDE=-I $(BOOST_ROOT):…

export CC_OPTS=$(CC_INCLUDE) …

4

1
3

5

2

simply call several makefiles in sub-directories. There are two types
of node in our hierarchy tree. Leaf nodes that contain source code
and makefiles to compile the source, and intermediate nodes that
serve to collect leaf nodes together.

Processing can be speeded up in these cases by skipping the
inclusion of MakeRules.mk.

Care needs to be taken to ensure that these intermediate
directories pass through targets like clean. The clean rule in
an intermediate makefile will look quite different to one in a leaf
node, although both must share the same name.

To this end I’ve recently separated my clean rules into
MakeClean.mk and MakeCleanRecursive.mk.
MakeClean.mk can be included from MakeRules.mk so is
available in all leaf nodes. Intermediate nodes don’t include
MakeRules.mkbut instead include MakeCleanRecursive.mk
to pass the target on to sub-directories.

Sometimes when recursing it is easier to use a bit of shell script,
since make is happy to run a shell we can write:

clean: cleanlib

for i in $(MODULES); do $(MAKE) -C $$i clean;

done

The fact that we can recurse into our tree is thanks to our
directory structure. If we had a simple flat structure with
everything, applications and libraries hanging off a single root,
things would be more complicated.

Get source code

One of the tasks originally envisaged by make’s designers was
getting source code from source code control before building;
indeed, there are built-in rules for SCCS and RCS. Usually
though it is better to treat the extraction of source code as one
step, and the building as another even if this means having a shell
script to run one command and then make.

This makes it easier for developers to work with make. When
developing code you are unlikely to want make getting the latest
version of files as soon as someone has checked them in. This is
particularly true if using CVS where the very file you are working
on may change if this happens.

Separating the get from the build means developers can choose
when to update their tree. Simply running a build will not result in
source code updates. Nor will we incur the time delay as the source
control system checks for updates and retrieves any.

Although developers will usually update their tree at convenient
internals to suit themselves batch builds should always build a fresh
tree. It is a good test of a system to be able to completely delete a
tree and rebuild it from scratch. Indeed, this is worth while exercise
for developers to ensure they don’t inadvertently forget to check-
in some file.

Make Miscellany
l It is usually a good idea to disable the built-in rules. This can be

done with the .SUFFIX directive - which itself has subtly changed
its use over the years. Disabling the built-in rules assists with
debugging (make -d) and marginally improves performance.

l I’ve taken to including a help target (make help) in my
systems. This normally takes the form of a help rule in a
MakeHelp.mk file. Normally this will simply validate any
external variables.

l The list of source files used for building is normally referenced
in several places. To save duplication it usually helps to lists

these in one variable, e.g.
SRCS = Configurator.cpp Interface.cpp main.cpp

l Frequently we want to create different build types for our
compilations. Say a debug version and a release version. This
is somewhat tricky as make expects to work in the current
directory. My solution is to massage the filenames, this can be
done with variable definitions given the list of source files:
first change the suffix on the filenames

ifeq ($(COMPILER),msvc)

export OBJNAMES = $(SRCS:.cpp=.obj)

export OBJNAMES += $(CSRCS:.c=.obj)

endif

ifeq ($(COMPILER),g++)

export OBJNAMES = $(SRCS:.cpp=.o)

export OBJNAMES += $(CSRCS:.c=.o)

endif

now append the build directory

export OBJS = $(addprefix $(BUILD_TYPE)/,

$(OBJNAMES))

Where BUILD_TYPE would normally be set to Debug or
Release in the environment.

l Remember to create directories before you try and put anything in
them, this can be done with a rule for the directories themselves:
$(OUTPUT_DIR):

mkdir -p $(OUTPUT_DIR)

$(BUILD_TYPE):

mkdir -p $(BUILD_TYPE)

Generate what you can

Sometime we don’t want to write in our chosen programming
language. Some things are easier to represent in other forms, for
example we use IDL to describe object interfaces, or we may
want to encode the contents of a text file within source code, e.g.
error messages which are defined externally, or localised message
files.

In these cases it is useful to generate C++ code from another
source and then compile it. Taking our error messages file this may
contain an error number, sub-system code and a text message.
Using a make rule we may specify a rule for converting text files
to .cpp files, the rule could run a Python script. Once generated
we would then compile the resulting .cpp file as normal.

The side box “Generating build numbers” provides an example
of how we can use Python to generate C++ source code.

Just the beginning

Once you have your make system up and running there are a
whole host of enhancements you may want to consider. Rather
than go into details here are some ideas:
l Always create a log file of messages from the batch build - when

it runs at night you need to know what happened.
l Make the build log public, e-mail to developers.
l Add automated tests to the build process - this is a good place to

start automating your tests.
l Add a “package” target to the make system to collect all the files

needed for an install. For Unix you may like to tar these up, for
Windows you could automate your installer creation.

The example system I included with my article Writing Extendable
Software (Overload 49) includes a simple make system along these
lines and is available at http://www.allankelly.net. Time
permitting I may upload another example.

8

Overload issue 53 february 2003

Finally

To those who use Microsoft .dsp project files this may all seem
excessively complex. However, .dsp files do not scale and do
not work well on larger projects. Nor are they as rigorous and
adaptable as makefiles.

Time spent developing a directory structure in depth, and a
rigorous build system will result in a better defined project which
can absorb additions and expansion more easily than one which is

held together with sticky-tape and rubber bands. The rigors of this
approach force problems to the surface.

By developing these aspects of the project fully we create strong
logistics support for our development. This is all part of our
strategy to create a software development process which can
produce quality software, where every activity in the development
process interlocks and supports the others.

Allan Kelly
Allan.Kelly@bigfoot.com

9

Overload issue 53 february 2003

Generating build numbers
In addition to version numbers it can be useful to individually
number each build. To do this we need a mechanism for storing
the last build number, incrementing it, restoring the incremented
number and incorporating the number within our build.

First, we want a file we can check out of source control, change
and check back in with the revised version number. This may also be
a useful place to keep various other pieces of information we don’t
want to hard code, e.g. the version number or company name. And
we would like the file to be plain text so we can change it easily.

Ideally, we want our file to look something like:
BuildNumber = 126

VersionNum = "0.1 alpha"

Copyright = "(c) Jiffy Software 2002"

As luck would have it this is actually valid Python so we can
save this as Version.py. If we had written our file as C++
we would need a complex parsing algorithm to read the file,
increment the build number and re-write the file. Since it is
Python we can write another Python script which includes the
file and treats these variables as, well, variables.

So, we write a script called GenVersion.py that looks a bit
like this:

import Version

version.BuildNumber = version.BuildNumber +1

...

rewrite the version file
ver_output = open("version.py", "w")

ver_output.write("BuildNumber = " + \

str(version.BuildNumber) + "\n")

...

write a C++ file
cpp_output = open("Version.cpp", "w")

cpp_output.write("std::string \

Version::BuildNumber() {\n");

cpp_output.write("\treturn \"" + \

str(version.BuildNumber) + "\";\n")

cpp_output.write("}\n\n")

Next you will want to add a rule to your makefile to execute the
script:

Version.cpp: version.py

bash -c "python GenVersion.py"

This example creates Version.cpp so you will need a
Version.hpp but as this rarely changes it doesn’t need
regenerating. You may like to generate other files with this
information, say a Windows resource script, or write the build
number to the build log.

In this example I’ve omitted niceties such as dealing with
the other variables, closing files and such. You can
see the complete scripts at my web site,

http://www.allankelly.net/writing. The most
important nicety that is missing is an option not to bump up the
build number.

Hang on you say, “Aren’t we talking about incrementing the
build number? Why would we want not to do it?” Actually it is
important to ensure the build number is only bumped when we
want it bumped. If every time a developer tried to build source
code the build number would run wild and be useless.

The trick is to only bump the build number when we are doing
an official build. Usually this means a batch build. Developers
building on their local machine don’t count. So, we make the
default case the current build number from Version.py , and
add a different rule to bump the build number, so we get:

all: Version.cpp

bumpBuild: all

bash -c "python GenVersion.py Bump"

Version.cpp: version.py

bash -c "python GenVersion.py NoBump"

By default Make will execute the all rule, which will only rebuild
Version.cpp if Version.py is newer, in which case the build
number will be unchanged. If however, we execute the
bumpBuild rule (which we will do for an official build) then we
execute the second rule, which will always generate
Version.cpp and in the process increment the build number.

Deciding when to increment the build number can become a more
vexed question still. Suppose you bump it for every over night build
on Windows, suppose you now introduce a nightly Linux build.
Should they use the same number? Should they even use the same
number sequence? Maybe the new build should start from one.

Generated files like this should not be checked into source code
control. We can recreate them at any time and they only clutter
up source control with frequent, minor changes. We also need to
take care not to make then read-only at any time as this may cause
a build error. Finally, if your build system has a “make clean”
option we need to remember to delete any intermediate files we
may have generated.

We can use these same principles of code generation to create
other elements of our system. Examples include:
l Internationalised language resources can be built from plain

text files, thus allowing translators to work with something
friendlier than C++ or a proprietary file format.

l Error and other information messages can be generated from
text files. Tab delimited files specifying error number, sub-
system and message text can be turned into C-arrays or even
C++ exception classes.

l SQL can be customised to different target databases.
l Install scripts which only install the components that are built.
Like template programming we have an option to vary what is
compiled into a program.

Implementing the Observer
Pattern in C++ - Part 2
by Phil Bass

In part 1 of this article I presented an Event/Callback library
intended to support the Observer pattern and hinted that it had
some limitations. The library was based on the following Event
class template:

In this version of the library an Event is essentially a list of
polymorphic function objects (callbacks) owned by the Event.
The attach() functions create a callback and add it to the list;
the detach() function removes a callback from the list and
destroys it. The notify() function simply calls each callback
in the list passing a single parameter.

Logic Gates

The company I work for supplies industrial control systems.
These systems are based on general purpose hardware
components and highly configurable software. For example, we
build “pods” that are part of underwater pipeline repair tools. The
pods are designed to withstand conditions on the sea bed, but
they contain general purpose I/O boards. As far as the software is
concerned a pod is little more than a collection of digital and
analogue inputs/outputs. Pods can be used to monitor and control
tools for lifting and lowering sections of pipeline, cutting the
pipe, welding pipes together and all sorts of ancillary operations.
Different tool sets are used for different jobs and the software has

to be configured accordingly. The configuration information is
held in a database.

The database stores information that defines the control logic.
For example, the data may indicate that a particular button on a
control panel turns on a lamp or controls a pump. At present this is
rather inflexible, so we considered using arbitrary networks of logic
gates as a more general solution. The database would store these
networks in the form of tables for each of the basic types of logic
gate (NOT, AND, OR), plus a table specifying connections between
the inputs and outputs of these logic gates. (Analogue inputs and
outputs are not considered, here, but a similar mechanism can be
envisaged for them.)

On start-up the control system software would create some logic
gate objects and connect their inputs and outputs as specified in the
database. The natural way to implement the connections was to use
our existing Event/Callback library, which is based on the Event
class template sketched in Listing1. An output is an Event and an
input is a function that can be attached to such an Event.

A Worry

As always, there is a down side to this design. Because AND, OR
and NOT gates are very simple a large number of them may be
needed for practical control systems. And, because the software
only “sees” an arbitrary network, it is not possible to control the
complexity of connections by using a hierarchical data structure.
The logic gates almost have to be stored as simple collections.
And collections require value semantics. Unfortunately, the Event
classes, and hence the logic gates that contain them, don’t have
the required semantics - in particular, they can not be copied
safely.

There are two well-known ways to resolve this problem. Either
the Event classes are changed so that they can be safely stored in
containers or some sort of value-like handles to Events are stored
instead of the Events themselves.

Copyable Events

It is fairly straightforward to change the Event template so that
Events can be stored in standard containers. Objects in standard
containers are required to be Assignable and CopyConstructible,
so implementing a suitable copy assignment operator and copy
constructor will do the trick. Since an Event owns its callbacks,
making a copy involves cloning the callbacks, which can be done
using the “virtual constructor” technique described in [1].

So, yes, we can make Events copyable, but is it a good idea?
Well, not really, because it creates another, less tractable, problem.
Consider the following scenario:
1 An Event is added to a container.
2 A callback is attached to the Event.
3 Another Event is added to the container.
4 The callback is detached from the original Event.
The program in Listing 2 illustrates this scenario.

With the implementation of std::vector that I am using,
step 4 fails because step 3 invalidates the iterator created in step 2.
In this case, the iterator is invalidated when the container it points
into (an Event) is moved from one memory location to another. C++
doesn’t provide a mechanism for defining ‘move’ semantics, so the
vector copies the original Event and destroys the original, leaving
a dangling iterator.

It is the application program’s responsibility to avoid this
problem. Possible fixes include: reserving space in the vector for

10

Overload issue 53 february 2003

template<typename Arg>
class Event {
public:

// Iterator type definition.
typedef ... iterator;

// Destroy an Event.
~Event();

// Attach a simple function to an
// Event.
template<typename Function>
iterator attach(Function);

// Attach a member function to an
// Event.
template<class Pointer,

typename Member>
iterator attach(Pointer, Member);

// Detach a function from an Event.
void detach(iterator);

// Notify Observers that an Event has
// occurred.
void notify(Arg) const;

private:
...

};
Listing 1 - The Event<> class interface

all the events before attaching their callbacks; using a container
whose push_back() function doesn’t move existing elements;
and attaching the callbacks only after all events have been added
to the vector. In the tiny program shown here we can simply swap
steps 2 and 3, but in general there may not be an easy fix.

There is one other avenue we might explore in our attempt to
store Events in standard containers without placing a burden on the
client code. Suppose we change the Event classes so that they keep
track of the iterators returned by attach(). Then, when an event
is moved all iterators pointing to that event can be adjusted
accordingly. But the appropriate ‘move’ semantics must be
implemented using the copy constructor, assignment operator and
destructor. These functions must adjust iterators pointing to the
original Event when it is moved, but not when it is merely copied,
assigned or destroyed. I imagine this can be achieved, but it
certainly makes the Event classes less efficient and less cohesive.
There has to be a better way.

Copyable Event Handles

If making Events copyable gets us into murky waters, perhaps we
should be using non-copyable events and accessing them via
copyable handles. The handles can be stored in standard
containers and the Event iterators will remain valid when the
handles are moved.

The Boost [2] shared pointer is a suitable candidate for a
copyable Event handle. It is a smart pointer template with shared
ownership semantics. All shared pointers pointing to the same target
object share ownership of that object, so that the target object is
destroyed when its last shared pointer is destroyed.

Using this technique the code in Listing 2 becomes the program
in Listing 3.

Although this solves the copyability problem, it comes at a cost.
Events are now allocated on the heap, the shared pointers have some
house-keeping to do and there is an extra level of indirection
involved in all Event accesses. Whether that cost is affordable
depends on the application, but it has a “bad smell” (in the Extreme
Programming sense). The purpose of an Event is to allow callbacks
to be attached and there’s nothing about this that suggests Events
should be stored on the heap.

Asking the Wrong Question?

In my experience, if a neat and tidy solution seems elusive it’s
usually because we’re trying to solve the wrong problem. So,
let’s look at the problem again and try to understand it better.

What is it about the Event classes that makes them so
uncooperative? It is simply that an Event copies its callbacks when
the Event itself is copied. It does so because it owns the callbacks.
Does it need to own its callbacks? Well, no, it doesn’t, so let’s see
what happens if we remove the responsibility for creating and
destroying callbacks from the Event classes.

Firstly, the Event classes become a lot simpler - little more than
a list of pointers to abstract functions. Listing 4 shows a reasonable
implementation of the simpler Event. Note that the std:: prefix
has been omitted (and an unnecessary typedef introduced) to
simplify the layout of the code on the printed page.

11

Overload issue 53 february 2003

#include <vector>
#include "Event.hpp"

void f(int) { return; }

int main() {
std::vector< Event<int> > events;
events.push_back(Event<int>());

// Step 1
Event<int>::iterator i0 =

events[0].attach(f); // Step 2
events.push_back(Event<int>());

// Step 3
Event<int>::iterator i1 =

events[1].attach(f);
events[1].detach(i1);
events[0].detach(i0); // Step 4
return 0;

}
Listing 2 - Invalidating iterators

#include <vector>
#include <boost/shared_ptr.hpp>
#include "Event.hpp"

void f(int) { return; }

typedef boost::shared_ptr< Event<int> >
Handle;

int main() {
std::vector<Handle> events;
events.push_back(Handle(new Event<int>()));
Event<int>::iterator i0 =

events[0]->attach(f);
events.push_back(Handle(new Event<int>()));
Event<int>::iterator i1 =

events[1]->attach(f);
events[1]->detach(i1);
events[0]->detach(i0);
return 0;

}
Listing 3 - Using copyable handles.

// Abstract Function interface class.
template<typename Arg>
struct AbstractFunction {

virtual ~AbstractFunction() {}
virtual void operator() (Arg) = 0;

};

// Event class template.
template<typename Arg>
struct Event :

list<AbstractFunction<Arg>*> {
void notify(Arg arg) {

typedef AbstractFunction<Arg> Func;
for_each(begin(),

end(),
bind2nd(mem_fun(

&Func::operator()),arg));
}

};
Listing 4 - Revised Event class template.

In this version of the Event classes I have
omitted the attach() and detach()
functions because I feel the std::list
member functions already do an adequate job.
In fact, the full splendour of the std::list
interface has been made available to clients of
the Event classes by using public inheritance.

Making Connections

Having removed the responsibil i ty for
creating and destroying callbacks from the
Event classes, we can either invent something
else for that purpose or pass the buck to the
client code. I propose to offer the programmer
a choice. The new Event/Callback library will
provide a Connection class template that
manages callbacks itself; alternatively, the
client code can create and destroy its own
callbacks. Sometimes we can have our cake
and eat it!

Listing 5 shows the Connection template and
the Callback template used in its
implementation.

The Connection classes are designed for
the “Resource Acquisition Is Initialisation”
technique described in [1]. A callback is
created and attached in the Connection’s
constructor and (predictably) the callback is
detached and destroyed in the Connection’s
destructor. Instead of calling attach() and

12

Overload issue 53 february 2003

// Callback class template.
template<typename Arg, typename Function>
class Callback : public AbstractFunction<Arg> {
public:

Callback(Function fn) : function(fn) {}
private:

virtual void operator() (Arg arg) { function(arg); }
Function function;

};

// Event/Callback connection.
template<typename Arg>
class Connection {
public:

template<typename Fn>
Connection(Event<Arg>& ev, Fn fn)

: event(ev), callback(ev.insert(ev.end(),
new Callback<Arg,Fn>(fn))

{}
~Connection() {

delete (*callback);
event.erase(callback);

}
private:

Event<Arg>& event;
Event<Arg>::iterator callback;

};
Listing 5 - The Callback and Connection templates.

// Old Event/Callback example
#include <iostream>
#include "Event.hpp"
using namespace std;
...

// A callback function.
void print(Button::State state) {

cout << "New state = "
<< state
<< endl;

}

// A sample program
int main() {

Button button;
cout << "Initial state = "

<< button.state
<< endl;

Event<Button::State>::iterator i =
button.stateChanged.attach(print);

button.press();
button.release();
button.stateChanged.detach(i);
return 0;

}

// New Event/Callback example
#include <iostream>
#include "Event.hpp"
using namespace std;
...

// A callback function.
void print(Button::State state) {

cout << "New state = "
<< state
<< endl;

}

// A sample program
int main() {

Button button;
cout << "Initial state = "

<< button.state
<< endl;

Connection<Button::State>
connection(button.stateChanged,

print);
button.press();
button.release();
return 0;

}

Listing 6 - Sample program.

13

Overload issue 53 february 2003

detach() the client program creates and destroys a
Connection object.

Copying Connections

The Connection classes as shown here suffer from the
same disease as the old Event classes - they can not be
copied safely. However, an event with two connections
to the same callback would invoke the callback twice
each time the event occurs and it’s difficult to see what
use that might be. It is tempting, therefore, to make the
Connection classes non-copyable (by deriving them
from the boost::noncopyable class, for example).
On the other hand, it might very well be useful to store
Connections in standard containers, and for that they
must be copyable.

One way to make Connections copyable is to have them
store a shared-pointer to a reference-counted callback and
provide appropriate copy constructor and copy assignment
functions.1 Doing so opens up the possibility of iterators
being invalidated, but this is no longer a problem for the
Event/Callback library. It was a problem in the old library because
it required the client code to store the iterator returned by
attach() and supply it to the detach() function. There is no
such requirement for Connections.

Object Lifetimes

Typically, a callback will invoke a member function. It is important,
therefore, for the callback’s target object to exist when the callback
executes. Similarly, an Event must continue to exist until all its
Connections have been destroyed because the Connection’s
destructor will erase a pointer from the Event. I think these
restrictions are best treated as requirements imposed on the client
code by the library. An alternative approach is to maintain enough
information within the library to handle these situations internally.
The Boost.Signals library [2] and the SigC++ library2 seem to offer
this type of full lifetime management.

Sample Code

Listing 6 illustrates how the new version of the Event/Callback
library is used. It shows a snippet from the sample program given in
Part 1 of this article, slightly modified to show an explicit
detach() call and to fit into a two-column page layout. The code
in the left column uses the original version of the library in which
callbacks are owned by the Event; the right column shows the new
version in which the callbacks are owned by a Connection object.
The difference is minimal. Where the old code had an
attach() call, the new code creates a Connection object; and

where the old code had an explicit detach() , the new code
uses the implicit destruction of the Connection object. In this
simple program the benefit of the new design is not very striking,
but it should make the Logic Gates program a whole lot easier to
write (if we ever find the time to implement it).

Roll-Your-Own Connections

The Connection classes create callbacks on the heap. In cases
where callbacks are better stored as local objects or as part of
larger objects the programmer can use the Callback template
directly. Listing 7 shows an example in which an Observer is its
own callback.

Conclusion

The Event/Callback library described in part 1 of this article
seemed to serve its purpose well. Experience has shown,
however, that there are circumstances where it doesn’t live up
to its promise. This is called “learning” and I believe it
illustrates once again that software development is a young
technology.

More experience is needed with the new Event/Callback library
before we can be confident that it, too, is not flawed, but I’m fairly
confident that the new is better than the old.

Phil Bass
phil@stoneymanor.demon.co.uk

References

1 Bjarne Stroustrup, The C++ Programming Language, Addison
Wesley, ISBN 0-201-889554-4.
2 See http://www.boost.org/

// Callback as part of an Observer
class Observer : public
AbstractFunction<Button::State> {
public:

Observer(Event<Button::State>& e) : event(e) {
callback = event.insert(event.end(), this);

}
~Observer() { event.erase(callback); }

private:
virtual void operator() (Button::State state) {

cout << "Button state = " << state << endl;
}
Event<Button::State>& event;
Event<Button::State>::iterator callback;

};
Listing 7 - Callback as part of an Observer

1 Writing a copyable Connection class is left as an exercise for the reader.
2 Sorry, I don’t have a reference to hand for the SigC++ library.

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

14

Overload issue 53 february 2003

From Mechanism to Method -
Total Ellipse
By Kevlin Henney

Introduction

The interface to an object indicates what you can do with it, and
what you can do with an object is a matter of design. C++
supports different kinds of interfaces, from the explicit
compileable interface of a class to the more implicit
requirements-based interfaces associated with the STL. Interfaces
can be named and organized in terms of one another, again a
matter of design.

The most common form of interface relationship is that of
substitutability, which, in its popular form, is associated with the
good use of inheritance – if class B is not a kind of a class A, B
should probably not publicly inherit from A. More generally, one
type is said to be substitutable for another if the second satisfies
the interface of the first and can be used in the same context.
Satisfaction is a matter of direct realization, where all the
features of expected of an interface are provided, or
specialization, where new features may be added, existing
features constrained, or both.

Not all specialization is inheritance and not all substitutability
is inheritance based [Henney2000a, Henney2000b,
Henney2000c, Henney2001]. Substitutability acts as a more
general guideline for the use of inheritance, conversions,
operator overloading, templates, and const–volatile
qualification.

Substitutability is relative to a given context or use. Normally
the context and use are implied, so that statements about
substitutability come out as absolutes. For example, when a
developer says that instances of class B may be used where A is
expected, this is normally a shorthand for saying that pointers or
references to B may be used where pointers or references to A are
expected. It is unlikely that copy and slice were intended, especially
if A is an abstract class.

The idea that a const-qualified type is effectively a
supertype of a non-const-qualified type was introduced in the
last column [Henney2001]. Each ordinary class can be
considered – with respect to const qualification – to have two
interfaces, one of which is a specialization of the other. This
interesting and different perspective can influence how you go
about the design of an individual class, but does it have any other
practical and tangible consequences? A single class can support
multiple interfaces, but by the same token you can split a class
into multiple classes according to interfaces. Consideration of
mutability does not simply allow us a rationale for adorning our
member functions with const–volatile qualifiers; it can
also allow us to separate a single class concept into base and
derived parts.

Ellipsing the Circle

Modeling the relationship and similarity between circles and
ellipses (or squares and rectangles, or real numbers and
complex numbers) is a recurring question in books, articles,
and news groups [Cline+1999, Coplien1992, Coplien1999]. It
pops up with a regularity you could almost set your system
clock by. Some believe it to be a problem with inheritance – or
indeed object orientation as a whole – whereas others believe it

is one of semantics [Cline+1999]. But I’m getting ahead of
myself: “A circle is a kind of ellipse, therefore circle
inher i ts f rom ellipse”. Let’s start at the (apparent)
beginning.

Redundant State

A direct transliteration of that English statement gives us the
following C++:

class ellipse {

...

};

class circle : public ellipse {

...

};

No problems so far. Depending on your sensibilities, you will
next focus on either the public interface or the private
implementation. Let’s do this back to front and focus on the
representation first, just to get one of the common problems out
of the way. To keep things simple, let’s focus only on the ellipse
axes:

class ellipse {

...

private:

double a, b;

};

class circle : public ellipse {

...

};

An ellipse’s shape can be characterized by its semi-major (a) and
semi-minor axes (b), whereas a circle needs only its radius to
describe it. This means that there is no need to add any additional
state representation in circle as everything that it needs has
already been defined in ellipse. So what’s the problem?
Before you think it, the private specifier does not need to be
protected – that would be a problem. The problem is that not
only does circle not need any additional state, it actually has
too much state: a == b is an assertable invariant of the circle,
which means that there is redundant data. It is neither possible to
uninherit features (a rock) nor desirable to maintain redundant
state (a hard place).

Focusing on inheritance of representation alone could you lead
to the topsy-turvy view that ellipse should inherit from circle
because it would add to its state. Although bizarre, this view is
entertained surprisingly often (but is entertaining only if the code
is not yours to work with). From bad to worse, there would not only
be the absence of any concept of substitutability whatsoever, the
circle would also have the wrong state to inherit in the first
place: ellipse would not just inherit a double , it would
specifically inherit a radius. Now, is the radius the semi-major or
the semi-minor axis? The proper conclusion of a representation-
focused approach should be that circle and ellipse should
not share an inheritance relationship at all. At least this conservative
view is safe and free from strange consequences. For some systems
it may also prove to be the right choice in practice: Premature
generalization often leads to unnecessary coding effort in creating
options that are never exercised.

Interface Classes

Let’s focus on the interfaces instead. How can you represent the
interface for using instances of a class without actually

15

Overload issue 53 february 2003

representing the implementation? In particular, how can you do
this if you have related but separate types of objects, e.g. circle
versus ellipse? Abstract base classes are often thought of as a
mechanism for factoring out common features – interface or
implementation, but typically a bit of both – in a class hierarchy.
Their most common use is as partially implemented classes, but it
turns out that their most powerful use is as pure interfaces.

Interface classes are an idiom rather than a language feature, a
method for using a mechanism:
l All ordinary member functions in an interface class are pure
virtual and public.

l There are no data members in an interface class, except perhaps
static const members.

l The destructor in an interface class is either virtual and
public or non-virtual and protected. In the former
case destruction through the interface class is permitted, and
therefore must be made safe. In the latter case destruction is
not one of the features offered by the interface, and restricting
it also excludes the kinds of public problem that require
virtual.

l An interface class may have type members, e.g. nested classes,
which need not be abstract.

l These requirements apply recursively to any base classes.
l That’s it.
Writing a class that actually does nothing seems counter-intuitive,
if not a little uncomfortable, for many developers. However,
having a pure representation of interface gives the developer two
clear benefits:
l The ability to publish the interface to objects without the

potential cloud and clutter of implementation, the flip side of
which is the ability to focus on implementation detail given a
clear interface.

l Decoupling client code from implementation detail, which
reduces build times (assuming that the concrete implementing
class is not in the same header) and the rebuild effect of any
change to the implementation (remembering that in software
development the only constant is change).

It turns out that these two benefits can be summarized more
generally as one: separation of concerns.

Returning to our shapes, we can start establishing the usage for
ellipses and circles without getting lost in representation:

class ellipse {

public:

virtual double semi_major_axis() const = 0;

virtual double semi_minor_axis() const = 0;

virtual double area() const = 0;

virtual double eccentricity() const = 0;

...

};

class circle : public ellipse {

public:

virtual double radius() const = 0;

...

};

Concrete Leaves

The separation of interface from implementation class makes
things much clearer. Now, when we come to provide sample
implementations, we can see that there is little to be gained from
using trying to share implementation detail:

class concrete_ellipse : public ellipse {

public:

ellipse(double semi_major, double

semi_minor)

: a(semi_major), b(semi_minor) {}

virtual double semi_major_axis() const {

return a;

}

virtual double semi_minor_axis() const {

return b;

}

virtual double area() const {

return pi * a * b;

}

virtual double eccentricity() const {

return sqrt(1 – (b * b) / (a * a));

}

...

private:

double a, b;

};

class concrete_circle : public circle {

public:

explicit circle(double radius)

: r(radius) {}

virtual double radius() const {

return r;

}

virtual double semi_major_axis() const {

return r;

}

virtual double semi_minor_axis() const {

return r;

}

virtual double area() const {

return pi * r * r;

}

virtual double eccentricity() const {

return 0;

}

...

private:

double r;

};

Should you wish to share implementation you can turn to other
techniques to do so, e.g. the BRIDGE pattern [Gamma+1995], but
the choice of representation is kept clear from the presentation of
interface.

The hierarchy shown here has two very distinct parts to it: The
classes that represent usage and the classes that represent
implementation. Put another way, the classes exist either for
interface, e.g.

void draw(point, const ellipse &);

or for creation, e.g.
concrete_circle unit(1);

draw(origin, unit);

In the class hierarchy only the leaves are concrete, and the rest of
the hierarchy is abstract – in this case, fully abstract. This design
recommendation to “make non-leaf classes abstract” [Meyers1996]

16

Overload issue 53 february 2003

can also be stated as “never inherit from concrete classes”. It often
helps to simplify subtle class hierarchies by teasing apart the
classes according to the distinct roles that they play.

Implementation-Only Classes
If you wish to take decoupling a step further, the separation of
concerns can be further reinforced by introducing the polar
opposite of an interface class: an implementation-only class. This
idiom allows developers to define classes that can only be used
for object creation; subsequent object manipulation must be
through interface classes [Barton+1994]:

l An implementation-only class inherits, using public
derivation, from one or more interface classes.

l All ordinary functions in an implementation-only class are
private.

l Constructors are public to allow creation of instances.
l All manipulation of instances is done via pointers or references

to one of the base interface classes.
l The destructor is normally private if it is public in the base

interface classes. This means that instances of implementation-
only classes are normally on the heap, i.e. the result of the new
expression is passed immediately to an interface class pointer.

l If the destructor must be public in the implementation-only class,
this means that instances are normally value based and their lifetime
is bound by the enclosing scope, e.g. local variables or data
members. This is sometimes a little awkward because the object as
held cannot have its members called without an explicit upcast!
Hence, implementation-only classes make practical sense only for
heap-based objects, which is not appropriate for all designs.

This idiom takes advantage of a feature of C++ that is often seen
as a quirk: access specification and virtual function
mechanisms are orthogonal. Here are alternative definitions for
concrete circles and ellipses:

class creation_only_ellipse : public ellipse {

public:

creation_only_ellipse(double semi_major,

double semi_minor);

...

private:

virtual double semi_major_axis() const;

virtual double semi_minor_axis() const;

virtual double area() const;

virtual double eccentricity() const;

...

double a, b;

};

class creation_only_circle : public circle {

public:

explicit creation_only_circle(double radius);

...

private:

virtual double radius() const;

virtual double semi_major_axis() const;

virtual double semi_minor_axis() const;

virtual double area() const;

virtual double eccentricity() const;

...

double r;

};

In use, we could see a circle being created and used as
follows:

circle *unit = new creation_only_circle(1);

Change Happens

Management summary of the story so far: circles substitutable for
ellipses, some useful techniques, and no real problems. However,
good as these techniques are in many designs, they have not
resolved the challenge that really makes the circle–ellipse problem
as infamous as it is. If you look back, or if you are already
familiar with the problem, you will notice that there has been a
little sleight of hand in the interfaces presented: The only ordinary
member functions are const qualified. In other words, there are
no modifiers. You cannot resize circles or stretch ellipses.

Let’s introduce setters corresponding to the axis getters:
class ellipse {

public:

virtual void semi_major_axis(double) = 0;

virtual void semi_minor_axis(double) = 0;

... // as before

};

class circle : public ellipse {

public:

virtual void radius(double) = 0;

... // as before

};

It is fairly obvious what an actual circle does for radius and an
actual ell ipse does for semi_minor_axis and
semi_major_axis , but what does a circle do for the
semi_minor_axis and semi_major_axis setters that it
has inherited?

class concrete_ellipse : public ellipse {

public:

virtual void semi_major_axis(double new_a) {

a = new_a;

}

virtual double semi_minor_axis(double new_b) {

b = new_b;

}

...

private:

double a, b;

};

class concrete_circle : public circle {

public:

virtual void radius(double new_r) {

r = new_r;

}

virtual void semi_major_axis(double new_a) {

... // what goes here?

}

virtual double semi_minor_axis(double new_b) {

... // what goes here?

}

...

private:

double r;

};

17

Overload issue 53 february 2003

This is the issue that gets people excited, producing all kinds of
fabulous suggestions, all of which violate substitutability in some
way:
l Set the radius to the new semi-major or semi-minor axis,

regardless. This means that semi_major_axis and
semi_minor_axis break the contract expected of them, i.e.
that they resize either one of the semi-major or semi-minor axis,
but not both.

l Throw an exception, or crash the program with a diagnostic
message, when one of the awkward functions is called.

l Pretend that there isn’t really a problem, and that users of the
code should not expect anything specific to happen anyway.
Besides, all it takes a little semantic elastic to reinterpret the
implied meaning of the semi_major_axis setter not as
“reset the semi-major axis” but as “reset the semi-major axis, or
do something magical and unspecified, or do nothing”.

None of these are reasonable. Distinct unrelated classes are
preferable to any of them.

No Change

When you find yourself at the bottom of a hole, stop digging. The
design we developed moved forward in stable, well-defined
steps, and only became unstuck with a particular requirement....
Wait a minute, resizing circles and ellipses was never a
requirement. In fact, we have no requirements or real statement
of the original problem domain. So, we’re in the middle of a
design that does not work, and we have no requirements; do we
blame the design, the paradigm, or what? “A circle is a kind of
ellipse” was about as much analysis as we – or indeed most
people looking at the problem – set out with. We have not stated
the purpose or context of our system: Design is context
dependent, so if you remove the context you cannot have
meaningful design.

Circles and ellipses also seem such a simple, familiar, and
intuitive domain that we all feel like domain experts. However,
intuition has misled us: When you were taught conic sections at
school, were you ever taught that you could that you could resize
them? If you transform an ellipse by stretching it, you have a
different ellipse, if you resize a circle you have a different circle.
In other words, if we chose to model our classes after the strict
mathematical model, we would not evolve the design beyond the
const–member–function-only version, although we might wish
to add factory functions to accommodate the transformations. That’s
it. What violated substitutability was the introduction of change:
Eliminate it and you have a model that is both accurate and works
[Henney1995].

Now that we understand the real root of the problem –
substitutability with respect to change – we can consider alternative
approaches that accommodate both change and inheritance-based
substitutability. If we do not need both of those features, we can
choose to disallow modifiers or not to relate the classes by
inheritance, as necessary

Change is the Concern

Therefore, separate according to change. Here is a more useful
interpretation of the original statement: “a circle is a kind of ellipse,
so long as you don’t change it as an ellipse”. This is perhaps more
constrained than is strictly required, i.e. geometrically resizing an
ellipse on both of its axes is also safe for circles, but the constraint
makes the issues and their solution clearer.

Given that statement, what we want is something like the
following:

class ellipse {

...

};

class circle : public const ellipse {

// not legal C++

...

};

Other than that one minor nit – that the code isn’t legal C++ – we
have a solution that allows circles to be substituted for ellipses
where they cannot be changed. Where a function expects to
change an ellipse object via reference or pointer a circle
would not work, but references and pointers to const
ellipse would allow circle objects to be passed.

However, the good news is that the wished-for version does give
us a hint as to how we might organize our classes and functions.
Factoring the const member functions into a separate interface
class gives the following:

class const_ellipse {

public:

virtual double semi_major_axis() const = 0;

virtual double semi_minor_axis() const = 0;

virtual double area() const = 0;

virtual double eccentricity() const = 0;

...

};

class ellipse : public const_ellipse {

public:

using const_ellipse::semi_major_axis;

using const_ellipse::semi_minor_axis;

virtual void semi_major_axis(double) = 0;

virtual void semi_minor_axis(double) = 0;

...

};

class const_circle : public const_ellipse {

public:

virtual double radius() const = 0;

...

};

class circle : public const_circle {

public:

using const_circle::radius;

virtual void radius(double) = 0;

...

};

For consistency with the standard library’s naming conventions
for iterators, const_ellipse and ellipse are named rather
than ellipse and mutable_ellipse, but your mileage may
vary. For consistency within the same design, circle is also
split into a const_circle and a circle class.

[concluded at foot of page 18]

18

Overload issue 53 february 2003

[continued from page 17]

Conclusion

Substitutability is not always about “is a kind of”, and not all
forms of specialization fit an inheritance hierarchy out-of-the-
box. Natural language is often not a very good guide at this level
so we often need more phrasing options to reveal the useful
relationships in our system, such as “implements” and “can be
used where a … is expected”.

There are many criteria for partitioning classes into base and
derived parts. Taxonomic classification is the most familiar to OO
developers, but we have also seen that interface–implementation
separation is compelling and that separation with respect to
mutability also has a place.

Kevlin Henney
kevlin@curbralan.com

References

[Barton+1994] John J Barton and Lee R Nackman, Scientific
and Engineering C++: An Introduction with Advanced
Techniques and Examples, Addison-Wesley, 1994.
[Cline+1999] Marshall Cline, Greg Lomow, and Mike Girou,
C++ FAQs, 2nd edition, Addison-Wesley, 1999.
[Coplien1992] James O Coplien, Advanced C++: Programming
Styles and Idioms, Addison-Wesley, 1992.
[Coplien1999] James O Coplien, Multi-Paradigm Design for
C++, Addison-Wesley, 1999.

[Gamma+1995] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.
[Henney1995] Kevlin Henney, “Vicious Circles”, Overload 8,
June 1995.
[Henney2000a] Kevlin Henney, “From Mechanism to Method:
Substitutability”, C++ Report 12(5) , May 2000, also available
from http://www.curbralan.com.
[Henney2000b] Kevlin Henney, “From Mechanism to Method:
Valued Conversions”, C++ Report 12(7), May 2000, also
available from http://www.curbralan.com.
[Henney2000c] Kevlin Henney, “From Mechanism to Method:
Function Follows Form”, C/C++ Users Journal C++ Experts
Forum, November 2000,
http://www.cuj.com/experts/1811/henney.html.
[Henney2001] Kevlin Henney, “From Mechanism to Method:
Good Qualifications”, C/C++ Users Journal C++ Experts
Forum, January 2001,
http://www.cuj.com/experts/1901/henney.html.
[Meyers1996] Scott Meyers, More Effective C++: 35 New Ways
to Improve Your Programs and Designs, Addison-Wesley, 1996.

Indexing STL lists with maps
Silas S. Brown

A list will keep its elements in the same order that they were
added, but searching for elements takes linear time (i.e. time
proportional to the length of the list). Removing an element from
a list is a constant-time operation if you have an iterator that
refers to the element in question, but if you don’t have such an
iterator then the element must first be found and this will also
take linear time.

In the case of a set, searching and removing is faster
(logarithmic, and in the case of the SGI extension hash_set,
amortized linear). However, sets don’t remember the order that the
elements were added in.

If you want to have an ordered list of elements, but you also want
to be able to find given elements quickly, then you can combine a
list with a map to index it. This article describes a brief template
class called hashed_list , which uses the SGI extension
hash_map and the STL class list; it could also use the STL class
mapwith little modification. The template class described here does
not support all STL semantics (for example, you can’t get a non-
const iterator out of it); this article is meant to demonstrate the
concept.

Note that hash_map will assume that all the elements are
unique. Generalising this class to support non-unique elements is
left as an exercise to the reader (besides using multimap , you
need to think about the erase() method that is defined below).

The general idea

The objects are stored in a list, and also in a map. The map
will map objects to list iterators. Whenever an object is added

to the list, an iterator that refers to that object is taken and
stored in the map under that object. Then when objects need
to be counted or deleted, the map is used to quickly retrieve
the list iterator, so that the list does not need to be searched
linearly.

This relies on the fact that iterators in a list will remain valid
even if other parts of the list are modified. The only thing that
invalidates a list iterator is deleting the object that it points to.
Hence it is acceptable to store list iterators for later reference.

The code

First, we include the two container classes that we will be
using:

#include <list>
#include <hash_map>
using namespace std;

Now for the hashed_list class itself. Since hash_map is a
template class with three arguments (the object type, the hash
function, and the equality function), we need to support the same
three arguments if we’re making a general template:

template<class object,
class hashFunc,class equal>

class hashed_list {

I like to start with some typedefs to save typing later. We will
need iterators and const iterators to the list, and also a type for the
map:

This article was originally published on the C/C++ Users
Journal C++ Experts Forum in March 2001 at
http://www.cuj.com/experts/1903/henney.htm

Thanks to Kevlin for allowing us to reprint it.

19

Overload issue 53 february 2003

typedef list<object>::iterator iterator;
typedef list<object>::const_iterator

const_iterator;
typedef hash_map<object,iterator,

hashFunc,equal> mapType;

And the data itself. For brevity I’ll be storing it directly and I
won’t write an explicit constructor, so we don’t have to worry
about the allocation.

list<object> theList;
mapType theMap;

Now for some methods. Obtaining iterators is simply a matter of
getting them from the list; we only allow const iterators because
otherwise we’d have to write lots more code to deal with what
happens when the user changes things via the iterators.
Similarly, obtaining a count of objects just involves getting it
from the map (since hash_map does not allow duplicate keys,
the result will be 0 or 1).

public:
const_iterator begin() const {

return theList.begin();
}
const_iterator end() {

return theList.end();
}
mapType::size_type count(

const object& k) const {
return theMap.count(k);

}

Now if we want to add an object to the list, we must also add it to
the map. Since the list’s insert() method returns an iterator
that refers to the object we just added, we can give its return
value to the map, so our add() method is one statement:

void add(const object &o) {
theMap[o] =

theList.insert(theList.end(),o);
}

To check that the “objects must be unique” constraint is not being
violated, you might wish to add

assert(theMap.count(o)==0);

to the beginning of the above method (and #include
<cassert>).

The following method will erase a given object. First, a map
iterator is obtained; this is dereferenced to get the list iterator and
erase it from the list, and then the map iterator is used to erase it
from the map. That way, only one lookup operation is needed in
the map (when the iterator is found); it is not necessary to look up
the object twice (once to reference it, again to erase it).

void erase(const object &o) {
mapType::iterator i=theMap.find(o);
theList.erase((*i).second);
theMap.erase(i);

}

For readability you could also write it like this, but it will be less
efficient if the lookup takes longer (even in a hashtable it can take
a while in the worst case):

void slower_erase(const object &o) {
theList.erase(theMap[o]);
theMap.erase(o);

}

Finally, finish the class:

};

To test it, you might want to write something like this:

#include <string.h>

struct strEqual {
bool operator()(const char* s1,

const char* s2) const {
return (s1==s2 || !strcmp(s1,s2));
// (although strcmp() might already
// have the s1==s2 check)

}
};

typedef hashed_list<const char*,
hash<const char*>,
strEqual> TestType;

int main() {
TestType t;
t.add("one");
t.add("two");
t.add("three");
cout << t.count("two") << endl;

// should be 1
t.erase("two");
cout << t.count("two") << endl;

// should be 0
copy(t.begin(),t.end(),

ostream_iterator<const char*>(
cout," "));

cout << endl;
}

Conclusion

The above code will increase the speed of finding items in lists,
particularly when they are long. This is at the expense of
consuming more memory (because of the map) and making the
maintenance of the list slightly slower (because the map needs to
be maintained with it). If hash_map is being used then the
overhead of maintaining the map is (in the amortized case) a
constant for each maintenance operation, which may or may not
be acceptable depending on the application and on what
proportion of its operations are maintenance.

Silas S Brown
<ssb22@cam.ac.uk>

20

Overload issue 53 february 2003

A Return Type That Doesn’t
Like Being Ignored.
by Jon Jagger

list<type>::insert

A while ago I finished a contract to write a small subset of STL
targeted at embedded C++. This proved an interesting challenge.
For example, in full STL, you insert a value into a list using,
you’ll never guess, list::insert.

template<typename type>

list<type>::iterator

list<type>::insert(iterator position,

const type& value) {

...

}

This returns an iterator to the inserted copy of the value or it
throws an exception (allocating the internal list node could throw
std::bad_alloc for example). However, you can’t use this
insert in embedded C++ for two reasons.
1 Embedded C++ does not support templates. I regard this as a

minor problem. In this case templates are being used to get the
compiler to write code. You can fake this use of templates quite
easily if you put your mind to it.

2 Embedded C++ does not support exceptions. This is definitely
not a minor problem. What to do?

The role of failure

My first choice was to emulate exceptions. However, for
various understandable reasons, my client decided not to adopt
an exception-like mechanism. I’ll explain what I did shortly, but
first I’d like to make a short diversion and explain why
emulating exceptions is my strong preference. It’s all to do with
failure [1].

The role of failure is fundamental to writing good software.
When you use STL list<type>::insert you don’t have to
worry about its return value if it fails because if it fails it doesn’t
return. This allows you to write sequences of expressions and
statements without having to constantly check if anything went
wrong. This is really important.

To use an analogy, consider taking a short walk to the local shop
for a pint of milk. Do you:
a) check whether you haven’t died after every step, or
b) just walk to the shop and hope you don’t die.

Answer; you just walk to the shop of course. No checks if you’ve
died yet. If something serious happens (eg you’re hit by a bus) then
you won’t get to the shop but frankly you won’t care much about
the milk by then anyway. If you’re still alive you’ll be much more
concerned about getting to the nearest hospital.

The point is that constantly checking if you’ve died is silly not
because it slows your journey so massively but because it’s exactly
the wrong thing to be concerned about in the first place.

The right thing to be concerned about is what happens if you are
hit by a bus. The reality is simple. If you are hit by a bus you won’t
be in much of a state to do anything so the only sensible and
practical approach is to make arrangements before you set off.

My conclusion is this: The software model of use that exceptions
bring with them is so valuable that if you’re working in an
environment (or language subset) that doesn’t support exceptions
you should consider ways in which you can emulate them. The
alternative is constantly checking if you’ve died.

Back to the story

But as I said, my client decided not to adopt an exception-like
mechanism. So what did I do? I considered making
list::insert return an iterator equal to end() if the
insertion failed but decided this was not a good idea. When
things are different they should be clearly different.

#ifndef LOUD_BOOL_INCLUDED

#define LOUD_BOOL_INCLUDED

class loud_bool {

public: // construction/destruction

loud_bool(bool decorated);

loud_bool(const loud_bool&);

~loud_bool();

public: // conversion

operator bool() const;

private: // inappropriate

loud_bool& operator=(const loud_bool&);

private: // state

bool result;

mutable bool ignored;

};

#endif

Listing 1: loud_bool.hpp

#include "loud_bool.hpp"

#include <ios>

#include <iostream>

loud_bool::loud_bool(bool decorated)

: result(decorated),

ignored(true) {

// all done

}

loud_bool::loud_bool(const loud_bool & other)

: result(other.result),

ignored(other.ignored) {

other.ignored = false;

}

loud_bool::~loud_bool() {

if (ignored) {

std::cerr.setf(std::ios_base::boolalpha);

std::cerr << "WARNING: return "

<< result

<< "; is being ignored"

<< std::endl;

}

}

loud_bool::operator bool() const {

ignored = false;

return result;

}

Listing 2: loud_bool.cpp

One option is to return a bool and a list::iterator inside
a pair -like structure. However, as it turned out, my client’s
particular list requirement didn’t require the returned iterator, so the
version of list<type>::insert I wrote looked like this:

bool list::insert(iterator position,

const type& value);

Lacking exceptions, this list::insert returns a bool to
signify success or failure. The problem now of course is that the
bool return is just too easy to ignore. In contrast, exceptions, by
design, are impossible to ignore. In full STL if you’re not
interested in the iterator return value, ignoring it is precisely what
you do. I thought about this for a while before realizing there was
a solution. The problem is that if you ignore a bool nothing
happens. So the answer is not to use a bool! Use something that
looks like a bool, smells like a bool, feels like a bool, and
shouts loudly when ignored. (In practice, this version for
embedded C++ has to be modified slightly because embedded
C++ does not support the mutable keyword either.) See
Listings 1-3.

The loud_bool class generalizes to the template class shown
in Listings 4-6 for those of you working in full C++ (I’ve not put
it in a namespace to save horizontal space).

The final step (left as exercise for the reader) is to parameterize
the behaviour if the result is ignored.

Jon Jagger
jon@jaggersoft.com

References

[1] To Engineer is Human. The Role of Failure in Successful
Design. Henry Petroski. Vintage. 0-679-73416-3

#include "warn_if_ignored.hpp"

warn_if_ignored<bool> example2() {

// ...

return false;

}

int main() {

bool result = example2(); //no warning

example2(); //generates warning

return 0;

}

Listing 6: Example use of warn_if_ignored template

21

Overload issue 53 february 2003

#ifndef WARN_IF_IGNORED_INCLUDED

#define WARN_IF_IGNORED_INCLUDED

template<typename result_type>

class warn_if_ignored {

public: // construction/destruction

warn_if_ignored(const result_type&

decorated);

warn_if_ignored(const warn_if_ignored&);

~warn_if_ignored();

public: // conversion

operator result_type() const;

private: // inappropriate

warn_if_ignored& operator=(const

warn_if_ignored&);

private: // state

result_type result;

mutable bool ignored;

};

#include "warn_if_ignored-template.hpp"

#endif

Listing 4: warn_if_ignored.hpp

#include "loud_bool.hpp"

loud_bool example1() {

//...

return true;

}

int main() {

bool result = example1(); //no warning

example1(); //generates warning

return 0;

}

Listing 3: Example use of loud_bool

#include <ios>

#include <iostream>

template<typename result_type>

warn_if_ignored<result_type>::warn_if_ignored(

const result_type & decorated)

: result(decorated),

ignored(true) {

// all done

}

template<typename result_type>

warn_if_ignored<result_type>::warn_if_ignored(

const warn_if_ignored & other)

: result(other.result),

ignored(other.ignored) {

other.ignored = false;

}

template<typename result_type>

warn_if_ignored<result_type>::~warn_if_ignored(){

if (ignored) {

std::cerr << "WARNING: return "

<< result

<< "; is being ignored"

<< std::endl;

}

}

template<typename result_type>

warn_if_ignored<result_type>::operator

result_type() const {

ignored = false;

return result;

}

Listing 5: warn_if_ignored-template.hpp

C++rossword
by Lois Goldthwaite

ACROSS
4. Deer and antelope are equally at home here, unless I am in error (5)

[25.3.3.3, 19.1p3]
5. Whether on its own or as part of a class, does intensive study risk

brain damage? (5) [21, 27]
7. Sign of honest dealing (6,7) [25.2.11]
12. Optional member of a sequence, but not of a set (4) [23.1.1p12]
14. Another word for lower and upper bounds (6) [18.2]
15. Bug - the malarial kind, that is (6) [23.2.4]
16. Useful algorithm when consulting a dictionary (15,7) [25.3.8]
19. Most likely to catch the bus (8,5) [23.2.3.2]
20. No means to light cigarette? Oh, dear (8) [25.1.7]
22. Cash consequence of a fault (7) [23.2.4.2]
24. Interior separation for horses’ home (6,9) [25.2.12]
26. Whole, but abbreviated (3) [3.9.1p2]
27. If car won’t start, do this (4,4) [25.3.6.1]
31. Time too short to put everything in order? Maybe this is good

enough (7,4) [25.3.1.3]
32. Every tourist needs at least one (3) [23.3.1]
33. A disadvantage or drawback that lessens the value of something (5)

[20.3.2]
36. Serendipitous discovery, perhaps? (8,4) [25.1.5]
37. Number 8’s successful attempt to score (3) [15]
38. Make two into one (5) [25.3.4]
39. Volunteer sailors endeavour to keep bark in proper condition (1,5)

[3.9.1]

Solution on page 26

DOWN
1. Careless specialisation might do this (8) [14.7.3p7]
2. Logical alternative (2) [20.3.4]
3. Song of dwarves, or indeed anyone with need to communicate (2) [27]
4. Curator finds fake artifact in museum, and corrects the situation (6,4)

[25.2.7]
6. Debugger’s motto: to strive, to ____, to find, and not to yield (4) [27]
8. Marionette muscle (6) [21]
9. Action performed on petrol tanks and other containers (4) [25.2.5]
10. To perform odd jobs around the house, like scorching a steak (4)

[3.9.1]
11. Hydrogen (3,7) [25.3.7]
12. Treasure hunt for specified quantity of something (6,6) [25.3.3]
13. What a good investment should do, often (6) [3.9.1]
17. Useful when dozy programmers need a wake-up call (5) [18.7, 20.5]
18. Goes now this way, now that (13) [24.1.4]
20. What a single rabbit doesn’t do, no matter how many times it tries

(10) [20.3.2]
21. Wooden shoe obstructs drainage to narrow stream (4) [27.3.1]
23. To tear something apart violently, with terminal conclusion (4)

[23.1p9]
24. Venue for Pooh sticks (6) [27]
25. Informal reference to father(3) [23.2.3.3]
28. A good point, a positive advantage, in fact (4) [20.3.2]
29. Might be noble, under certain conditions (5,2) [25.1.6]
30. A sailor does this to mainbraces and docking lines (6) [23.2.2.4]
34. After Pied Piper left Hamelin, how many rats were still there? (3,1)

[20.3.5]
35. Australian madman (3) [25.3.7]

22

Overload issue 53 february 2003

1 2 3 4 5 6

7 8 9 10

12 1311

14 15

16 17

18 19

20

21 22

23

24 25

26

27 28

30

32

29

31

33

38

35

36

39

34

37

23

Overload issue 53 february 2003

C++ Standards Library
Report
by Reg Charney

I have just returned from Santa Cruz where we held the semi-
annual Standards meeting on C++. I spent most of my time in the
Library Working Group discussing new features for the next
Library Extensions Technical Report. I have reported on some of
the main topics below.

Move semantics

Move semantics promises to significantly increase run-time
efficiency of many library elements — in some cases by a factor
of 10+. The proposal has generated a lot of discussion for years
and is finally bearing fruit. It originates in the Core Working
Group but mainly affects the Library. Changes are 100%
compatible with existing code, while introducing a fundamental
new concept into C++.

This proposal augments copy semantics. A user might define a
class as copyable and movable, either or neither. The difference
between a copy and a move is that a copy leaves the source
unchanged. A move on the other hand leaves the source in a state
defined differently for each type. The state of the source may be
unchanged, or it may be radically different. The only requirement
is that the object remain in a self consistent state (all internal
invariants are still intact). From a client code point of view,
choosing move instead of copy means that you don’t care what
happens to the state of the source. For plain old data structures
(PODs), move and copy are identical operations (right down to the
machine instruction level).

This paper proposes the introduction of a new type of reference
that will bind to an rvalue:

struct A {/*...*/};
void foo(A&& i); // new syntax

The && is the token which identifies the reference as an “rvalue
reference” (bindable to an rvalue) and thus distinguishes it from
our current reference syntax (using a single &).

The rvalue reference is a new type, distinct from the current
(lvalue) reference. Functions can be overloaded on A& and A&&,
requiring such functions each to have distinct signatures.

The most common overload set anticipated is:

void foo(const A& t); // #1
void foo(A&& t); // #2

The rules for overload resolution are (in addition to the current
rules):

l rvalues prefer rvalue references.
l lvalues prefer lvalue references.

CV qualification conversions are considered secondary relative to
r-/l-value conversions. rvalues can still bind to a const lvalue
reference (const A&), but only if there is not a more attractive
rvalue reference in the overload set. lvalues can bind to an rvalue
reference, but will prefer an lvalue reference if it exists in the
overload set. The rule that a more cv-qualified object can not
bind to a less cv-qualified reference stands - both for lvalue and
rvalue references.

Examples:
struct A {};
A source();
const A const_source();
// ...
A a;
const A ca;
foo(a); // binds to #1
foo(ca); // binds to #1
foo(source()); // binds to #2
foo(const_source()); // binds to #1

The first foo() call prefers the lvalue reference as (lvalue)a
is a better match for const A& than for A&& (lvalue ->
rvalue conversion is a poorer match than A& -> const A&
conversion). The second foo() call is an exact match for #1.
The third foo() call is an exact match for #2. The fourth
foo() call can not bind to #2 because of the disallowed
const A&& -> A&& conversion. But it will bind to #1 via
an rvalue->lvalue conversion.

Note that without the second foo() overload, the example code
works with all calls going to #1. As move semantics are introduced,
the author of foo knows that he will be attracting non-const rvalues
by introducing the A&& overload and can act accordingly. Indeed,
the only reason to introduce the overload is so that special action
can be taken for non-const rvalues.

Tuples

Tuples are fixed-size heterogeneous containers containing any
number of elements. They are a generalized form of
std::pair . The proposal originates in the Core Working
Group from a Boost Library [1] implementation, but it will
mainly affect in the Library.

The proposed tuple types:
l Support a wider range of element types (e.g. reference types).
l Support input from and output to streams, customizable with

specific manipulators.
l Provide a mechanism for ‘unpacking’ tuple elements into

separate variables.
The tuple template can be instantiated with any number of
arguments from 0 to some predefined upper limit. In the Boost
Tuple library, this limit is 10. The argument types can be any
valid C++ types. For example:

typedef
tuple< A,

const B,
volatile C,
const volatile D

> t1;

An n-element tuple has a default constructor, a constructor with n
parameters, a copy constructor and a converting copy constructor.
By converting copy constructor we refer to a constructor that can
construct a tuple from another tuple, as long as the type of each
element of the source tuple is convertible to the type of the
corresponding element of the target tuple. The types of the
elements restrict which constructors can be used:
l If an n-element tuple is constructed with a constructor taking 0

elements, all elements must be default constructible.

For example:
class no_default_ctor {no_default_ctor();};
tuple<no_default_ctor, float> b;

// error - need default ctor
tuple<int&> c; // err no ref default ctor
tuple<int, float> a; // ok

If an n-element tuple is constructed with a constructor taking n
elements, all elements must be copy constructible and convertible
(default initializable) from the corresponding argument. For
example:

tuple<int, const int, std::string>(1,
'a', "Hi") // ok

tuple<int, std::string>(1, 2); // error
l If an n-element tuple is constructed with the converting copy

constructor, each element type of the constructed tuple type must
be convertible from the corresponding element type of the
argument.
tuple<char, int, const char(&)[3]>

t1('a', 1, "Hi");
tuple<int,float,std::string> t2 = t1; // ok

The argument to this constructor does not actually have to be of
the standard tuple type, but can be any tuple-like type that acts
like the standard tuple type, in the sense of providing the same
element access interface. For example, std::pair is such a
tuple-like type. For example:

tuple<int,int> t3 = make_pair('a',1); // ok
The proposal includes tuple constructors, utility functions, and
ways of testing for tuples. The I/O streams library will be
updated to support input and output of tuples. For example,

cout << make_tuple(1,"C++");
outputs

(1 C++)

Hash Tables

Hash tables almost made it into the first issue of the Standard, but
our deadline precluded doing due diligence on the proposal at the
time.

The current proposal is what you would expect and is compatible
with the three main library implementations for hash tables:
SGI/STLport, Dinkumware, and Metrowerks. What is new is that
things like max_factor, load_factor, and other constants
are now treated as hints. Each implementation is free to deal with
them as it sees fit. Also, most double values and parameters are
going to be float. It was felt that only one or two significant digits
were meaningful, so the extra space needed by double was
wasted.

There was one major outstanding issue. Since there are already
widespread hash library implementations in use, how do we avoid
breaking existing code. Proposals included making the new hash
library names slightly different, or placing them in different
namespaces, or usurping the current names because only the
committee has the authority to place things in namespace std (any
private implementation that placed their hash library into stdwas,
by definition, in error.)

Polymorphic Function Object
Wrapper

This proposal is based on the Boost Function Template Library
[1]. It was accepted in Santa Cruz for inclusion in the next TR of
the standard. It introduces a class template that generalizes the

notion of a function pointer to subsume function pointers,
member function pointers, and arbitrary function objects while
maintaining similar syntax and semantics to function pointers.

This proposal defines a pure library extension, requiring no
changes to the core C++ language. A new class template function
is proposed to be added into the standard header <functional>
along with supporting function overloads. A new class template
reference_wrapper is proposed to be added to the standard
header <utility> with two supporting functions. For example,

int add(int x, int y) {
return x+y;

}
bool adjacent(int x, int y) {

return x == y-1 || x == y+1;
}
struct compare_and_record {

std::vector<std::pair<int,int> > values;
bool operator()(int x, int y) {

values.push_back(std::make_pair(x,y));
return x == y;

}
};
function< int (int, int) > f;
f = &add;
cout << f(2, 3) << endl; // outputs 5
f = minus<int>();
cout << f(2, 3) << endl; // outputs -1

The proposed function object wrapper supports only a subset of
the operations supported by function pointers with slightly
different syntax and semantics. The major differences are detailed
below, but can be summarized as follows:
l Relaxation of target requirements to allow conversions in

arguments and result type.
l Lack of comparison operators. However, checking if (f) and

if (!f) is allowed.
l Lack of extraneous null-checking syntax.
The function class template is always a function object.

Conclusions

This short report did not touch on other exciting new features that
will likely appear in the language, including the Regular
Expression proposal, the use of static assertions to allow more
extensive compile-time checking based on type information, and
the auto expressions proposal to simplify template function
definitions.

As you can see from the wide range of topics we discussed in
Santa Cruz, C++ is still an exciting language that is continuing to
adapt to users needs.

Reg Charney

References

The Boost Library: www.boost.org

This article was originally published on the ACCU USA
website in November 2002 at
http://www.accu-usa.org/2002-11.html

Thanks to Reg for allowing us to reprint it.

24

Overload issue 53 february 2003

25

Overload issue 53 february 2003

C++ Templates
by Reg Charney

If you wanted to know just about everything about C++ templates
then the book C++ Templates—The Complete Guide by David
Vandevoorde and Nicolai Josuttis, (ISBN 0-201-73484-2) is a
readable reference book you can use. Normally, discussing a book
would appear in a book review. However, since the authors have
done such a good job of describing C++ templates, I though the
topic and the book deserved more complete coverage. You may
recall Nicolai as the author of the excellent text, The C++ Standard
Library , ISBN 0-201-37926-0. David is the author of C++
Solutions: Companion to the C++ Programming Language , Third
Edition, ISBN 0-201-30965-3. Both authors are also longtime
members of the ANSI/ISO C++ X3J16 Standardization Committee.

Ordering Convention

Most of us write the following const or volatile
declaration thus:

volatile int vInt;
const char *pcChar;

The authors suggest that a better way is:
int volatile vInt; // 1
char const *pcChar; // 2

Here, const and volatile appear before what they qualify.
Since I read declarations from right to left, in //1, I get vInt is
a volatile int and in //2, I get pcChar is a pointer to a
const char. The real power comes when we use this ordering
in typedef statements. For example,

typedef int *PINT;
typedef PINT const CPINT;
typedef const PINT PCINT;

Here we can see that the first typedef (pointer to int) can be
used in the second typedef (const pointer to int). The
third typedef completely changes the meaning of the type
(pointer to const int).

typename Keyword

Historically, we have used the keyword, class, in template
parameter lists:

template< class T > . . .
However, T could be replaced by things other than a class name,
so the use of the new keyword typename is preferred.

Reducing Ambiguities

Often, instantiating a template can result in an ambiguity error
that is difficult to understand. Here is a simple example:

template< typename T > plot2D(T& x, T& y);
plot2D(3,4); // ok
plot2D(3.14,1); // error - types of

// arguments differ
The ambiguity occurs because all parameters are supposed to be
of same type, but in the second case, it is unclear whether that
type should be an int or a double.

In this simple example (and many others like it), there are 3 ways
of disambiguating the statement:

plot2D<int>(3.14,1); // 3
plot2D(static_cast<int>(3.14), 1); // 4

In //3, the template type is forced to be int. In //4, casting
forces all the argument types to be the same. The third way to
eliminate this problem uses more sophisticated templates.

Overloading function template

It is possible to have both template and non-template versions of the
same function. Often, non-template versions are called
specializations. In such situations, function overloading and its rules
are used to resolve any ambiguities. In addition to normal function
overloading rules, a few extra rules are needed for templates.
l In instantiating a template function, no type conversions are done.
l All things being equal, specialized template functions are

preferred over template ones.
l If instantiating a template function results in a better match, the

better match is used. By better match, we mean that things like
conversions are not need to make a match.

l If the empty angle brackets notation is used, non-template
functions are ignored in matching argument.

Here are some examples:
int cmp(int const& a, int const& b);
template<typename T> T cmp(T const& a,

T const &b);
cmp(1,2); // 5
cmp(4.3, -1.2); // 6
cmp('x','s'); // 7
cmp<>(-3,2); // 8
cmp<int>(4.3,4); // 9

In //5, the non-template function is the best match (Rule 2). In
//6, template argument deduction instantiates the cmp<double>
function (Rule 3). In //7, the instantiated function is cmp<char>
(Rule 3). In //8, the notation forces use of the template function and
results in a cmp<int> function being instantiated and used instead
of the non-template version of the cmp function (Rule 4).

Partial Specialization

When a template class or function has more than one template
parameter, one or more may be specified creating a partially
specialized template. However, if one or more partial specializations
match the same template, an ambiguity occurs. For example,

#include <typeinfo>
#include <stdio.h>
typedef char const CC;
// general template function
template<typename T1,typename T2>
void f(T1 t1, T2 t2) {

CC* s1=typeid(T1).name();
CC* s2 = typeid(T2).name();
printf("f(%s,%s)\n",s1,s2);

}
// partial specialization 1, both types the same

template<typename T>
void f(T t1, T t2) {

CC* s1 = typeid(T).name();
CC* s2 = typeid(T).name();
printf("f1(%s,%s)\n",s1,s2);

}
// partial specialization 2
// 2nd parameter is non-type
template< typename T>
void f(T t1, int t2) {

CC* s1 = typeid(T).name();
CC* s2 = typeid(int).name();
printf("f(%s,%s)\n",s1,s2);

}

// partial specialization 3
// parameters are all pointers
template< typename T1, typename T2>
void f(T1* t1, T2* t2) {

CC* s1 = typeid(T1*).name();
CC* s2 = typeid(T2*).name();
printf("f(%s,%s)\n",s1,s2);

}
int main(int argc,char* argv[]) {

char const* s1=”one”;
f(1,21.3);
f(1.2,-3);
f('a','z');
f(s1,2);
f(&s1,"two");
return 0;

}
The output from this program is:

f(int,double)
f(double,int)
f(char,char)
f(CC *,int)
f(CC **,char *)

Note that calling f(3,5) is ambiguous because both f(T,T)
and f(T,int) match this call.

Non-type Template Parameters

Both classes and functions can use non-type template parameters.
When used, non-type parameters become part of the classes type
and functions signature. Thus,

template<typename T, int n>
class C {

T a[n];
// . . .

};
C<char, 10> c10A;
C<char, 5> c5A;
C<int, 10> i10A;

Each of c10A, c5A, and i10A are all distinct types.
An example of a template function using non-type parameter

follows:
template<typename T, int n>
T g(T t) {

return t+n;
}
int main() {

printf("g<double,5>(1.3)=%g\n",
g<double,5>(1.3));

printf("g<char,4>(‘a’)=%c\n",
g<char,4>(‘a’));

}

The output of this short program is:
g<double,5>(1.3)=6.3
g<char,4>('a')=e

Non-type template parameters have restrictions: they must be
integral values, enumerations, or instance pointers with external
linkage. They can’t be string literals nor global pointers since
both have internal linkage.

Keyword typename
You may have wondered why we needed the new keyword
typename . Besides being a better choice for template
parameters, it is needed to disambiguate certain declarations.
E.g.,

template<typename T, int n>
class C {

typename T::X *p;
// . . .

};
Without the keyword typename, the declaration for p becomes
an expression: the value of T::X is multiplied by the value of p.

Generally, prefix all declarations using template parameters with
typename.

this pointer

Normally derived and base classes share the value of this .
However, lookup rules for template classes are different.
Template base class members are not lookup when searching
derived template class member functions.

template<typename T>
class B {

void foo();
}
template<typename T>
class D: public B<T> {

void bar() { foo(); }
}

In bar(), foo() would not be found. To get B’s foo, you
need to say this->foo(). Again, the rule given in the book
states that any base class member used in a derived class should
be qualified by this-> or B<T>::.

Conclusion

I have not begun to cover many of the interesting aspects of
templates in this short article. And I have barely covered the
other fun parts of this book. Get it.

Reg Charney

C++rossword answers
Across: 4 RANGE, 5 BASIC, 7 RANDOM SHUFFLE, 12 BACK, 14 LIMITS, 15 VECTOR, 16 LEXICOGRAPHICAL COMPARE,
19 PRIORITY QUEUE, 20 MISMATCH, 22 RESERVE, 24 STABLE PARTITION, 26 INT, 27 PUSH HEAP, 31 PARTIAL SORT, 32 MAP, 33
MINUS, 36 ADJACENT FIND, 37 TRY, 38 MERGE, 39 A FLOAT
Down: 1 IMMOLATE, 2 OR, 3 IO, 4 REMOVE COPY, 6 SEEK, 8 STRING, 9 FILL, 10 CHAR, 11 MIN ELEMENT, 12 BINARY
SEARCH, 13 DOUBLE, 17 CLOCK, 18 BIDIRECTIONAL, 20 MULTIPLIES, 21 CLOG, 23 REND, 24 STREAM, 25 POP, 28
PLUS, 29 COUNT IF, 30 SPLICE, 34 NOT 1, 35 MAX

26

Overload issue 53 february 2003

This article was originally published on the ACCU USA
website in December 2002 at
http://www.accu-usa.org/2002-12.html

Thanks to Reg for allowing us to reprint it.

