
3

Overload issue 58 december 2003

contents credits & contacts

Overload Editor:

John Merrells
overload@accu.org

Contributing Editor:

Alan Griffiths
alan@octopull.demon.co.uk

Readers:

Ian Bruntlett
IanBruntlett@antiqs.uklinux.net

Phil Bass
phil@stoneymanor.demon.co.uk

Mark Radford
twonine@twonine.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Advertising:

Chris Lowe
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:

http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

An Alternative View of Design

(and Planning) Allan Kelly 6

Letter to the Editor(s) 9

A Standard Individual: A Licensed

Engineer Chris Hills 10

A More Flexible Container

Rich Sposato 12

Choosing Template Parameters

Raoul Gough 16

From Mechanism to Method:

Data Abstraction and Heterarchy

Kevlin Henney 19

CheckedInt: A Policy-Based

Range-Checked Integer

Hubert Matthews 24

4

Overload issue 58 december 2003

Editorial - What I Want
For Christmas

When I first started writing programs I’d write them out on
paper, then when I’d checked it over I’d transcribe each line by
punching holes into a piece of card (very carefully – most errors
required starting the card again). When I had completed all the
cards I’d use several elastic bands to ensure that the stack of cards
was secured in order and place it into a tray with other programs
in the same format. Later that day the tray would be carried to a
local computer centre and the programs transferred to other trays,
a card reader and eventually united with corresponding printouts
and placed into a tray awaiting transfer back from the computer
centre. If I timed things right a program could be turned around
updated and resubmitted a second time in the same day!

The effect of this was that a lot of the coding of a program was
concentrated into a few intensive ten-minute intervals separated by
hours of suspense. All too often this meant that a mistake was made
in the rush, but not noticed until the stack of cards had begun its
tortuous journey to the computer centre and back again. It may
sound horribly inefficient to the current generation but programs
were really developed this way. Nowadays errors that would not
have been reported by the compiler for half a day or more are
highlighted on the screen before I even save the file!

Although people spent a lot of effort trying to make the “dead
time” more effective, any attempt to improve efficiency by working
on several programs at once never really worked as well as might
be hoped. The relentless cycle of turnarounds forced the
development cycles into synchronisation, and as there was always
one program that was more urgent than the rest it stole the time that
the others needed. And, while I’ve focussed on writing code, it
wasn’t just getting the program to compile that was like this, testing
and deployment followed similar processes.

But code got written and systems got delivered.
The underlying difference between the way things were then and

the way things are now is the speed of feedback. Most readers will
be familiar with development environments that highlight syntax
errors as you type – problems that could once have led to days of
delays and frustration are detected and corrected without conscious
thought. Such a change doesn’t only affect the speed of progress,
it also changes the way that we approach the task. Even those
readers without this facility will be working in an environment
where it is more effective to use a compiler to check syntax than it
is to do so “by hand”.

Having reliable and immediate feedback available provides a
level of confidence that allows the developer’s attention to focus
elsewhere. (This is just as well, because the effect of having better
tools isn’t that the job has got easier – the range of problems that
we are willing to tackle has expanded to compensate.)

Naturally, there is much more to developing software than
getting the syntax of the code right, and much of this is also
dependent upon accuracy. And there are two approaches to
accuracy: avoidance of error and correction of error. Each can be
appropriate in the right circumstances and, as I have tried to
illustrate in the context of coding, the choice can depend upon the
tools available.

Traditionally, software development processes have been based
around avoidance of errors: getting the requirements right and big
up front design all comes from an era of slow, inefficient feedback.
There is a significant cost to manually double and triple checking
everything to reduce the errors being fed into a process. Automated
error detection that provides early feedback and allows early
correction is often much more effective. And, based on my
experiences this year, I think that it is becoming available for many
more aspects of software development.

Unit Testing

The checking of individual units of development is the province of
unit tests, and the ability to run these automatically as part of the
development environment is just about there for some
development technologies. For example, there are free JUnit
“plug-ins” for most of the popular Java development
environments. Having tests light up “green” (for success) or “red”
(for failure) when changes are made can trap a lot of silly errors
soon enough after they are made that they don’t disrupt a
developer’s line of thought any more than the occasional compiler
error. Of course, as yet, this isn’t quite as widespread as syntax
checking editors – for example, I don’t know of a CppUnit plug-in
for the Visual Studio environment my current client favours. So,
number one on my “Christmas list” is the availability of such a
tool for any environment that I happen to be working in.

Naturally, there are additional issues with the use of unit tests,
such as persuading both developers and management of their
usefulness. This can be a significant problem: there is a cost to both
writing unit tests and to running them – and they do not detect all
errors. Much as I would like to I cannot point to scientific
comparisons between “equivalent” projects run with and without
unit tests that demonstrate the benefits. All I can give is anecdotal
evidence that the projects on which I’ve been able to instil a culture
of unit testing have had far fewer problems when it came to
integration and delivery. (But unit tests are far from the only change
that I’ve introduced – and projects can be delivered successfully
without them.)

The one thing that I can say about having unit tests in place is
that the level of rework is much lower. As one developer put it: “it

A
s some of you know, I’ve had an eventful year, and this seems like a suitable
opportunity to reflect upon those aspects of it that relate to software development.

Things are always changing and there is often a pattern but one sometimes needs
to step back a bit to see it. This time I’m going to take a step back thirty odd years and
describe the way that software development happened then.

5

Overload issue 58 december 2003

is a pain writing these unit tests – but I like getting things right first
time”. But it isn’t as simple as that: things are not always “right first
time” – sometimes the requirements have been misunderstood (or
have changed: not only can the business change, but the process of
capturing requirements can question assumptions, and delivering a
software system can offer unexpected alternative approaches).

While there have been attempts to catalogue and collate
development practices that work there is very little convincing
evidence for many of the things that I would like to believe. Of
course, when working with like-minded individuals this isn’t an
issue (credible claims require little evidence), but when trying to
justify and motivate change, it can be a major problem. When
talking to management and developers who believe that
standardisation of process, or a new technology, or some other
“magic bullet” is the answer to all their development woes then any
claims I make will not be considered credible without substantial
evidence. So that is the next item on my list: citable evidence of the
effectiveness and applicability of alternative development practices.

Functional Testing

Some time ago I came across one of Ward Cunningham’s
innovations: “Fit”. Fit is a Java framework for describing system
functionality as a web page that can be executed against the
system under development. It requires the developers to write
some lightweight “fixture” classes that map the requirements
embedded in the web page to interactions with the system. The
fact that the requirements can be executed directly does a lot to
address the ambiguities that frequently find their way into the
testing of functional requirements.

More recently (at The Extreme Tuesday Club) I came across some
work that builds upon the Fit framework. “Fitnesse”, produced by
ObjectMentor, is a Wiki implemented around the Fit framework that
facilitates the capture of functional requirements in an executable
form: as Fit webpages. Michael Feathers (of ObjectMentor) has also
produced FitCpp – a C++ implementation of the Fit framework.
(There are some bugs and other issues to resolve with FitCpp but I’ve
been working with it (and Fitnesse) for my current client and,
assuming I get suitable permissions, I will have put the resulting
material on my website by the time you read this editorial.)

One of the great things about this approach is that there is very
easy visibility of project process. One may set up a summary
webpage that lists all the functional tests, colour coded according
to whether the functionality is available (green), is failing (red) or
has yet to be addressed (grey). Because executing the tests directly
against the system produces these results the feedback is always

immediate, up to date and honest (which avoids the temptation to
exaggerate progress – both to oneself and to others).

It is easy to overlook what this means to people outside the
development group. All too often their experience of software
development resembles the coding process I described above:
concentrated effort at the beginning with lots of effort invested in
getting it right, followed by things being “out of their hands” for a
long period before the results are visible. It is only then that
mistakes, ambiguities and misunderstandings become apparent.
Publishing the current state of development on the intranet gives
them much needed feedback early in the development cycle. And,
because it is a Wiki, it is simple for the requirements to be updated.
And because the requirements are the functional tests these too are
maintained in a single, authoritative, place.

Fitnesse demonstrates that it is possible to bring requirements
capture and functional testing much closer together than has ever
been my experience in the past. This (or something like it but better)
should be part of the toolkit on any project. Another one for my
Christmas list!

Refactoring

It has been a few years since Martin Fowler codified a number of
coding practices that experienced developers know are needed
but are hard to associate with a quantifiable benefit. These
“refactorings” are transformations that leave the functionality
unchanged but make the structure of the code more amenable to
further development. In the Java world there is now widespread
support for automating these transformations.

These facilities are great: it doesn’t sound much but, to take one
example, being able to remove a block of code from a growing
method body by selecting it, choosing “extract method” from the
menu and then entering the method name is so much simpler than
the “old way”. The developer is freed from the tedium and mistakes
of copying the code, changing the indentation, working out what
the parameters need to be and what the return type needs to be (and
occasionally discovering that there are subtle reasons why the code
cannot be moved after all).

I’ve yet to encounter corresponding support for C++ developers
– which is understandable (both in its compilation model and its
syntax C++ is a much harder language to address than Java). But
this is my list and I see no reason to be reasonable in my demands:
these facilities are great and I don’t want C++ to be left out.

Alan Griffiths
alan@octopull.demon.co.uk

www.octopull.demon.co.uk

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy Deadlines
All articles intended for publication in Overload 59 should be submitted to the editor by January 1st 2004, and for Overload 60 by
March 1st 2004.

6

Overload issue 58 december 2003

An Alternative View of
design (and planning)

by Allan Kelly

Traditional software development techniques highlight the
importance of planning our software through the creation of
designs. We often measure our work against plans made before
coding starts, and many organisations use adherence to plan as a
management control mechanism. Yet just about anyone involved
in software development knows that time estimates are usually
wrong, and program code doesn’t always follow designs
produced to start with.

Many in the agile process movement openly question why we
bother with plans at all. “Do the simplest thing possible” becomes
the only design decision we need to make again.

I’d like to propose that planning is useful, but not necessarily for
the reasons we often think it is...

Why Plan?

Although the quote is sometimes attributed to others, I believe
it was future US president, General Dwight D. Eisenhower who
said:

In preparing for battle, I have always found that plans are useless,
but planning is indispensable.

The sentiment isn’t restricted to the battlefield, I’m sure many
software developers have had recourse to this quote on
occasions. What lies behind it is fact that we are not blessed
with perfect future vision. Most plans contain assumptions
about how the future will unfold, many of these assumptions
simply extrapolate from the way things have worked in the
past – or how we perceive the things to have worked. Many
unknowns, and plenty of unknowables, force us to make
assumptions.

Even if all our assumptions turn out to be right, we have no
guarantee that our plan is complete. How much detail do we need
in our plan? Too little detail and you risk missing something

important; too much detail and you’ll never get beyond planning –
sometimes called “paralysis by analysis.”

Some assumptions will be conscious and may be explicitly
stated, others will be implicit and undocumented. There will be
many implicit assumptions in any development effort, these are
derived from our existing knowledge of the technology and
business and on the whole offer short-cuts to thinking. However,
some of our implicit assumptions will cause problems. Planning is
one means by which we can flush out these assumptions and
challenge our existing mental maps.

That plans assume foresight, and that foresight may be wrong,
is fairly obvious. What is less obvious is that plans also assume
communication. Even the best plans can fail because they are not
communicated clearly, or the receivers don’t act on the information
as we expect.

Such problems with planning led Arie de Geus to question the
role of planning. In the traditional model planning is a tool which
attempts to predict the future, the plans are then used to command
and control our activities. In contrast de Geus sees planning as a
tool for learning:

So the real purpose of effective planning is not to make plans but to
change the microcosm, the mental model that these decision makers
carry in their heads. (de Geus, 1988)

Like Eisenhower, de Geus is suggesting that we don’t make plans
so we can follow them, we make plans to map out the terrain –
that is, the problem domain we face. But he also goes further in
suggesting that by using planning we can accelerate learning. He
suggests planning is a game, a game were we can experiment
with different rules and safely make mistakes. The important
part of planning is not the output, but the process.

De Geus formulated his ideas as part of the planning group at
Royal Dutch/Shell. The head of this group, Pierre Wack, used
scenario planning to explore the future. Perhaps the best book on
scenario planning is Peter Schwartz, The Art of the Long View.
Schwartz is clear about the role of scenario planning:

Planning Gone Wild

As Schwartz noted, managers “prefer the illusion of certainty to
understanding of risks and realities”. Yet pursuit of this illusion
leads to counter productive results and top-heavy, high-
ceremony development systems.

While techniques like Critical Path Analysis can be useful
in identifying dependencies and foreseeing problems, when
carried to the extreme it becomes goal-displacement. We find
managers obsessing about Microsoft Project plan charts, re-
drawing them, changing activities, re-scheduling, adding
resource, removing resource, questioning activities and the
estimates behind them.

Putting a manager in the corner with MS Project may be a
useful way to keep them out of your hair for a while but so is
giving them a piece of paper with “P.T.O.” on both sides.
Eventually the manager steps away from MS Project and comes
to asks you why you estimated this activity at a week, or why the
estimate said one day and you took five. People quickly forget
the meaning of the word “estimate.”

Frequently estimates relate to how long it will take an
individual to do a task. Overrun because you helped Jane with
her work and suddenly all the talk of “teamwork” is forgotten –
even if next week Jane repays the favour and you both complete
work early.

Project planning can be a way to drive a wedge between people,
forcing them to focus on their own tasks rather than the overall
goal. Of course, sometimes you don’t need to wedge people apart.

Absent architects separate themselves from projects and teams.
In some companies, once an individual reaches a certain level it
is believed they can wander in for a few weeks, draw up the
blueprints and move on, perhaps returning every now and then to
check the plans are being followed.

Since those implementing the plans had no hand in drawing
them up their learning curve will be steeper and longer, nor will
they be particularly motivated to see the plans come to success.
Indeed, as part of their learning process they will probably conduct
their own planning process of sorts and may well produce a final
product that looks nothing like the blueprint, although, the
documentation may say it does.

7

Overload issue 58 december 2003

Scenarios are not predictions. It is simply not possible to predict the
future with any certainty. [...] Often, managers prefer the illusion of
certainty to understanding of risks and realities. If the forecaster fails in
his task, how can the manager be blamed? (Schwartz, 1991, p.6)

How do these ideas play out in software development? Before I
attempt to answer this question let’s just recap on the two key
ideas suggested:

● Firstly, while plans may help us to explore the future, even the
best plans will not describe the future.

● Secondly, the planning process is actually a learning exercise,
and it is this process which we value, not the plans we produce.
The learning that occurs during the process is a result of
communication, exploration and the surfacing of assumptions.
Importantly, this experience is shared by the whole team.

What Planning Do We Do?

Oranges aren’t the only fruit, and project schedules aren’t the
plans we make. Specifications, flow charts, structure diagrams,
pseudo code, UML diagrams, interaction diagrams, and a host of
other diagrams all constitute plans we make in advance as a way
of exploring our problem and solution domains before we start
coding.

In fact, even when we start coding we are still planning. Every
function which is written with a stub or is flagged “TODO” is part
of a plan, the more we code the more the “plan” becomes an
implementation.

Planning can be a point of tension between managers and
software developers. On the one hand, some managers understand
progress to mean lines of code written – Steve McConnell calls this
WISCA syndrome – Why isn’t Sam coding anything? (McConnell,
1993). On the other hand, excessive planning, document writing,
project schedules, and fancy architecture diagrams can act like
quick drying cement to stop a project from progressing.

Sometimes we do just jump in and code. Occasionally this is
because the problem is so simple the solution appears obvious, or
more likely, we’ve seen the problem before and know a solution
that works. Other times the problem is so hideous that we don’t
know where to start, so we try something. In this mode the code is
part of the planning process, we are exploring the terrain by
experimentation.

The value of prototyping lies in its role as a planning tool. The
prototypes are written for different audiences but typically allow
people to learn about the solution before committing themselves to
a solution. By viewing the prototype, both developers and clients
can accelerate their learning about the solution.

“Test first development” is another form of planning. By
considering the test cases before we write any code we are again
exploring the problem domain. Planning the tests gives us a
chance to improve our understanding before we start coding.
Almost as a side effect we get a test suite and save ourselves
some time later on.

The traditional view of software design is akin to building
development, the plans tell us where to build a load-bearing wall.
However, with software we don’t always know where the load will
occur. For example, it is almost impossible to predict where the

Scenario Planning

One of the most extreme versions of “planning as learning” is
that of Scenario Planning. In creating a scenario the idea is not
so much to forecast the future as it is think what challenges and
opportunities you, your team or business may face as the world
changes.

Scenario planning has its roots in military planning but has
been popularised through its use by Shell and authors like Peter
Schwartz. In his model we seek out information which may
affect the future. Some of this is knowable right now, e.g. the
world’s population is growing, X babies were born last year,
so in 12 years time there are slightly less than X teenagers.
Other information is from “weak signals” and comes from
talking to technologists, business people, academics, and other
thinkers.

Finding people who have insights and ideas, so-called
remarkable people, may be a challenge but is not impossible.
Once found, their ideas should expose some implicit assumptions
and help you imagine a different sort of world.

You sift through this information and look for the underlying
forces and the events that are important for your scenario. Then
you construct a story that explains the facts, highlights the forces
and provides insights. Actually, you may want to construct several
scenarios, say a best case and a worst case, but each story must be
internally consistent.

Once complete you name each of these scenarios. None of the
scenarios you have produced forecasts what willhappen; they only
show what could happen.

Stuart Brand suggests that scenario planning can be used in
designing buildings. By thinking about how a building may
develop in the future we may consider what features are important,
what is irrelevant and what obstacles we may be creating in a new
construction.

Software development could benefit from these ideas too.
Software designers aim for flexible products that can absorb
change, can be reused and yet are easy to maintain. Each of these
attributes comes at a cost, one answer to this rising cost has been
XP’s YAGNI – “you aren’t going to need it” – approach. The
problem is, deciding just what you do need and what you don’t
need is difficult.

Reality is going to be somewhere between these extremes, but
how do we know? Scenario planning offers one way of exploring
the future of our software and flushing out real requirements.

Likewise, trying to uncover the risks entailed in your project,
or where you can expect change requirements to come from, can
be analysed through a scenario plan.

Large framework scenarios used for company strategy and
government policy can takes months of work to produce, but it is
also possible to run smaller project scenarios to examine specific
areas of interest. Even here though, you probably want to conduct
some research then schedule several days to analyse what you
have gathered, agree the forces and write your stories.

While a team is researching and writing scenarios, they are
creating a shared understanding and even a shared language about
the problem they face. Communication and learning go hand-in-
hand.

8

Overload issue 58 december 2003

performance bottlenecks will be in a complex piece of software –
the costs of “premature performance optimization” are widely
accepted.

Even if building design was an accurate metaphor for software
design it is not without flaws itself. Stewart Brand (1994) has
criticised architects and lack of flexibility, and has advocated some
alternative ideas (see sidebar on scenario planning.)

Planning as Vision Formation

The activity of writing program code requires us to make design
decisions with every line we write: Is a for loop more
appropriate than while loop here? A template or a class there?

Of course, we could draw up more detailed plans to help us, but
the more detailed our plans the more the plans are the code. (This
is one of the failures of mathematical formal methods, the resulting
“specification” can be more difficult to maintain than the actual
code.) And at the end of the day, we don’t deliver plans, we deliver
working code, we want to make our design decisions at the most
efficient point, sometimes this is high level, sometimes this is low
level.

What we require is a framework that allows us to make all our
decisions in a coherent manner. If we have some guiding vision for
the system there is less need to examine each decision in minute
detail.

Traditionally, we would ask a System Architect to draw up a
high-level design for a system. This could be refined by “designers”
and implemented by software engineers. The engineers are
prevented from making mistakes because the plans control what
they do.

However, not only does this model assume that the architect and
designers get the design right, but it also assumes the model is
communicated with complete clarity and understood by everyone
involved in a timely fashion.

How often do we see provisional design decisions become fixed
elements of the system? By the time we realise part of our design
could be better not only is there too much code to change but there
is a bunch of developers who need re-educating.

For a system to remain flexible and soft, it is not only necessary
to keep the software flexible but the people must be capable of
change too. Thus, we return to de Geus’s idea that planning is part
of the learning process.

(Notice I say the “people must be capable of change”, not
“change the people”. Often the first reaction of new developers on
a software project is to claim the existing code is unmaintainable
and the whole thing needs replacing.)

In de Geus’s world, everyone is part of the planning process. We
plan so that we create a mental model of the system which is shared
by everyone. To put it another way, by allowing everyone to
participate in the design everyone will buy into the architecture and
understand how it affects them.

Ric Holt of the University of Waterloo has suggested that
software architecture is most usefully thought of as a mental model
shared by the development team. It is more important for the team
to hold a common understanding of what is being created than it is
to create highly detailed descriptions of technology. Holt’s
conclusion echoes Conway’s Law (1968):

When teaching about or designing software architecture we should
always remember that the architecture is intimately intertwined with the
social structure of the development team. (Holt, 2001)

And so we return to teamwork. For software development to
succeed the team needs to work together. What, you may ask, is the
role of the architect here?

The role of the architect, indeed any other manager on the
project, is changed when we take this view of planning. They no
longer sit in a darkened room and emerge with a completed
blueprint of how the system should be. Their role becomes one of
facilitator.

Architects may still sit in darkened rooms and think grand
thoughts, they may still examine strange new technologies, but they
no longer emerge with a plan. Instead they emerge to facilitate
discussions, their research may play a part in the architecture and
vision created by the team but for a team to truly buy into a vision,
and to truly understand the architecture, each team member must
have a hand in creating the vision.

Emergent Design

While we may like to think that the plans we make at the start
of a project actually describe the system we create the reality
is usually different. We find a need for objects that were
never included in the object model, the algorithms described
by flow charts and structure diagrams turn out to be buggy so
the code is different, and refactored code quickly diverges
from the plans.

As we develop at the code level a design emerges. To a
greater or lesser degree this mirrors our pre-coding plans
(assuming we made any). But over time the code becomes the
best place to look for design. If we want a high level view of
what and how a system works we are better abstracting from the
working code than examining blueprints devised before the code
was written.

Acknowledging that design is an emergent, ongoing process
again challenges the traditional role of design and architecture.
However, when we re-perceive design as a learning process
through which we create a common vision and understanding of
the system, and we re-perceive the architect’s role as one of
facilitator rather than supreme planner then emergent design is
a natural result. Because the design which emerges comes from
a group of people rather than an individual the design is shared
and understood by all.

What About Plans as
Documentation?

Of course, plans have another use, they are the place we turn to
first when confronted with a new system. Day one on a new job
and we all expect to be given the system design, and usually we
find it doesn’t exist, or, at best, is out of date.

The fact that plans seldom reflect the realised system has long
been known, and famously led Dave Parnas and Paul Clements to
write about “A rational design process and how to fake it” (Parnas,
2001). They argue that after building our systems, we should go
back and create the documentation we would have created if we
had perfect foresight.

Although this may seem a novel idea it suffers from a number
of problems, not least that it assumes we will be allowed time to
write documents once the development has completed.

More dangerous is the fact that we are introducing an element
of dishonesty into the process. No matter how well intentioned our
motives we are doing something subversive, is it any wonder that
managers ask “Shouldn’t you have done that before you started?”

Introducing subterfuge into the process is counter-productive as it
also undermines trust.

Rather than fake our plans it is far better to be honest and say
“We wrote this after the event.” If we want documentation for
future developers than we should produce that as a specific task
based on the working system.

Unfortunately there are two catches here. Firstly, much of what
we learn when developing software is tacit knowledge. It may be
shared by the team but it is actually incredibly difficult to write
down. The fact that we can codify it at all in program code is pretty
remarkable – although often we may not realise we’re doing it –
implicit assumptions again.

We can try and compensate here by writing copious amounts of
documentation. However, this brings us to the second catch which
observant readers will have spotted already. Remember de Gues’s
point about speeding up learning? The more documentation you
produce the longer it is going to take new people to come up to
speed on the system. Less can really mean more, less
documentation can result in more time actually learning about the
system.

In fact, copious documentation may make things worse still
because we come to rely on words and diagrams. Assuming these
are accurate (a big assumption) we have now changed the nature of
the issue from one of problem solving to one of applying a
documented solution.

However, software development is inherently a problem solving
activity. If it wasn’t we could automate the process. Therefore,
although they may help, documentation and plans never contain the
solutions; they may actually be false friends.

Final Thought

One final thought, in the de Geus model of planning as learning it
is the institution that learns – where we interpret “institution” in
the broadest sense. He says:

And here we come to the most important aspect of institutional
learning, whether it be achieved through teaching or through play as we
have defined it: the institutional learning process is a process of language

development. As the implicit knowledge of each learner becomes explicit,
his or her mental model becomes a building block of the institutional
model. (de Geus, 1988)

The emphasis on language creation is similar to the pattern
community. By developing a language, whether through patterns,
planning or scenarios, we create high level abstractions that allow
us to discuss complex topics.

Other parallels exist with patterns, like patterns this view of
planning seeks to turn implicit knowledge into explicit
knowledge, both focus on creating building blocks, pattern
writers and scenario planners are directed to focus on forces and
particular importance is attached to naming both patterns and
scenarios.

How different, and how much more exciting, to view planning
this way instead of as a GANTT chart.

Allan Kelly
allan@allankelly.net

http://www.allankelly.net

Bibliography

Brand, S. (1994) How Buildings Learn: What Happens After
They’re Built, Penguin.
Conway, M. E. (1968) How do Committees Invent?, Datamation.
de Geus, A. P. (1988) “Planning as Learning”, Harvard Business
Review, 66, 70.
Holt, R. 2001 “Software Architecture as a Shared Mental
Model”, http://plg.uwaterloo.ca/~holt/papers/sw-
arch-mental-model-010823.html, Position paper to ASERC
Workshop on Software Architecture
McConnell, S. (1993) Code Complete, Microsoft Press,
Redmond, WA.
Parnas, D. L., and Clements P.C. (2001) “A Rational Design
Process: How and Why to Fake It” In Software Fundamentals:
Collected Papers of David L. Parnas (Eds: Hoffman, D.M. and
Weiss, D.M.) Addison-Wesley.
Schwartz, P. (1991) The Art of the Long View, Bantam Doubleday
Dell, New York.

9

Overload issue 58 december 2003

More on Singletons

To the Editor,
There are definitely pros and cons of singleton usage, depending

on whether they’re used properly or abused. I believe both sides
bring valid points to the argument. In modern generic
programming, I have experienced great benefits from them.

I have worked on several large-scale projects that have
employed a unified singleton system approach. On one such
project, we currently have 234 singleton instances. These
include such things as specific program state and task objects.
The dependencies and life-time issue for all 234 instances are
automatically handled for us. We can easily add, and change
these instances without fear of a system breakage. It’s similar to

a free high-performance garbage collection at the architectural
level.

Prior to working on such large-scale frameworks without such
a system, maintenance work has been a nightmare, even for the
outstandingly talented developers. The alleviation has done
wonders for preventing memory leaks and keeping our project
shutting down properly.

For anyone that is interested in this architectural technique, all the
necessary code is available. I’ve posted an article that shows a simple
example of how to use a unified singleton system:
http://daudel.org/code/singleton_usage.html (will post
soon)

Jeff Daudel
jeffdaudel@yahoo.com

Letter to the Editor(s)

10

Overload issue 58 december 2003

A Standard Individual:
A Licensed Engineer

by Chris Hills

Are you an Engineer? Pause and think before you answer.
Recently I saw one of those TV programs about changing

houses. The couple were introduced: She was a “nursing
assistant” and he was an “engineer”. In fact he was a mechanic.
Now, can you imagine the outcry had she been described as a
Doctor? Several professional bodies and individual doctors
would have complained before the program had got to the
commercial break.

Today as I am editing this I am waiting for the “service engineer”
to swap out the dishwasher. They assure me he is a “fully trained
and qualified engineer”. Last time he was here he plugged in a
laptop to the dishwasher and set it running. He told me he had
started City & Guilds Part 1 but had given up. The laptop then told
him the control board needed replacing... It seems that any one can
be “an engineer”.

In the software industry I have seen people who have taken a
short programming course and become “software engineers”. Now,
you try taking your degree in electronics or software and doing an
“architectural appreciation course” and calling yourself an
Architect... or a six-month first aid course and call yourself a
[Medical] Doctor. There are laws against this but you will have to
be a barrister to defend yourself in court. This is because it has been
deemed dangerous to have unqualified people as Architects,
Lawyers, Doctors, Civil (structural) Engineers, Gas Fitters etc.
However, there is no virtually no restriction on embedded engineers
no matter how safety critical the work.

My central heating fitter has to be CORGI registered before
he can fit a cooker, fire or boiler. This involves passing and
regularly re-passing legally mandated, and expensive, exams to
be able to fit these appliances. Although many of these cookers
and heating systems are microprocessor controlled there is no
requirement for the programmer to have any form of
qualification at all.

The options for some sort of registration, certification or
licensing for engineers have been looked at and legislation
attempted several times over the last century, from statutory and
mandatory licensing in various forms to a purely voluntary system.
Strangely, for various reasons, in the past it is the Engineering
Institutions that have objected to mandatory systems. Some of the
major points are:
1886: The Architects and Engineers Bill was defeated. This was

lobbied against by the Institute of Civil Engineers,
I.Mech.E. and the IEE. It was at this point the Worshipful
Company of Plumbers started the register of plumbers, but
this was voluntary.

1919/1920: The Institute of Civil Engineers had come round to
thinking it was a good idea to have a statutory register of
Engineers but again this was vetoed by the other Engineering
Institutes.

1926: Another Engineers Bill for Statutory Registration of
Engineers was vetoed by the Civils, Mechanicals and IEE.
The reason being that the Institutes felt that they should be
the judges of standards not the government.

1943: Again the Government was persuaded not to implement
a Register of Engineers qualified to work on public
contracts.

1980: The Finnison Report lead to the creation of the Engineering
Council and protection for titles Chartered Engineer,
Incorporated Engineer and Engineering Technician.
Unfortunately the term “Engineer” was not included. The
Royal Charter protects these titles with Civil Law. Note this
was set up by the Government not the institutes.

1993/4: A veritable library of reports and papers turned up at this
point: “Engineering into the Millenium” (Eng Council
Steering Group), “The Statutory Question” (Porter), “Report
of Licensing of Competent Persons” Working Group, “The
UK Engineering Profession: The Case for Unification”
(Millman), “Engineers and Professional Self Regulation”
(Jordan) and others. Note I will dig out URLs for these as I
can. They will be added to the version on
www.phaedsys.org.

Interestingly these preceding cases all seem to be connected in
time with major upheavals and wars. 1886 was the middle of the
rapid expansion of British interests in Africa, 1919/20 was the
end of WW1, 1926 the General Strike and nationalisation, 1943
WW2 and 1980 was the middle of the Thatcher era, free market
and high unemployment. In the early 1990’s I recall that we had
a recession that no one talked about. I am not suggesting a
conspiracy! Just looking at the factors.

That brings us up to the present. There have been another flurry
of reports mainly in the last two years. These have culminated in
the report of May 2003: “Licensing and the UK Engineering
Profession” for the Engineering and Technology Board. You can
judge for yourself what the major upheaval behind this new interest
in licensing is.

I will hazard a guess at the renewed interest. At this point my
employer (www.hitex.co.uk) would like me to point out these
are my personal views and I am not legally qualified! As with last
month’s item on Corporate Manslaughter, it is sadly not the
professional bodies but the insurance companies who are likely to
be (indirectly) behind the changes. Product liability. Money talks.
Corporate Manslaughter comes into the report “Licensing and the
UK Engineering Profession”. Engineering, especially software and
embedded systems are playing a larger part in our lives. With the
pace of modern life there is more scope for causing more “insured
casualties”. Perhaps I am just a cynic.

The other problem is partly what are you actually trying to
license, certify or register? It ranges from the CORGI type system
for gas fitters where there is a legal requirement to pass and
continually re-pass exams before one can work, through to a
voluntary register such as C.Eng via one of the Institutes, the IEE
for example (http://www.iee.org). C.Eng is a one off
assessment with no reassessment. As long as I pay the dues to the
IEE and Engineering Council I remain Chartered.

If you think the C.Eng requirements are difficult gas fitters
have to re-take the exams every five years for each category of
work the undertake: cookers, fires etc. This can cost up to
£5000! In other words £1000 a year. This gives them a card that
shows the categories of work they can undertake. It is illegal
for anyone to work on gas equipment for gain unless they are
CORGI registered.

It has been noted recently that the high costs are proving to
be creating problems with the legitimate fitters. It is leading to
some non-registered working. This is of course illegal which is
the get out for the insurance companies... The claim is void if
you used illegal fitters. I am getting cynical again! There is an

HSE paper on where the gas competencies are going at
http://www.hse.gov.uk/gas/wg3/wg3_co2.pdf or you
can look at http://www.corgi-gas.co.uk . You could also
ring up my local CORGI registered gas fitter/central heating
expert and ask him about CORGI but you had better be prepared
for some strong language!! It’s not the regulation so much as
the cost.

However for the professions the UK is one of the least
regulated countries in Europe. As you would expect Germany
and Austria lead the way for Engineers along with Italy and
Luxembourg. Most of the others fit in between. Strangely,
Scandinavia, home of some well known engineering excellence
is also low on regulation for Engineering. However, when it
comes to Accountants, Architects, Lawyers or Pharmacists they
are right up with the rest, again the UK is trailing behind. There
is a study that explores the regulation of professional Engineers
in Europe at http://www.europa.eu.int/comm/

competion/publications/publications.
There has been an attempt to harmonise the engineering

professions across Europe with the Eur Ing (European Engineer)
Register run by the European Engineering Federation FEANI
(http://www.FEANI.org). This is currently voluntary in the
UK and is open to Chartered Engineers. Whilst it is currently
little used in the UK it will become more important as time goes
on especially if you work with European companies. There is a
study on where it is expected to go at
http://www.upf.es/dcpis/esf/papers/2bcn.doc . I
recommend that all Chartered Engineers should ask their
professional Institute for the forms and join the FEANI register.
The forms are relatively simple and the C.Eng means you are
already at the required level. Also it is inexpensive, I think it is
£35 for 5 years registration.

Recently in the USA there have been moves to certify and/or
license Engineers to practice. In June 1998 Texas established
Software Engineering as a recognised and licensed profession.
You get the right to call yourself an Engineer and can offer
software engineering services for gain. This is for any software
for “engineered systems including embedded systems, real-time
systems, mechanical devices, electrical devices and power
systems”. The requirements are a suitable degree, 16 years
experience and references from 9 people 5 of which must be
Licensed Engineers. Interestingly the following year in 1999
the ACM decided that it was opposed to licensing. This was for
a variety of reasons. The report is at http://www.acm.org/
serving/se_policy/report.html.

Several other US states and Canadian provinces are following
the lead from Texas. Also in Australia there is a similar
“Professional Engineer” or PE title. These are at the level of you
must be registered before you can practice for gain. IE on license
you cant write SW and get paid for it.

Many of the studies have looked at what it is they want to certify
or licence. There have been studies on the impact on the costs to
the Engineer, the companies using them, administering the schemes
and the economy in general. Also how it will affect the industry as
with the gas fitters, railway signalling and aircraft maintenance.
The ideas range from (as now with C.Eng.) when you get a suitable
qualification and a minimum amount of experience you are
registered, through being required to do so much training (the
Continuing Professional Development scheme), and on to annual
re-testing. The IEE and BCS both looked at running CPD schemes

and tried them for some years. They modified them and they
seemed to disappear.

Whilst the specific requirement will vary from profession to
profession many of these studies call for a unified “Professional
Engineer” status. This was partly realised by the Engineering
Council having the Engineering Institutes as members and
overseeing the Chartered Engineer. The proposed merger of the
IEE, IMechE and IIE will make this idea even easier to implement
a general Professional Engineer status.

That said, various industries are already expanding their
licensing. For example The UK Civil Aviation Authority
licences pilots, air traffic control and maintenance engineers.
Since 2001 (remember 2001 was the start of the current flurry
of licensing reports) this has been via the JAR-66 and JAR-145.
The JAR or Joint Aviation Requirement is world wide and is
expected to widen its remit to encompass more of the smaller
light aircraft that are currently not covered. They are regulated
by Maximum Takeoff Mass. See http://www.caa.co.uk and
http://www.jaa.nl for the licensing regulations. These
licences require (for some levels) Chartered Engineer status and
the reports are proposing mandatory amounts of CPD or training
that must be undertaken each year. Information on this at
http://www.sbac.co.uk/files/newsdocs/84/Interim

%20Report%20final.pdf.
The Institution of Railway Signal engineers

(http://www.irse.org) have operated a licensing system since
1993... That’s another of the dates when licensing came to the fore.
They have many categories of licensing that require CPD and re-
testing at regular intervals.

The US proposals suggest that only 20% of their IT/software
people will be able to gain the licensing for the safety critical work.
I have heard a similar figure of 20% Chartered and 80%
Incorporated Engineers mentioned by a member of the Engineering
Council for the UK.

However it finally ends up, licensing for Professional Software
and Embedded Engineers is going to happen in the UK. Across the
world and in some sectors within the UK these schemes for
registering, certifying or licensing professional Engineers are being
strengthened and expanded. The UK will become more regulated
if not for engineering reasons then for reasons of insurance and
liability. Money and commerce are the most powerful forms of
energy there are.

In the UK the government wanted to (wants to?) introduce a
professional qualification and license. The obvious starting
point is Chartered Engineer. In fact this was part of the original
thinking behind the Engineering Council and C.Eng. I think that
whatever develops it will come from the C.Eng., especially with
the tie in to Eur. Ing. There is no reason for any degree qualified
embedded engineer not to join the IEE and go for Chartered
Engineer status. See if your employer will assist. Tell them it
is tax deductible and they may need staff who are Chartered in
the not too distant future.

For embedded engineering, both hardware and software
engineers would get a C.Eng. via the IEE
(http://www.iee.org), pure software engineers could also
talk to the BCS. For Chartered Engineer you require a suitable
degree and experience. For older applicants, experience and
other qualifications are taken into account so, at the moment, a
lack of a degree if you have experience is not a bar. Note: For

[concluded at foot of next page]

11

Overload issue 58 december 2003

12

Overload issue 58 december 2003

[continued from previous page]

the UK and Europe you will need the IEE not the US IEEE. The
IEEE, obviously, cannot confer Chartered Status.

As there is more licensing (and more pressure for licensing)
within the UK, EU, USA, Canada, Australia and rest of the world
and as embedded SW becomes more integral to most (safety
related) parts of modern life, the UK will have to follow the rest
into some form of licensing. This is inevitable.

Eventually the term “Engineer” might actually become a
respected profession in the UK the same as it is in Germany and
Texas. On the bright side, last month being a Chartered Engineer
got me a reduction on my house insurance! So it is of practical use
now.

Well, can you answer the question: Are you an Engineer? More
importantly will you still be able to call yourself an Engineer in five
years time?

Chris Hills
chris@phaedsys.org

www.phaedsys.org

Eur Ing Chris Hills CEng MIEE is a Technical Specialist with
www.hitex.co.uk.

See the QuEST series of papers on SW Engineering

A More Flexible Container
by Rich Sposato

The Standard Set
Suppose I want to store pointers to some Employee records in a
set, and then order that set by Employee name. That is easy;
just make a functor that compares two Employee names, and
apply it to a set. The snippet below shows how. The example
stores bare pointers, but smart pointers are often a better choice
for storing in containers.

class Employee {

public:

const std::string& GetName() const;

// ... other functions

};

struct CompareEmployees {

inline bool operator()(const Employee* l,

const Employee* r) const {

return (l->GetName() < r->GetName());

}

};

typedef std::set<Employee*,

CompareEmployees> EmployeeSet;

EmployeeSet employees;

Now, suppose I want to find a certain Employee record that
matches any given name. Well, to do that, I have to pass in an
Employee pointer with the properties I am looking for. This is
because the set functions that search – find , count,
lower_bound, upper_bound, equal_range, and erase
– require a reference to the same type as the key of the set. These
functions, except erase, are commonly called the “Special Set
Operations”. Using the example above, I have to pass in a
pointer to a bogus Employee record. The bogus object only
exists as a comparison value for finding the real record.
Assuming an Employee object can be constructed using just a
name, then the code looks something like this:

Employee* FindEmployee(

const std::string& name) {

Employee bogus(name);

EmployeeSet::iterator it

= employees.find(&bogus);

return (employees.end() == it)

? 0 : *it;

}

But, what if I can’t make an Employee object so easily?
Perhaps no Employee constructor accepts just a name. Or
maybe constructing any Employee object is so expensive that
making a temporary on the stack is not worth the effort. Why is
it necessary to make the bogus Employee record anyway? It
would be so much simpler to just pass in the name itself to the
set::find function and have it return the iterator to the target
object.

Template Member Functions

The std::set’s search functions typically require a reference
to the same type as the set’s key. They look like this:

template<class Key,class Compare,class Alloc>

class set {

// ... other parts of set class

public:

template<class Key>

size_type erase(const Key& x);

};

Passing any type into these functions is possible only if the
functions themselves are templates. These functions are not
templated in the STL’s associative containers – and would
cause code bloat if they were, which I shall discuss later. The
next code snippet shows the declarations of these functions as
if they are template member functions. Notice that the
Compare_Type used for each templated function is not
among the templates for the class itself. As long as the
Compare_Type is comparable to the Key type, it can be
used by the functor. For completeness, listed below are both

This article was originally published in Embedded Systems Engineering (http://www.esemagazine.co.uk/) and is reproduced
here with kind permission of the editor. It is also available with the other columns in this series on www.phaedsys.org under the
SW Engineering button.

the const and non-const versions. I chose the
unimaginative name of flex_set for the container class.
Other than the name, and templated member functions, it
behaves just like std::set.

template<class Key,class Compare,class Alloc>

class flex_set {

// ... other parts of flex_set class

public:

template<class Compare_Type>

size_type erase(const Compare_Type& x);

template<class Compare_Type>

size_type count(

const Compare_Type& x) const;

template<class Compare_Type>

iterator find(const Compare_Type& x);

template<class Compare_Type>

const_iterator find(

const Compare_Type& x) const;

template<class Compare_Type

iterator lower_bound(

const Compare_Type& x);

template<class Compare_Type>

const_iterator lower_bound(

const Compare_Type& x) const;

template<class Compare_Type>

iterator upper_bound(

const Compare_Type& x);

template<class Compare_Type>

const_iterator upper_bound(

const Compare_Type& x) const;

template<class Compare_Type>

pair<iterator,iterator> equal_range(

const Compare_Type& x);

template<class Compare_Type>

pair<const_iterator,const_iterator>

equal_range(

const Compare_Type& x) const;

};

This looks good so far, but how will these template member
functions know how to compare some arbitrary type to the set’s
key type? The answer to that lies within the comparison functor,
or comparator, used to order the set’s elements. The comparator
is overloaded to compare an Employee record to a const
std::string. There are overloads so the name can be on the
right or left side for symmetric comparisons. (Indeed, some
member functions of flex_set require both.) The result is
shown below along with a more efficient FindEmployee
function.

struct CompareEmployees :

std::binary_function<const Employee*,

const Employee*,

bool> {

inline bool operator()(const Employee* l,

const Employee* r) const {

return (l->GetName() < r->GetName());

}

inline bool operator()(const Employee* l,

const std::string& r) const {

return (l->GetName() < r);

}

inline bool operator()(

const std::string& l,

const Employee* r) const {

return (l < r->GetName());

}

};

Employee* FindEmployee(

const std::string& name) {

EmployeeSet::iterator

it(employees.find(name));

return (employees.end() == it)

? 0 : *it;

}

Okay, this is much better. No need to make a bogus Employee
object just to find the real Employee. Just pass in the employee
name, and the templated flex_set::find function returns
the proper iterator.

For every possible type that can search through the container,
simply add that type to the comparator and the compiler
automatically makes the templated search functions. Using that
idea, the example above can be further overloaded to compare
a C-style string as shown here. I typically need only one
additional type in the functor besides the key type, so here I
would have chosen either std::string or const char *,
but probably not both. (Admittedly, having a C-style string
overload means I do not have to convert a const char * to
std::string before doing the search, so one less object to
construct.) Now that I can search using a type other than the
key type of the set, I often use the key type only when inserting,
and so the Employee-to-Employee comparison in the functor
is only used for inserting.

struct CompareEmployees :

std::binary_function<const Employee*,

const Employee*,

bool> {

// rest of functor as shown above.

inline bool operator()(const Employee* l,

const char* r) const {

return (l->GetName() < r);

}

inline bool operator()(const char* l,

const Employee* r) const {

return (l < r->GetName());

}

};

13

Overload issue 58 december 2003

14

Overload issue 58 december 2003

An Alternate Solution

There is another method for searching through associative
containers using types other than the key type. A bunch of
wrappers, like that shown below, can be stored inside a
std::set, and allow us to do searches by name.

struct EmployeeWrap {

EmployeeWrap(Employee*); // not explicit

EmployeeWrap(const char*); // not explicit

EmployeeWrap(const std:string&);

// not explicit

// Either of these is used, but not both.

Employee* m_Employee;

const std::string m_name;

inline const std::string& GetName(void)

const {

return (0 == m_Employee)

? m_name : m_Employee->GetName();

}

bool operator<(const EmployeeWrap& l,

const EmployeeWrap& r);

};

typedef std::set<EmployeeWrap>

EmployeeWrapperSet;

Employee* FindEmployee(

const std::string& name) {

EmployeeWrapperSet::iterator

it(employeeWrappers.find(name));

return (employeeWrappers.end() == it)

? 0 : (*it).m_Employee;

}

This wrapper has several disadvantages. One is that it requires a
special wrapper class to hold all the types needed for comparing.
To compare Employee records with additional types, those types
would have to be added to the wrapper, instead of just overloading
the functor as needed for a flex_set. The example above has 2
elements, and the std::string has to be instantiated even if it is
never used. The sizeof(std::string) varies from 4 bytes to
28 bytes depending upon the implementation. This increases the
overall memory consumed by std::set even though all
instances of EmployeeWrap within the set will not use the
std::string. Another disadvantage is that the code above
constructs an unnamed temporary of EmployeeWrap to pass into
the std::set::find. This construction cost is small, and most
of the cost can be optimized away. Lastly,
EmployeeWrap::GetName imposes a small runtime cost to
determine which data member has the name – a cost not required by
the flex_setmethod. The argument against the wrapper method
becomes: “If flex_set is available, then why pay for several
costs that are not needed?”

Other Associative Containers

Another alternate solution is, “Why not just use map instead of
set?” The Employee container will be:
std::map<std::string,Employee*> employees.

There are two answers for that, one is complicated, and the other
is more complicated. The complicated answer is that although
that provides the desired ordering, it also requires storing a copy
of the Employee name as a key for the map. (The
EmployeeWrap example above also stores one
std::string with an Employee pointer, but std::map
actually uses each std::string.) An intuitive reason to avoid
this practice is that the key, Employee name, is part of the
Employee object, and it does not makes sense to store the key
separately. A more practical reason is that storing the name
separately is inefficient. Another practical reason is that
someday, an Employee name will change, but the copy won’t.
That copy is the key within a map, and people will be reluctant to
change the key in a map, but may not know that a property of the
value is the key, and so change name of the Employee without
updating the container.

The more complicated answer is that std::map cannot
provide the same flexible search capabilities as those afforded
by flex_set. To provide that flexibility for the other
associative containers, flex_map, flex_multiset, and
flex_multimap are needed, which are based upon same idea.
Many STL implementations use the same underlying
implementation for all four associative containers. By changing
the implementation to make any associative container more
flexible, the other three also become more flexible with little
extra effort.

Using the templated flex_map::find member function
allows for searches in a map of Employees to Assignments
using just the name. This code shows a flex_map of Employees
to their current Assignments.

typedef flex_map<Employee*,Assignment*,

CompareEmployees>

EmployeeAssignments;

EmployeeAssignments employeeAssignments;

Assignment* GetEmployeeCurrentTask(

const std::string& employeeName) {

EmployeeAssignments::iterator it(

employeeAssignments.find(employeeName));

return (employeeAssignments.end() == it)

? 0 : it->second;

}

If std::map were used, then something similar to this is
required.

typedef std::map<Employee*,Assignment*,

CompareEmployees>

EmployeeAssignments;

EmployeeAssignments employeeAssignments;

Assignment* GetEmployeeCurrentTask(

const std::string& employeeName) {

Employee bogus(employeeName);

EmployeeAssignments::iterator it(

employeeAssignments.find(&bogus));

return (employeeAssignments.end() == it)

? 0 : it->second;

}

Considerations

CompareEmployees inherits from binary_function
for use with adapters such as not2 , bind1st , and
bind2nd. The adapters will only work with the functor’s
function that has the types specified as templates for
binary_function and ignore the overloaded functions. If
an adaptable functor is needed that accepts some other type,
the simple solution is to make such a functor. The code below
shows a functor that derives from binary_function and
can be used with std::string . Assuming that the
hourlyEmployees container is sorted by name, the
find_if call will locate the first Employee with a name
less than the given name. One of the costs of the increased
container flexibility is that more functors are needed. But,
these additional functors are often needed for other purposes
and searches on other containers anyway, such as vector.

struct CompareEmployeeToName :

std::binary_function<const Employee*,

const std::string&, bool> {

inline bool operator()(const Employee* l,

const std::string& r) const {

return (l->GetName() < r);

}

};

typedef std::vector<Employee*> EmployeeVector;

EmployeeVector hourlyEmployees;

// Populate vector ...

EmployeeVector::iterator it(

find_if(hourlyEmployees.begin(),

hourlyEmployees.end(),

bind2nd(CompareEmployeeToName(),

name)));

Another consideration is code bloat. Many C++ developers
complain that templates cause code bloat, and making template
functions out of otherwise normal functions allows for bloat.
Instead of having just one flex_set::find function, there
can now be several. (My own experience is that I rarely use
more than one type of a function, so I am not paying for more
than one version of flex_set::find anyway.) Fortunately,
most search functions in the associative containers are small and
inline, so code bloat will be minimal for them. Unfortunately,
some functions in the underlying implementation are not as
small, but still manageable. Still, the more flexible search
abilities are worth a little extra bloat because temporary objects
are no longer created. Since the temporary object is no longer
needed, the cost of constructing and destroying it goes away,
which may actually shrink the overall code size. Whether the
flexible searching is worth the little extra bloat is a decision that
must be made for each type and container.

The flex_set is not the ideal container for primitive types.
A container of type flex_set<long> allows both
flex_set::erase(const long& x) and
flex_set::erase(const short& x). The compiler
created both functions instead of promoting the short to a
long and using only one function. This kind of code bloat can
easily be avoided by using std::set<long> instead. A

corollary to this is that member functions in std::set should
not be templated. (Some simple experiments with changing
std::set convinced me that making a separate flex_set
class was a better solution.) The flex_set is useful for
containers that store objects or store pointers to objects, but I
prefer std::set for containers that store primitives.

Instead of making another container class, perhaps std::set
itself can be extended by adding additional functions that use
predicates. The algorithm functions std::find_if and
std::count_if are similar to std::find and std::count
except that they use a predicate instead of a value. Would a putative
std::set::find_ifmember function that accepts a predicate
work? Not really, because the predicate needs to compare an
element to a value, and so std::set::find_if will need to
receive both the value and the predicate. Which means the compare
value passed into std::set::find_if would have to be
constructed. This just reintroduces the original problem of
constructing a temporary. Nor could adding predicates to the
erase, lower_bound, upper_bound, equal_range, and
binary_search member functions of std::set provide any
greater efficiency than what flex_set already provides for these
functions. Using a unary predicate which stores the compare value
does not work either, since unary predicates cannot change the
order for the compare and key values, and the predicate must be
able to use the compare value on both the left and right side.

Could any other member functions of flex_set be
templatized in the same way? Only one other function accepts
a reference to a const key type as a parameter, and that function
is insert. Inserting anything but a key value is meaningless,
so the answer is negative. The special set operations, and one
of the erase functions, are the only candidates for becoming
templates.

Summary

More flexible variations of the four associative containers are
possible by changing the search functions into template member
functions. Each data type used as a parameter to these functions
requires overloading the comparator to compare these data types
to the key value of the container’s elements. A caveat that goes
with the overloading by type is that each type has to be
comparable to the element type. The flexible containers have a
beneficial side effect of resulting in more efficient code because
named temporary variables are no longer necessary. Nothing is
gained by changing std::set or the other STL associative
containers. Changing member functions into templated functions
causes bloat for containers of primitive types, and passing
predicates as parameters into std::set functions does not
work.

Rich Sposato
rds@richsposato.com

You may use the source code provided at:
http://www.richsposato.com/software.html

as a replacement for the associative containers provided with the
GCC compiler.

Acknowledgements

Many thanks to Don Organ, Gerald Chan, Phil Bass, Alan
Griffiths, Juan Carlos Aguilar, and Cherryl Smith for their
feedback and insightful comments.

15

Overload issue 58 december 2003

16

Overload issue 58 december 2003

Choosing Template
Parameters

by Raoul Gough

Choosing the right parameters for a template can make a
significant difference to how useful the template is. In this article,
I will present a very simple guideline that, where applicable, can
improve a template’s flexibility. I will also provide an example of
how the standard library itself could have applied this guideline
but didn’t.

The fundamental idea can be seen in the following example:

template<typename Element>

struct inflexible {

typedef Element element_t;

typedef std::vector<Element> container_t;

// ...

};

template<typename Container>

struct flexible {

typedef typename Container::value_type

element_t;

typedef Container container_t;

// ...

};

These two templates both define two member typedefs
element_t and container_t, presumably for further use
internally (not shown). In the first case, although the template can
have any element type, it always uses a std::vector as
container. The second case is more flexible, since it will work
with any container, and any element type, provided that the
container has a sufficiently vector-like interface. The principle at
work can be stated as follows:

“A template will be more flexible if, instead of internally
generating a new type from its arguments, it accepts the generated
type directly as a parameter.”

Unfortunately, there are some costs associated with this approach,
which I will point out first before expanding on the benefits. Firstly,
the interface may be less convenient. From the example, client code
would have to use flexible<std::vector<int> > instead
of simply inflexible<int>. There is an easy solution, which
is to provide a convenient interface once the more flexible
implementation is available:

template <typename Element>

struct convenient :

flexible<std::vector<Element> > {

};

The second cost is that the documentation for the template will be
more complicated. In the example, instead of merely specifying
the constraints on the element type, the documentation must now
also describe what interface the container type must provide,
such as an operator[] member function, insert functions and
so on. Ideally, the requirements would also be broad enough to
allow for future changes in the implementation of the template,
for instance switching internally from using operator[] to
random-access iterators.

Lastly, to inter-operate with a wide variety of argument types,
the template implementation will need to be more carefully written.
In the example, instead of assuming that size_t is the correct type
for indexing into the container, the implementation should use
typename container_t::size_type.

A Familiar Example

To see the consequences of writing a more flexible template, let’s
take a look at std::map:

template <class Key, class T, ...>

class map {

public:

typedef Key key_type;

typedef T mapped_type;

typedef pair<const Key, T> value_type;

// ...

};

This should be recognizable as a variant of the first template
/inflexible/, since it generates the value_type (using
std::pair) from template arguments instead of accepting a
value_type parameter directly. If I have a user-defined type
that has both key_type and mapped_type in the same
object, I have a problem which will be familiar to some readers
from their own experience. For example:

struct person {

person_id_t m_person_id; //Unique identifier

std::string m_surname;

std::string m_other_names;

// ...

};

void foo () {

typedef std::map<person_id_t, person> map_t;

map_t my_map;

person p;

person_id_t id;

// must generate a pair object for insertion

my_map.insert(map_t::value_type

(p.m_person_id, p));

// lookup by ID and modification are

// convenient

my_map[id].m_other_names = "Joe";

}

The insertion is a little cumbersome, and duplicates the person ID for
every entry in the map. How much of a problem this is in practice
depends on the nature of the key type in use, but it is usually a good
idea to avoid data duplication where possible. Alternatively, one
could choose to use std::set and have code like this:

struct person_id_less {

bool operator()(person const &p1,

person const &p2) {

return p1.m_person_id < p2.m_person_id;

}

};

void foo () {

typedef std::set<person, person_id_less>

set_t;

set_t my_set;

person p;

person_id_t id;

// insertion is convenient

my_set.insert (p);

// find requires a person object instead

// of just the ID

p.m_person_id = id;

// mutable access requires a const_cast

const_cast<person &>(

*my_set.find (p)).m_other_names = "Joe";

}

So std::set is easier to use as far as insertions are concerned,
and does not duplicate any data, but element lookup and
modification are made more difficult. In fact, the std::set
example has a potentially catastrophic problem, since
my_set.find() will return my_set.end() if there is no
match, leading to undefined behaviour from the code. None of
these problems are insurmountable, but they do reveal some
limitations of the two templates’ interfaces.

Now consider an alternative template, map2, which applies this
article’s guideline by accepting the complete value type as a
template parameter:

template <class Value, ...>

class map2 {

public:

typedef typename Value::first_type

key_type;

typedef typename Value::second_type

mapped_type;

typedef Value value_type;

// ...

};

This template assumes that the supplied type provides the same
interface as std::pair, which means that the map
implementation needs almost no changes at all. Unfortunately,
this also means that the supplied type must have public member
variables first and second which contain the object’s key and
mapped value, respectively. So allowing the client to provide
different value types, but requiring a matching interface, hasn’t
actually achieved very much in this case.

Of course, we don’t have to stop there. Having made the
decision to accept value types other than instances of
std::pair, it is fairly natural to consider alternative interfaces.
For instance, requiring that the value type provide member
functions get_key and get_mapped would solve most of the
problems. It would then be relatively easy to extend the person
class to provide the necessary interface and store person objects
directly in a map2.

Unfortunately, this assumes that the value type knows in
advance that it is going to be stored in a map. Furthermore, it is

not very convenient for user defined types that could appear in
different maps with different keys (e.g.
person::m_surname would be suitable as an alternative
multimap key). A far better solution would be to accept some
additional information via a traits class:

template <class Traits, ...>

class map3 {

public:

typedef typename Traits::key_type

key_type;

typedef typename Traits::mapped_type

mapped_type;

typedef typename Traits::value_type

value_type;

// ...

};

struct person_id_traits {

typedef person_id_t key_type;

typedef person mapped_type;

typedef person value_type;

static key_type const &get_key(

value_type const &val) {

return val.m_person_id;

}

static mapped_type &get_mapped(

value_type &val) {

return val;

}

static value_type construct(

key_type const &key) {

// Required by map3::operator[]

return value_type (key);

}

};

void foo () {

// person has an unchanged interface

typedef map3<person_id_traits> map_t;

map_t my_map;

person p;

person_id_t id;

// insertion is convenient

my_map.insert (p);

// lookup by ID and modification are

// convenient

my_map[id].m_other_names = "Joe";

}

This template provides convenient interfaces for insertion,
lookup and modification. It avoids any data duplication and
compares well to the std::map and std::set versions,
which each made some of the operations simple but not
others.

17

Overload issue 58 december 2003

18

Overload issue 58 december 2003

Before going on, the construct function in the traits class
probably requires further explanation. It is necessary because the
map3 operator[] accepts just a key as parameter and might
have to insert a whole new value into the map. The std::map
template has a similar constraint, since it defines operator[] in
terms of insert(make_pair(key, T())), requiring that its
parameter T be default constructible. This is also quite similar to
the lookup problem mentioned for std::set, which requires a
complete value object in order to search the container. The
advantage of map (or map3) is that this problem only arises in
operator[] and not the alternative find member function.

So the traits-based version provides a good solution, because it
means that almost any class can be stored in the map3 container
without internal changes. There is some work involved in writing
a new traits class every time, but it is easy enough to emulate the
original std::map interface for the simple cases that it
conveniently supports:

template<typename Key, typename T>

struct std_map_traits {

typedef Key key_type;

typedef T mapped_type;

typedef std::pair<Key const, T> value_type;

static key_type const &get_key(

value_type const &val) {

return val.first;

}

static mapped_type &get_mapped(

value_type &val) {

return val.second;

}

static value_type construct(

key_type const &key) {

// Required by map3::operator[]

return value_type (key, mapped_type());

}

};

template<typename Key, typename T, ...>

struct std_map :

map3<std_map_traits<Key, T>, ...> {

// constructors...

};

void bar () {

std_map<int, std::string> my_map;

my_map[1] = "hello";

}

There are plenty of other applications for a more flexible map.
For instance, suppose that we want two different indexes for the
same collection of person objects, one which uses the (unique)
person ID, and another which uses the (non-unique) surname. A
sensible way to do this is to use a reference-counted smart
pointer, and maintain two sets of pointers that are sorted by the
alternative keys. In our case, client code can re-use its existing
traits classes by writing a traits pointer-adaptor template. For

example (using the boost reference counted pointer available free
from www.boost.org):

// Adaptor to convert a traits class for use

// via a map3 of boost::shared_ptr values

template<typename PlainTraits>

struct ptr_traits {

private:

typedef typename PlainTraits::value_type

plain_value_type;

public:

typedef typename PlainTraits::key_type

key_type;

typedef typename PlainTraits::mapped_type

mapped_type;

typedef boost::shared_ptr<plain_value_type>

value_type;

static key_type const &get_key(

value_type const &val) {

return PlainTraits::get_key(*val);

}

static mapped_type &get_mapped(

value_type &val) {

return PlainTraits::get_mapped (*val);

}

static value_type construct(

key_type const &key) {

return value_type(

new plain_value_type(

PlainTraits::construct(key)));

}

};

// Define two pointer-based indexes using

// different keys

map3 <ptr_traits <person_id_traits> > index1;

multimap3 <ptr_traits <person_name_traits> >

index2;

// ...

index1[my_id].m_other_names = "Joe";

Note that the fact that the indexes store reference-counted
pointers internally is at least partially hidden from the client code.
This is not a complete solution, of course, but goes some way
towards one (interested readers may also like to investigate the
link given under additional reading). An alternative solution
using std::set would also be possible, but again is not quite
as convenient for searching and modifying. Even ignoring the
possibility of find() returning end(), the assignment from
above would look more like this:

boost::shared_ptr<person> temp(

new person (my_id));

(*my_set.find (temp))->m_other_names = "Joe";

[concluded at foot of next page]

In the map3 solution from above, these details are effectively
encapsulated the ptr_traits template.

Conclusions

In the case of std::map, a number of changes were necessary
to achieve a real gain in flexibility. However, the first step was to
allow the client code to choose their own value type. It is then a
fairly obvious improvement to access the keys and mapped
values via client-provided functions instead of by using member
variables. In this case, a traits class is a convenient way to
provide the necessary additional information.

More generally, whenever a template internally generates a new
type from its arguments, it is limiting its own flexibility. By
accepting the generated type as a parameter instead, the template
can become flexible not only in terms of the original parameters,
but also in the choice of generated type. There are certain trade-offs
in terms of ease of documentation and coding, but potential users

of the template may discover unexpected benefits from a more
flexible template.

Raoul Gough
raoulgough@clara.co.uk

Thanks to Phil Bass for his comments on two earlier drafts of this
article.

Additional Reading

The indexed_set library under development by Joaquín Mª López
Muñoz. Google for “indexed_set” or see the recent discussion at
http://lists.boost.org/MailArchives/boost/

msg54772.php

A simple implementation of the map3 template for
demonstration purposes can be found at
http://home.clara.net/raoulgough/map/

19

Overload issue 58 december 2003

From Mechanism to Method:
Data Abstraction

and Heterarchy
by Kevlin Henney

Trees. Everywhere. Ones with green leaves, ones with family
members, ones with files and directories, ones with classes, and
many more. Trees – most often upside-down with the root at the
top and leaves at the bottom – offer a common and useful
mechanism for organizing program elements [1]. Strict
hierarchies imply nesting and exclusive containment, e.g., single-
inheritance hierarchies and organizational structures blighted by
antediluvian management thinking. In common use, the term
hierarchy also includes DAGs (directed acyclic graphs) that,
although hierarchical, are not strictly hierarchies. This is the
sense in which I will use it in this article because the world we
live and work in more accurately reflects the elasticity of this
usage, e.g., multiple-inheritance hierarchies and family trees.

But a hierarchy, strict or otherwise, is not the only way of
organizing elements in a program [2]:

A program which has such a structure in which there is no single
“highest level” ... is called a heterarchy (as distinguished from a
hierarchy).

The property that distinguishes hierarchies from heterarchies is
that the former is acyclic whereas the latter contains cycles.

Of Types and Hierarchies

When we look at a well-factored program, we see that the data
concepts have been abstracted according to their use more often
than their representation. Primitive data elements have been
grouped and reclassified as information with behavior [3]:

As soon as we start working in an untyped universe, we begin to
organize it in different ways for different purposes. Types arise
informally in any domain to categorize objects according to their
usage and behavior. The classification of objects in terms of the
purposes for which they are used eventually results in a more or less
well-defined type system. Types arise naturally, even starting from
untyped universes.

In C++ we have many mechanisms for organizing our types. The
two most obvious are classes – which represent an explicitly named
concept made available to the compiler – and template type parameters
– where the concept of type is implicit according to usage [4].

Types of Subtyping

Some hierarchies represent internal structural concerns: an object
hierarchy whose implementation is layered through composition
and forwarding, a function hierarchy where a task is decomposed
into smaller tasks that are decomposed in turn, and so on. Type
hierarchies, by contrast, reflect external usage concerns.

The articulation of type and subtype concepts relates to the four
forms of polymorphism [3] – inclusion, parametric, overloading,
and coercion – and the five forms of substitutability in C++ [5] –
conversion, overloading, derivation, mutability, and genericity.

There are examples of hierarchies where the structural and type
concerns are co-aligned. A class hierarchy, which has a tangible
structural dimension, can also be a type hierarchy, so that a pointer
to a derived class instance may be used where a pointer to a base is
declared. This example is the most commonly quoted form of
substitutability, but it is far from being the only one.

Because the number of implicit type conversions the compiler is
prepared to string together on your behalf is rather low – only one
for user-defined conversions – subtype behavior across type
hierarchies based on this form of substitutability tends to be in short
hops. For instance, the following definitions describe a relationship
where a textobject is expected a string object may be provided,
and where a stringobject is expected a char * may be provided:

class string {

public:

string(const char *);

...

};

class text {

public:

text(const string &);

...

};

20

Overload issue 58 december 2003

The following will compile happily:

text message = "This will compile";

But the following will be thrown rudely back in your face:

void print(const text &);

print("This won’t compile");

// too many conversions required

When considering subtyping and genericity, an actual type must
support at least the features required for the template type parameter,
so the features of the named type used will inevitably be a subtype of
the required features. However, subtyping with generics goes further
than just this formal-actual relationship, and iterator categories
provide a good example. Each category defines a type [6], and the
relationships between the categories are in terms of subtyping:
anything that can be considered a random access iterator will also
satisfy bidirectional iterator requirements, which in turn also satisfy
forward iterator requirements, which in turn satisfy both input
iterator and output iterator requirements.

Analysis of Variance

When looking at type hierarchies it is worth taking some time out
to understand how some of the properties of substitutability come
about.

Consider a base class and a derived class that is also a proper
subtype of the base (i.e., uses public inheritance from the base,
overrides virtual functions at least at their level of access in the
base, and ensures that any member functions that would otherwise
be blocked by members declared in the derived class are made
accessible through using declarations). What would you expect
to find available in the derived class’s interface as compared to that
of the base class? You’d expect to find either the same set of
members or more, but not fewer. If you found fewer, this would
break substitutability because you could not use a derived where a
base was expected. So although you would have a class hierarchy,
it would not be a type hierarchy.

This means that the type interface, considered as a set of
operations, is contravariant with subtyping: as you descend the
hierarchy, narrowing the possible object types you can operate on,
the set of operations varies in the opposite direction (i.e., becomes
wider). You can also see this with generic types: a pointer, which
is the model for random access iterators, supports the same
operations as an input iterator, plus many more.

Zooming in on the interface, what about the substitutability with
respect to individual operations? As you descend the hierarchy
narrowing the possible object types, you also narrow the possible
behavior resulting from an operation call. This means that possible
results also narrow. In C++, if a virtual function’s return type is a
pointer or reference, then it can be overridden with a more derived
return type. Thus the return type can be covariant with subtyping:
as you descend the hierarchy, the result type also descends. As an
example, consider a simple factory scenario, where an interface
class has a Factory Method [7] that offers the creation of instances
of a product hierarchy:

class product {

...

};

class factory {

public:

virtual product *create() const = 0;

...

};

Covariance allows us to capture more accurately the constraint
that a specific factory implementation returns a specific product,
as opposed to any arbitrary product:

class concrete_product : public product {

...

};

class concrete_factory

: public factory {

public:

virtual concrete_product *create() const {

return new concrete_product;

}

...

};

Covariant return types make sense when it is likely that a user
will be accessing the feature through the derived type as opposed
to the base. This is not often the case, especially for a factory that
is intended to abstract concrete details, but it serves to highlight
the public advertisement of the constraint. Either way, it is
perfectly type-safe because any code written against the
factory interface:

product *example(const factory *creator) {

return creator->create();

}

is still valid if we reconsider it in terms of
concrete_factory:

product *example(const concrete_factory

*creator) {

return creator->create();

}

And, if this is all there is to writing factories for such products,
we can generalize the concrete factory code by mixing two forms
of polymorphism, inheritance and templates:

template<typename concrete_product>

class concrete_factory

: public factory {

public:

virtual concrete_product *create() const {

return new concrete_product;

}

...

};

Any transgression of type safety – if concrete_product is
not descended from product – will be picked up at compile
time.

Covariance also applies to other results, such as throw
specs: an overridden virtual function must declare the same
throw spec or a more restrictive one than the function it is
overriding. So, a virtual function that does not have a throw
spec can be overridden by one that does, a virtual function
that declares an empty throw spec can only be overridden by
one that also has an empty throw spec, and a virtual
function that promises only to throw a base exception type can
be overridden by one that promises to throw the same, a
descendant, or nothing.

What about arguments? Does it make sense to have covariant
arguments? There is only one circumstance in which it is safe, and
C++ does not qualify for it: if a language supports out arguments
that can be used only for results. C++ const reference arguments
can be considered in arguments and non-const reference
arguments can be considered inout arguments. Any argument that
is effectively inoutmust be invariant to be type safe. It is feasible
for in arguments to be contravariant, but this would greatly
complicate C++’s already subtle overloading rules, so the rule is
that all arguments remain invariant with subtyping. Some languages
attempt to support some covariance with in arguments – this is the
general case in Eiffel and is present only for array passing in Java
and C#, where argument signatures themselves are not permitted
to be covariant – but these are basically type system hacks that
require significant extra support, typically involving runtime
checks.

Covariance and contravariance are not just about declared
types; they are more generally about behavior. The promise of
behavior for an operation at supertype level must remain the
same or be strengthened and become narrower with subtyping.
For example, is the following a valid implementation of
factory?

class null_factory

: public factory {

public:

virtual concrete_product *create() const {

return 0;

}

...

};

It depends on what the expected result of factory::create
was promised as. If the promised result at the base class level
were simply “returns a delete-able pointer,” then this permits
null pointers. Code written (correctly) against such an interface
would cater to this assumption:

void consume(product &);

void example(const factory *creator) {

std::auto_ptr<product>

ptr(creator->create());

if(ptr.get())

consume(*ptr);

}

And so null_factory::create could be seen to be a valid
specialization of factory::create in this case because the
behavior is covariant, i.e., narrower and more specific than that
of the base.

However, if the promised result at the base class level were
specified as “returns a non-null delete-able pointer,”
null_factory would break code that worked to this spec:

void consume(product &);

void example(const factory *creator) {

std::auto_ptr<product>

ptr(creator->create());

consume(*ptr);

}

And so null_factory would not be substitutable for
factory, and therefore not a subtype.

You can also see the covariant promise in action with iterator
types: For an input or output iterator, there is no guarantee that
a == b implies ++a = ++b, but for a forward iterator – and
subtypes – the behavioral promise is strengthened and this
guarantee exists. Conversely, requirements placed on callers of
functions follow contravariance.

If you are familiar with design by contract [8], you may
recognize this as the strengthening of postconditions and weakening
of preconditions with inheritance. This variance in design by
contract is simply a different expression of the substitutability
principle and can be derived from it directly.

Of Types and Heterarchies

Although you want to avoid cycles in your compile-time
dependency graph or between threads synchronizing on common
resources, there are occasions when heterarchies provide a more
appropriate structuring scheme than hierarchies. A function
heterarchy is expressed through recursion – either simple
recursion when a function calls itself or mutual recursion where
another called function calls the original caller. A bidirectional
relationship between objects can be considered an object
heterarchy. At any point in the execution, which object is
considered to be the top-level one depends on the action and
context. This is often the case with inversions of control flow
such as event notification callbacks.

In a hierarchy there is a unique concept of up and down –
imagine yourself anywhere in a hierarchical structure; there is a
strong sense of what is above you and what is below, and a strong
separation. In a heterarchy there is no such gravity – imagine
yourself in a heterarchy, looking “up” or “down” you can see
yourself.

Function recursion and cyclic object relationships are examples
of structural heterarchies, but what of type heterarchies? The
simplest example of type substitutability with a cycle is between
int and double: one can be substituted where the other is
expected. Granted, double to int is lossy, undesirable, and
accompanied by a warning on most compilers, but it does indeed
form a type heterarchy. Similarly, if a string class supports both a
conversion to and from const char * (the former being ill
advised, but nonetheless common), it too forms a cyclic
substitutability relationship.

However, these two examples are cautionary rather than
exemplary, and neither of them involves everyone’s favorite class
relationship, inheritance.

Touch Base

Imagine that you have customized the new and delete
operators for a class:

21

Overload issue 58 december 2003

22

Overload issue 58 december 2003

class workpiece {

public:

static void *operator new(std::size_t);

static void operator delete(void *,

std::size_t);

...

private:

...

static allocation heap;

};

Assume that allocation is a class that actually provides the
appropriate allocation intelligence – optimization for speed,
instrumentation for debugging, etc. – and can allocate objects of a
size fixed on its initialization and deallocate objects that it allocated:

class allocation {

public:

allocation(std::size_t,

const std::type_info &);

void *allocate();

void deallocate(void *);

...

};

Its correct use would be:

allocation workpiece::heap(

sizeof(workpiece), typeid(workpiece));

void *workpiece::operator new(

std::size_t size) {

return size == sizeof(workpiece) ?

heap.allocate() :

::operator new(size);

}

void workpiece::operator delete(

void *ptr, std::size_t size) {

if(size == sizeof(workpiece))

heap.deallocate(ptr);

else

::operator delete(ptr);

}

The size checks are important because new and delete are, by
default, inherited and consequently may be used on a class whose
size does not equal that of the base. The code above ensures that
heap is used only for the intended size and all other allocations
and deallocations are rerouted to the global operators.

If you intend to use allocation for the same purpose in any
other classes, it would be nice to somehow factor out the code above
as a mix-in class so that each class that wanted these services would
simply inherit from the mix-in. Something like the following:

class allocated {

public:

static void *operator new(std::size_t);

static void operator delete(

void *, std::size_t);

...

private:

...

static allocation heap;

};

class workpiece : public allocated {

...

};

Except not. All classes derived from allocated will share the
same static heap:

class command : public allocated {

...

};

A command may not have the same size as a workpiece and
will certainly not have the same type, so not only is heap shared
but it also becomes impossible to initialize or use correctly, as the
places marked ??? in the following code indicate:

allocation allocated::heap(

sizeof(???), typeid(???));

void *allocated::operator new(

std::size_t size) {

return size == sizeof(???) ?

heap.allocate() :

::operator new(size);

}

void allocated::operator delete(

void *ptr,std::size_t size) {

if(size == sizeof(???))

heap.deallocate(ptr);

else

::operator delete(ptr);

}

Even attempting to factor out the constant sizeof expression
will not solve the problem. It serves only to highlight it more
sharply.

Essentially the problem is that the mix-in cannot be made fully
independent of any derived class: there is a lingering dependency
on the name and size of the derived class. This creates a cycle that
can be broken by treating the downward dependency as a parameter
of variation, and therefore something to template [9]:

template<typename derived>

class allocated {

public:

static void *operator new(std::size_t);

static void operator delete(

void *, std::size_t);

...

private:

...

static allocation heap;

};

Given this, the implementation code can now get at the name and
size of the type:

template<typename derived>

allocation allocated<derived>::heap(

sizeof(derived), typeid(derived));

template<typename derived>

void *allocated<derived>::operator new(

std::size_t size) {

return size == sizeof(derived) ?

heap.allocate() :

::operator new(size);

}

template<typename derived>

void allocated<derived>::operator delete(

void *ptr, std::size_t size) {

if(size == sizeof(derived))

heap.deallocate(ptr);

else

::operator delete(ptr);

}

The last piece falls into place with the mixing-in itself:

class workpiece : public allocated<workpiece>

{

...

};

class command : public allocated<command> {

...

};

Now the derived class inherits from a class that knows about it,
but without any hardwired coupling that prevents its use as a
general solution. Each parameterization of allocated results
in a distinct type with its own code and data, which is exactly
what was required.

This is the increasingly well-known Self-Parameterized Base
Class or Curiously Recurring Template pattern – the latter being an
evocative description of its recognition [10] and the former being
a more appropriate contemporary name based on its structure.

In Good Shape

The allocated class template demonstrates an example of
heterarchical structure involving class relationships. However, it
is not a type heterarchy because no useful properties of type,
except for typeid and sizeof, are used: it steadfastly avoids
dealing with objects.

Consider a simple shape hierarchy, with the usual suspects
ellipse and rectangle. It makes sense to be able to copy such
objects polymorphically by cloning them:

class shape {

public:

virtual shape *clone() const = 0;

...

};

class ellipse : public shape {

public:

explicit ellipse(const ellipse &);

virtual shape *clone() const {

return new ellipse(*this);

}

...

};

class rectangle : public shape {

public:

explicit rectangle(const rectangle &);

virtual shape *clone() const {

return new rectangle(*this);

}

...

};

There are a couple of observations to make on this:

● Cloning is effectively a reflexive Factory Method, where the
product and factory are of the same class.

● The explicit copy constructor means that although ellipse
and rectangle support explicit copying – as seen in clone –
the general case of passing and returning them by copy is not
supported, i.e. the identity conversion is disabled. shape objects
are heap-bound and live in a class hierarchy, rather than being value-
based objects for which casual copying makes sense.

● The implementations of ellipse::clone and
rectangle::clone are suspiciously similar, differing only
in the class to which they refer.

It would be nice to factor out the common source structure,
except that it is the structure as opposed to the verbatim code that
needs factoring out. Again, there is a cyclic type dependency, and
this time more entrenched because of object creation and copy
construction. And again, a Self-Parameterized Base Class offers
a way to break the cycle [11]:

class shape {

public:

virtual shape *clone() const = 0;

...

};

template<typename derived, typename base>

class cloner : public virtual base {

public:

virtual base *clone() const {

return new derived(

static_cast<const derived &>(*this));

}

...

};

class ellipse : public cloner<ellipse,

shape> {

...

};

[concluded at foot of next page]

23

Overload issue 58 december 2003

24

Overload issue 58 december 2003

CheckedInt: A Policy-Based
Range-Checked Integer
by Hubert Matthews

Recently, I wanted a short example to show the canonical form
for operators on value classes. In other words, I wanted to show
how post-increment should be related to pre-increment, how
operator+= and operator+ fit together, which functions
should be members and which not, and so on. Having also been
reading Alexandrescu’s excellent book Modern C++ Design, I
decided to make this exercise a little more interesting (for me and
for the students) by incorporating something about policies and
generic programming. What came out was a small range-

checked integer type called CheckedInt. Although nothing
remarkable, it turns out to be both flexible and useful, and
something that in retrospect I could have used myself on several
occasions.

For those who are not so familiar with operators, this class shows
how all of the arithmetic operators can (or maybe even should) be
implemented in terms of one fundamental operation:
operator+=. This ensures consistency between operators,
thereby avoiding potential surprising arithmetic inconsistencies.
(For reasons of space, I show only the addition-based operations.
Implementation of the others is left, in time-honoured fashion, to
you, Gentle Reader™.)

[continued on next page]

class rectangle : public cloner<rectangle,

shape> {

...

};

There are a few observations to make on this solution:
● To reiterate a property of heterarchies: you really can see

yourself if you look down.
● An attempt to parameterize cloner with a non-derived class

will cause a compile-time error because the derived class will
not be substitutable for the base in the code.

● If you consider cloning to be a reflexive version of Factory
Method, this solution mirrors the templated
concrete_factory in a reflexive way: in each case, the
product is the first template parameter.

● Another adaptive template technique, Parameterized
Inheritance, is used to define the appropriate base class.

● Inheritance uses a virtual base class to accommodate other
applications of this reflexive mix-in style, but without
introducing repeated inheritance issues.

Conclusion

A template technique that is becoming increasingly common has
been taken and explored within the conceptual framework of
substitutability. From its early sightings [12] and subsequent
exploration [10] to the present day [13, 14], the Self-
Parameterized Base Class pattern has found increased
applicability in expressing cyclic type relationship problems once
they have been recognized as such.

There are many techniques that combine two main forms of
generalization – templates and inheritance – and a number of them
have been used in this article. However, a Self-Parameterized Base
Class has the distinction that it unifies the forms under the heading
of substitutability but not of hierarchy.

Kevlin Henney
kevlin@curbralan.com

Notes and References

[1] Michael Jackson. Software Requirements & Specifications: A
Lexicon of Practice, Principles and Prejudices (Addison-Wesley,
1995).
[2] Douglas R. Hofstadter. Gödel, Escher, Bach: An Eternal
Golden Braid (Penguin, 1979).

[3] Luca Cardelli and Peter Wegner. “On Understanding Types,
Data Abstraction, and Polymorphism,” Computing Surveys,
December 1985.
[4] Kevlin Henney. “From Mechanism to Method: Good
Qualifications,” C/C++ Users Journal C++ Experts Forum,
January 2001,
http://www.cuj.com/experts/1901/henney.htm

[5] Kevlin Henney. “From Mechanism to Method:
Substitutability” C++ Report, May 2000, also available from
http://www.curbralan.com

[6] Note that these generic requirements-based types are
sometimes referred to as concepts. However, use of this term is
inadvisable because of its impressive accuracy without any
precision whatsoever: everything in software development can be
considered a concept, but only a few things can be considered
types. Generic requirements define – quite precisely – types.
[7] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software (Addison-Wesley, 1995).
[8] Bertrand Meyer. Object-Oriented Software Construction, 2nd
edition (Prentice Hall, 1997).
[9] James O. Coplien. Multi-Paradigm Design for C++
(Addison-Wesley, 1999).
[10] James O. Coplien, “Curiously Recurring Template Patterns,”
C++ Report, February 1995.
[11] Kevlin Henney. “Clone Alone,” Overload 33, August 1999.
[12] John J. Barton and Lee R. Nackman. Scientific and
Engineering C++: An Introduction with Advanced Techniques
and Examples (Addison-Wesley, 1994).
[13] Kevlin Henney. Email correspondence with Angelika
Langer, July 2000,
http://www.langer.camelot.de/IOStreams/forum.htm

[14] Klaus Kreft and Angelika Langer. “Effective C++ Standard
Library: Curiously Recurring Manipulators,” C/C++ Users
Journal C++ Experts Forum, June 2001,
http://www.cuj.com/experts/1906/langer.htm

This article was originally published on the C/C++ Users
Journal C++ Experts Forum in August 2001 at
http://www.cuj.com/experts/documents/s=7992/

cujcexp1908Henney/

Thanks to Kevlin for allowing us to reprint it.

For those already familiar with operators, the policy aspect is
more interesting. What should happen when you try to take a range-
checked integer or enum out of its defined range or even just modify
it? For our range-checked integer, a number of possibilities sprang
to mind:
● allow silent overflow
● throw an exception
● saturate at the limit value
● saturate at the limit and log the event
● wrap around using modular arithmetic
● log the event for debugging purposes
● etc.
This little class template allows us to choose which behaviour we
want by means of a policy class. Allowing silent overflow is the
default for integers so there’s no need to write a class for that.
Throwing an exception when straying from the promised range is
possibly indicative of a programming error. Saturating at the
limit could be useful for a digital volume control; one that sticks
tenaciously to 10 when you try to set it to 11. And wrapping
around is very useful when dealing with ring buffers, dates, etc.

This is a simple example of feature-driven modelling and domain
analysis, as described in Generative Programming and Multi-
Paradigm Design for C++where families of types are created with
variations described in policies.

So, here’s the abbreviated code:

template <int low, int high>

class OutOfBoundsThrower {

public:

static int RangeCheck(int newVal) {

if(newVal < low || newVal > high)

throw std::out_of_range(

"RangeCheck failed");

return newVal;

}

};

template <int low, int high>

class ModularArithmetic {

public:

static int RangeCheck(int newVal) {

while(newVal > high)

newVal -= high - low;

while(newVal < low)

newVal += high - low;

return newVal;

}

};

template <int low, int high>

class SaturatedArithmetic {

public:

static int RangeCheck(int newVal) {

if(newVal > high)

newVal = high;

else if(newVal < low)

newVal = low;

return newVal;

}

};

template <int low, int high,

template <int, int>

class ValueChecker = OutOfBoundsThrower>

class CheckedInt :

protected ValueChecker<low, high> {

int value;

public:

explicit CheckedInt(int i = low) :

value(RangeCheck(i)) {}

CheckedInt& operator+=(int incr) {

value = RangeCheck(value + incr);

return *this;

}

CheckedInt& operator++() {

*this += 1;

return *this;

}

const CheckedInt operator++(int) {

CheckedInt temp(*this);

++*this;

return temp;

}

CheckedInt& operator-=(int incr) {

*this += - incr;

return *this;

}

operator int() const {

return value;

}

CheckedInt& operator=(int i) {

value = RangeCheck(i);

return *this;

}

const CheckedInt operator+(

const CheckedInt& other) const {

return CheckedInt(*this) += other;

}

};

Construction and Member Functions

Note that the constructor is, like most single argument
constructors, marked as explicit. This is to avoid implicit
conversions that muddy the type system. Consider what
would happen with CheckedInt<0,10>(5) + 27 if 27
could be explicitly converted. What should its template
parameters be? Should it throw an exception? An explicit
constructor avoids these problems and forces us to state what
we want to happen. The explicit nature of object creation is
particularly useful when we wish to constrain the underlying
int to a given range as we do not want to create erroneous
values. Some might bemoan the inability to write
CheckedInt<0,10> ci = 5; but I think that safety is
more important than ease this time. Choosing low as the
default parameter is purely arbitrary and it is arguable that we
should force the user to give an initial value anyway.

25

Overload issue 58 december 2003

26

Overload issue 58 december 2003

When going in the opposite direction, i.e. from a CheckedInt
to an int, there is no danger of breaking any constraints so we can
safely use a user-defined conversion – operator int() – so
that CheckedInt appears in a read-only context to behave like
an int. This allows us to use all of the existing infrastructure for
ints such as operator<<, operator==, operator<, etc.
We can now do things like CheckedInt<0,10>(5) + 27with
impunity and no fear of exceptions.

One small fly swims in the ointment of operator+=. There
is the possibility that the expression value + incr might
overflow causing undefined behaviour. This would cause an
unexpected problem with saturated arithmetic if someone tried to
add a very large number to an instance that was already at its upper
limit. Alternative implementations, such as templating the
underlying arithmetic type, are possible but more complex.

The more astute of you might have noticed that operator+
is unusual: it is a member and it is const. The normal advice is
to make operator+ a non-member to allow for implicit
conversion of the left-hand operand. However, since we have
specifically disallowed that conversion there is no reason not to
make it a member and save ourselves a lot of typing! We also
return a const value to prevent modification of a temporary
whilst still allowing it to be bound to a reference.

Templates Versus Object-Oriented
Interfaces

An interesting difference in style arises with generic
programming rather than a more traditional object-oriented
approach. With O-O, one usually ends up with an interface that
is the union of all of the sub-interfaces, whereas with a templated
version the interface is usually minimal and the intersection of
features. This is primarily because with an O-O interface you can
combine only those things that you design a priori to be
combinable, i.e. they must implement all of the stated interface,
which can lead to a lot of clutter and “just in case” methods.
With templates, you can combine anything that works a
posteriori. Thus, templates provide compile-time signature-
based polymorphism in a manner more reminiscent of Smalltalk
than the “one size fits all” of Java interfaces or C++ abstract base
classes.

Inheritance Versus Delegation

Here I have inherited from the policy class rather than delegating
to it. Altering the class to use delegation instead:

template <int low, int high,

class VC = OutOfBoundsThrower<low,high> >

class CheckedInt {

public:

explicit CheckedInt(int i = low) :

value(VC::RangeCheck(i)) {}

moves us towards a traits-style approach, which some might
consider to be cleaner. It is also more digestible by older
compilers. In this case because the policy has no state of its own
– it is just a wrapper for a function – there is little to choose
between the two approaches. The ValueChecker in effect is a
compile-time functor analogous to a combination of
bind2nd() , logical_or(), less<int>() and
greater<int>().

Legacy Compilers and
Binding-Time Issues

Those of us who have to tiptoe around non-standard or ancient
compilers will know that template template parameters are off
limits. So, how can we adapt CheckedInt to be usable? One
way is to pass low and high to the RangeCheck function at
run-time. This has the nice effect of making ValueChecker a
non-templated class and thereby eliminating some of the
compilation problems. Another would be to have a static
member of the class that held a pointer to a free function to do
the range check. This implementation would also allow the
policy to be changed at run-time, turning the class into a classic
run-time version of Strategy pattern rather than a compile-time
version.

What we are doing is making binding-time choices. By
delaying binding from compile time to run time we trade
efficiency for the ability to use simpler constructs. We can even
change the parameters, so that we could alter the valid range of
an object. Whether we wish to do this depends on requirements.
As more programmers begin to understand the parallels between
different C++ mechanisms and as compilers get better, I believe
that we will see binding time become a major design topic,
leading people into both feature-driven modelling and domain
analysis.

Extensions and Additions

Possible extensions include making the underlying type a
template parameter, as well as extending the RangeCheck
function to take the original value as a run-time parameter as
well. This would allow us to implement propagating NaN (not
a number) behaviour, where if the new value is outside the
range we set the value to an out-of-bounds value and keep it
there. This is a little bit like the effect of floating-point NaNs
which propagate “NaNness” into the results of any
calculation.

Summary

I hope this little class template is both useful and instructive. It
raises a number of common design issues – relationships between
operators, implicit v. explicit conversions – and some others –
binding times, policies, implicit v. explicit interfaces, etc – that
are less widespread but which I believe will become increasingly
common with time. If anyone uses CheckedInt, particularly
with policies other than these, I would be most interested to hear
your experiences.

Hubert Matthews
hubert@oxyware.com

Acknowledgements

My thanks go to Kevlin Henney and Andrei Alexandrescu for
comments on this article.

Bibiliography

Alexandrescu, Andrei, Modern C++ Design, 2001, Addison-
Wesley
Czarnecki, K & Eisenecker, UW, Generative Programming,
2000, Addison-Wesley
Coplien, JO, Multi-Paradigm Design for C++, 1999, Addison-
Wesley

