
Overload issue 54 april 2003

contents

credits & contacts

Editor:

John Merrells,
merrells@acm.org
241 Heartwood Lane,
Mountain View,
CA 94041-11836, U.S.A

Advertising:

Pete Goodliffe, Chris Lowe
ads@accu.org

Membership:

David Hodge,
membership@accu.org
31 Egerton Road
Bexhill-on-Sea, East Sussex
TN39 3HJ, UK

Readers:

Ian Bruntlett
IanBruntlett@antiqs.uklinux.net

Phil Bass
phil@stoneymanor.demon.co.uk

Mark Radford
twonine@twonine.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Website: http://www.accu.org/

Membership fees and how to join:

Basic (C Vu only): £15
Full (C Vu and Overload): £25
Corporate: £80
Students: half normal rate
ISDF fee (optional) to support Standards

work: £21
There are 6 journals of each type produced

every year.
Join on the web at www.accu.org with a

debit/credit card, T/Polo shirts available.
Want to use cheque and post - email
membership@accu.org for an
application form.

Any questions - just email
membership@accu.org.

A C++ Petri Net Framework for Multithreaded Programming
by David Nadle 6

Implementing the Bridge Pattern Using Templates by Chris Main 10

EXPR_TYPE - An Implementation of typeof Using Current Standard C++
by Anthony Williams 16

Exported Templates by Jean-Marc Bourguet 19

The Nature and Aesthetics of Design - review by Jon Jagger 22

Software Development and the Learning Organisation by Allan Kelly 24

Addendum to Tiny Template Tidbit by Oliver Schoenborn 27

Correspondence 28

Labouring: An Analogy by Seb Rose 29

4

Overload issue 54 april 2003

Editorial - Digital Identity

By securing an application I mean that only the right
people can perform the right actions against the right
things, without being observed. Let’s use the application
I’m working on as an example. It’s a simple client-
server document storage service that could be deployed
within an enterprise, as part of a website
implementation, or as a service on the Internet in its own
right. The client connects over a TCP/IP connection and
performs operations to manipulate the stored
documents. The service must only be available to the
users authorized by the system administrator, and each
user can read and write their own documents, but can
only read documents they don’t own.

Let us break the security problem down into sub-
problems and discuss each and its possible solutions in
turn.
Identity

Identity is hard to define, but for our discussion let us
say that an identity is a name within a namespace, and
an associated set of attributes. The name identifies the
identity, and the attributes provide us with information
about the identity. When we refer to an identity we use
the name of the identity.

My example application could maintain its own list
of users, each of whom is assigned a username. But then
each user is going to have to remember yet another
username, and the administrators have yet another
identity namespace to manage. A more sophisticated
approach would be to reuse an existing identity
management service, such as the Unix password file
through the Unix API, or Unix Yellow Pages/NIS/NIS+,
or a directory server over LDAP [1].
Authentication

Authentication is the process by which we prove we are
who we say we are. This is done by offering up
credentials that can be verified against the attributes of
the identity. My example application could request both
a username and a password. The username is the name
of the identity, and the password is the credential than
can be checked against the password stored as an
attribute of the identity. But, this is yet another password

for the user to remember, so it’d be better to reuse an
existing authentication mechanism. We can use one of
the above identity management interfaces to perform
the password test for us.
Authorization

After a client has authenticated it performs some actions
against the application, each of which must be authorized.
Authorization is the process of deciding whether a client
is permitted to perform the action it is attempting. My
example application currently allows anyone to perform
any action to any document, in other words there is no
access control. Fundamentally there is a three dimensional
Boolean array with the axes being: identity, action, and
document. Obviously an array this size is impossible for
an administrator to manage, so a more manageable
representation must be used. The Unix solution is to break
the identity axis down into user, system, and group, and to
limit the actions to read, write, and execute, and then to
have these permissions associated with each file in the file
system. This isn’t expressive enough, or granular enough
for most applications. Directory servers on the other hand
usually have very rich and expressive access control
languages. Each identity is modeled as an entry, actions are
usually modeled as attributes, and resources are usually
modeled as entries. Other directory features such as groups,
roles, and its hierarchical nature can be used to reduce the
number of access control lists, and their complexity.
Confidentiality

When an application is deployed on a public network,
within a website, or even within an enterprise, we may
need to ensure that snooping of the network traffic is
fruitless. The solution is to secure the network channel
using cryptography, in the form of SSL/TLS [2]. (The latest
version of the Secure Sockets Layer specification has been
named the Transport Layer Security 1.0 specification.)
Solution #1

So far we have come to the conclusion that my sample
application can be secured by using SSL/TLS for
confidentiality and by using a directory server for
identity management, authentication, and authorization.

F
or this editorial I am returning to a topic that I have often written about in these pages: digital

identity. It is a topic of fundamental importance to the future of the Internet, but one that the

mainstream computing press rarely tackles directly. I am currently securing an online application,

and being lazy (in a good way in this case) I am trying to reuse as much existing code as possible. As

there are many enterprise and Internet application developers in the Overload audience I thought my

exploration into this area would be of general interest.

Conveniently, high quality open source implementations
of both are available in OpenSSL [3] and OpenLDAP
[4].

This solution might normally be sufficient for most
applications, but I want to consider this set of problems
further.
Authentication

Password based systems are vulnerable to social issues.
Users select poor passwords, share them with their
friends, and tape them inside their desk drawer. A
password policy is therefore required for enforcing good
password selection. Directory services do support
password policies, but they have no standard way of
defining them. Other, more secure, authentication
mechanisms could be used instead, such as public key
cryptography, but implementing them is challenging.

My example application is currently behaving as an
authentication proxy. The client presents the username
and password to the server and the server passes them
on to the directory server for authentication. When using
more sophisticated authentication mechanisms the
server is unable to proxy the authentication. The server
must either perform the authentication itself, or the client
must authenticate directly with the directory server and
provide the server with some evidence that this
authentication was successful.

Unfortunately LDAP does not provide a mechanism
for the directory server to provide a token to the client
so that it can prove to a third party that it has successfully
authenticated. This leaves us with implementing
authentication within the server application itself.
Fortunately there is a standard framework defined for
authentication mechanisms, called the Simple
Authentication and Security Layer, or SASL [5]. SASL
provides a framework for authentication mechanisms,
so an application protocol need only support the
framework in order to support all the authentication
mechanisms that have been defined for SASL. Both the
LDAP and IMAP protocol specifications defer to SASL
for authentication, which suggests that the specification
is of a high quality. Also, there is an open source
implementation of SASL available from Carnegie
Mellon University called Cyrus SASL [6].

Although SASL provides many standard authentication
mechanisms developers still have to design their
application protocols to carry the authentication messages
back and forth. Every Internet protocol has a verb for the
client to authenticate itself with the server, and they are
all different. HTTP, POP, LDAP, IMAP, and FTP,
amongst others, all have their own verbs for
authenticating to the server. Couldn’t this commonality

have been factored out and pushed down the network
stack so that all application protocols, whether Internet
standard application protocols, or homegrown application
protocols, could share this functionality? This is exactly
the thinking that led Marshall Rose to define BEEP [7].
Marshall worked on many of the Internet standards for
system management, messaging systems, and directory
services, so knows how to design a good application
protocol. BEEP provides a framework upon which an
application protocol can be defined. HTTP is commonly
being used in this way right now, but it offers very little,
other than not being blocked by corporate firewalls.
BEEP, in contrast, offers built in authentication
mechanisms via SASL, framing of the application
protocol verbs, multiple channels within a connection,
connection confidentiality via SSL/TLS, negotiation of
the confidentiality level, permits channels to be turned
around, and allows TLS to be started and stopped during
a connection.
Solution #2

So, after further consideration, we can upgrade my
example application to support more sophisticated
authentication mechanisms, by layering the application
protocol over BEEP. Authorization has moved into the
application, but we still make use of the directory server
for identity management and authorization. An open
source implementation of BEEP is available [8] that
incorporates both OpenSSL and Cyrus SASL.

But, something interesting is going on; a whole new
generation of digital identity development is occurring
within the XML standards forums. In the next issue of
Overload I plan to write about the standards being defined
by the W3C and OASIS for application protocols,
authentication, authentication assertions, access control,
and single-sign-on. Perhaps it’s possible there’s a simpler
solution to online application security out there.

John Merrells
merrells@acm.org

References

[1] LDAP - http://www.ietf.org/html.charters/
ldapbis-charter.html

[2] TLS - http://www.ietf.org/rfc/rfc2246.txt
[3] OpenSSL - http://www.openssl.org/
[4] OpenLDAP - http://www.openldap.org/
[5] SASL - http://www.ietf.org/rfc/rfc2222.txt
[6] Cyrus SASL - http://asg.web.cmu.edu/sasl/
[7] BEEP - http://www.ietf.org/html.charters/

beep-charter.html

[8] beepcore - http://www.beepcore.org/beepcore/
home.jsp

5

Overload issue 54 april 2003

Copy Deadlines
All articles intended for publication in Overload 55 should be submitted to the editor by May 1st, and for Overload 52 by July 1st.

6

Overload issue 54 april 2003

A C++ Petri Net Framework For
Multithreaded Programming

by David L. Nadle

One of the pitfalls of multithreaded programming is deadlock,
a situation where each thread exclusively holds one resource
while waiting for another’s resource. Every non-trivial
multithreaded program must contend with deadlocks. One
strategy is to detect a deadlock at runtime and take some
action to remove it (e.g. send a quit signal to one of the
threads). Another approach is to design the program carefully
to avoid deadlocks. In practice, this can be a difficult task.
The Petri net framework presented in this article supports a
hybrid approach, combining careful design with runtime
checks to create a deadlock-free process.

Like UML activity diagrams, Petri nets are graphical
representations of processes providing a state-oriented view and
an activity-oriented view. In other words, Petri nets
simultaneously represent the state of a system and what the
system is doing. What makes Petri nets powerful is their
semantics; formal mathematical analysis techniques can be used
to determine characteristics of a given net. For example, it can
be proven that a particular net with the right initial conditions
will not reach a deadlocked state.

This article briefly discusses the properties of Petri nets and
presents a demonstration of a (intentionally) poorly designed
application using a C++ framework with Win32 synchronization
objects. The framework supports rapid implementation of a
process that has been described with a
Petri net and is capable of runtime or
post-build testing for deadlocks.

Petri Nets

The Petri Net is named after C.A. Petri,
who developed the concept as part of his
doctoral thesis in 1962. In mathematical
terms, a Petri net is a directed bipartite
graph. The two types of vertices are
called places and transitions. The
directed edges, known as arcs, connect
places to transitions, and transitions to
places.

A place is a container that holds zero
or more tokens. The set of places and the
number of tokens in each represents the
state of the system. This set is called a
marking. A transition represents an
activity of the system. The arcs that point
towards a transition are input arcs, and
those that point towards a place are
output arcs. Each arc has an associated
arc expression, which indicates how
many tokens will be added to or removed
from a place when the transition
executes. The arc expression is usually
1, in which case it is omitted from
drawings.

A transition is considered enabled
when enough tokens exist in the places
connected to its input arcs for all input

arc expressions to be satisfied. Only enabled transitions can
execute. After an enabled transition has completed, tokens are
added to the places connected to its output arcs according to the
output arc expressions. The net now has a new marking, and a
new set of enabled transitions exists. A dead marking, or
deadlocked state, is one where the set of enabled transitions is
empty.

Figure 1 is a Petri net representation of a theoretical, and flawed,
file printing application with its initial marking displayed. The
application has a hold-and-wait problem and will deadlock. Places
P0, P3, P6, and P7 contain one token each. The tokens at P0 and
P3 represent the number of threads which can execute in the left
chain of execution and the right chain, respectively. The tokens at
P6 and P7 represent a lock on a file or printer resource,
respectively. A single token in each resource indicates that the locks
are exclusive.

Concurrency and Conflict

The initial marking M0 of the example Petri net can also be
described as the set of enabled transitions;
M0 = { T0, T3 }. If T0 fires first, T3 is still enabled,
and vice versa. T0 and T3 are enabled concurrently. By
systematically tracing execution of the Petri net and the
evolution of its markings we build what is called the
occurrence graph, the graph of all markings reachable from
the initial marking. Firing T0 gives M1 = { T1, T3 }. If
T1 fires first, T3 is disabled, and vice versa. This situation is
called a conflict. T1 and T3 are enabled, but not concurrently.

Figure 1

The most efficient multithreaded applications would maximize
concurrent states and minimize conflicted states, and Petri net
analysis can help in their design.

Continuing our systematic execution, T1 gives M2 = { T2 } ,
and T2 gives M0 again. No problems yet. Let’s return to M1, but
this time T3 fires first, giving M3 = { }. Deadlock. If through
some intervention we were to give T0 and T1 priority over T3, we
will have created a live-lock situation. The chain on the right (T3,
T4, T5) would never execute.

The Framework

The Petri net framework is anchored by the CPetriNet class,
which aggregates Place, Transition, Arc, and Thread.
Listing 1 shows how a net is constructed and operated in a console
application main() function. Both Place and Transition
inherit from Node, which keeps track of arc connections. For details
on these classes see the full source archive.

Places 0-5 in the example are generic Petri net places, which
provide valuable state information but do not represent resources.
Resource classes inherit from Place and implement an
additional interface to the resource.
Transition is an abstract class. Users implement the

Execute()method in subclasses. Each transition is executed by
the next available thread. It’s important not to think of the execution
chains in Figure 1 as cycles for a single thread. Resource interfaces
in classes inheriting from Place must not use per-thread
synchronization or locking mechanisms. A properly constructed net
provides the necessary locking.
Execute() methods use the Visitor pattern (Gamma et al.,

1995) to access Place resources. Classes derived from Place
define an Accept() method for each client class derived from
Transition. Execute() methods call Accept() on each
connected place in some defined order, as shown below.

void DerivedTransition::Execute() {
arcInput_[1]->

GetPlace()->Accept(*this);
// visit other places. . .

}

One consequence of Visitor is that the base class Place must
declare Accept() methods for all derived Transition types.
To preserve the framework-like design of Place, a
PlaceNodeVisitor interface class defines empty
Accept() methods. The Place class uses multiple inheritance
to expose a modifiable PlaceNodeVisitor interface without
requiring changes to Place’s definition.

Another consequence of Visitor is that Transition classes
become stateful, essentially duplicating data from a Place to be
used by Accept() calls to subsequent Places. An alternative
design might use runtime type information (RTTI) to access
connected derived Places with dynamic_cast:

void DerivedTransition::Execute() {
DerivedPlace* p =

dynamic_cast<DerivedPlace*>(
arcInput_[1]->GetPlace());

assert(p != 0);
// use DerivedPlace’s methods. . .

}

The RTTI design does away with PlaceNodeVisitor and
allows purely behavioural derived Transition classes to use
multiple derived Places within a single function body.

Both designs tie the identity of a specific resource to the order
in which it is connected by the MakeConnections() function,
determined by the ordering of the string describing the list of

7

Overload issue 54 april 2003

int _tmain(int argc, _TCHAR* argv[]) {
CPetriNet net;

// places 0-5 are generic
for(int k = 0; k < 6; ++k) {
net.AddPlace(new CPlace);

}

// places 6, 7 are specific
net.AddPlace(new CPlaceFile);
net.AddPlace(new CPlacePrinter);

// transitions 0-5
net.AddTransition(new CTransitionGetFile);
net.AddTransition(

new CTransitionGetPrinter);
net.AddTransition(new CTransitionPrint);
net.AddTransition(

new CTransitionGetPrinter);
net.AddTransition(new CTransitionGetFile);
net.AddTransition(new CTransitionPrint);

// string describing all arc connections
string strArcs =
"p0t0t0p1p1t1t1p2p2t2t2p0p3t3t3p4p4t4" \
"t4p5p5t5t5p3p6t0p6t4t2p6t5p6p7t1p7t3" \
"t2p7t5p7;";

net.MakeConnections(strArcs);

// set initial marking
net.GetPlace(0)->AddTokens(1);
net.GetPlace(3)->AddTokens(1);
net.GetPlace(6)->AddTokens(1);
net.GetPlace(7)->AddTokens(1);

// create two threads
net.AddThread(new CThread);
net.AddThread(new CThread);
if(!net.Test()) {
cout << "ERROR: deadlock state exists"

<< endl;
return 1;

}
net.Start();

// run demonstration for 30 seconds
Sleep(30000);
net.Stop();
return 0;

}

Listing 1

connections. In the RTTI design, asserting that the cast pointer is
not null is a good debug check.

The largest number of concurrently enabled transitions in any
marking in the occurrence graph determines the maximum number
of threads that can process the net. Presently this would be set
during design, but a function could feasibly be written to create the
appropriate number of threads at runtime.

Net Processing

Figure 2 is a state chart of Thread processing of the net.
Processing is started by a call to PetriNet::Start(). This
calculates the set of enabled transitions from the initial token
placement and creates a Win32 semaphore with an initial count
of 1 and a maximum count equal to the number of threads. A
Win32 semaphore is a synchronization object that decrements its
count for each thread it allows to pass and blocks threads while
its count is zero. When the thread releases the semaphore its
count is incremented.

Operations that change the internal state of a Petri net (e.g.
adding or removing tokens) must be performed atomically.
PetriNet contains a Win32 mutex for this purpose. A mutex
allows a single thread to pass and blocks all other threads until it is
released. Mutex is short for mutual exclusion. A thread can gain
exclusive access to the net by creating a ScopedLock object.
ScopedLock’s constructor accepts a PetriNet reference and
is a friend class to PetriNet, so it can acquire a lock on
PetriNet’s mutex. When the created lock object goes out of
scope its destructor releases PetriNet’s mutex.

A new marking is calculated twice per loop,
the first time after removing tokens from input
places. This marking may be empty due to a
conflict or because only one transition was
enabled in the previous marking, but this does
not produce deadlock. If the new marking
calculated after removing tokens still has
enabled transitions, the semaphore is released,
enabling any waiting thread to process a
remaining transition concurrently.
After executing the transition and adding
tokens to output places, a new marking is
calculated again. To prevent a live-lock, the
order of the calculated marking is shuffled
randomly so that the same transition in a
conflicted pair is not picked first every
time. If the marking is empty the semaphore
is not released and the system is
deadlocked.

Post-build Deadlock
Testing

The PetriNet::Test() method builds
the occurrence graph by calculating every
marking reachable from the initial marking
(without the random shuffle). Intermediate
(post remove, pre add) markings are not
considered here. If an empty marking is found
the test fails and the function returns false.
The test algorithm in pseudo-code looks like
this:

Calculate set of enabled transitions from
initial token placement.

If set is empty declare failure.
Name the initial set, count it as

unvisited and add it to a list.
Call the initial set the current set.
While there are unvisited sets:
Take the first unvisited transition in

the current set.
Push the transition and the name of the

current set onto a stack.
Remove tokens from the places connected

to the transition’s inputs.
Add tokens to the places connected to

the transition’s outputs.
Mark this transition in this set

visited.
Calculate the new set.
If set is empty declare failure.
Else if set not in list:
Name new set.
Add it to the list.
Mark it unvisited.
Make it the current set.

End
If all transitions in the current set

have been visited:
Declare the set visited.

8

Overload issue 54 april 2003

Figure 2

Undo the transition token move at the
top of the stack.

Make the set at the top of the stack
the current set.

End
End

In the example application Test() is called prior to Start()
to prevent a deadlocked net from running. Test() works
without executing any of the net’s transitions. A practical
application could be executed with a command line switch that
causes main() to call Test() and return an exit code. This
could be performed as a post-build step in development. This
feature would be helpful if the structure of the net or the number
of resources were undergoing design.

Fixing the Demo Application

Suppose instead of a printer resource we constructed a print
queue resource that took file submissions in an atomic operation.
With this change to the resource we would obtain not an
exclusive lock on a printer but a lock on a queue location. Adding
a second token to the printer resource in the initial marking and
building the occurrence graph proves that a two-position printer
queue would prevent deadlock. The markings are as follows:

M0 = { T0, T3 }
M1 = { T1, T3 }
M2 = { T2, T3 }
M3 = { T2 }
M4 = { T0, T4 } (conflict)
M5 = { T1 }
M6 = { T5 }

Figure 3 shows the output of the demo application with two
initial printer tokens. The results of each marking calculation are
printed as well, with the token placement following the set of
enabled transitions.

Future Work

There is a lot of room for future improvement of the
framework. A feature of Petri nets not implemented yet is the
inhibitor arc, in which the presence of tokens in the connected
place inhibits the connected transition. Concepts from higher-
level Petri nets would add powerful functionality. For
example, colored Petri nets allow tokens to have a type (or
color) property. This enables the use of complex arc
expressions involving type and quantity and makes possible
decision branches as part of the net structure.

Conclusion

A multithreaded process designed using Petri net analysis might
be deployed rapidly enough using this framework to justify the
added runtime costs. For more information on Petri nets two
references are listed below [1, 2].

David Nadle
david@nadle.com

References

[1] Marsan, M. Ajmone et al. 1995. Modelling with Generalized
Stochastic Petri Nets. Chichester: John Wiley & Sons.
[2] Jensen, Kurt. 1996. Colored Petri Nets, vol. 1. 2nd ed. Berlin:
Springer-Verlag.
[3] Gamma, Erich et al. 1995. Design Patterns. Reading:
Addison-Wesley.

9

Overload issue 54 april 2003

start
{ 0 3 } [1 0 0 1 0 0 1 2]
{ 0 } [1 0 0 0 0 0 1 1]
thread 3548 gets printer
{ } [0 0 0 0 0 0 0 1]
{ } [0 0 0 0 1 0 0 1]
thread 3648 gets file
{ 1 } [0 1 0 0 1 0 0 1]
{ } [0 0 0 0 1 0 0 0]
thread 3548 gets printer
{ 2 } [0 0 1 0 1 0 0 0]
{ } [0 0 0 0 1 0 0 0]
thread 3648 PRINTING: Hello World!
{ 0 4 } [1 0 0 0 1 0 1 1]
{ } [1 0 0 0 0 0 0 1]
thread 3548 gets file
{ 5 } [1 0 0 0 0 1 0 1]
{ } [1 0 0 0 0 0 0 1]
thread 3648 PRINTING: Hello World!
{ 3 0 } [1 0 0 1 0 0 1 2]
{ 3 } [0 0 0 1 0 0 0 2]
thread 3548 gets file
{ } [0 0 0 0 0 0 0 1]
thread 3648 gets printer
{ 1 } [0 1 0 0 0 0 0 1]
{ 1 } [0 1 0 0 1 0 0 1]
{ } [0 0 0 0 1 0 0 0]
thread 3548 gets printer
{ 2 } [0 0 1 0 1 0 0 0]
{ } [0 0 0 0 1 0 0 0]
thread 3648 PRINTING: Hello World!
{ 4 0 } [1 0 0 0 1 0 1 1]
{ } [0 0 0 0 1 0 0 1]
thread 3548 gets file
{ 1 } [0 1 0 0 1 0 0 1]
{ } [0 0 0 0 1 0 0 0]
thread 3648 gets printer
{ 2 } [0 0 1 0 1 0 0 0]
{ } [0 0 0 0 1 0 0 0]
thread 3548 PRINTING: Hello World!
{ 0 4 } [1 0 0 0 1 0 1 1]
{ } [1 0 0 0 0 0 0 1]
thread 3648 gets file
{ 5 } [1 0 0 0 0 1 0 1]
{ } [1 0 0 0 0 0 0 1]
thread 3548 PRINTING: Hello World!
{ 3 0 } [1 0 0 1 0 0 1 2]
. . .continues. . .

Figure 3

Implementing the Bridge
pattern using templates with
Microsoft Visual C++ 6.0
by Chris Main

I wonder whether you had a similar experience to me. You read
with excitement Andrei Alexandrescu’s Modern C++ Design [1]
(the author’s remark “Truly there is beauty in computer
engineering” could be applied to his own book). Then you came
up against Microsoft Visual C++ at your place of work and found
you couldn’t try much of it out. Do we have to be content with
using all that fun template stuff on our home computers, where
we get to choose the compiler, or can we use some of the
techniques even with Visual C++?

The main limitation of Visual C++ 6.0 is its lack of support for
partial specialisation of class templates. That eliminates using
Alexandrescu’s TypeLists, upon which a significant portion of
his book depends. Another limitation is that it does not permit
template parameters that are themselves class templates. This is less
of a problem since the inferior alternative of member function
templates is supported (though the implementation of such
functions has to be placed in the class definition, “inline” style).
Within the boundaries set by these limitations there are some
valuable techniques available to us as I hope to demonstrate.

The example I have chosen is to implement the Bridge pattern
[2] for a class by making the class of its implementation member
variable a policy class, passed as a template parameter. This
application of templates was mentioned by Nicolai Josuttis in his
talk at the 2001 ACCU Conference (a talk described in C Vu as
“solid but uninspiring”. Well, I was inspired by it!). I am also
indebted in what follows to Lois Goldthwaite’s stimulating
presentation of polymorphism using templates in Overload [3].

The example class

To be specific, I am going to develop a Blackjack Hand class, as
suggested by Code Critique 14 [4]. For card names I will use a
simple enum:

// card.h (include guard not shown)

namespace Blackjack {

enum Card { ace, king, queen, jack, ten,

nine, eight, seven, six,

five, four, three, two };

}

I will also use an encapsulated lookup table of card values:

// card_values.h (include guard not shown)

#include <map>

#include <exception>

#include "card.h"

namespace Blackjack {

class Card_Values {

public:

explicit Card_Values(unsigned int

ace_value = 1);

// copy constructor, assignment, swap,

// destructor not shown

class Card_Has_No_Value

: public std::exception {};

unsigned int lookup(Card card) const

throw(Card_Has_No_Value);

private:

typedef std::map<Card, unsigned int>

Card_Lookup;

Card_Lookup card_lookup;

};

}

For a first pass, we build a non-template version of the Hand
class:

// hand.h (include guard not shown)

#include "card.h"

#include <map>

#include <exception>

namespace Blackjack {

class Hand {

public:

// default constructor, copy constructor,

// assignment, swap and destructor not shown

class Four_Of_That_Card_Already

: public std::exception {};

class Five_Cards_Already

: public std::exception {};

class Fewer_Than_Two_Cards

: public std::exception {};

Hand& add(Card card)

throw(Four_Of_That_Card_Already,

Five_Cards_Already);

unsigned int value() const

throw(Fewer_Than_Two_Cards);

private:

struct Card_Data {

unsigned int count;

};

typedef std::map<Card, Card_Data>

Card_Container;

Card_Container cards;

unsigned int number_of_cards;

class Accumulate_Card_Value;

};

}

// hand.cpp

#include "hand.h"

#include "card_values.h"

#include <numeric>

namespace {

const Blackjack::Card_Values&

get_card_values() {

static const Blackjack::Card_Values

card_values;

return card_values;

}

}

10

Overload issue 54 april 2003

class Blackjack::Hand::Accumulate_Card_Value {

public:

Accumulate_Card_Value(

const Card_Values& card_values)

: values(card_values) {}

unsigned int operator()(

unsigned int accumulated_value,

const Card_Container::value_type&

card_data) {

return accumulated_value +=

(card_data.second.count *

values.lookup(card_data.first));

}

private:

const Card_Values& values;

};

// default constructor, copy constructor,

// assignment, swap and destructor not shown

Blackjack::Hand::AddStatus

Blackjack::Hand::add(Card card)

throw(Four_Of_That_Card_Already,

Five_Cards_Already) {

if(number_of_cards == 5) {

throw Five_Cards_Already();

}

Card_Data& card_data = cards[card];

if(card_data.count == 4) {

throw Four_Of_That_Card_Already();

}

++card_data.count;

++number_of_cards;

return *this;

}

unsigned int Blackjack::Hand::value() const

throw(Fewer_Than_Two_Cards) {

if(number_of_cards < 2) {

throw Fewer_Than_Two_Cards();

}

unsigned int hand_value =

std::accumulate(cards.begin(),

cards.end(),

0,

Accumulate_Card_Value(

get_card_values()));

if((hand_value < 12) &&

(cards.find(ace) != cards.end())) {

hand_value += 10;

}

return hand_value;

}

Converting the example class to a
template

In the non-template version, the implementation of hand is hard
coded to be a std::map<Card, Card_Data> together with
a cached value number_of_cards. Our goal is to replace this
implementation with a single member variable.The class of this

member variable will be a template parameter. To reach this goal
we need to identify all the places in the implementation of Hand
that will depend upon that member variable. To simplify matters
we make the reasonable assumption that the class of the member
variable will always have the properties of an STL container, i.e.
we can assume things like size() and iterators are always
available. In add() we additionally need to obtain non-const
references to the count for a given card and to the total number of
cards in the hand. In value() we need to determine the total
number of cards in the hand and whether the container contains
an ace. We can turn these four requirements into helper function
templates. Function templates are particularly useful because of
the way C++ deduces the instantiation required from the function
arguments, avoiding the need for explicit instantiations.

// hand_implementation.h (include guard not

// shown)

#include "card.h"

namespace Blackjack {

// Assume that Card_Container is usually a

// std::map If something else is used,

// e.g. std::vector, these function

// templates would need to be specialised to

// use std::find

template< class Card_Container >

unsigned int& hand_implementation_count(

Card card,

Card_Container& card_container) {

return card_container[card].count;

}

template< class Card_Container >

typename Card_Container::const_iterator

hand_implementation_find(

Card card,

const Card_Container&

card_container) {

return card_container.find(card);

}

// non-const reference version of

// number_of_cards

template< class Card_Container >

unsigned int&

hand_implementation_number_of_cards

(Card_Container& card_container) {

return card_container.number_of_cards;

}

// const version of number_of_cards

template< class Card_Container >

unsigned int

hand_implementation_number_of_cards

(const Card_Container&

card_container) {

return card_container.number_of_cards;

}

}

11

Overload issue 54 april 2003

Less obviously, perhaps, Accumulate_Card_Value depends
upon the type of values contained by the container, so is
indirectly dependent upon the container. We therefore make it a
nested class of the container like so:

// card_count_container.h (include guard not

// shown)

#include <map>

#include "card.h"

#include "card_values.h"

namespace Blackjack {

struct Card_Count {

unsigned int count;

Card_Count() : count(0) {}

};

class Card_Count_Container

: public std::map<Card, Card_Count> {

public:

unsigned int number_of_cards;

// cached value as before

class Accumulate_Card_Value {

// same as before

};

};

}

We are now in a position to re-implement Hand as a class
template. I follow the convention described by Dietmar Kuehl
at the 2002 ACCU Conference of placing the implementation
of the class template in a .tpp file. For this article I am going
to put all the instantiations in a .cpp file in which this .tpp
file is included. The alternative is to let clients include the
.tpp file and perform the instantiations themselves. The
.tpp file serves to keep both of these alternatives available to
us.

// hand_type.h (include guard not shown)

#include "card.h"

#include "card_count_container.h"

namespace Blackjack {

// Exceptions moved out of class into

// namespace so that all instantiations

// can share the exceptions

class Four_Of_That_Card_Already

: public std::exception {};

class Five_Cards_Already

: public std::exception {};

class Fewer_Than_Two_Cards

: public std::exception {};

template< class Card_Container >

class Hand_Type {

public:

// identical to public section of

// non-template Hand class except

// for exceptions as noted above

protected:

// get_card_values() is moved here in

// case we want to provide the

// implementation of this class template

// in a header file

const Card_Values& get_card_values() const;

private:

Card_Container cards;

};

// declare the valid instantiations

typedef Hand_Type<Card_Count_Container>

Hand_No_Cached_Values;

}

// hand_type.tpp

#include "card_values.h"

#include "hand_implementation.h"

#include <numeric>

// default constructor, copy constructor,

// assignment, swap and destructor not

// shown

template< class Card_Container >

Blackjack::Hand_Type<Card_Container>::Hand_Type&

Blackjack::Hand_Type<Card_Container>::add(

Card card)

throw(Four_Of_That_Card_Already,

Five_Cards_Already) {

// use the helper to access the number of

// cards

unsigned int& number_of_cards =

hand_implementation_number_of_cards(

cards);

if(number_of_cards == 5) {

throw Five_Cards_Already();

}

// use the helper to access the count

unsigned int& count =

hand_implementation_count(card, cards);

if(count == 4) {

throw Four_Of_That_Card_Already();

}

++count;

++number_of_cards;

return *this;

}

template< class Card_Container >

unsigned int Blackjack::Hand_Type<

Card_Container>::value() const

throw(Fewer_Than_Two_Cards) {

// use the helper to check the number of

// cards

if(hand_implementation_number_of_cards(

cards) < 2) {

throw Fewer_Than_Two_Cards();

}

12

Overload issue 54 april 2003

13

Overload issue 54 april 2003

unsigned int hand_value =

std::accumulate(

cards.begin(),

cards.end(),

0,

typename Card_Container::

Accumulate_Card_Value(

get_card_values()));

if((hand_value < 12) &&

// use the helper to check for an ace

(hand_implementation_find(ace, cards)

!= cards.end())) {

hand_value += 10;

}

return hand_value;

}

template< class Card_Container >

const Blackjack::Card_Values&

Blackjack::Hand<Card_Container>::

get_card_values() const {

static const Card_Values card_values;

return card_values;

}

// hand_type.cpp

#include "hand_type.h"

#include "hand_type.tpp"

#include "card_count_container.h"

// instantiate the valid instantiations

template

Blackjack::Hand_Type<

Blackjack::Card_Count_Container>;

Creating a different instantiation of
the class template

So far so good, but we only have one instantiation at the moment.
It may appear, therefore, that we haven’t gained very much. In
fact we have significantly improved the testability of the Hand
class, a point to which I will return later.

Let’s try and build a variant of Hand that looks up the value of
a card when it is added to the hand, and caches that value. For this
we need an additional helper function template that will set the
value for a card. We need to specialise this new function template
to do nothing when there is nowhere to cache the value (which is
the case for our first instantiation). Hence:

// hand_implementation.h (include guard not

// shown)

#include "card.h"

#include "card_count_container.h"

namespace Blackjack {

// hand_implementation_count(),

// hand_implementation_find()

// and

// hand_implementation_number_of_cards()

// as before

template< class Card_Container >

void hand_implementation_set_value(

Card card,

unsigned int value,

Card_Container& card_container) {

card_container[card].value = value;

}

// specialisation to do nothing when there

// is nowhere to cache the value

template<>

void hand_implementation_set_value(

Card card,

unsigned int value,

Card_Count_Container& card_container);

}

// hand_implementation.cpp

#include "hand_implementation.h"

template <>

void Blackjack::hand_implementation_set_value

(Card card,

unsigned int value,

Card_Count_Container& card_container) {}

The container class is:
// card_count_with_value_container.h

// (include guard not shown)

#include "card_count_container.h"

namespace Blackjack {

struct Card_Count_With_Value

: public Card_Count {

unsigned int value;

Card_Count_With_Value() : value(0){}

};

class Card_Count_With_Value_Container

: public std::map<Card,

Card_Count_With_Value> {

public:

unsigned int number_of_cards; // as before

class Accumulate_Card_Value {

public:

Accumulate_Card_Value(

const Card_Values& /* unused */) {}

unsigned int operator()

(unsigned int accumulated_value,

const std::map<Card,

Card_Count_With_Value>::value_type&

card_data) {

return accumulated_value +=

(card_data.second.count *

card_data.second.value);

}

};

};

}

Notice that we have adjusted Accumulate_Card_Value
operator() to take advantage of the cached values; the signature
of its constructor is preserved, even though the Card_Values

14

Overload issue 54 april 2003

argument is unused, so that it will work with the Hand_Type we
have already. We then modify Hand_Type::add() to call
hand_implementation_set_value() at the appropriate
point:

template< class Card_Container >

Blackjack::Hand_Type<Card_Container>::Hand_Type&

Blackjack::Hand_Type<Card_Container>::add(

Card card)

throw(Four_Of_That_Card_Already,

Five_Cards_Already) {

unsigned int& number_of_cards =

hand_implementation_number_of_cards(cards);

if(number_of_cards == 5) {

throw Five_Cards_Already();

}

unsigned int& count =

hand_implementation_count(card, cards);

if(count == 4) {

throw Four_Of_That_Card_Already();

}

if(count == 0) {

// use the helper to cache the card value

hand_implementation_set_value(card,

get_card_values().lookup(card),

cards);

}

++count;

++number_of_cards;

return *this;

}

We add the new instantiations:
// in hand_type.h

typedef

Hand_Type<Card_Count_With_Value_Container>

Hand_With_Cached_Values;

// in hand_type.cpp

template Blackjack::Hand_Type<

Blackjack::Card_Count_With_Value_Container>;

I have used long names for the instantiation typedefs in an attempt to
document the characteristics of each variant. I am assuming that any
particular client is likely to want only one variant, and will further
typedef the variant required to a shorter name like Hand. (I have
used Hand_Type for the class template so that the simple name
Hand is available for clients to use).

Making the implementation member
variable a pointer

The classic Bridge pattern, of course, has the implementation
member variable as a pointer. This allows us to change the
implementation without forcing clients to recompile. We cannot
simply instantiate our existing Hand_Type with a pointer because
its implementation does not dereference the member variable cards.
The ideal solution would be to partially specialise Hand_Type for
all instantiations taking a pointer as the template parameter, but this
is not supported by Visual C++ 6.0. The workaround is to define
another class template which I will name Hand_Bridge.

Bjarne Stroustrup [5] writes that this was the approach he tried
before deciding upon partial specialisation. He comments that he
abandoned it because even good programmers forgot to use the

templates designed to be instantiated with pointers. That problem
does not arise in our case, though, because the compiler prevents
us from instantiating Hand_Type with a pointer.

For this class template I will assume the existence of a suitable smart
pointer (deep copy is appropriate - see Alexandrescu [1] for a full
discussion of smart pointers):

// hand_bridge.h (include guard not shown)

#include "card.h"

#include "smart_pointer.h"

namespace Blackjack {

template< class Card_Container >

class Hand_Bridge {

public:

// identical to public section of

// Hand_Type class

private:

Smart_Pointer<Card_Container> cards;

};

// Forward declaration is now sufficient in

// the header

class Card_Container_Implementation;

// declare the valid instantiation

typedef Hand_Bridge<

Card_Container_Implementation> Hand;

}

// hand_bridge.tpp

#include "card_values.h"

#include "hand_implementation.h"

#include <numeric>

// default constructor, copy constructor,

// assignment, swap and destructor not shown

template< class Card_Container >

Blackjack::Hand_Bridge<Card_Container>::

Hand_Bridge& Blackjack::Hand_Bridge<

Card_Container>::add(Card card)

throw(Four_Of_That_Card_Already,

Five_Cards_Already) {

unsigned int& number_of_cards =

hand_implementation_number_of_cards(

cards->implementation());

if(number_of_cards == 5) {

throw Five_Cards_Already();

}

unsigned int& count = hand_implementation_count(

card, cards->implementation());

if(count == 4) {

throw Four_Of_That_Card_Already();

}

if(count == 0) {

hand_implementation_set_value(card,

get_card_values().lookup(card),

cards->implementation());

}

++count;

++number_of_cards;

return *this;

}

15

Overload issue 54 april 2003

template< class Card_Container >

unsigned int Blackjack::Hand_Bridge<

Card_Container>::value() const

throw (Fewer_Than_Two_Cards) {

if(hand_implementation_number_of_cards(

cards->const_implementation()) < 2) {

throw Fewer_Than_Two_Cards();

}

unsigned int hand_value =

std::accumulate(cards->begin(),

cards->end(), 0, typename

Card_Container::Accumulate_Card_Value(

get_card_values()));

if((hand_value < 12) &&

(hand_implementation_find(ace,

cards->const_implementation()) !=

cards->end())) {

hand_value += 10;

}

return hand_value;

}

//hand_bridge.cpp

#include "hand_bridge.h"

#include "hand_bridge.tpp"

#include "card_count_container.h"

#include "card_count_with_value_container.h"

namespace {

template< class Card_Container >

class Implementation : public Card_Container {

public:

Card_Container& implementation() {

return *this;

}

const Card_Container&

const_implementation() const {

return *this;

}

};

}

#ifdef NO_CACHED_CARD_VALUES

class Blackjack::Card_Container_Implementation

: public Implementation<

Blackjack::Card_Count_Container> {};

#else // use the implementation with cached

// card values

class Blackjack::Card_Container_Implementation

: public Implementation<Blackjack::

Card_Count_With_Value_Container> {};

#endif // NO_CACHED_CARD_VALUES

// instantiate the valid instantiation template

Blackjack::Hand_Bridge<

Blackjack::Card_Container_Implementation>;

We can switch the implementation of Hand simply by
recompiling hand_bridge.cpp with or without

NO_CACHED_CARD_VALUES being defined; clients of Hand
do not need to be recompiled.

You will no doubt be wondering why I have found it necessary to
derive Card_Container_Implementation from the helper
class template Implementation. The reason is so that the
specialisations of the helper function templates are used. Take for
example hand_implementation_set_value(). This has a
specialisation for Card_Count_Container. If we simply called
hand_implementation_set_value(*cards) the type of
*cards is Card_Container_Implementation for which
there is no specialisation (nor can there be since this is the class that
changes depending upon our compilation settings); the compiler tries
to use the unspecialised function template and fails to compile if
NO_CACHED_CARD_VALUES is defined. In contrast, when we call
hand_implementation_set_value(cards->
implementation()) the type of cards->
implementation() is Card_Count_Container (if
NO_CACHED_CARD_VALUES is defined) and the compiler uses the
specialised function template as required.

Testing using the Dependency
Inversion Principle revisited

Implementing the Bridge pattern in the way I have described
has the benefit of facilitating unit testing. It realises the
Dependency Inversion Principle [6] because classes depend
upon other classes only via template parameters. It is therefore
easy to use stub versions of classes that a class under test
depends upon: the class under test is simply instantiated with
the stub. I believe that this realisation of the Dependency
Inversion Principle by means of templates is an improvement
upon the realisation using abstract base classes [7] for a
number of reasons:
● we are not limited to using classes derived from specific abstract

base classes (specialisation allows us to get round this limitation)
● we avoid the overhead of virtual function tables
● we can even avoid using pointers altogether (if the recompilation

cost incurred is a relatively insignificant factor);
● we avoid the need for supporting class factories (typedefs are

sufficient).
In conclusion, the lack of support for partial specialisation in
Visual C++ 6.0 is a serious inconvenience. However we should
not underestimate the power and usefulness of full specialisation
which it does support.

Chris Main

References

[1] Andrei Alexandrescu, Modern C++ Design, Addison Wesley
C++ In Depth Series, 2001
[2] Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley, 1995
[3] Lois Goldthwaite, “Programming With Interfaces In C++: A
New Approach,” Overload 40 (December 2000)
[4] “Student Code Critique 14,” C Vu 14.1 (February 2002)
[5] Bjarne Stroustrup, The C++ Programming Language, 3rd
Edition, Addison Wesley, 1997
[6] http://www.objectmentor.com/resources/

articles/dip.pdf

[7] Chris Main, “OOD and Testing using the Dependency
Inversion Principle,” C Vu 12.6 (December 2000)

16

Overload issue 54 april 2003

EXPR_TYPE – An
Implementation of typeof
Using Current Standard C++
by Anthony Williams

typeof is a much-sought-after facility that is lacking from
current C++; it is the ability to declare a variable to have the
same type as the result of a given expression, or make a function
have the same type as an expression. The general idea is that
typeof(some-expression) would be usable anywhere a
type name could normally be used. This article describes a way
of providing this ability within the realms of current C++.

Introduction

Imagine you’re writing a template function that adds its
parameters, such as the following:

template<typename T,typename U>
SomeResultType addValues(const T&t,

const U&u) {
return t+u;

}

What type should the return value have? Obviously, the ideal
choice would be “the type of t+u”, but how can the compiler
determine that type? The rules for the type of an additive
expression involving only builtin types are not trivial – consider
pointer arithmetic, integral type conversions, and integer
conversion to floating-point type – so how do we do it? The
Standard C++ Library only deals with the case where both
function parameters have the same type, and forces the result to
be the same type – e.g. std::plus, and std::min. Another
possible solution is to hard code the rules for this particular
operation, as Andrei Alexandrescu does for min and max [1].

The solution provided by some compilers as an extension, and
widely considered to be a prime candidate for inclusion in the next
version of the C++ standard is the typeof operator. The idea of
typeof is that it takes an expression, and determines its type at
compile time, without evaluating it, in much the same way as
sizeof determines the size of the result of an expression without
evaluating it. typeof could then be used anywhere a normal type
name could be used, so we could declare addValues as:

template<typename T,typename U>
typeof(T()+U()) addValues(const T&t,

const U&u);

The function parameters t and u aren’t in scope at the point of
declaration of addValues, so we use the default constructors
for the types to generate values to add – the values used are
unimportant, as the expression is never evaluated1.

This is good – the return type of addValues is now correct for
all combinations of types, but we now have the problem that we’ve
used a non-standard extension, so the code is not portable. One
compiler may use the name typeof, another __typeof__, and
a third may not provide the extension at all. We therefore need a
portable solution, that uses only Standard C++.

Current Facilities

What facilities are there in Standard C++ that we can use? Firstly,
we need a means of obtaining information about an expression
without actually evaluating it. The only Standard facility for this
is sizeof2. We therefore need a mechanism to ensure that
expressions of different types yield different values for sizeof,
so we can tell them apart, and we need a mechanism for
converting a size into a type.

Another Standard C++ facility we can use to obtain information
about a type is function template argument type deduction. By
writing a function template which has a return type dependent on
the argument type, we can encode information from the argument
type into the return type any way we choose – given:

template<typename T>
struct TypeToHelperInfo{};

template<typename T>
TypeToHelperInfo<T> typeOfHelper(const

T& t);

we can then write the TypeToHelperInfo class template to
provide any necessary information.

Bringing it Together

Converting a value into a type is easy – just create a class
template with a value template parameter to accept the value
which the type has been assigned. Then, specialize this template
for each value/type combination, as in listing 1 – Size1 and
Size2 are constants, and are the unique size values that relate to
Type1 and Type2, respectively, rather than sizeof(Type1)
or sizeof(Type2).

Converting a type into a size value is a bit more complex.
If we have an expression expr, of type T,
then typeOfHelper(expr) is of type
TypeToHelperInfo<T>, if we use the signature of
typeOfHelper from above. We can then specialize
TypeToHelperInfo, so it has a distinct size for each distinct
type. Unfortunately, it is not that simple – the compiler is free to
add padding to structs to ensure they get aligned properly, so we
cannot portably control the size of a struct. The only construct

1 There are better ways to generate suitable expressions, that don’t rely on the type
having a default constructor, but they will be dealt with later

2 For non-polymorphic types, typeid also identifies the type of its operand at compile-
time, without evaluating it, but the return type of typeid is very little use, as it is not
guaranteed to have the same value for the same type, just an equivalent value.

template<std::size_t size>
struct SizeToType {};

template<>
struct SizeToType<Size1> {
typedef Type1 Type;

};

template<>
struct SizeToType<Size2> {
typedef Type2 Type;

};

Listing 1: Converting a size to a type

17

Overload issue 54 april 2003

in C++ which has a precisely-defined size is an array, the size of
which is the number of elements multiplied by the size of each
element. Given that sizeof(char)==1, the size of an array of
char is equal to the number of elements in that array, which is
precisely what we need. We can now specialize
TypeToHelperInfo for each type, to contain an appropriately-
sized array of char, as in listing 2.

We can now simulate typeof(expr) with
SizeToType<sizeof(typeOfHelper(expr).array)>::Type.
In templates, we probably need to precede this with typename,
in case expr depends on the template parameters. To ease the use,
we can define an EXPR_TYPE macro that does this for us:

#define EXPR_TYPE(expr)
SizeToType<sizeof(

typeOfHelper(expr).array)>::Type

We also need to declare the appropriate specializations of
SizeToType and TypeToHelperInfo for each type we
wish to detect, so we define a REGISTER_EXPR_TYPE macro
to assist with this, as in listing 3.

We can then declare the necessary specializations for all the basic
types, and pointers to them, so our users don’t have to do this
themselves.

const Qualification

As it stands, with only the one typeOfHelper function
template, const qualifications are lost. This may not be a
problem, as const-qualification doesn’t always have much
significance with value types. However, this is a problem we can
overcome3 by providing two overloads of typeOfHelper
instead of just the one:

template<typename T>
TypeToHelperInfo<T> typeOfHelper(T& t);
template<typename T>
TypeToHelperInfo<const T>
typeOfHelper(const T& t);

We can then specialize the class templates for each distinct cv-
qualified type – most easily done by modifying the
REGISTER_EXPR_TYPE macro to register all four cv-qualified
variants of each type with distinct values. Note that volatile
qualification is automatically picked up correctly, because T will
then be deduced to be “volatile X” for the appropriate type
X. We only need these distinct overloads to allow the use of
EXPR_TYPE with expressions that return a non-const
temporary, since with only a single function taking a T&, T is
deduced to be the non-const type, and temporaries cannot bind
to non-const references. With both overloads, the temporary
can be bound to the overload that takes const T&. The result is
that temporaries are deduced to be const4.

In the final implementation, all the classes and functions are in
namespace ExprType, to avoid polluting the global namespace,
and the macro definitions have been adjusted accordingly.

Restrictions

The most obvious restriction is that this only works for
expressions that have a type for which we have specialized
SizeToType and TypeToHelperInfo . This has the
consequence that we cannot define a specialization for
std::vector in general; we have to define one specialization
for std::vector<int> , and another for
std::vector<double>. Also, in order to avoid violating the
One Definition Rule, the user must ensure that the same value is
used for the same type in all translation units that are linked to
produce a single program. This includes any libraries used, so
when writing library code that uses EXPR_TYPE, it is probably
best to put the templates in a private namespace, to isolate them
from the rest of the program, and avoid the problem.

Also, EXPR_TYPE cannot tell the difference between an lvalue
and an rvalue, or between a reference and a value, except that
rvalues are always const, whereas lvalues may not be – given:

int f1();
int& f2();
const int& f3();
int i;

EXPR_TYPE(f2()) and EXPR_TYPE(i) are int, whereas
EXPR_TYPE(f1()), EXPR_TYPE(f3()) and
EXPR_TYPE(25) are const int. The reason for this is that
the mechanism used for type deduction – function template
argument type deduction – can only distinguish by cv-
qualification, and rvalues are mapped to const references. This
means you cannot use EXPR_TYPE to pass references – you
must explicitly add the & where needed, though this can be done
automatically for non-const references. It also means that you
may have to strip the const if the expression results in an

template<>
struct TypeToHelperInfo<Type1> {
char array[Size1];

};

template<>
struct TypeToHelperInfo<Type2> {
char array[Size2];

};

Listing 2: Getting appropriately-sized arrays for each type

#define REGISTER_EXPR_TYPE(type,value)\
template<>\
struct TypeToHelperInfo<type>{\
char array[value];\

};\
template<>\
struct SizeToType<value>{\
typedef type Type;\

};

Listing 3: The REGISTER_EXPR_TYPE macro.

4 Some compilers that don’t support partial ordering of function templates, also allow
the binding of temporaries to non-const references, so we only need supply a
single function, taking T&, in which case temporaries are deduced to be non-
const.3 for compilers that support partial ordering of function templates.

18

Overload issue 54 april 2003

rvalue, and you wish to declare a non-const variable of that
type, using something like boost::remove_const [3].

Finally, EXPR_TYPE cannot be used for expressions with void
type, such as functions returning void. This is because, though
references to incomplete types are permitted in general, references
to void are explicitly not permitted.

Revisiting the Example

To come back to the example from the introduction, we can now
implement our addValues template as:

template<typename T,typename U>
typename EXPR_TYPE(T()+U())
addValues(const T& t,const U& u) {
return t+u;

}

However, this still relies on the types T and U having default
constructors. We can avoid this restriction by declaring a makeT
function template:

template<typename T>
T makeT();

and then using this template in the parameter for EXPR_TYPE –
EXPR_TYPE(makeT<const T&>()+makeT<const U&>()).
This is a useful technique, whenever one is writing such an
expression, where all we want is its type, or size – since the
expressions using makeT are never evaluated, there is no need to
provide a definition of makeT; consequently using makeT
imposes no restrictions on the types.

Further Examples

This technique is useful in any scenario where you wish to
declare an object of a type related to the type of something else,
e.g. declaring a pointer to another variable

int i;
EXPR_TYPE(i) * j=&i; // j is "int *"

or supporting containers that may or may not declare iterator
and const_iterator typedefs.

template<typename Container>
void func(const Container& container) {
for(typename EXPR_TYPE(container.begin())

it = container.begin();
it != container.end(); ++it) {

// do something
}

}
It can also be used for such things as implementing min and max
function templates:

template<typename T,typename U>
struct MinHelper {
typedef typename EXPR_TYPE(
(makeT<const T&>()<makeT<const U&>())
? makeT<const T&>()
: makeT<const U&>()) Type;

};

template<typename T,typename U>
typename MinHelper<T,U>::Type min(const
T& t,const U& u) {
return (t<u)?t:u;

}

In general, it is of most use in template code, with expressions
where the type depends on the template parameters in a non-
trivial fashion. This allows the writing of more generic templates,
without complex support machinery.

It must be noted, however, that the user must ensure that all types
to be deduced have been registered in advance. The library can
facilitate this by declaring all the builtin types, and some compound
types (e.g. char*, const double*, etc.), but class types and
more obscure compound types (such as char
volatile**const*) must be declared explicitly.

Summary

The macros and templates that make up the EXPR_TYPE library
enable a typeof-like mechanism using Standard C++. The only
cost is the maintenance burden placed on the user, to ensure there
is a one-to-one correspondence between types and size-values
across each project, and the only restriction is that it cannot tell
the difference between lvalues and rvalues, and cannot detect
void, though all cv-qualifications are identified.

This powerful mechanism is another tool in the Generic
Programming toolbox, enabling people to write generic code more
easily.

The code presented here will be available with the online version
of the article at :
http://cplusplus.anthonyw.cjb.net/articles.html.

Anthony Williams

References

[1] Andrei Alexandrescu, “Generic<Programming>: Min and
Max Redivivus.” C/C++ Users Journal, 19(4), April 2001.
Available online at
http://www.cuj.com/experts/1904/alexandr.htm.
[2] Bill Gibbons, “A Portable “typeof” operator.” C/C++ Users
Journal, 18(11), November 2000.
[3] The Boost Team. Boost C++ libraries. See
http://www.boost.org

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

19

Overload issue 54 april 2003

Exported Templates
by Jean-Marc Bourguet

Exported templates are one of the two standard template compilation
models. Exported template implementations have only recently
become available. During the time they where defined but
unavailable, they were the subject of much expectation, some of it
unreasonable and some of it the consequence of confounding
compilation models and instantiation mechanisms.

This article reviews the compilation models and instantiation
mechanisms defined by the C++ standard, and then looks at some
related issues with C++ templates and examines what we can expect
from the export keyword.

Template Compilation Models

According to [1],
The compilation model determines the meaning of a template at

various stages of the translation of a program. In particular, it determines
what the various constructs in a template mean when it is instantiated.
Name lookup is an essential ingredient of the compilation model.

Name lookup is an essential ingredient of the compilation model, but
the standard models share the same name lookup rules, which is
called two phase lookup, so it is sufficient for this article to state that
names independent of the template parameters are searched in the
context of the definition of the template (that means that only names
visible from the definition are found) while names dependent on the
template parameters are searched in both the definition and
instantiation contexts (that means that names visible from the place
where the instantiation is used may also be found). [1] provides a
more complete description, including a more precise definition of
what the definition and instantiation contexts are.

Note that while these name lookup rules were introduced in the draft
standard in 1993, until 1997 all compilers looked up both dependent
and independent names only in the instantiation context; the first
compilers to correctly implement the name lookup rules found so many
errors in programs that they had to output warnings instead of errors.

At the heart of this article is another ingredient of the template
compilation model: how the definitions of non class templates are
found. At first, this part of the compilation model was not clearly
specified. For example, Bjarne Stroustrup [2] wrote:

When a function definition is needed for a class template member
function for a particular type, it is the implementation’s job to find
the template for the member function and generate the appropriate
version. An implementation may require the programmer to help
find template source by following some convention.

CFront, which was the first implementation of C++ templates,
used some conventions which are described in the appendix.
However, the standard provides two ways, both of which differ
from the CFront approach.

The Inclusion Compilation Model

This is the only commonly provided compilation model: the
definition of a template has to be provided in the compilation unit
where the template is instantiated1.

In an effort to be able to compile source code written for CFront,
some compilers provide a variant where the source file which would
be used by CFront is automatically included when needed.

The Separation Compilation Model

When using this model, template declarations have to be
signalled as exported2 (using the export keyword). A definition
of the template has to be compiled in one (and only one, by the
one definition rule) compilation unit and the implementation has
to manage with that.

It should be noted that while in the inclusion model the two
contexts where names are looked up are usually not very different
(but remember the problems found by the first implementation of
two phase name lookup rules), in this model the differences may
be far more important and give birth to some surprising
consequences, especially in combination with overloading and
implicit conversions.

Template Instantiation Mechanisms

According to [1]3,
The instantiation mechanisms are the external mechanisms that

allow C++ implementations to create instantiations correctly. These
mechanisms may be constrained by the requirements of the linker
and other software building tools.

One may consider there to be two kinds of instantiation
mechanisms:
● local, where all the instantiations are done when considering

each compilation unit, and
● global, where the instantiations are done when considering all

the compilation units in the program or library.
CFront used a global mechanism: it tried a link and used the error
messages describing missing symbols to deduce the necessary
template instantiations. It then generated them and retried the
link until all required instantiations where found.

Borland’s compiler introduced the local mechanism: it added all
the instantiations to every object file and relied on the linker to
remove any duplicates.

Sun’s compiler also uses a local mechanism. It also generates
all the needed instantiations when compiling a compilation unit,
but instead of putting them in the object file, it puts them in a
repository. The linker does not need to be able to remove duplicates
and an obvious optimisation is generating an instantiation only if it
is not already present in the repository.

Comeau’s and HP’s compilers have a global mechanism: they
use a pre-linker to detect the needed instantiations4. These are then
assigned to compilation units which can generate them and these
compilation units are recompiled. The assignment is cached so that
when recompiling a compilation unit to which instantiations have
been assigned, they are also regenerated; the pre-linking phase is
then usually simply a check that all the needed instantiations are
provided, except when starting a compilation from a clean state.

Comeau’s compiler has an additional mode where several objects
are generated from a compilation unit to which instantiations have
been assigned. This removes the need to link a compilation unit
(and other compilation units upon which it depends) only because
an instantiation has been assigned to it.

1 While the standard requires that the definition is either available in every compilation
unit where the template is instantiated or exported, no compilers I know of check this
rule, they all simply don’t instantiate a template in a compilation unit where the
definition is not present, and some take advantage of this behaviour.

2 The standard seems to imply that only the definition has to be marked as exported,
but the only implementation demands that the declaration is marked and a defect
report (the mechanism to report and correct bugs in the standard) on this issue has
been introduced to demand it.

3 The classification of instantiation mechanisms used in this book is different to the
one presented here. They use greedy instantiation and queried instantiation for what
we call local instantiation and use iterated instantiation class for global instantiation.

4 Unlike CFront, they do not detect them by examining the missing symbols from a
failed link, but use a more efficient mechanism.

20

Overload issue 54 april 2003

Issues related to template
instantiations

It should be noted that the compilation model and the
instantiation mechanisms are mostly independent: it is possible
(though not always convenient or especially useful) to implement
the standard compilation models with each of the instantiation
mechanisms described. A consequence is that one should not
expect the separation compilation model to solve problems
related to instantiation mechanisms.

Publishing the source code

The need in the inclusion model to provide the source code of the
template definition is seen by some as a problem. Is the
separation model a solution?

First, it should be noted that the standard formally ignores such
issues and so a compiler could always demand that the source code
be present until link time. Not going to such extremes, some
compilers delay code generation until link time and so generate high
level object files5.

It should also be noted that a compiler could provide a way to
accept encrypted source or high level intermediate format
(something very similar to what is done with precompiled headers)
and so if there is enough demand, the compiler makers can provide
a solution (not perfect but probably good enough for most purposes:
it is used in other languages; the main problem would probably be
to generate useful error messages when encrypted code is all what
is available) even with the inclusion model.

These remarks made, we’ll consider the related but quite different
question: can the separation model be implemented in such a way that
only low level information is needed to instantiate templates?

The two phase lookup rule and other modifications made during
the standardisation process allowed compilers to check the template
definition for syntactic errors, but most semantic ones can only be
detected at instantiation time. Indeed, most operations done in a
template depend on the template parameters, and so the parameters
must be known to get the precise meaning.

So, obviously the answer is no: the separation model may not
prevent the need to furnish the template definition as a high level
description.

Compilation time

Templates are often blamed for long compilation times. Is this
attribution correct?

Concerning the compilation model, in the inclusion model, every
compilation unit using a template has to include the definition of
the template and so everything needed for the definition. So more
code has to be read and parsed than for the export model, but some
techniques such as precompiled headers can reduce the overhead.

The separation model does not have obvious overhead in forcing
redundant work to be done, even if the current implementations
force a reparsing of the definition for each instantiation.

The main overhead of the global instantiation mechanisms is in
the way the required instantiations are detected. CFront’s way of
trying links until closure was costly. More modern methods such
as those of HP and Comeau are less costly. But, they still have the
disadvantage of increasing the link time of a clean build. The global

mechanisms have also an overhead in the recompilation of the
compilation units to which instantiations have been assigned.
Although, this overhead exists only when doing a clean build.

There is a serious overhead in the local mechanism without using
a repository: the instantiations are compiled several times, and the
optimisation and code generation phases of a compiler usually do
take a significant part of the process. Doing so only to throw the
result away is a waste, and bigger files are created and it
complicates and slows down the linker.

Recompilation

In this section, we’ll examine what recompilations are needed
when a file is modified, and if the recompilation can be done
automatically.

When modifying a type used as a template argument, all the files
using this type should be recompiled and the compilation model
has no influence on that.

The normal use of makefiles6 triggers the recompilation in all
combinations of compilation models and instantiation mechanisms.

When modifying a template definition, things are sensibly
different.

With the inclusion model, the normal use of makefiles triggers
a recompilation of all compilation units including the definition of
the template and so the needed instantiation will be recompiled
whatever the compilation model is used.

With the separation model, the normal use of makefiles will
trigger a recompilation of the compilation unit providing the
exported definition and trigger a relinking. Is this enough?

When using a local mechanism, all compilation units using the
template should be recompiled, so additional dependencies should
be added to the makefile. In practice, a tool aware of exported
templates should be used to generate the makefile dependencies.

When using a global mechanism, the pre-link phase should be
able to trigger the needed recompilation: it only needs to be able to
detect that the instantiations are out of date; being able to launch
recompilations is inherent to this mechanism. Exported templates
provide a natural way to trigger the pre-link phase and to allow it
to check the consistency of the objects.

What happens when a definition
becomes available late?

When a definition becomes available when it was previously not,
the used instantiations need to be provided. That can be
considered as a modification of a stub definition and the needed
recompilations would be the same.

What to expect from export?

Compared to the inclusion model, what are the expected effects
of using the separation model?
● It removes the need to provide the definition of the function

template along with the declaration. This mimics what is true
for normal functions and a behaviour expected by most people
starting to use templates.

● It also removes the need to include all the declarations needed
by the definition of the function templates, preventing a
“pollution” of the user code.

The other effects are dependent on the instantiation mechanism
used.5 I’ll consider an intermediate format to be high level if the source code without the

comments can be reconstructed; an intermediate format which is not high level will
be qualified as low level . Obviously in practice the separation between low level and
high level is not clear.

6 That is where dependencies are generated by the preprocessor (with an option like
-MM for gcc) or an external tool (like makedepend)

21

Overload issue 54 april 2003

● in conjunction with a local mechanism, without duplicate
instantiation avoidance (like Borland’s), it could need more
parsing than the inclusion model as the headers needed for both
the definition and the declarations have to be parsed twice if one
requires the definition to be available at instantiation time (as
does the only implementation).

● in conjunction with a local mechanism with duplicate
instantiation avoidance (like Sun’s), it could reduce the needed
file reading and parsing, but the disadvantage for the inclusion
model may be reduced by using techniques such as precompiled
headers

● in conjunction with a global mechanism
● it reduces file reading and parsing, but the disadvantage for

the inclusion model may be reduced by using techniques such
as precompiled headers.

● it reduces the need for recompilations after a change in the
template as only the compilation unit providing the
instantiation has to be provided.

Experiment report

I have performed some experiments with exported templates
using Comeau’s compiler, to check if they are usable. I wanted to
see if it was possible to set up a makefile so that all needed
recompilations were triggered automatically without adding
dependencies manually, to see if it was possible to use them with
libraries, and to see if it was possible to organize the code so that
it could be compiled in both the inclusion model and separation
one.

I also wanted to check if the expected effects on the instantiation
mechanisms described above where measurable. As Comeau’s
compiler provides a global mechanism, I expected a reduction in
compile time, and a reduction in file reading and parsing, and I
wanted to see how it compared with what could be obtained with
using pre-compiled headers.

Obviously such effects depend on the code. The simple setup I
used was designed to be favourable to export: a project made of a
simple template function making use of the standard IOStream
implementation, but not its interface, was instantiated for the same
argument in ten files containing very little else. In such a setup if
export did not provide a speed up in compilation time, there is little
hope that it will in real life projects.
I measured
● the time to build from scratch
● the time to rebuild after touching the template definition file
● the time to rebuild after touching the header defining the

template argument type
For each kind of compilation7:
● normal compilation
● using precompiled headers
● using export

The results are seen in this table:

One can see that, at least for this kind of use, exported
templates have some benefit in build time. This is especially
true when modifying the template definition (which for
exported templates resulted in one file compilation and a link,
while there where several file compilations for both the
normal build and when using precompiled headers), but the
effect of parsing reduction can be seen when the same
instantiation is used in several files and when the use of export
reduces the need for include (in the experiment: the
<iostream> and <ostream> headers were only needed in
the template definition).

Obviously, in more realistic scenarios, the proportion of the
timing reduction would be different and using export could result
in degradation of building time when template instantiation was
used in only one compilation unit or when the usage of export does
not reduce the need to include files.

CFront compilation model and
instantiation mechanism8

When instantiating templates, CFront compiled (in a special
mode to ensure that only template instantiations were provided) a
new compilation unit made up of
● the file containing the template declaration,
● a file expected to contain the template definition whose name

was made up by changing the extension of the file containing
the declaration,

● a selection of files included in the file which requested the
template instantiation,

● special code triggering the wanted instantiations.
A name (dependent or independent) used in a template, was
searched in the context of instantiation in this compilation unit,
this context was different but usually very similar to the context
at the true instantiation point.

CFront compiled template instantiations at link time. A pre-
linker launched a link, deduced the required instantiations from the
missing symbols and generated them if they where not already
present in a repository. Then it restarted the process until all needed
instantiations where available. The behaviour of CFront was
reputed to be slow (linking takes a lot of time and doing several of
them takes even more so) and fragile (needed recompilation of
instantiations sometimes did not occur and so the first step in
handling a strange error was to clean the repository and recompile
everything).

Jean-Marc Bourguet

Bibliography

[1] David Vandevoorde and Nicolai M. Josuttis, C++ Templates,
The Complete Guide, Addison-Wesley, 2003
[2] Bjarne Stroustrup, The C++ programming language,
Addison-Wesley, second edition, 1991
[3] Herb Sutter, “export” restrictions, part 1, C/C++ Users
Journal, September 2002, also available at
http://www.gotw.ca/publications/mill23.htm.
[4] Herb Sutter, “export” restrictions, part 2, C/C++ Users
Journal, November 2002, also available at
http://www.gotw.ca/publications/mill24.htm

7 I also tried to measure it for the combination of export and precompiled headers, but
it triggered a bug in Comeau’s compiler.

8 I’ve never used CFront, so this description is not from a first hand experience but is
the summary of information found at different places.

Normal Precompiled Exported
build headers template

From scratch 10.2 5.2 3.7
Touching the type definition 9.4 4.7 2.5
Touching the template definition 9.3 4.7 2

22

Overload issue 54 april 2003

The Nature and Aesthetics of
Design
An extended review by Jon Jagger

Author: David Pye

Publisher: Herbert Press Limited

ISBN: 0-7136-5286-1
David Pye was an architect, industrial designer, and wood
craftsman. He was also the Professor of Furniture Design at the
Royal College of Art, London. He wrote two books that I know
of (the other one is called The Nature and Art of Workmanship).

Chapter 1: Art and Science. Energy.
Results.

In this chapter the author distinguishes between art and science with
the observation that designers have limits set upon their freedom
whereas artists typically do not. The idea of design limitations and
their liberating effect is an important one which you may recall from
Safer C [1]. The author then considers “function” and the fuzzy and
unhelpful notion of form-follows-function. He asserts that the major
factors in designing devices are considerations of economy and style
- both matters purely of choice. Further, that every device when used
produces a concrete, measurable, objective result and this is the only
sure basis for a theory of design. When reading this I was reminded
of eXtreme Programming and testing. Later in the chapter the author
talks about systems - that things never exist in isolation - that things
always act together and need to be in balance [2][3]. The author also
says that design is not just about getting the intended results, it is as
much about averting possible consequences of unwanted inputs [4].

Chapter 2: Invention and design
distinguished

In this very short chapter the author states that invention is the
process of discovering a principle whereas design is the process of
applying that principle. It is interesting that in his other book there is
also a very short chapter in which design and workmanship are
distinguished: design can be conveyed in words or drawings,
workmanship cannot. Based on this distinction one might say that
design and workmanship is the process of applying a principle. (In
fact later in the book the author asserts that workmanship is design).
He also talks about description [5] - that the description of an
invention describes the essential principle of the device, which is
purely a matter of its arrangement.

Chapter 3: The six requirements
for design

All but one of the six facets presented have clear parallels in
software. The only one that doesn’t is that the appearance must be
acceptable. Since software does not have a physical manifestation
the closest parallel to appearance must be just the names embodied
in a software design. Names matter. The chapter discusses the six
requirements in the context of how far, if at all, each of the
requirements limits the designer’s freedom of choice (relating back
to chapter 1). The third requirement concerns the strength of the
components; components must be strong enough to transmit
(delegate) or resist forces. The relationship between strength and size
is examined. For example, large bridges need to support not only
their traffic but also their own weight. Economy and minimalism are
also briefly discussed (he returns to the theme of economy in a later

chapter). The fourth requirement of use is that of access. A device
may be conceptually self-contained but in truth every device is part
of a larger system that man is always part of. “The engines...must
allow access for the engineer’s hands when he is maintaining them”.
The idea of complexity is briefly touched on: “the most
characteristic quality of modern devices is their complexity”.

Chapter 4: The geometry of a device

This is a short chapter and of limited applicability to software.
However, the idea of achieving results by way of intermediary
results is covered and has clear parallels with software
refactoring [6].

Chapter 5: Techniques. Skill.

This is a fascinating chapter. The author discusses construction as the
idea of making a whole by connecting parts together. He talks about
the need for techniques enabling us to vary properties independently
and locally. The issue of size crops again and the author states that
many techniques, when taken together, are so versatile that they
impose hardly any limitations on the shape of the design (that form
does not follow function) but that they do impose limitations on its
size and that “standard pieces tend to be small”. Again I am
reminded of Richard Gabriel and Christopher Alexander, both of
whom emphasize the importance of components right down to 1/8 of
an inch. The second part of the chapter is devoted to skill. He defines
any system in which constraint is variable at will as a skilled system.
He asserts that skilled systems are likely to be discontinuous; that the
intended result is arrived by way of a series of intermediate results.
Again the parallels with refactoring are strong. Then there is an
illuminating section on speed in which the author says that a system
with skilled constraints usually gets the intended results slowly. He
gives two reasons for this: because the change is likely to be
discontinuous, and because it is easier to maintain constraints if
energy is put in slowly. This chapter, particularly the part on skill,
has a strong connection to chapter 2 of David Pye’s other book (The
Nature of Art and Workmanship). In that chapter the author makes a
distinction between manufacturing and craftsmanship by defining
manufacturing as the workmanship-of-certainty and craftsmanship
as the workmanship-of-risk. In other words, something can be
manufactured, even if made by hand (possibly with the aid of jigs,
etc) if the risks involved in its creation are minimal. On the other
hand, something is “crafted” if there are ever-present risks involved
in its creation; if “the quality of the result is not pre-determined, but
depends on the judgment, dexterity and care the maker exercises as
he works”. Which of these two sounds like software? The second
book revolves around workmanship-of-risk and the idea that it has
long been widely valued.

Chapter 6: Invention: analogous
results

In this chapter the author considers the influence and dangers of
similarity (designing something as an adaptation of an existing
design). He urges us to consider first and foremost the intended
results. But on the other hand he points out that if the problem is
old, the old solution is likely to be the best (the alternatives are
that new techniques have been invented or that all the designers
in previous generations have all been fools). The final paragraph
considers the influence of similarity again: invention and design
are in tension. If you improve your powers of design is it
necessarily at the expense of your powers of invention?

23

Overload issue 54 april 2003

Chapter 7: We can wish for
impossibilities. Utility,

Improvement, Economy

This is a somewhat philosophical chapter. The section on
improvement in particular talks about the secret of happiness and
notes that there is no secret of unhappiness, that avoiding
unhappiness does not imply happiness. The section on
impossibilities is surprisingly relevant to software. The author
mentions abstraction when he writes “We get experience by
attending and we do that by abstracting one thing or event from
all those in reach of our perception and then ignoring the rest”.
Or to use Andrew Koenig’s sound-byte, selective ignorance.
What has this to do with impossibilities? The author asserts that
we can never wish for impossibilities; we can only frame our
wishes in terms of past experience, experiences of the possible.

Chapter 8: The requirements
conflict. Compromise.

This is a chapter resonating with parallels in software. The author’s
basic premise is that design requirements are always in conflict and
so it follows that all designs are arbitrary. Where and how limitations
apply is, ultimately, a matter of choice. However, some of the major
limitations of physical design are simply not present in software. For
example, a physical design often requires several parts which need to
be in the same place at the same time and compromises must be
made. This does not apply (or applies much less) to software. Given
that all design is arbitrary, it follows that there are no ideal, perfect
designs. That is not what design is about. Design is about creating a
practical balance between competing and conflicting requirements.
And no matter how you strike the balance your boss always wants it
sooner and cheaper.

Chapter 9: Useless work.
Workmanship

This too is a fascinating chapter. In it the author contends that
man performs an immense number of every-day actions which
are not necessary. For example, many Paleolithic tools are made
with better-than-needed workmanship. There is something very
deep about workmanship. Workmanship is design. The author
states that “the most noticeable mark of good workmanship is a
good surface”. What is the surface of software? Isn’t it simply its
physical appearance? Layout matters.

Chapter 10: Architecture. Inventing
the objects

This is an interesting chapter, a flavour of which is best summed up
by quoting the opening paragraph. “Architecture is differentiated
from engineering and from nearly all other branches of design by the
fact that the architect has to act as if no object in the result, except
the earth itself, is given. His first preoccupation is neither with how
to get the intended result, nor with what kind of result to aim at, but
with deciding what the principal objects are.”

Chapter 11: ‘Function’ and fiction

In this chapter the author again urges the reader to abandon the
idea of form and to concentrate instead on results. In the last
paragraph of this short chapter he asserts that “economy, not
physics, is always the predominant influence because it directly
and indirectly sets the most limits.” Perhaps the non-physical
nature of software is not so relevant after all.

Chapter 12: The designer’s
responsibility

This chapter is also somewhat philosophical in nature. The author
argues that since a designer always has some freedom of choice,
they have a duty to exercise that freedom with care. The design
of physical things in the environment, no matter how small,
really matters; designing one motor car for one person to drive
means designing millions of cars for thousands of people as
scenery. In design, as in art, small things matter. Indeed the
author goes further saying “art is not a matter of giving people a
little pleasure in their time off. It is in the long run a matter of
holding together a civilization.” He invites you to consider what
would happen if each new generation rebuilt its entire
environment so that everything was always new.

Chapter 13: The aesthetics of
design

This is another thought provoking chapter, this time on
aesthetics, beauty, and value. He argues that design appreciation
is beauty appreciation. He also questions whether aesthetics
matter and touches again on happiness and unhappiness. He
argues persuasively that while beds reduce cold, ploughs reduce
hunger, and toothbrushes reduce toothache, such devices do not,
of themselves, endow happiness. Being cold, hungry and in pain
can certainly make you miserable, but for many people being
warm, fed and pain-free is not enough to live for. Or, as he puts
its, “not having toothache is no goal for a lifetime”.

Chapter 14: Perception and looking

In this chapter the author considers how we look at things and
how we see things. These clearly relate to the aesthetics of design
(the title of this book) and to taste in design (a topic covered in
the next chapter). After a section on the biological process of
seeing he draws the distinction between sight and perception; we
are born able to see but we have to learn to perceive, that we
learn slowly, but then become largely unaware of the skills
involved. He again returns to the idea of abstraction, “if we could
not ignore we should die” and how perception requires
abstraction.

Chapter 15: Taste and style

This chapter continues the theme of perception and notes that
recognition occurs by means of a few characteristics rather than
many. In contrast, he asserts that to experience the beauty of
something arises from the totality of its characteristics and their
relationships. That “to recognize the style of a design and to
appreciate the beauty of it are two quite different things”. He
argues that design without style is an impossibility and that “any
style ... has positive value ... for it puts limits on designers’
freedom of choice”. He also discusses change noting how
civilization seems to be losing the concept of continuous change
by small variations (ie seems to be losing tradition).

Chapter 16: Originality

This chapter starts by considering the role and nature of artists
but quickly comes to the conclusion that originality is largely
irrelevant to art. The last paragraph ends with a sentence that
could have come straight out of [2] or [3] “The best designs have
always resulted from an evolutionary process, by making

[concluded at foot of page 24]

24

Overload issue 54 april 2003

[continued from page 23]
successive slight modifications over a long period of time”.
Originality and innovation often hinder improvement.

Chapter 17: The common ground
between visual art and music.

What we really see

The final chapter has few parallels with software that I can
perceive. However it does mention the importance of context and
it also touches on size again. Many painters maintain that a
picture has a “right-size” and that making it smaller or larger will
be to its detriment. The theme of size recurs. I’m increasingly
sure that making software elements the “right-size” is important
in a deep way. I’ll leave you with some quotes from Richard
Gabriel “build small abstractions only”, “buildings with the

quality are not made of large modular units”, “its modules and
abstractions are not too big”, “every module, function, class, and
abstraction is small”.

Jon Jagger

References

[1] Les Hatton, Safer C. See section 3.1 (p87) on Discipline.
[2] Richard Gabriel, Patterns of Software. Part I in particular.
[3] Christopher Alexander, The Timeless Way of Building.
[4] Henri Petroski, To Engineer is Human (subtitled The Role of
Failure in Successful Design).
[5] Michael Jackson, Software Requirements and Specifications.
See p58 - Descriptions.
[6] Martin Fowler, Refactoring.

Software development and
the learning organisation
by Allan Kelly

“When you ask people about what it is like being part of a great
team what is most striking is the meaningfulness of the
experience.... Some spend the rest of their lives looking for ways to
recapture that spirit.” Peter Senge, 1990.

Think back over the last ten years, what have you learnt? What
have we, the programmer community, learnt? En masse we’ve
learnt C++, added the standard library, re-learnt ISO-C++,
incorporated meta-programming and picked up Java, C99 and
C#. And don’t forget Python, JavaScript, Perl and other scripting
languages that didn’t exist in 1993.

Then add the technologies we’ve invented and learned: HTML,
CGI, HTTP, ASP, JSP, XML, Or maybe you’ve avoided the
Internet and just moved through Windows 3.1, 95, NT, 2000 and
XP, or one of a myriad of Unix/Linux systems and versions.

The programmer community is constantly learning. If change
is the only constant then learning is the only real skill you need.
Indeed, how can we change if we can’t learn?

Being a programmer you learn the technologies, but you also
have to learn your “problem domain.” That is, the field you are
developing applications for. Some are lucky enough to work on IT
technologies and develop e-mail systems, or databases, but most of
us work outside the technology domain, so, I’ve managed to
become a minor expert in train time-tabling, electricity markets,
and financial instruments.

All the time we are learning, our teams are learning and our
organisations are learning. So too are our customers who use our
products. This happens whether we intend it to or not. Authors
like Peter Senge and John Seely Brown argue that we can harness
this learning through “Organisational Learning”, so creating
“Learning Organisations” which deliver better businesses - and in
our case better software.

How does learning relate to
software development?

If we look at the software development process there are at least
four key learning activities:
● Learn new technology
● Learn the problem domain
● Apply our technology to the problem, the process of problem

solving is learning itself

● Users learn to use our application and learn about their own
problem - which changes the problem domain

Each one of these points reinforces the others: in our effort to
solve a problem we need to learn more about the problem, our
solution may use a technology that is new to us. When the user
sees the end product their mental model of the problem will
change too. They too will learn, through the software, and
acquire new insights into the task that may lead to changes to the
software.

Learning is thus inherent at every stage of software development.
We can either choose to ignore it and muddle through somehow, or
to accept it and help improve the learning process.

Maybe your manager is having difficulty understanding this -
after all he hired you because you already know Java so why do
you need to learn some more? - so let’s put it in business terms.

Although we can buy the fastest machines on the market, only
hire people with an IQ above 160 and expand our teams endlessly
and work to ISO-9001, we aren’t actually doing anything our
competitors can’t do. All we are doing is proving we can spend
money. Worse still, none of this guarantees we will actually develop
good software.

If instead of viewing software development as a problem task
we view it as a learning activity we get some new insights. First
we can recognise that most developers actually want to make
customers happy, what is more they like learning new things. It is
just conceivable that a firm which encourages its staff to learn will
find it easier to retain staff, hire new staff and at the same time see
the ability of existing people increase.

Now to be really radical, John Seely Brown and Paul Duguid
believe that learning increases our ability to innovate. If we can
learn better we will find we can produce new ideas and better
solutions.

Since software development is intrinsically a learning process it
doesn’t seem that great a jump to claim recognising it as such,
removing barriers to learning, and promoting learning within our
group will improve our software. Once we do this we have
something that competitor firms can’t copy because we will create
our own environment.

What can we do to promote
learning?

The one thing I’m not suggesting is that you go to your boss and
ask to be sent on a course. Brown and Duguid (1991) suggest
there are two types of learning:

25

Overload issue 54 april 2003

● Canonical learning: going on courses, sitting in class rooms,
reading manuals

● Non-canonical learning: learning by watching, doing, listening
and a whole bunch of other stuff.

What is more they go on to suggest that the second form, is the
better. By learning non-canonically we are more flexible and
innovative. While canonical, 5-day, £1500 courses have a use,
there are a lot more things we can do to promote learning in our
organisations.

Before we go further, it is worth pointing out that there are two
types of knowledge. The sort we’re all familiar with: explicit
knowledge, which can be written down, codified. Go pick up your
copy of Stroustrup, you can learn C++ from that, its all explicit
knowledge.

The second form is subtler: tacit knowledge. This is more
difficult to write down and we normally learn it by some process
of osmosis. Much of this knowledge is embedded in our work
environment or our programmer culture. So, when you write
delete this you aren’t breaking any of the rules in Stroustrup,
it’s legal, but all of a sudden you’re in trouble because your team
doesn’t do that. Of course, coming from a COM shop you think
delete this is perfectly OK.

This is a simple example of tacit knowledge and the fact that I
can write it down maybe invalidates it but I’m sure you get the idea.
But how do we learn this stuff?

We get much of it through our society. That is, by watching
other programmers, reading their code, exchanging war stories.
Being programmers of course we like things to be black and
white, quantifiable, written down, codified, so I’m sorry to tell
you it ain’t going to happen. In fact writing it down may make
things worse!

In part we have so much knowledge we can’t write it all down.
Some of it is so obvious nobody thinks it worth writing down, and
some we can’t even put into words - although we may be able to
mumble some grammatically incorrect phrases over a beer which
stick in someone’s mind.

Tacit knowledge is the reason so many specifications are
inadequate. The stuff is a lot like jelly, you can’t nail it down, it
isn’t in the specification because it is hard to codify. Only when
you come to use the specification do you find gaps that are hard to
fill. Computer code is inherently explicit knowledge.

Acquiring and learning to use this knowledge can take time. We
need to be immersed in the society and let this stuff lap around us.
Eventually we may try and do something, and from this we learn
some more.

This brings us to another important point about this kind of
learning. We’re going to make mistakes. There will be failures.
We need room to try ideas, see how they work, or don’t work and
add that information to our mental models. If we don’t make
mistakes part of our internal model will be missing.

For example, have you ever needed to write a piece of code and
thought “I bet I could use templates for that? But I don’t really
know enough about meta-programming, O, I’ll give it a try.” And
although it takes longer at the end of the week you have something
that works and - very importantly - you understand templates?
Along the way you probably made a million syntax errors, many
compilation errors and got umpteen unexpected results but in doing
so they completed your mental model.

Now the difficult bit for managers is to accept this trial-and-error
approach. We need it. And although it doesn’t look good when

you’re filling in the weekly timesheet the numbers are hiding the
learning that occurred during development.

So, we need to accept mistakes will happen, we need to accept
that risk. And maybe we need to do away with processes that
penalise taking risks and making mistakes. (Although you may not
want to take risks the night before release.)

By implication here there needs to be trust. If we don’t trust
someone to do the job they won’t feel able to make those mistakes.
They’ll stick to the tried and tested solutions. We need to trust them
to know when it is OK to play and when they should focus.

Nor does learning finish with our own team. The QA team will
be learning how to use our releases, and the best way to test them.
And when we finish and throw the software over the wall, users
will start their learning.

What should we not do?

Even those who have worked in adversarial, deadline driven
environments have learned. The first thing we need to stop doing
is denying that learning happens. Brown and Duguid point out
that when managers deny that learning is occurring two things
happen:
● Individuals feel undervalued, managers don’t recognise the role

they play
● Managers think their systems are working, “We sent them on a

Java course and now they all write quality Java” when in fact
everyone is helping everyone else.

These effects describe “Plug compatible programmer” syndrome.
Management feel, or suggest by their actions, that they can “just
hire another C++ contractor” to plug a programmer shaped gap.
After all, all C++ programmers are compatible. Meanwhile,
developers know you need more than just C++ knowledge to
work on the system, so they feel their skills aren’t recognised by
management and leave.

Brown and Duguid also suggest that seeking closure can be
damaging too. By seeking closure, say by writing up all that is
known about a given application, complete with UML diagrams,
we actually inhibit future change.

I once worked on a team who worked to ISO-9001 standards.
You weren’t supposed to change the code without changing the
documentation. Not only did this increase the work load but it made
you reluctant to change anything. Increasingly code and
documentation said different things and you had to talk to people,
or step through the code with the debugger to see what was
happening, that is, exactly the situation the standard was meant to
prevent!

The need for closure made things worse. This happens all the
time with documentation, whether it is program documentation or
specifications. The emphasis on closure is one of the fundamental
reasons waterfall methodologies are so troublesome.

Closure prevents change and it prevents further learning, but
change and learning will happen. This doesn’t only happen with
us, the developers, it happens with our customers. A customer signs
off on a spec, we develop the UI, show it to the customer who now
wants to change it. In seeing the UI the customer has learnt
something. Customer and developer are both engaged in a joint
learning process.

This search for closure manifests itself in many forms:
product contract, specification, program documentation,
working procedures, code standards and perhaps the worst of
all: code itself!

26

Overload issue 54 april 2003

Some degree of closure is always necessary, otherwise we would
never make a release. However premature closure limits learning
opportunities and development. We need to strike a balance.

Likewise, we need to strike a balance on how much risk we
accept. One organisation I know introduced procedures asking for
every change to be estimated in terms of lines of code. Developers
would naturally over estimate but it also made them more risk
averse, there was clear message: management wanted change and
risk limited. Thus they limited learning opportunities - specifically
code refactoring.

Blunt measurements such as lines of code, and timesheets asking
what you do with every half-hour in the week also send another
message: you aren’t trusted. These are tools of managers who
believe that software development is an industrial process.
“Scientific management” is at odds with the concept of learning
because it doesn’t allow for learning and change. It assumes that
one person knows best, the manager, the designer, or the architect
has looked at the problem and found the one true solution.

Practical things to do

Organisational learning isn’t a silver bullet, you can’t go out and buy
it from Rational or Accenture. It is a concept. One of the ways it
manifests itself as a Learning Organisation. You have to build this
for yourself. The good news is that it need not entail a lot of up
front expenditure, no expensive courses from QA or Learning Tree.

Much of the change is about mindset: accept mistakes will
happen, accept some knowledge is tacit, accepting change, trusting
people and leaning to live with open issues.

Managers face a difficult position. They can’t force anyone to
learn, nor should they. However, there are some practical things
they can do to encourage the process. These have both an obvious
role to play and a less obvious: by arranging these events and
making time for them there is a message that “it is good to learn.”

Whatever your position you need to start with yourself. For an
organisation to learn the teams making up the firm must learn, for
teams to learn individuals must learn. And we must learn to learn.

If you want to start encouraging others here are a few things you
could try:
● Set up an intranet and encourage everyone to produce their own

web pages, even if these aren’t directly work related.
● Keep documentation on the intranet in an easy to access format,

e.g. if your developers are using Solaris don’t put the documents
in Word format.

● If your documentation must live in a source control system then
arrange for it to be published to the intranet with the batch build.

● Allow an hour or two a month for “tech talks” - get developers
to present work they have done on the project or outside the
project.

● Encourage debate - friction can be a good thing.
● Organise a book study group.
● Make your procedures fit your working environment and be

prepared to change them.
● Hold end of project reviews, Alistair Cockburn (2002) even

suggest such reviews should be held during the project - why
wait to the next project to improve things?

Finally

I’ve only scratched surface of this subject, I’m still learning a lot
about it myself but I think it has important ramifications for the
software development community.

Unfortunately these ideas really require support from
management before they can really deliver benefits, and I know
most Overload readers are practising programmers who regard
managers as part of the problem not the solution. That’s why I spent
some time advocating organisational learning in language they may
understand.

Still, there is a lot we as a community can learn here and most
of it has direct applicability to software development on a day-to-
day basis.

Allan Kelly
allan@allankelly.net

Bibliography and further reading

John Seely Brown and Paul Duguid, 1991: “Organizational
learning and communities-of-practice: Toward a unified view
of working, learning, and innovation”, Organisational
Science, Vol. 2, No. 1, February 1991, also
http://www2.parc.com/ops/members/brown/papers/

orglearning.html

I’ve drawn extensively on this article, although it is quite long
(18 pages) it is well worth a read.

Brown, Collins & Duguid: Situated Cognition and the Culture of
Learning - http://www.ilt.columbia.edu/ilt/papers/

JohnBrown.html

More psychological than the first but still interesting. Brown is a
PARC researcher and has several interesting papers at
http://www2.parc.com/ops/members/brown/index.html

- including some on software design.

Cockburn, A., 2002: Agile Software Development, Addison-
Wesley, 2002
I haven’t heard anyone from the Agile methodologies
movement specifically link them with Learning Organisations
but I instinctively feel they are. (Hopefully I’ll explore this
some more in future.) In the meantime you’ll find terms such
as “courage” and “coaching” used in both sets of literature,
and similar discussions on the importance of people, teams
and listening.

Nonaka, Ikujiro, et al., 1995: The Knowledge-Creating Company:
How Japanese Companies Create the Dynamics of Innovation,
Oxford University Press, 1995
Nonaka distinguishes “Knowledge Creation” from organisational
learning but the two are complementary. As the title suggests,
this book concentrates on the way Japanese companies exploit
knowledge creation.
For a book summary see:
http://www.stuart.iit.edu/courses/mgt581/

filespdf/nonaka.pdf

Senge, P.M. 1990: The Fifth Discipline, Random House, 1990
Easy to read, authority introduction to “The Art and Practice
of the Learning Organisation.” To a hardened software
engineer this may look like a touchy-feely meander. Don’t let
this put you off, you can’t get the most from people if you
stick with a binary view.

Addendum to “Tiny Template
Tidbit”
by Oliver Schoenborn

I would like to add a few comments to the Overload 47 article
that I wrote, entitled “Tiny Template Tidbit”. They don’t
change conclusions of the article but may prevent some
confusion.

First, as kindly pointed out to me by Alan Griffiths and Chris
Main, I misuse the term “partial specialization”.

On page 16, 2nd column, I say “what we need is a template
overload for pointers”. No problem so far. I then explain briefly that
it is somewhat like partial specialization available for classes but
not the same. Unfortunately, the code examples contain C++
comments that describe some syntax as “partial specialization”
applied to functions (not supported in C++). They should instead
read “overload for ...”. I must have had a few beers too many that
day.

Secondly, a minor mistake in the formatting of the two lines
“Advantages:” and “Disadvantages:”. The typeface makes it look
like there are three paragraphs of advantages and almost two pages
of disadvantages! The disadvantages use up only three paragraphs
as well.

Finally, an interesting mistake was pointed out to me by Chris
Main. It appears that a bug in the SGI MipsPro C++ compiler
allows the compiler to pick the intended getCoord() function
template even though, according to the Standard, it should not be
able to. This is worth expanding upon. Let me recall the summary
here:

I showed how a processor (object or function) that uses data
from a set of objects of a certain type can be generalized with a
very small number of lines of code, using templates and
specializations, such that the processor doesn’t need to be
changed when the data structure changes. More specifically,
your processor object or function is able to extract the needed
data from the container elements, regardless of whether the
container element type
1. Is the data, or is a pointer to the data (as opposed to containing

it)
2. Is an object or a pointer to an object, containing the data
3. Makes data available as attribute OR method (which we don’t

address in this addendum)
Finally, the compiler does this for you automatically, without
requiring your intervention.

Two of the functions and templates used were:

/// General function template
template <class P> inline
const Coord& getCoord(const P& p) {
return p.coords;

}

/// Overload for pointers to things
template <class P>
const Coord& getCoord(const P* p) {
return p->coords;

}

where P is one of the six types of data described in 1-3 above. As
Chris pointed out to me, given the code fragment

Struct Point {Coord coord;};
Point coord;
getCoord(&coord);

the compiler has two choices for getCoord():
1. getCoord<Point*>(const Point*&)
2. getCoord<Point>(const Point*)
Which one will the compiler choose? The one we want (#2) or
#1? With SGI’s mipspro compiler, it chooses #2. With gcc 2.95, it
chooses #1. I thought it was a bug with gcc but Chris gives good
evidence that it is the other way around: overload resolution
states that the compiler must choose the most “specific” template,
which is #1, since the parameter is a pointer to the type rather
than just the type.

This could seem like a major problem for the techniques
discussed in that article but really it isn’t because the concepts used
were sound, it’s just the technique used to implement them that got
side-tracked onto a wrong path. The fundamental problem is how
to tell the compiler to deal with two separate cases of data, one a
type, the other a pointer to a type (a “pointer type”). This is easy
with partial specialization of a class that does nothing for types, and
does a dereference for a pointer type:

template <typename P>
struct Obj {
static const P& getObj(const P& p) {
return p;

}
};
// partial specialization for pointer
// types
template <typename P>
struct Obj<P*> {
static const P& getObj(const P* p) {
return *p;

}
};

They replace two of the four getCoord() overloads mentioned
in the article, namely the ones with pointer types as parameter,
and are used by calling

getCoord(Obj<T>::getObj(p))

instead of

getCoord(p)

In any case, I hope you found the article interesting and maybe
even useful. Thanks to Alan and Chris for sending feedback. As
usual, I find that writing articles is fun and challenging, but I
inevitably seem to learn a lot more than I could have expected
from the feedback of readers. I encourage you to give it a try,
write an article for Overload!

Oliver Schoenborn
Oliver.Schoenborn@utoronto.ca

References

[1] Bjarne Stroustrup, C++ Programming Language, 3rd ed.
[2] Andrei Alexandrescu, Modern C++ Design
[3] Oliver Schoenborn, “Tiny Template Tidbit,” Overload 47

27

Overload issue 54 april 2003

Observer Pattern
Implementation

Correspondence between Stefan Heinzmann
(stefan_heinzmann@t-online.de)
and Phil Bass (Phil@stoneymanor.demon.co.uk).

SH: I finally found some time to read your article series in Overload
52&53, and I’ve got some comments:
PB: Thanks for spending the time to provide some feedback. It’s very
much appreciated.

SH: I used to work on a framework that supported connections between
logic-gate-like objects in much the same way as you describe. It was to
be used in control systems in industrial user interfaces (real physical
knobs and buttons). Thus I think I’ve got some experience to draw from.
PB: Yes, that’s exactly what we have. In our case it’s mainly buttons
and lamps - very few knobs.

SH: You wrestle with the problem of copying events (or the objects that
contain them). Funny enough that you say yourself that you often try to
solve the wrong problem if you find that the solution seems elusive. I
couldn’t agree more. I think events shouldn’t have value semantics.
Here’s why:
You rightly associate an event with an output in a logic gate. The logic
gate would be represented by an object that contains the event as a
member object. What does it mean then to copy such a gate with its
event member? It would be much like copying a gate on a schematic
drawing, right? If you ever worked in hardware design, you know that
copying a gate gives you a gate of the same type but with its pins
detached. Copying a gate doesn’t copy its connections!
PB: Absolutely. I haven’t done any electronics at all, but I have worked
alongside electrical and electronics engineers. And, I agree that
copying a logic gate wouldn’t make sense if its connections were copied
as well.
However, I’m interested in the general problem of de-coupling objects
in one software layer from the higher-level objects that observe them.
Perhaps there are some objects for which a copy operation really
should copy the connections. I couldn’t think of any specific examples,
but I suspected that different copy semantics would be appropriate for
different types of object. In particular, some objects shouldn’t be
copyable at all.

SH: What it really boils down to is that a gate has a unique identity
(which is usually shown in schematics, i.e. “U205”). You can’t have two
objects with the same identity. Copying a gate creates a new gate with a
new identity. Hence gates can not have value semantics. The result is
that storing them in STL containers directly is a bad idea. You store
pointers to them instead.
PB: Now you’re losing me. I’m familiar with the idea of two broad
categories of objects: 1) those with value semantics and 2) those with
reference semantics. I appreciate, too, that identity is often of little or
no importance for objects in category 1, whereas it is usually crucial
for category 2 objects. However, I don’t see why an object with identity
shouldn’t have value semantics. And I would be quite upset if objects
with identity could/should not be stored in STL containers.
For example, what’s wrong with a std::vector<Customer>? Real
customers certainly have identity and I’d expect objects of the
Customer class to have identity, too. You might argue that it doesn’t
make sense to copy a Customer (which is true), but it makes perfect
sense to store Customers in a vector, and that requires Customer
objects to be copyable. My Events are just like Customers: it makes
no sense to copy them, but perfect sense to store them in STL
containers.

SH2: I do see a conflict between object identity and value semantics.
Let me quote from Josuttis’ Standard Library Book (page 135): “All
containers create internal copies of their elements and return copies of
those elements. This means that container elements are equal but not
identical to the objects you put into the container.”
I think that this makes it quite clear that a std::vector<Customer>
might not be such a good idea. As a further hint, consider what would
happen if you’d like to hold a customer in two containers at the same
time (say, one that holds all customers, and another that holds
customers who are in debt).
What I’m saying is that if the only reason to make a class copyable is
to be able to put them into STL containers, you’re probably trying to
do the wrong thing.

SH: The pointers may well be smart pointers. The details depend on your
ownership model. It is not always necessary to use reference counted
pointers. If you have a different method to ensure that connections are
removed before the gates are deleted, then a bare pointer may be adequate.
PB: Agreed.

SH: Note that you don’t necessarily need to prevent event copying
altogether. It may well be useful to be able to copy events, but the key is
that copying an event does not copy the connections. I feel, however,
that this style of copying is better implemented through a separate clone
function instead of the copy constructor.
PB: This really depends on whether we choose value or reference
semantics, I think. No, on second thoughts, it depends on whether the
objects in question are polymorphic (the virtual function kind of
polymorphism). The value/reference semantics design decision is
separate.
SH2: In the polymorphic case you have no choice but storing pointers
in the container anyway. Copy construction is not needed here. If you
nevertheless want to make copies of your objects, they need a virtual
clone member function. The value/reference decision is not entirely
separate, since you can not have value semantics with polymorphism
in the same object. If you wanted to model that, you’d end up with a
handle-body pair of objects, which is just another variant of the smart
pointer theme.

SH: Regarding event ownership I think that a hierarchical ownership
model may well be better than a distributed “shared ownership” model.
If we carry on a little longer with the hardware analogy, I would propose
to have a “Schematic” object that owns all the gates in it. Deleting the
schematic object deletes all connections and gates. The problem then is
reduced to “external” connections that go between the schematic and the
outside world. Internal connections don’t need to be implemented with
smart pointers.
PB: Again, I agree that a hierarchical ownership model has benefits. In
fact, I suspect our software could be improved by modeling the
hardware more closely - tools contain modules, which contain other
modules, which contain I/O boards - and the logic gates would be
owned by the module that contains them. In practice, though, this is not
particularly easy to do and I felt that discussing the short-comings of
the existing software would distract from the main point of the article.
The difficulty boils down to the difference you highlight, here. External
connections and internal connections are not distinguished, so we
would have to use a mechanism that supports the more general
ownership model for both.
SH2: It would certainly go too far for the purpose of the article to
introduce several levels of hierarchy. The point I was hinting at
however was that looking at the problem from one level up in the
hierarchy might render a different - and maybe more adequate -
design. The problem here is a general problem with the observer

28

Overload issue 54 april 2003

[concluded from page 28]

pattern: Who owns/controls the connections? It is by no means clear
that it should be the subject that owns them. This would be analogous
to a chip on a PCB that owns the wires connected to its outputs.
Wouldn’t it be more natural to think that all wires belong to the PCB
itself? Each output could still have a container of pointers to
connections for managing the updates, but it wouldn’t necessarily own

them from a lifetime management perspective.
Now, as you rightly point out, the hardware analogy isn’t necessarily
always the right one. So it will likely depend on the situation what
kind of ownership model you would choose. This makes me wonder
whether it would be sensible and feasible for a general purpose
observer implementation to provide some latitude in this respect,
maybe through policies (in Alexandrescu’s sense).

29

Overload issue 54 april 2003

Labouring: An Analogy
by Seb Rose

The project plan says you’re going to design your unit tests next
week. Your code is being dropped into system test tomorrow. The
Functional Spec was conditionally signed off on Monday (the
condition was the successful resolution of one or two queries
about inconsistencies in the Business Requirements Document)

Does any of this sound familiar?

Background

I’ve been a freelance consultant (or contractor scum or disguised
employee) for ten years, though it seems longer. I’ve worked
with plenty of your major, run-of-the-mill financial institutions
that we all know, love, and trust with our money.

I’d started working with a popular Internet Bank at the height of
the dot-com bubble when rates went silly (that’s the rates they paid
consultants, not the ones they paid their customers). Since then the
bubble had burst, rates had collapsed and accepted wisdom was that
those rates has gone for good and a recovery would mean being
able to find work again.

And so I found myself sitting at my desk looking at the terms of
another 6 month contract renewal from the human resources (HR)
department of the bank.

So, why was I thinking so hard about refusing this renewal? Was
I looking for more money? Did I think that the wording might have
got me in trouble with Hector (remember him?) and the IR35 posse?
No, neither of these. I was seriously considering refusing the
extension on the basis that I just couldn’t face wasting another 6
months.

I began calculating 6 months as a percentage of my age; as a
percentage of my adult life; as a percentage of my future life. The
percentage kept getting higher. In fact the more I though about it, the
more it seemed that if I renewed this contract 6 months might
constitute 100% of my remaining time on earth. Or maybe even more.

I didn’t sign. I politely declined. After almost two years of trying
to get a large business to adopt sensible software development
strategies (like having a development process - not a specific
process, but any identifiable set of activities that might conceivably
constitute a development process) I just walked away. I left my
PL/SQL test scripts to posterity and headed for the hinterland.

I decided I’d go back to my bad old ways.
Allegedly I’m a designer and/or architect (that’s not what it said

on my contract, which was of the generic “Hot-Deployable Freely-
Interchangeable Plug-And-Play Software-Resource”-style) so I
thought I’d do some designing and architecting. In the real world.
With a building.

Another World

Now, I have no formal training in construction techniques, but
some pals and me did build a lovely straw house a few years ago,
so I have had some experience. (Any of you going to OT2003
will have the opportunity to join me as I use straw bale building

projects to discover software requirements elicitation techniques,
which should be fun!). Also, my partner and I had a house built
for us a while back and have plenty of experience with the
Planning and Building Control departments of our local council.
(Luckily agricultural buildings don’t actually require Planning
Permission or Building Warrants, but more of that later).

I ran the project in an informal sort of way, with the customers on
site all the time. My customers were vegetable growers that needed a
shed to pack their vegetables after their old one had ended up 30 foot
up an ash tree during a particularly violent storm in February.

So, I asked them what their requirements were (well, we actually
had a more protracted discussion that started off with “What’s it
for?” but you get the idea) and I ended up with this list:
● The shed should be large enough to pack boxes of vegetables.
● It would be nice to have a separate space to store potatoes (and

such like) in.
● An office space would be quite useful, too.
● It shouldn’t be too warm in summer or too cold in winter.
● No vermin allowed in.
● Easy access for loading/unloading the van.
● Oh, and please could I make sure that it didn’t blow away this time?
Could it be done for £3000 (not including labour) and be finished
before the rains started in the autumn? Well, maybe not. It was in
use within the timescale, but like so many projects it may never
be ‘finished’. And like so many projects it went over budget (by
maybe 25%).

Awkward Analogies?

Why am I writing about this in a journal for software developers? I
guess my basic question is that if small software projects are easy
and fun, why are large software projects so difficult and depressing?
Or in general, do you always have a bad time when things get big?
My gut feeling says “Yes”, but let’s see where it goes.

The good things about this project were:
● We knew what was wanted
● Within reason we could use any appropriate technology
● I knew everyone working on the project and what they could be

relied on to do
● No one was making silly rules that just slowed us down
● The budget & timescale weren’t restrictive
Before we get started, let’s dispel one or two myths.
1 We did have fun putting up this building, but it wasn’t because

all the work was enjoyable (putting rock wool insulation into a
roof space is not fun) or that we spent all our time sloping off to
the pub (the nearest pub was 5 miles away). We had fun because
we were working as a team toward a recognisable goal.

2 We weren’t ‘pushing the envelope’. All the technologies involved
were completely mainstream, so that wasn’t what kept us happy.
None of us were full time builders, so you could reasonably argue
that the fun would lessen with repetition (I’ll let you know).

Now let’s have a look at where the ‘good things’ go when a
project goes from small to large.

We know what we want

How well do we ever understand the requirements of a project?
Human systems are complex and the relationship between size
and complexity is not linear.

As complexity grows the ability of any one human to grasp what’s
going on disappears and the likelihood that something has been missed
grows. We can cope with this, but the personal cost is high.

The prize of component-based development is simply the
management of complexity by dividing large projects into smaller
ones. The problems is that specifying the interfaces to, and
responsibilities of, a component is no easy matter.

We can use the most appropriate tools

Large organisations often have preferred suppliers. It may not be
fit for your purpose, but the license has already been purchased,
so you’ll just have to use it. Even if the ideal product is free it
hasn’t been certified by the Platforms team, isn’t supported by a
team of highly motivated technicians, and hasn’t got a brand
name behind it. Anyway, if it’s so good why are they giving it
away?

You’ll notice that I talked about large organisations rather than
projects here. This sort of constraint is due to the context of the
project rather than the project itself. You might be working on a
small project for a small company, but if the major client is a large
company with a 500 page procurement process you’ll be doing
things the way they want whether it’s a good idea or not.

The project is manageable

Things can slip in any project.
There’s an anti-pattern that I read about somewhere that

describes how an item on the project plan can be 90% finished for
weeks on end, because the 10% left isn’t well understood.

Then there are the bugs, misunderstandings, design flaws and
3rd party product problems. Not to mention compiler bugs (“this
should work, so it must be a bug in the compiler”).

Without proper feedback processes you won’t spot the slippage
until it’s too late. This is true for projects large and small. The thing
is that it’s easier to put effective feedback processes in to small
projects: you’re familiar with the overall vision, you understand the
design, and you know the team. On large projects all these things
work against you and there will likely be layers of management
with an inflexible attitude to time boxes.

Equally, you need to understand enough about the problems and
the people to match the person to the task. If you fail in this then
your staff end up feeling less part of a team and more like a cog in
a machine. I know which I prefer.

Rather than try to overcome this, most large organisations talk
about people as resources and seem to think that people with the
same keywords on their CV are freely interchangeable.

As an example, I overheard a discussion between one of the HR
team and an IT program manager. They were trying to decide what
to ‘do’ with a new-start that was arriving on Monday. They
considered placing him as a mid-tier development team leader, a
front-tier developer and a tester, eventually settling on the latter!
They had hired a ‘resource’ without any idea of the role they were
trying to fill, and with very little understanding of what skills he
possessed.

Bureaucracy didn’t stop us

How easy is it to fix a problem?

The answer depends on many factors. How fundamental is the
problem? Who can decide on the appropriate solution? Who can do
the fix? What processes need to be followed before any action can
be taken?

I’ve found that it’s the last question that seems to be the most
limiting in large organisations.

When you have to coordinate large numbers of people you have
to put processes in place to allow monitoring and control. The
designing of appropriate processes - structured enough to deliver
the management requirements, lightweight enough to not be a
burden and flexible enough to cope with the whole spectrum of
project problems - is a high art.

Many is the methodology that has been found wanting!

Project constraints were realistic

How long does the project plan say the bit you are working on is
going to take? Where did that number come from? Did you
provide the estimate? Did you provide the estimate, only to be
asked to shave some time off it? Did you provide the estimate,
only to have functionality added? Does the plan allow for testing
or rework?

It is widely accepted that there are 3 variables in any project:
scope, resources and time. They are related. You can’t change one
without a compensating change in one, or both, of the others.

As the project size grows so does the management layer, and for
some reason the sort of manager that fills that layer just doesn’t
seem to buy this self-evident theorem.

It’s not even that the theorem is too simple, because what they
propose is often so simple as to be idiotic:
● “I can motivate the team to deliver more functionality in less time”.
● “I can compensate by hiring more staff”
● “The team will pull together and work longer hours”
● “I’ve promised that we will deliver, and my word is my bond”
Again this really shouldn’t have anything to do with project size,
but the larger a project the less likely the grim reality will make it
though all those middle management layers to someone who is
prepared to make a tough decision.

Conclusion

The shed was a small project:
● The complexity was not overwhelming.
● We used aterials that we had to hand and sourced from local

suppliers, without needing to get it approved by the client or
building control.

● The people helping me were friends who I’ve known for years.
One was time-served electrician, the others were just generally
handy and reliable.

● We didn’t need planning permission or a building warrant,
because it was an agricultural building. Bureaucratic
involvement was minimal.

● I had no unrealistic timescales and the budget was only slightly
unrealistic.

We had a lot of fun. More fun than we would have had working
on a building site.

Large projects could be fun if you could decompose them
enough to understand what’s going on and your organisation is
helping rather than hindering. I’m just not sure that either of these
things is achievable.

Seb Rose
seb@acmeorganics.co.uk

30

Overload issue 54 april 2003

