
3

Overload issue 59 february 2004

contents credits & contacts

Overload Editor:

John Merrells
overload@accu.org

Contributing Editor:

Alan Griffiths
alan@octopull.demon.co.uk

Readers:

Ian Bruntlett
IanBruntlett@antiqs.uklinux.net

Phil Bass
phil@stoneymanor.demon.co.uk

Mark Radford
twonine@twonine.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Advertising:

Chris Lowe
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:

http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

Letters to the Editor(s) 6

More is Less Thaddaeus Frogley 7

Why do Requirements Change?

Allan Kelly 10

C++ as a Safer C Sven Rosvall 13

Heretical Java #1:

Immortality - At a Price

Alan Griffiths 18

From Mechanism to Method:

Further Qualifications

Kevlin Henney 21

4

Overload issue 59 february 2004

Editorial - Ruminations on
“A little story”

Despite not posting very much on this mailing list, I do lurk
on it a lot – one of the things I like about it is the culture that
allows one topic of discussion to lead to another. From time to
time something is said that prompts an original short post to lead
to a large thread covering a much broader area of subject matter,
or even ending up on a totally different topic to the one that
started it.

The thread entitled “A little story...” caught my attention. As I
write this, my email client contains 122 posts on this thread! It
started with a short tale about a chance encounter with a
programmer who had given up reading books because he believed
he knew how to do his job, and had no need for furthering his
knowledge. It led to (among other things), a discussion of the
different interests of “techies” and managers. During this thread,
the “shiny new hammer” expression – that refers to the desire to
use the latest feature or technique learned, regardless of whether
or not it is appropriate – came up, as it has in previous threads. As
was the case in the “A little story...” thread, often mentioned within
close proximity of the “shiny new hammer” expression, is C++
template meta-programming. Fair enough, I don’t recall the latter
being mentioned directly as an example of the former on the “A
little story...” thread, but it certainly has in accu-general
threads in the past.

C++ template meta-programming – which I’m going to call
TMP for short – is indeed greeted with enthusiasm by some, but
there are those who regard it as something not suitable for
practical use. A couple of conferences ago, having admitted to
using TMP in production code, I was involved in a debate with
someone who argued the case of it being unsuitable for
production use on the grounds that most developers would not
understand the technique, and therefore it would prejudice the
chances of the software being maintainable in the long term. My
counter-argument was that the TMP approach was actually the
best chance for maintainability. I chose to use a TMP approach
believing it to offer the best of the available sets of tradeoffs –
a decision I stand by to this day!

Now, this editorial is not about C++ TMP per se – that is the
subject of technical articles within Overload, not a subject for the
editorial. However, I think it is reasonable to assert that it is an
example of an advanced approach – and here, advanced is the
critical word. It is the use and/or abuse of advancedapproaches and
techniques in general that is often the substance of (sometimes
heated) debate, and here I want to use TMP as a topical example
of an advanced approach.

What I want to talk about centres around the interaction
between the commercial and managerial forces acting on

development, and the use of advanced techniques. I hope to be
able to argue, using TMP as an example, that the use of
advanced techniques is not in tension with the commercial
interests, and therefore is not in tension with the interests of
managers.

Solutions to some problems have naturally occurring
complexity. That is, a certain amount of complexity is inherent
in any solution anyone might come up with – and it is the failure
to recognise this that perpetuates its own set of problems and
leads to trouble in software development in general. Complexity
exists and it can’t be ignored or got rid of, so the only choice is
to live with it and do what we can to tame it. How can we go
about doing this when designing software? Three options spring
immediately to mind: ignore the complexity, produce lots of
code to handle it, or use advanced techniques (associated with
advanced features of the implementation language) to tame it.
The first of the three options has, unfortunately, a large
following. I think it can be safely put in the rubbish bin without
further discussion. The second option (write lots of code) is
quite common, and may be necessary, depending on the nature
of the complexity. In passing, this reminds me of an accu-
general thread from a few years ago (I think it was 1999, but
that’s without checking). It was posted by someone telling the
tale of how his management had banned the use of C++
templates – management believed that if developers weren’t
allowed to use advanced language features, they wouldn’t write
complicated code. Management’s ears remained closed to any
discussion despite the developers being quite happy with
templates. The code base became more and more complex
because of the bloat caused by having to repeat code.

So far I have talked about complexity without defining what
I actually mean. This is important – is a piece of software
complex because it uses complicated algorithms, because it
contains lots of classes, because it requires the integration of
components developed independently by different parties, for
some other reason, or because of some combination of these?
However, there is a type of complexity that arises where there
is more than one class having between them commonality and
variability that are well defined. The variability can involve
pretty much any part of a class’s implementation – constants,
types, data structures, operations and algorithms (actually, the
variability can even extend to the interfaces, but I’m in serious
danger of digressing).

Having got that part straight, let’s get back to approaches to
addressing complexity. Writing lots of code may be necessary
for some types of complexity, but for the one I’ve just described

I
t’s now three years since I joined the Overload editorial panel. In those three years I’ve
spent my time working on articles – getting people to write them, shepherding authors

through the process of writing them. Recently, I’ve turned my attention more to writing,
but this is my first attempt at writing the editorial. So, what to write about? I turned to
accu-general for inspiration.

5

Overload issue 59 february 2004

it leads to repetition of code. Optically the code may look
different because its implementation contains different types and
different operations, but on closer scrutiny it can be seen that
the structure is the same. Therefore there is a large area of
commonality that requires maintenance and testing – or putting
it another way, the same thing is being maintained and tested
more than once!

By contrast, if the same code had been generated from a meta-
program, the meta-code would express a clear separation of
concerns between the commonality and variability. Therefore,
the two could be maintained independently, and at least some of
the testing done separately. This sounds good, doesn’t it, but is
there a downside? Well, there may be, but it’s a matter of
perspective. The downside that may be perceived is that TMP
uses templates, regarded by some as an advanced language
feature, and one to be used by experts rather than ordinary
programmers. Further, TMP uses advanced techniques on top of
an advanced language feature, and is therefore highly
complicated.

So far I have focused on the technical topics of discussion, but
now it’s time to put our project management hats on, and I think
this is a good point at which to insert a short digression – I want to
briefly make a general comment on something else that came up in
the “A little story...” thread, namely the interests of project
managers. Some people reading this will know that my interests lie
mainly in designing and implementing software – i.e. I’m a
developer (and I have in the past been called a “techie”, but “techie”
is a characterisation I’m not at all keen on). However, on a recent
project, I found my role somewhat extended by force. I think the
following description using metaphors is fair: if project
management can be likened to a swimming pool, then I had to dip
my foot in the shallow end. Now, previously I thought I was aware
of project management issues and considerations through having
read about it and talked/listened to other people. I was in for a
surprise – the first hard lesson I learned was that project
management looks very different when you’re actually doing the
job! Having done just a small amount of project management was
a serious education, and has given me a broader perspective on
software development. OK, digression over, let’s get back on
topic...

Project managers have to balance several forces, but two of the
principal ones are the minimisation of risk and keeping costs under
control. Note that the latter is not a case of actually minimising cost

– that’s different, but the point is, when the costs are added up, the
total must be within budget. Risks however, must always be
minimised. Risk minimisation and cost control are not independent
forces – there is interplay between them. Now before bringing
project management into the discussion, I was talking about
handling a certain type of complexity either by writing and
replicating lots of code, or by using C++ language features to absorb
it by using a TMP approach. It’s time for these two separate topics
to meet up.

If the approach of writing – and replicating – lots of code has
been used, then each piece of (what is effectively the same) code
must be maintained. This increases the risk, because there is a
risk that code will get missed in maintenance, and this risk must
be addressed. One way to address it is ensure that maintenance
work is properly reviewed, but this takes people’s time and
pushes up the cost. Further, each piece of code must be tested,
and testing more than one piece of code costs more than testing
just one. This is an ongoing cycle for as long as the software is
being maintained. If instead the TMP approach is used, only one
piece of code needs to be tested and maintained. It may seem
that other risks creep in, namely that there is a burden placed on
the knowledge of the developers that write and maintain the
code. Whether or not this is really a problem is debatable, but
one thing is certainly true – lack of good developers always
increases the risk dramatically! The TMP approach actually has
a big plus point that is far from obvious, but reduces both risk
and cost – the commonality and variability is documented
without a word ever being written!

Software developers have a responsibility to apply the use of
advanced techniques for the benefit of projects, and not for the
sake of using them – if we expect managers to take us seriously,
we must conduct ourselves professionally, and wielding a “shiny
new hammer” has no place in professional software
development. Managers have a responsibility to make sure that
the software developers working on the projects they manage
are competent professionals, and to understand that in the hands
of competent professionals, advanced techniques are of benefit
to their projects. Unfortunately, while the industry has few
software developers who can be described as competent
professionals, it is sad that it also has few managers who fit that
description.

Mark Radford
mark@twonine.demon.co.uk

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy Deadlines
All articles intended for publication in Overload 60 should be submitted to the editor by March 1st 2004, and for Overload 61 by
May 1st 2004.

6

Overload issue 59 february 2004

Regarding “A more flexible
container” by Rich Sposato,
Overload 58 (December 2003)

Although it is certainly interesting to consider alternative
implementations of standard containers, I think Rich has chosen
the wrong solution to the problem.

What he want to do is to extract all members of a collection
satisfying a given condition. In his driving example, he has a set of
Employee records, and he wants to extract those elements of the
container that matches a given surname, say. If one only ever wants
to deal with sets of such records, Rich’s solution is probably the
best one can do. But if one later wants, as Rich does in the article,
to perform a similar operation on another type of container, the
limitations of his approach become clear.

Instead of modifying each container by defining a new one built
upon the standard containers, it is much better to have a generic
algorithm working with any container (standard or not).

So it seems to me, a better, or at least more generic, solution
would be to define an algorithm working roughly like this:

result = filter(collection,comparator);
// filter elements of a container

where result and collection are containers of the same
kind and comparator is a function, or functor, taking an
element and returning a Boolean value.

A template version would look something like this (in pseudo-
C++ to show the structure more clearly)

template<class Coll, class Comp>
Coll filter(Coll coll, Comp cmp) {
Coll res(0); // create empty result set
for (iterator it=coll.begin();

it != coll.end();
++it)

if (cmp(it))
res.insert(it);

return res;
}

This will then work for any container having a standard iterator
interface and an insert() member function as well as for any
cmp having an operator() defined taking a container element
of the right type as argument and returning something which can
be interpreted as a Boolean.

All the extra work now goes into defining the comparator
function or functor, which is probably precisely where the effort
should be concentrated anyway.

While this solution is simpler and more generic than Rich’s, it
is not purely object oriented. In fact, it wouldn’t be possible to carry
it over directly to Java or C#. Instead, it is an example of what one
might call a “functional programming design pattern”. The filter
algorithm above is a C++ analogue of a so-called “higher order
function” in functional programming (FP), i.e. a function taking
another function as argument. Actually, very often OOP design
patterns can be translated into FP higher order functions.

The particular higher order function used here, filter, exists
in all major FP languages (Lisp, Haskell, ML) and in some other
multi-paradigm ones (Perl, Python).

What this illustrates is the idea that, however powerful a concept,
OOP just isn’t the right solution in all circumstances. Luckily, C++
is a multi-paradigm language, supporting not just OOP and C-style
procedural programming, but also FP-style programming as above.
That being said, C++ has a very, very strong support for efficient
OOP code, allowing most compilers to make very efficient
assembler code. In contrast, the FP-aspects, although introduced
with the STL, have received less attention, and not all compilers
will generate efficient code in these cases. This, however, may be
compensated by the optimisations made for the standard containers

On the other hand, such an FP-like solution is easier to maintain,
the code is concentrated in one place instead of being duplicated in
all containers. Moreover, the FP-like solution above is more
generic. Suppose, for instance, that you defined an iterator interface
for files, with the “elements” being the individual lines. The filter-
algorithm can then be turned into a utility like UNIX’s grep,
extracting lines meeting a specific criterion.

Whether to put something into a member function or not is a
difficult question to answer in general. All sorts of issues may be
involved: design principles, maintainability, and efficiency etc. My
own pragmatic rule of thumb is, if the same code is copied with
very little change in many classes, it is probably worth considering
putting it outside, either in a special class or as an algorithm.

Frank Antonsen
frankantonsen@netscape.net

Rich Sposato’s Reply

My article had two purposes. One was to create associative
containers that allow searching using a type other than the key
type. The other goal was to remove the unnecessary objects used
to search through the standard associative containers. Creating a
generic algorithm to find all elements of any container type that
satisfy a predicate was not my intention. Indeed, such an
algorithm is missing from the STL, but I will get to that later.
First, let us look at the associative containers and the generic
search algorithms.

The STL’s stand-alone search (binary_search,
lower_bound , upper_bound, and equal_range)
algorithms provide logarithmic complexity only for random-access
iterators, and linear complexity for all other iterator types. The
standard associative containers are typically implemented using
red-black binary trees, and with their bi-directional iterators, they
are not served well by these functions. I find it ironic that
associative containers were designed for logarithmic complexity
but their iterators only provide linear complexity with the STL
algorithm functions, while three of the sequential containers
(vector, string , and deque) have a linear internal
arrangement, but their iterators provide logarithmic complexity
with the same STL algorithms. The STL’s stand-alone count and
find functions provide linear complexity for all iterator types. So
that irony does not apply to these functions.

These associative containers have their own find, count,
lower_bound, upper_bound, and equal_range member
functions, because as members, they can use the internal structure
of the containers to provide greater efficiency than linear
complexity. The set’s operations require only logarithmic
complexity. These functions should be used instead of the generic

Letters to the Editor(s)

7

Overload issue 59 february 2004

stand-alone functions by the same names. (See item #44 in Scott
Meyer’s book: “Effective STL”.)

Frank Antonsen’s example for filtering elements from a
container is not the most generic solution for C++. His filter
function requires the collection to have a constructor that accepts
a single integer parameter; a constraint not met by five STL
containers. This example is not truly container-independent
code. (See item #2 in Scott Meyer’s book: “Effective STL”.)
By acting on a container rather than an iterator, the filter will
not work with arrays - a requirement of the STL algorithms.
This points out another irony: algorithms that act only on
iterators are more likely to provide “container-independent”
code than algorithms that act on containers. As Raoul Gough
eloquently explained in his article (“Choosing Template
Parameters” also in Overload issue #58), picking the correct
template parameter types can make all the difference between a
flexible and inflexible class or function.

Using the std::copy function as an example, we can make
a generic filter named copy_if that uses a predicate. The
filtering function will accept an iterator type as a template
parameter, and use the typename keyword instead of the
class keyword within the template specification. Since
copy_if will always have linear complexity no matter which
type of iterator or container uses it, developers might be better
off using std::set::equal_range and then calling
std::copy. The copy_if algorithm fulfills all the abilities
of Frank’s filter function with fewer constraints.

The copy function’s signature is:
template< typename InputIter,

typename OutputIter >
OutputIter copy(InputIter first,

const InputIter& last,
OutputIter output);

The copy_if function would have a signature of:
template< typename InputIter,

typename OutputIter,
typename Predicate >

OutputIter copy_if(InputIter first,
const InputIter& last,
OutputIter output,
Predicate pred);

Alas, the STL has no copy_if function, although it has copy
and copy_backward. This omission becomes more obvious
when considering that other functions such as find, count,
remove, and remove_copy have predicated versions named
find_if, count_if, remove_if, and remove_copy_if.
The implementation for copy_if is trivial, and in a time-
honoured tradition, I shall leave that as an exercise to the reader.

Other languages may have filter functions that act as Frank
described them, but my article was not about making generic filters
for C++ or any other language.

Rich Sposato
rds@richsposato.com

More is Less
by Thaddaeus Frogley

When it comes to optimisation the established wisdom amongst
“serious” programmers these days seems to be:
1 Don’t do it
2 (For experts only) Don’t do it yet [1].
Fortunately established good practice tends to avoid
“pessimisation”. Sometimes, however, it is necessary to go
one step further, and actually perform some optimisations,
based of course on careful measurements. In this article I will
show two methods for streamlining object creation semantics,
preventing the compiler from generating code that is not
needed, starting with established good practice, and going on
to a slightly unconventional technique that can be used when
dealing with less conventional situations. I will also be
describing an effective technique for optimising routines
where value types are created on the stack as temporary
storage during repeated calculations.

Using initialiser lists

Construction should always result in an object that is in a valid
state – i.e. is initialised. Use of types that require explicit (multi
stage) initialisation is more error prone than ones that do not, and
should therefore be avoided. It is also generally advisable to
provide a default constructor for value types as value types
should generally be usable within a system in the same way as
you might use built in types such as int, float, and char.

The best way to initialise / construct an object in C++ is via the
initialiser list syntax[2]. From the perspective of high performance
computing, not using the initialiser list syntax can and will result
in double intialisation – more code will be generated and executed,

resulting in a larger, slower executable – potentially more than
double for many layers of aggregate types.

For example, starting from the ground up:
struct A {
inline A() {
i = 0;

}
//...
int i;

};
Does what it looks like it does, because i is a built in type (int)
and built in types do not have default initialisation.

struct B {
inline B() {
a.i = 1;

}
//...
A a;

};
We now have double intialisation of the integer i, because on
entry to the body of the constructor, all the members and base
classes have already been constructed. Thus the code that is
executed is as follows1:

B b;
0040102B mov dword ptr [b],0
00401032 mov dword ptr [b],1

For readers unfamiliar with the instruction set used here, the
instructions above set a location in memory to 0 (zero) and then
set the same location in memory to 1 (one) . By providing a
specific constructor for the type A, and using it in the initialiser

[continued on next page]

8

Overload issue 59 february 2004

[continued from previous page]

list of the constructor B the unnecessary memory write operation
can be avoided:

struct A {
//...
inline A(int a)
: i(a) { }

//...
};
struct B {
inline B()
: a(1) { }

//...
};

By specifically initialising the member a we avoid assignment to
it in the body of the constructor and the code generated by the
compiler is as follows:

B b;
0040102B mov dword ptr [b],1

Unfortunately using initialiser lists is not always appropriate or
desirable. There are times when setting the initial state of an object is
non trivial and cannot be achieved within an initialiser list, or to do
so would result in complex and difficult to maintain code.

Using the “uninitialised” constructor

The solution to this problem – of wanting to perform initialisation
within the body of the constructor without paying the runtime cost of
default initialisation – relies on the functionality provided by the
members or base classes in the same way as the initialiser lists
shown above. In this case though it is necessary for the component
parts of the class to provide a mechanism for constructing an
instance that is not initialised. This is where we need to write code
that very deliberately does nothing at all:

struct UnInitialised {} uninitialised;
// See footnote 2

struct A {
//...
inline A(const UnInitialised&) { }
//...

};
Now any class that uses instances of type A is free to defer
initialisation to the body of the constructor, like so:

struct B {
inline B()
: a(uninitialised) {
a.i = 1;

}
//...

};

This, as expected, generates machine code that is exactly the
same as the version that used the initialiser list directly:

B b;
0040102B mov dword ptr [b],1

This use of function overloading is a technique known as Tags
(or Type Tags), and sometimes Discriminators, and is a
degenerate case of of the traits technique where the trait type has
no associated behaviour and no type parameters[3]. There are
many examples of the traits technique throughout the standard
library: allocator<>, char_traits<>, etc. Most directly
similar to this is the use of std::nothrow.

In this case the type of the parameter is selecting a constructor
implementation that does not initialise the object, allowing the
programmer who uses that type to deliberately select a course of
action that would not normally be desirable.

Even as an optimisation technique leaving an object uninitialised
can be counterproductive if doing so may have a negative impact
on the implementation of the rest of the class. I would recommend
that this facility only be provided for value classes, by which I mean
classes that represents a value or set of values, such as a vector or
matrix, and would typically be used in the same way as any of the
built in numerical types (int, float, etc).

As a technique for optimising routines where a value type is
created on the stack as temporary storage during repeated
calculations, this is extremely effective, and can be shown to be
more efficient than using a static variable. When a function level
static variable is used the compiler must generate both the code
to construct it, and a test to see if it is already constructed. For
operations executed many thousands or millions of times in
succession the extra memory accesses and code branches can have
a surprisingly negative effect on the performance of the processor
level cache, and the time it takes for the operations to complete.

Dealing with (illegal) unions

I was recently given the task of optimising a math library that
used unions to provide a flexible interface. While this was not
standard conforming C++3 it worked on the target compilers,
with the exception of the construction behaviour. It was found
that the constructors for each of the members of the union where
executed, causing the memory to be initialised many times over,
something that became a performance issue for the project. By
using the “uninitialised” constructor technique, I was able to get
this unwanted behaviour under control. Some before and after
comparisons are shown in Figure 1 and Figure 2.

Figure 1 shows the source code and compiler output for a
constructor for a 4x3 matrix class that contains an illegal union. The
union contains two structs, one with a 3x3 matrix and a 3D vector,
one with four 3D vectors. The 3x3 matrix is itself made up of three
3D vectors. In this particular constructor the four vectors are being
initialised on construction via the initialiser list, but the matrix /

1 The compiler output examples shown in the first half of the article were compiled
using MS VC++ .NET, targeting Intel/Win32, using a debug build, with inlining turned
on. For an example that trivial an optimised build will eliminate the example class
completely. In testing GCC exhibited equivalent code generation.
The compiler output shown in Figures 1 and 2 were compiled by MS VC++ .NET
2003 targeting XBOX (with SSE instruction set disabled). A MIPS version was also
compiled using CodeWarrior for PS2 R3.5, and was also shown to have equivalent
code generation.
Note also that it is important that the uninitialised constructors be inline, and that the
inline keyword is not being ignored by the compiler, otherwise any gains seen in
not initialising the member twice could be minimal compared to the overhead of a
function call.

2 An alternative to using an instance of an empty struct is to use an enum:
enum UnInitialised {

uninitialised
};

Both techniques have advantages and disadvantages. Where an empty struct or
class is used an instance of that type must also be provided in at least one
translation unit. Where an enum is used one must be aware of its silent conversion
to an int, and any risks this may introduce.

3 A union containing non trivial types – including any type with a constructor – is ill-
formed, and creating an instance of such a union leads to undefined behaviour. C++
Standard, 9.5/1.

vector pair are not explicitly initialised, and so their default
constructors are being called. By specifically triggering the
“uninitialised” constructor for the matrix / vector pair (shown in the
right hand column) the redundant code generation is suppressed.
Note that the disassembly shown in this and the following example
were generated by a compiler configured to perform full
optimization.

In Figure 2, we see an even more dramatic improvement, in the
implementation of a copy constructor. In this example the initialiser
list was not in the first place used at all, and so before the
assignment in the body of the constructor was executed all the
elements of the union are first default initialised. In the improved
version, shown in the right hand column, the copy is implemented
via the rotation (matrix) and translation (vector) copy constructors,
and the unwanted default constructors (from the second elements
of the union) are suppressed via the use of the uninitialised
constructor.

Thaddaeus Frogley
t.frogley@ntlworld.com

This article is also available at :
http://thad.notagoth.org/more_is_less/

References and Further Reading
[1] Michael Jackson, 1975, Principles of Program Design
[2] Scott Meyers, 1997, Effective C++ (Item 12)
[3] Hubert Matthews, 2003 (accu-general)
Andrei Alexandrescu, Modern C++ Design
Czarnecki & Eisenecker, Generative Programming
Jim Coplien, Multi-Paradigm Design for C++

With Thanks To
The Overload team (especially Phil Bass for some invaluable feedback),
Tobias Sicheritz, and the accu-general mailing list (especially Ric
Parkin, Alan Stokes, Hubert Matthews, David Nash, Paul Grenyer, Jon
Jagger, & Kevlin Henney) and everyone from HuSi who gave me feedback
on this article.

9

Overload issue 59 february 2004

Figure 2: Copy Constructor

Before
// copy constructor
template
M_Matrix4x3Template::M_Matrix4x3Template(
const M_Matrix4x3Template &m)

{
000514C3 push ebp
000514C4 mov ebp,esp
000514C6 push ecx
000514C7 push esi
000514C8 mov esi,ecx
000514CA call M_Matrix3Template

::getIdentity (134E5h)
000514CF fld dword ptr [eax]
000514D1 fstp dword ptr [esi]
000514D3 fld dword ptr [eax+4]
000514D6 fstp dword ptr [ebp-4]
000514D9 fld dword ptr [ebp-4]
000514DC fstp dword ptr [esi+4]
000514DF fld dword ptr [eax+8]
000514E2 fstp dword ptr [ebp-4]
000514E5 fld dword ptr [ebp-4]
000514E8 fstp dword ptr [esi+8]
000514EB fld dword ptr [eax+0Ch]
000514EE fstp dword ptr [ebp-4]
000514F1 fld dword ptr [ebp-4]
000514F4 fstp dword ptr [esi+0Ch]
000514F7 fld dword ptr [eax+10h]
000514FA fstp dword ptr [ebp-4]
000514FD fld dword ptr [ebp-4]
00051500 fstp dword ptr [esi+10h]
00051503 fld dword ptr [eax+14h]
00051506 fstp dword ptr [ebp-4]
00051509 fld dword ptr [ebp-4]
0005150C fstp dword ptr [esi+14h]
0005150F fld dword ptr [eax+18h]
00051512 fstp dword ptr [ebp-4]
00051515 fld dword ptr [ebp-4]
00051518 fstp dword ptr [esi+18h]
0005151B fld dword ptr [eax+1Ch]
0005151E fstp dword ptr [ebp-4]
00051521 fld dword ptr [ebp-4]
00051524 fstp dword ptr [esi+1Ch]
00051527 fld dword ptr [eax+20h]

*this = m;
0005152A mov eax,dword ptr [m]
0005152D fstp dword ptr [ebp-4]
00051530 fld dword ptr [ebp-4]
00051533 fstp dword ptr [esi+20h]
00051536 fldz
00051538 fstp dword ptr [esi+24h]
0005153B fldz
0005153D fstp dword ptr [esi+28h]
00051540 fldz
00051542 fstp dword ptr [esi+2Ch]
00051545 fldz
00051547 fstp dword ptr [esi]
00051549 fldz
0005154B fstp dword ptr [esi+4]
0005154E fldz
00051550 fstp dword ptr [esi+8]
00051553 fldz
00051555 fstp dword ptr [esi+0Ch]
00051558 fldz
0005155A fstp dword ptr [esi+10h]
0005155D fldz
0005155F fstp dword ptr [esi+14h]
00051562 fldz
00051564 fstp dword ptr [esi+18h]
00051567 fldz
00051569 fstp dword ptr [esi+1Ch]
0005156C fldz
0005156E fstp dword ptr [esi+20h]
00051571 fldz
00051573 fstp dword ptr [esi+24h]
00051576 fldz
00051578 fstp dword ptr [esi+28h]
0005157B fldz
0005157D fstp dword ptr [esi+2Ch]
00051580 fld dword ptr [eax]
00051582 fstp dword ptr [esi]
00051584 fld dword ptr [eax+4]
00051587 fstp dword ptr [esi+4]
0005158A fld dword ptr [eax+8]
0005158D fstp dword ptr [esi+8]
00051590 fld dword ptr [eax+0Ch]
00051593 fstp dword ptr [esi+0Ch]
00051596 fld dword ptr [eax+10h]
00051599 fstp dword ptr [esi+10h]
0005159C fld dword ptr [eax+14h]
0005159F fstp dword ptr [esi+14h]
000515A2 fld dword ptr [eax+18h]
000515A5 fstp dword ptr [esi+18h]
000515A8 fld dword ptr [eax+1Ch]
000515AB fstp dword ptr [esi+1Ch]
000515AE fld dword ptr [eax+20h]
000515B1 fstp dword ptr [esi+20h]
000515B4 fld dword ptr [eax+24h]
000515B7 fstp dword ptr [esi+24h]
000515BA fld dword ptr [eax+28h]
000515BD fstp dword ptr [m]
000515C0 fld dword ptr [m]
000515C3 fstp dword ptr [esi+28h]
000515C6 fld dword ptr [eax+2Ch]
}
000515C9 mov eax,esi
000515CB fstp dword ptr [m]
000515CE fld dword ptr [m]
000515D1 fstp dword ptr [esi+2Ch]
000515D4 pop esi
000515D5 leave
000515D6 ret 4

After
// copy constructor
template
M_Matrix4x3Template::M_Matrix4x3Template(
const M_Matrix4x3Template &m)
: rotation(m.rotation)
, translation(m.translation)
, x(uninitialized)
, y(uninitialized)
, z(uninitialized)
, t(uninitialized)

{
00048EB0 push esi
00048EB1 push edi
00048EB2 mov eax,ecx
00048EB4 mov ecx,dword ptr [esp+0Ch]
00048EB8 mov esi,ecx
00048EBA mov edi,eax
00048EBC movs dword ptr [edi],dword ptr [esi]
00048EBD movs dword ptr [edi],dword ptr [esi]
00048EBE movs dword ptr [edi],dword ptr [esi]
00048EBF lea esi,[ecx+0Ch]
00048EC2 lea edi,[eax+0Ch]
00048EC5 movs dword ptr [edi],dword ptr [esi]
00048EC6 movs dword ptr [edi],dword ptr [esi]
00048EC7 movs dword ptr [edi],dword ptr [esi]
00048EC8 lea esi,[ecx+18h]
00048ECB lea edi,[eax+18h]
00048ECE movs dword ptr [edi],dword ptr [esi]
00048ECF movs dword ptr [edi],dword ptr [esi]
00048ED0 movs dword ptr [edi],dword ptr [esi]
00048ED1 lea esi,[ecx+24h]
00048ED4 lea edi,[eax+24h]
00048ED7 movs dword ptr [edi],dword ptr [esi]
00048ED8 movs dword ptr [edi],dword ptr [esi]
00048ED9 movs dword ptr [edi],dword ptr [esi]
00048EDA pop edi
00048EDB pop esi

//*this = m;
}
00048EDC ret 4

For full-sized asm listing see:
http://thad.notagoth.org/

more_is_less/figure2.html

Figure 1: Constructor

Before
template
M_Matrix4x3Template::M_Matrix4x3Template(
const M_Vector3Template &i,
const M_Vector3Template &j,
const M_Vector3Template &k,
const M_Vector3Template &l)
: x(i)
, y(j)
, z(k)
, t(l)

{
00343358 push ebp
00343359 mov ebp,esp
0034335B push ecx
0034335C push ebx
0034335D push esi
0034335E push edi
0034335F mov ebx,ecx
00343361 call M_Matrix3Template

::getIdentity (134E5h)
00343366 fld dword ptr [eax]
00343368 fstp dword ptr [ebx]
0034336A lea ecx,[ebx+0Ch]
0034336D fld dword ptr [eax+4]
00343370 mov esi,dword ptr [i]
00343373 fstp dword ptr [ebp-4]
00343376 lea edx,[ebx+18h]
00343379 fld dword ptr [ebp-4]
0034337C mov edi,ebx
0034337E fstp dword ptr [ebx+4]
00343381 fld dword ptr [eax+8]
00343384 fstp dword ptr [ebp-4]
00343387 fld dword ptr [ebp-4]
0034338A fstp dword ptr [ebx+8]
0034338D fld dword ptr [eax+0Ch]
00343390 fstp dword ptr [ebp-4]
00343393 fld dword ptr [ebp-4]
00343396 fstp dword ptr [ecx]
00343398 fld dword ptr [eax+10h]
0034339B fstp dword ptr [ebp-4]
0034339E fld dword ptr [ebp-4]
003433A1 fstp dword ptr [ebx+10h]
003433A4 fld dword ptr [eax+14h]
003433A7 fstp dword ptr [ebp-4]
003433AA fld dword ptr [ebp-4]
003433AD fstp dword ptr [ebx+14h]
003433B0 fld dword ptr [eax+18h]
003433B3 fstp dword ptr [ebp-4]
003433B6 fld dword ptr [ebp-4]
003433B9 fstp dword ptr [edx]
003433BB fld dword ptr [eax+1Ch]
003433BE fstp dword ptr [ebp-4]
003433C1 fld dword ptr [ebp-4]
003433C4 fstp dword ptr [ebx+1Ch]
003433C7 fld dword ptr [eax+20h]
003433CA lea eax,[ebx+24h]
003433CD fstp dword ptr [ebp-4]
003433D0 fld dword ptr [ebp-4]
003433D3 fstp dword ptr [ebx+20h]
003433D6 fldz
003433D8 fstp dword ptr [eax]
003433DA fldz
003433DC fstp dword ptr [eax+4]
003433DF fldz
003433E1 fstp dword ptr [eax+8]
003433E4 movs dword ptr [edi], dword ptr [esi]
003433E5 movs dword ptr [edi], dword ptr [esi]
003433E6 movs dword ptr [edi], dword ptr [esi]
003433E7 mov esi,dword ptr [j]
003433EA mov edi,ecx
003433EC movs dword ptr [edi], dword ptr [esi]
003433ED movs dword ptr [edi], dword ptr [esi]
003433EE movs dword ptr [edi],dword ptr [esi]
003433EF mov esi,dword ptr [k]
003433F2 mov edi,edx
003433F4 movs dword ptr [edi],dword ptr [esi]
003433F5 movs dword ptr [edi],dword ptr [esi]
003433F6 movs dword ptr [edi],dword ptr [esi]
003433F7 mov esi,dword ptr [l]
003433FA mov edi,eax
003433FC movs dword ptr [edi],dword ptr [esi]
003433FD movs dword ptr [edi],dword ptr [esi]
003433FE movs dword ptr [edi],dword ptr [esi]
003433FF pop edi
00343400 pop esi
}
00343401 mov eax,ebx
00343403 pop ebx
00343404 leave
00343405 ret 10h

After
template
M_Matrix4x3Template::M_Matrix4x3Template(
const M_Vector3Template &i,
const M_Vector3Template &j,
const M_Vector3Template &k,
const M_Vector3Template &l)
: rotation(uninitialized)
, translation(uninitialized)
, x(i)
, y(j)
, z(k)
, t(l)

{
00343358 push esi
00343359 mov esi,dword ptr [esp+8]
0034335D push edi
0034335E mov eax,ecx
00343360 mov edi,eax
00343362 movs dword ptr [edi],dword ptr [esi]
00343363 movs dword ptr [edi],dword ptr [esi]
00343364 movs dword ptr [edi],dword ptr [esi]
00343365 mov esi,dword ptr [esp+10h]
00343369 lea edi,[eax+0Ch]
0034336C movs dword ptr [edi],dword ptr [esi]
0034336D movs dword ptr [edi],dword ptr [esi]
0034336E movs dword ptr [edi],dword ptr [esi]
0034336F mov esi,dword ptr [esp+14h]
00343373 lea edi,[eax+18h]
00343376 movs dword ptr [edi],dword ptr [esi]
00343377 movs dword ptr [edi],dword ptr [esi]
00343378 movs dword ptr [edi],dword ptr [esi]
00343379 mov esi,dword ptr [esp+18h]
0034337D lea edi,[eax+24h]
00343380 movs dword ptr [edi],dword ptr [esi]
00343381 movs dword ptr [edi],dword ptr [esi]
00343382 movs dword ptr [edi],dword ptr [esi]
00343383 pop edi
00343384 pop esi
}
00343385 ret 10h

For full-sized asm listing see:
http://thad.notagoth.org/

more_is_less/figure1.html

10

Overload issue 59 february 2004

Why do requirements
change?

by Allan Kelly

Stable requirements are the holy grail of software development.
(McConnell, 1993)

Once upon a time stable requirements were seen as a pre-requisite
for starting a software development project. There may be a few
Civil Servants who still believe this, but many in the IT world have
given up looking for the Holy Grail of stable requirements1.

Changing requirements have become an accepted fact of life for
software developers, indeed, most of the process and methodology
books now come with subtitles like “Embracing change”. But how
many of us stop and think about why requirements change?

I’ve been giving some thought to this question for a while now,
and I’ve come up with some reasons why I think requirements
change. I’m not saying this is an exhaustive list, but it is a list that
makes sense to me based on my own experience and the way I view
software development.

Why do we fail to capture
requirements?

Perhaps the most obvious reason that requirements change is that
we fail to capture them to start with. Someone writes down
“black” when they should have written “blue.” Everyone makes
mistakes from time to time, and a small mistake by a business
analyst can easily go unnoticed for months. Sure, we have
document reviews to catch this kind of thing, but such mistakes
are easily missed in a 100 page tome.

There are lots of opportunities for mistakes in the requirements
capture phase, and not all of them are because some people are
better than others. At first we need to comprehend the requirements,
then we need to capture them and communicate them. Usually this
is done with a text document. Mistakes can arise at any point:
comprehension, recording or communication.

Any form of communication involves at least two parties: the
sender and the receiver. Typically the business analyst will need
to send their understanding of the problem to the developer (the
receiver.) The important thing to realise is that the content of the
message is decided by the receiver, it is they who interpret the
communication and decide what it means. No matter how much
effort the sender puts into their message they have no means of
guaranteeing it is interpreted as they intend.

Now there are two opportunities for error here. We could assume
that the receiver knows very little about the problem domain, to
compensate we write a lengthy document that discusses all the
details necessary. Unfortunately this approach risks overwhelming
the receiver with details so they miss some of the important points.

Alternatively, we could assume that our developer knows quite
a bit about the problem domain already and just communicate the
bare essentials. The trouble now is that we are reliant on the
knowledge the developer already holds, any omissions or errors in
their knowledge will actually introduce changes which need
correcting later on.

More subtly, the developer may have good knowledge about the
problem domain with few omissions or errors but this may lead
them to use assumptions and mental short-cuts which have worked
well in the past but aren’t appropriate in this case.

Developers aren’t the only ones who may hold hidden
assumptions, the same may be true of the business analyst, or even
the end-users and managers who are commissioning the system.
Few businesses have a written operating procedure, often the arrival
of business analysts will be the first time someone has ever tried to
codify what these people are doing.

In any environment there is normally a lot of tacit knowledge
which helps people go about their business. Not only is this
information rarely codified but it can be difficult to recognise and
extract, it is often embedded in the culture and “the way we do
things here.” As we delve into the process, either through writing
a specification or developing code, we will uncover more and more
of this knowledge and much of this will lead us to change our
understanding of the process.

On occasions people may choose to withhold information which
we need to develop software, but often we may fail to recognise
that there is information present or that is relevant. Such
information may be embedded in the working practices and culture
of the people. For example, it may seem unimportant that every
new recruit is told the story of how Old Joe managed to flood the
basement one day, but in fact they are being warned about the
basement and the water supply.

This stuff is notoriously difficult to capture and document.
Anyone who has written a pattern will recognise the difficulty in
capturing just what the pattern is about and how we use it, much of
the detail exists as tacit knowledge inside our heads but putting it
down in a form accessible to others can be incredibly difficult.

It is inevitable that we will fail to capture important tacit
knowledge when we draw up our system requirements. Successive
iterations may expose more and more but some of it will only
emerge when we reach testing and system deployment.

The good news is that it is easier to change systems that are
rooted in tacit knowledge than those based on explicit information
and agreement. Think of the rule handed down through quietly
observing ones fellow employees: “First one in boils the kettle”. If
we buy a timer for the kettle this is easy to change. However,
imagine it is explicitly written into everyone’s contract, agreed with
unions, incorporated in the quality manual and approved by head
office. Changing that is going to be a lot more difficult.

So, although it may be more difficult to develop a system when
the requirements are tacit, it should be easy to deploy the system.
Conversely, where requirements are explicit, in say written
procedures, it may actually be more difficult to integrate a new
system.

Temporal dimension

Requirements documents are at best a snapshot of the way things
stand at the time they are written. However things change, if we
start the project on 1 January, spend a month writing documents
and head back to our office to develop and test the system for the
rest of the year we can be sure things will have changed in the
intervening time. Hence requirements documents need to be
living documents, we may not want to accept every change that is
asked for, however, setting them in stone will miss important
changes.

There are few computer systems introduced today that merely
automate existing practice. Instead, systems are implemented as part
of an attempt to change practices. This means that to some degree
the specifications are attempts to describe how things will be. Since
none of us – not even management consultants – are blessed with

1 That other Holy Grail - “reusable software” - may also be finding a few less devotees,
but that is another story.

perfect future vision it is inevitable that over time we will see changes
that are needed in the proposed process and system specification.

While we have good knowledge about our internal environment
and we can make plans for internal changes we have no such
knowledge or control about the external environment. Things that
happen outside our problem domain can have as much, or even
more, influence as internal events on what is required of a new
computer system.

It is a cliché to say the pace of change in business is faster than
ever before but there is at least a grain of truth in the statement.
Events in the market or action by rivals can radically change what
we require from a new system. Imagine a book seller who
commissioned a new stock control and retail system in the mid 1990s,
they may have had the perfect specification for internal requirements
but external events will have forced all sorts of changes from internet
retailing to new models of revenue generation upon them.

There is a necessity for all requirements documents to be forward
looking but this is also a hindrance. Again, making the document
longer will make it less well understood, attempting to cover all the
bases may result in a system with more bells-and-whistles than are
necessary. System development cost and time may escalate and
still events may over take the company.

An empirical study

A study by Edberg and Olfman (2001) looked at the motivations
behind software change requests at a variety of organisations
during the software maintenance phase. Corrective maintenance
(i.e. bug fixing) accounted for only 10-15% of work while
functional enhancements accounted for over 60% of changes.
This 60% was broken down into four categories:
● External changes – changes required to meet some need from

outside the organisation, say a changed legal requirement.
● Internal changes – changes required because of company

changes such as new products or restructuring.
● Technical changes – required to meet new technical demands.
● Learning – changes resulting from learning by individuals or

groups.
Edberg and Olfman suggest that 40% of these changes where
primarily the result of learning. By changing software,
organisations can pass on the benefits of one group’s learning to
the whole company – potentially saving money and/or time and
improving efficiency.

Interestingly though, users who requested changes often didn’t
attribute their request to learning, they preferred to cite other
internal or external factors as the motivation. It seemed that
requesting a change that would save them time, and eventually
make the whole company more competitive, wasn’t seen as a good
enough reason to ask for a change.

Does this mean the world full of self-effacing people? No, it
would seem information systems (IS) people have made their
dislike of changes very clear:

Almost uniformly among users in work groups, there was a strong
belief that the IS organization did not want to enhance software and
that changes had to be justified in some way other than it would help
work activities. The interviewees in IS organizations agreed,
frequently commenting that the enhancements required by users
were “superfluous” and, in the opinion of IS, not necessary for users
to do a good job. There was a consistent conflict between work
groups and IS organizations at each case about what constituted a
necessary enhancement to software. (Edberg, 2001)

People learn more

While Edberg and Oldman suggest system changes are the result
of learning other researchers (e.g. Ang, 1997) suggests that
system development can act as a catalyst for people and
organisations to learn about their activities. I’d like to suggest
that a natural extension of this process is that the very act of
analysing and specifying a computer system will change the
problem. How often does someone sit down with a manager or
other office worker and enquire into what they do? How often do
we attempt to map the processes that occur in our work
environment? And how often does someone write a document
describing what goes on?

Actions such as these are perfectly normal activities for business
analysts writing a specification. However, the very act of doing
them will cause people to reflect on what they are doing, why they
are doing it and whether things can be done better. True, some work
environments may be so oppressive that people keep these insights
and ideas to themselves but other companies’ activities encourage
people to improve their processes.

It’s not only the end users who will learn and change as the
system develops. The developers tasked with writing the new
system will gain insights into the business and the application of
technology, which cause them to change their interpretation of the
specification.

In fact, in coding it may not be possible to implement all the
fanciful promises made by a salesman, or the vague requirements
in a specification document. The coding process forces us to face
the reality of what is possible and what isn’t. Clients may be
oversold a solution by a salesman who promises everything (at
a very reasonable price), the specification may be beautifully
worded to describe how these things will be brought about, but,
when it comes to executable code, issues can no longer be
fudged.

At this point the reality of constructing a solution may force a
change in the specification. These can be among the most difficult
changes to bring about since such changes may not be what people
want to hear about. However, this highlights the importance of
keeping a feedback cycle from developers to customers and
continuing a dialogue over the system requirements.

The other second system effect

Fred Brooks said:
The second is the most dangerous system a man ever designs.

... The general tendency is to over-design the second system, using
all the ideas and frills that were cautiously side-tracked on the first
one. (Brooks, 1975)

Brooks was discussing the tendency of software developers when
building systems. However, there is another second system
effect, this time within the organisation that decides to replace an
existing system, which can bring about the same effects.

On the face of it, if a corporation has a working system it is to
be congratulated and the story finished. But we often find
companies that want to replace their existing systems. Given the
reputation of IT projects to over-run budgets and time one wonders
why they would want to take this step, but they do.

At one level, writing a second system should be easy. Get a
group of developers, give them the existing system and say “Copy
it.” But things don’t work that way. The system is usually
redeveloped because it fails to satisfy some need, so the instruction
is more like “Copy it and”.

11

Overload issue 59 february 2004

12

Overload issue 59 february 2004

It’s the “and...” bit which is difficult. The first item on this list
is the immediate reason for the new system, that which the original
system doesn’t do. Next on the list will be all the things the original
system was supposed to do but never did.

While the existing system was in place things were frozen, no
matter how much people wanted things to change it wasn’t going to
happen. But once development on a new system begins the position
is unfrozen, all that pent up frustration with the existing system can
be directed as additions to the new one. Then, as people see the new
one take shape, the learning process is seeded and more changes will
come along. However, once the new system is delivered and deployed
things freeze again as the window of opportunity closes.

Resistance is...

Software engineering books are full of suggestions on how to
manage changing requirements. Unfortunately many of them
look at Barry Boehm’s (1988) economic model of software
development and note that the later changes occur in the process
the more they cost, they therefore conclude that change is bad
and needs to be resisted.

If we go down this route we face two serious problems. Firstly we
are going to make ourselves unpopular, the software developers and
managers will come to be seen as the people who always say “No.”
Who wants a bunch of uncooperative people around the office?

Secondly, this assumes that the changes that come along after
the project reaches some arbitrary cut-off point are worth less than
those that came along before the cut-off point. Changes need to be
assessed both in terms of the complexity they add and the value
they add. Changes that come along later are more disruptive but
this doesn’t imply they are valueless, only that they must be worth
more if they are to be worthwhile implementing.

The argument that we should resist change is based on the naive
assumption that we were able to capture all the valuable
requirements up-front and therefore, none that come along later are
worthwhile. However, as you can see from my arguments I don’t
believe this is the case.

In fact, I will go further. I think it is quite possible, indeed perhaps
probable, that the most worthwhile requirements for the system will
only come to light as the system develops. Only as people – both
developers and clients – come to understand the new system and how
they will use it will the most valuable requirements become apparent.

When we write the initial specification we document the low
hanging fruit. The specification will include the most obvious
requirements, those that were discussed before the project started, those
which are already documented and those that people think of in the
early stages. Yet as the project proceeds, everyone involved will get a
more detailed understanding of what is happening both in the software
and the company, potentially revealing even greater value in a system.
Consequently, it is necessary to reprioritise our work as we go.

What can we do about this?

The software development community needs to rethink its
approach to changing requirements. We need to stop seeing
changing requirements as a problem and start to see them as an
opportunity. If we can pin down requirements and stop them from
changing then two things happen. First, our organisations cease to
change – this isn’t good in a dynamic business environment.
Second, anyone can implement our requirements because they are
fixed and known. That anyone could be a competitor company, or
it could be an outsource organisation with low costs.

However, when we address the changing requirements the
opposite is the case. Our organisations become more flexible and
can out-compete the competition because we can adapt to our
environment and market more quickly. Secondly, this ability to
adapt and change becomes so fundamental to the organisation that
it is unthinkable to outsource it and create space between software
developers and their customers.

We actively want to reach a position where new system
development is generating new ideas for the business, where the
specification is no longer focused on the low hanging fruit
requirements but is addressing the most valuable.

Software development books are full of techniques to make our
software development more responsive: shorter development
cycles, iterative development, rapid-application development, and
so on. Underpinning all of these ideas is the concept of improving
the feedback cycle by making it both faster and clearer.

So, my solution to changing requirements is to improve
communication between people. That is, all the people involved, the
programmers, testers, analysts and customers. And by communication
I don’t want to see more documents, or more e-mail, I want to see
people talking to one another clearly and honestly. This means we have
to value the individuals not the process or the technology.

Conclusion

Requirements change, that’s a fact of life. Many IT people have
adopted a mindset that change is to be resisted, indeed, many IT
people have been so successful in training their customers to
expect resistance to change that customers have given up.
(Hardly surprising then that IT people get bad press.)

If we look beyond the change requests themselves we see that
there are good, valid reasons people request change. Potentially,
through IT systems, companies can get to know themselves better.
Computer systems have a role to play in helping companies change.

In the current debate on agile software development we need to
be considering the user perception of software change. What use
is agile software development if users have been indoctrinated into
rigidity? For agility in software development to mean anything it
must be combined with an agile organisation, we cannot view
software development as an isolated activity.

Allan Kelly
allan@allankelly.net

Bibliography

Ang, K., Thong, J.Y. L. and Yap, C., 1997, IT implementation
through the lens of organizational learning: a case study of
insuror, International Conference on Information Systems ,
http://portal.acm.org/toc.cfm?id=353071&coll=

portal&dl=ACM&type=proceeding

Boehm, B., and Pappacio, P.N. (1988) Understanding and
controlling software costs, IEEE Transactions on software
engineering, 14, 1462-77.
Brooks, F. (1975) The mythical man month: essays on software
engineering, Addison-Wesley.
Edberg, D., and Olfman, L., 2001, Organizational Learning
Through the Process of Enhancing Information Systems, 34th
Hawaii International Conference on System Sciences, IEEE,
http://csdl.computer.org/comp/proceedings/hicss/

2001/0981/04/09814025.pdf

McConnell, S. (1993) Code Complete, Microsoft Press,
Redmond, WA.

C++ as a Safer C
by Sven Rosvall

There are many features in C++ that can be used to enhance the
quality of code written with classic C design even if no object
oriented techniques are used. This article describes a technique to
protect against value overflow and out-of-bounds access of
arrays.

This article started with a discussion about how C projects could
use features in C++ to improve the quality of the code without
having to do any major redesign.

Bounded Integral Types

The built-in integral types in C and C++ are very crude. They
map directly to what can be represented in hardware as bytes and
words with or without signs. There is no way to say that a
number can only have values in the range 1 to 100. The best you
can do is to use an unsigned char which typically has a value
range from 0 to 255, but this does not provide any checking for
overflow.

It is easy to create an integral type that does the range
checking as Pascal and Ada do. The implementation of
BoundedInt in listing 1 shows how this can be done with C++
templates. It takes three parameters. The first two specify the

inclusive range of allowed values. The third parameter specifies
the underlying type to be used and uses a default type given by
the BoundedIntTraits class.

The BoundedIntTraits class is used to find the smallest
built-in type that can hold numbers of the specified range. It uses
some meta-programming to figure out which type to use. The
implementation of the BoundedIntTraits class is shown in
listing 2.

The checking is performed here by using the assert()macro.
Note that this checking only happens in debug builds and not in the
release builds to reduce the overhead for this checking. Using
inlining and the assert() macro removes any overhead in
optimised release builds. With a good optimiser the resulting code
will be identical to when built-in types are used. Alternatives to
assert() can of course be used such as throwing an exception
or logging a message to a file.

The BoundedInt class is only designed to work with value
ranges that fit in an int. To support wider ranges all methods that
take an int as a parameter must have overloaded siblings that take
a long, or even long long where supported.

The operator+=() member must check that the new value
is within the valid range. It also has to check that there is no
overflow during addition. The method of detecting overflow is

13

Overload issue 59 february 2004

#include <cassert>

template <int Lower,

int Upper,

typename INT=typename

BoundedIntTraits<Lower,

Upper>::Type>

class BoundedInt {

public:

// Default constructor

BoundedInt()

#ifndef NDEBUG

: m_initialised(false)

#endif

{}

// Conversion constructor

BoundedInt(int i)

: m_i(static_cast<INT>(i))

#ifndef NDEBUG

, m_initialised(true)

#endif

{

// Check input value

assert((Lower<=i) && (i<=Upper));

}

// Conversion back to a builtin type

operator INT() {

assert(m_initialised);

return m_i;

}

// Assignment operators

BoundedInt & operator+=(int rhs) {

assert(m_initialised);

// Check for overflow

assert(m_i/2 + rhs/2 + (m_i&rhs&1)

<= Upper/2);

assert(Lower/2

<= m_i/2 + rhs/2 - ((m_i^rhs)&1));

// Check result value

assert((Lower<=m_i+rhs) && (m_i+rhs<=Upper));

// Perform operation

m_i += rhs;

return *this;

}

// Increment and decrement operators.

BoundedInt & operator++() {

assert(m_initialised);

// Check for overflow

assert(m_i < Upper);

// Perform operation

++m_i;

return *this;

}

// Other operators ...

private:

INT m_i;

#ifndef NDEBUG

bool m_initialised;

#endif

};

Listing 1: Definition of BoundedInt. Only the plus operator is shown here. The other arithmetic operators follow the same design.

14

Overload issue 59 february 2004

complicated as there is no support for detecting overflow for
built-in types in C and C++. The method here scales down all
values to manageable sizes in order to do an overflow check.
Because of the scaling down, it has to keep track of carry over
data from the least significant bits to work properly in edge cases
where the value range is close to the value range of the
underlying type.

Other arithmetic assignment operators that BoundedInt
should support are not shown here as they would take too much
space. The design of these operators follows the design for the plus
operator.

There are no binary arithmetic operators defined. When a
BoundedInt object is used in a binary arithmetic operation,
it will be converted to a built-in integral type before the
operation. This means that there is no checking of the results of
these operations, unless the result is assigned to a BoundedInt
object. There is a pitfall here in that overflow cannot be checked
for.

BoundedInt<-10, INT_MAX> a = 10;
a += INT_MAX; // Overflow checked
a = a + INT_MAX; // Overflow not checked

#include <climits>

// Compile time assertion:

template <bool condition>

struct StaticAssert;

template <>

struct StaticAssert<true> {};

// Template for finding the smallest

// built-in type that can hold a given

// value range, based on a set of

// conditions.

template< bool sign, bool negbyte,

bool negshort, bool negint,

bool sbyte, bool ubyte,

bool sshort, bool ushort,

bool sint>

struct BoundedIntType;

template<>

struct BoundedIntType< true, true, true,

true, true, true,

true, true, true> {

typedef signed char Type;

};

template< bool negbyte, bool sbyte,

bool ubyte>

struct BoundedIntType< true, negbyte,

true, true,

sbyte, ubyte,

true, true,

true> {

typedef signed short Type;

};

template<bool negbyte, bool negshort,

bool sbyte, bool ubyte,

bool sshort, bool ushort>

struct BoundedIntType< true, negbyte,

negshort, true,

sbyte, ubyte, sshort,

ushort, true> {

typedef signed int Type;

};

template <bool sbyte>

struct BoundedIntType< false, true, true,

true, sbyte, true,

true, true,

true> {

typedef unsigned char Type;

};

template< bool sbyte, bool ubyte,

bool sshort>

struct BoundedIntType< false, true, true,

true, sbyte, ubyte,

sshort, true,

true> {

typedef unsigned short Type;

};

template< bool sbyte, bool ubyte,

bool sshort, bool ushort,

bool sint>

struct BoundedIntType< false, true, true,

true, sbyte, ubyte,

sshort, ushort,

sint> {

typedef unsigned int Type;

};

// The traits template provides value

// range information to the

// BoundedIntType to get the smallest

// possible type.

template <int Lower, int Upper>

struct BoundedIntTraits {

StaticAssert<(Lower <= Upper)> check;

typedef typename

BoundedIntType<Lower < 0,

Lower >= CHAR_MIN,

Lower >= SHRT_MIN,

Lower >= INT_MIN,

Upper <= CHAR_MAX,

Upper <= UCHAR_MAX,

Upper <= SHRT_MAX,

Upper <= USHRT_MAX,

Upper <= INT_MAX>::Type Type;

};

Listing 2: Definition of BoundedIntTraits. The types long and unsigned long are not included to keep the listing shorter.

A default constructor is available in order to mimic the behaviour
of built-in types. It does not initialise the value but maintains a
flag to indicate that this object does not have a defined value.
This flag is checked by member functions that access or modify
the value. The m_initialised member flag is surrounded by
conditional pre-processing directives to avoid overhead in release
builds.

The copy constructor and copy assignment operators are not
defined as the compiler generated versions are appropriate.

Below are some examples from an imaginary C project
implementing a lift control with a single change to use
BoundedInt:

typedef BoundedInt<-4, 17> FloorNumber;
FloorNumber liftPosition = 0;
const FloorNumber myOfficeFloor = 10;

/* go up */
++liftPosition;

/* go up fast */
liftPosition += 4;
printf("The lift is %d floors away.\n",

abs(liftPosition-myOfficeFloor));

BoundedInt objects can appear in any arbitrarily complex
expression thanks to the conversion operator. Because the
conversion operator is inlined the BoundedInt object will
generate exactly the same code as when using a built-in type.

Bounded Arrays

A BoundedInt object can be used as a bounds checked index
into arrays. Example:

const int SixPackSize = 6;
Bottle myBeers[SixPackSize];
BoundedInt<0, SixPackSize-1> ix;
for(ix = 0 ; ix < SixPackSize ; ++ix) {
drink(myBeers[ix]);

}

If ix for some reason is changed to an invalid value, the
BoundedInt class will warn about this.

We can take this one step further by creating a class that only
allows element access using numbers within the allowed range.

template <typename T, size_t Size>
class BoundedArray {
public:
T& operator[](BoundedInt<0,

Size-1> ix) {
return m_data[ix];

}
public:
T m_data[Size];

};

Note that the member data is public to allow aggregate
initialisation. See how this is used below. The member data
can be made public without risk for misuse as the data is

equally accessible through the index operator as with direct
access.

Whenever an element is requested using an index of any built-
in integral type, that index is converted to a BoundedInt which
checks that its value is within the acceptable range.

This template takes two parameters, the type of the elements in
the array and a non-type template parameter to indicate the size of
the array. The simple example above will work as before with only
a small change to the definition of myBeers.

BoundedArray<Bottle, SixPackSize>
myBeers;

This array can be initialised in the same way as a built-in
array:

BoundedArray<Bottle, SixPackSize>
myBeers = { ... };

There is no overhead in release builds for this array class. The
index operator is inlined and there is no indirect pointer access to
the underlying array. Having the size as a template parameter
may look like we are causing code bloat if several arrays of
different sizes are used. Yes, there will be several instantiations
but because all functions are inlined and optimised away there is
no extra code that can multiply.

Bounded Pointers

In the same way as for using checked array indices we can create
a smart pointer class that makes sure that it points to an element
inside the array. It will have to know the base address of the array
and the size to do the checking. This information is retrieved
from the array class when a pointer is created.

The starting point is an example with built-in pointers:

Bottle* p = myBeers;
for(; p->size != 0 ; ++p) {
drink(*p);

}

myBeers is an array where the last elements members are
cleared as a termination condition. We replace the built-in pointer
p with a smart pointer:

BoundedPointer<Bottle>
p = myBeers;

The loop in the example above remains unchanged.
The definition of BoundedPointer is shown in listing 3. The

array base address, array size and the initialised flag are kept as
members only for debug builds to perform the runtime checks. To
avoid this overhead in release builds the m_base, m_size and
m_initialised members are surrounded with conditional pre-
processing directives.

A BoundedPointer object can be constructed from built-in
arrays and from user defined array types. The constructor for user
defined array types takes two parameters (base address and size)
and is intended to be called from conversion operators of those array
classes. This conversion operator for BoundedArray looks like
this:

15

Overload issue 59 february 2004

16

template <typename T, size_t Size>
class BoundedArray {
public:
...
operator BoundedPointer<T>() {
return BoundedPointer<T>(m_data,

Size);
}

};

There is also a constructor that takes a void* parameter to
support assignment from NULL . A T* parameter cannot be
used as it would conflict with the constructor for built-in
arrays.

The BoundedPointer class supports all the operations that
can be used with built-in pointers. There are checks for
incrementing and decrementing the pointer to make sure that it does
not point outside its array. As with BoundedInt there are checks
to see that the pointer is initialised when it is used.

All methods are inlined to avoid any overhead in release
builds.

Usage

The classes described here are designed to do the bounds
checking during unit and system testing when compiled in debug
mode. It is important to run as many test cases as possible that
exercise all boundary conditions.

In release builds, all you have to do is make sure that the
NDEBUG macro is defined, inlining is enabled and the optimise
level is as high as possible. Then your code will be as efficient as
if built-in types were used.

The BoundedIntTraits in listing 2 hides the chosen
underlying integral type. If the ranges change in the future, there is
no need to manually change the underlying type required for the
wider range.

Extensions

This article describes the design of a class that wraps an array
and adds bounds checking functionality. There are many more
possible classes that can be used in this framework for different
purposes. Examples include a class that manages dynamically
allocated arrays.

A possible extension to the checked pointer is to keep track
of whether the array still exists. If the array goes out of scope or
is de-allocated the pointer shall be set to an invalid state. This
is straight-forward to implement but is outside the scope of this
article.

This article does not discuss checked iterators for STL containers
as the article was originally intended to motivate C users to adopt
C++ to improve their lives. For STL there are already
implementations that check validity of the iterators.

Portability

Although the code in this article has been tested with several C++
compilers there are some difficulties using some existing
compilers.

If your compiler does not support partial template specialisations
you cannot use the traits class BoundedIntTraits. You can
avoid the BoundedIntTraits class by removing it from the
template parameter list of BoundedInt and replace it with int.

You will miss the feature where the underlying type of
BoundedInt is automatically chosen from the specified range
and it will be int if a type is not specified.

Conclusion

With the strategies shown in this article it is possible to catch
various out of bounds conditions during the testing phase at no
cost to the released code.

An additional benefit is that the bounds given to
BoundedInt and the array types document their valid ranges
well.

Sven Rosvall
sven-e@lysator.liu.se

Related Reading

Safe and efficient data types in C++ by Nicolas Burrus
http://www.lrde.epita.fr/dload/

20020925-Seminar/burrus0902_datatypes_report.pdf

Describes classes for compile time type safety when using
different integral types. It defines safe operations for a set of
integral types. The integral types used here are only bounded by
the number of bits used in the internal representation. The
description of operations and integral promotion is interesting
and can be applied to the classes in this article.

Boost Integer Library
http://boost.org/libs/integer/index.htm

Contains some helpful classes for determining types of integers
given required number of bits. Also contains other helpful classes
that can be useful in implementing a portable bounded integer
and pointer library.

Boost array class in the container library
http://www.boost.org/libs/array/array.html

A constant size array class. The design goal for this class is to
follow the STL principles.

Bounds checking pointers for GCC.
http://gcc.gnu.org/projects/bp/main.html

Additions to GCC to add bounds checking to the generated
code.

Safe STL
http://www.horstmann.com/safestl.html

An implementation of STL that performs various run-time checks
on iterators.

CheckedInt: A Policy-Based Range-Checked Integer by Hubert
Matthews

Overload issue 58, December 2003

Describes how policy classes can be used to select behaviour
when a given range is exceeded.

Overload issue 59 february 2004

17

Overload issue 59 february 2004

#include <cstddef>

#include <cassert>

template <typename T>

class BoundedPointer {

public:

// Default constructor

BoundedPointer()

#ifndef NDEBUG

: m_initialised(false)

#endif

{}

// Constructor from a built-in array

template <size_t Size>

BoundedPointer(T (&arr)[Size])

: m_p(arr)

#ifndef NDEBUG

, m_base(arr), m_size(Size)

, m_initialised(true)

#endif

{}

// Constructor from a user defined array

BoundedPointer(const T* base, size_t size)

: m_p(const_cast<T*>(base))

#ifndef NDEBUG

, m_base(m_p)

, m_size(size)

, m_initialised(true)

#endif

{}

// Constructor from null

BoundedPointer(void * value)

: m_p(static_cast<T *>(value))

#ifndef NDEBUG

, m_base(m_p), m_size(1)

, m_initialised(true)

#endif

{}

// Dereference operators

T & operator*() {

assert(m_initialised);

assert(m_p != 0);

return *m_p;

}

T * operator->() {

assert(m_initialised);

assert(m_p != 0);

return m_p;

}

T & operator[](size_t ix) {

assert(m_initialised);

assert(m_p != 0);

assert(m_p + ix < m_base + m_size);

return m_p[ix];

}

// Pointer arithmetic operations

ptrdiff_t operator-(BoundedPointer

const & rhs) {

// Check validity of the pointers

assert(m_initialised);

assert(rhs.m_initialised);

assert(m_p != 0);

assert(rhs.m_p != 0);

// Ensure both pointers point to same array

assert(m_base == rhs.m_base);

return m_p - rhs.m_p;

}

BoundedPointer & operator+=(ptrdiff_t rhs) {

// Check validity of the pointer

assert(m_initialised);

assert(m_p != 0);

m_p += rhs;

assert(m_base <= m_p && m_p < m_base + m_size);

return *this;

}

BoundedPointer & operator++() {

// Check validity of the pointer

assert(m_initialised);

assert(m_p != 0);

++m_p;

assert(m_p < m_base + m_size);

return *this;

}

// Other arithmetic operators ...

// Comparison operators

bool operator==(BoundedPointer const & rhs) {

// Check validity of the pointers

assert(m_initialised);

assert(rhs.m_initialised);

assert(m_p != 0);

assert(rhs.m_p != 0);

// Make sure that both pointers point

// to the same array

assert(m_base == rhs.m_base);

return m_p == rhs.m_p;

}

// Other comparison operators ...

private:

T * m_p;

#ifndef NDEBUG

T * m_base;

size_t m_size;

bool m_initialised;

#endif

};

// Binary arithmetic operators

template <typename T>

inline BoundedPointer<T>

operator+(BoundedPointer<T> lhs, int rhs) {

return lhs.operator+=(rhs);

}

template <typename T>

inline BoundedPointer<T> operator+(int lhs,

BoundedPointer<T> rhs) {

return rhs.operator+=(lhs);

}

Listing 3: Definition of BoundedPointer.

18

Overload issue 59 february 2004

Heretical Java #1:
Immortality – at a price

by Alan Griffiths

There is a widespread belief that because Java provides “garbage
collection” the programmer automatically avoids the memory
management problems that plague the users of other languages.
This opinion continues to exist despite there being plenty of
material that attempts to correct this impression – and the
existence of tools to address memory management problems.

The typical Java developer of my experience either doesn’t know
there is a problem or, more rarely, knows there is a problem but
doesn’t know how to address it. While it may be that I’m stretching
a point to class this as the “orthodox” view I still feel justified in
addressing the topic because it is far better not to create a mess than
to have to sort one out.

Part of the problem stems from the treatment of the topic in
numerous introductory texts. These tend to present this uncritical
viewpoint of “garbage collection” – and early beliefs are always
the hardest to challenge. I can remember realising that there was
something wrong with the way I was taught about the lifecycle of
Java objects. The books I had read about Java told me that their life
ended when they were destroyed by the garbage collector. For
example in Java in a Nutshell we have:

The technique Java uses to get rid of objects once they are no
longer needed is called garbage collection. It is a technique that has
been around for years in languages such as Lisp. The Java interpreter
knows what objects it has allocated. It can also figure out which
variables refer to which objects, and which objects refer to which other
objects. Thus, it can figure out when an allocated object is no longer
referred to by any other object or variable. When it finds such an object,
it knows that it can destroy it safely, and does so. The garbage collector
can also detect and destroy “cycles” of objects that refer to each other,
but are not referred to by any other objects. [Flanagan]

Or alternatively in Exploring Java we have:
Now that we’ve seen how to create objects, it’s time to talk about

their destruction. If you’re accustomed to programming in C or C++,
you’ve probably spent time hunting down memory leaks in your
code. Java takes care of object destruction for you; you don’t have
to worry about memory leaks, and you can concentrate on more
important programming tasks. [Niemeyer/Peck97]

Object Lifecycles

In all object-oriented systems the design of object lifecycles is
important because objects have responsibilities to meet at
significant points in their lives. If an object is being destroyed
then it must ensure that any resources that it owns are either
released or passed on to a new owner. And sure enough,
Exploring Java continues with:

Before a method is removed by garbage collection, its
finalize() method is invoked to give it a last opportunity to
clean up its act and free other kinds of resources it may be holding.
While the garbage collector can reclaim memory resources, it may
not take care of things like closing files and terminating network
connections very gracefully or efficiently. That’s what the
finalize() method is for. [Niemeyer/Peck97]

When I first read this it all seemed to make sense, but while
working with Java, I became increasingly conscious that reality
didn’t accord with this view. For example, when working with
instances of the AWT Graphics class I learnt very quickly that I

needed to call dispose – and not to rely on the object to do so
when it was destroyed.

I’m clearly not the only one to see that there is a problem. It is
common to see advice like “only put debug code in the finalize
method” (which directly contradicts the last quote). One of the books
that tries to address the problem is Thinking in Java which says:

This is a potential programming pitfall because some
programmers, especially C++ programmers, might initially mistake
finalize() for the destructor in C++, which is a function that
is always called when an object is destroyed. But it is important to
distinguish between C++ and Java here, because in C++ objects
always get destroyed (in a bug-free program), whereas in Java
objects do not always get garbage-collected. Or, put another way:

Garbage collection is not destruction. [Eckel98]
Over time I accumulated an assorted collection of rules of thumb
that dealt with most circumstances. But they lacked conceptual
elegance and when new circumstances occurred they required
new rules to be worked out carefully.

Then one day I was reading something by Bjarne Stroustrup
about the use of garbage collection. Stroustrup wasn’t writing about
Java (he’s the creator of C++) but, despite what you may have heard
in some of the Java texts, garbage collection is available to C++
programmers. What Stroustrup said made sense of these rules:

Garbage collection can be seen as a way of simulating an infinite
memory in a limited memory. With this in mind we can answer a
common question: Should a garbage collector call the destructor for
an object it recycles? The answer is no, because an object placed on
the free store and never deleted is never destroyed. [Stroustrup91]

This realisation bound all my rules of thumb together as a single
idea: in Java objects are immortal – they are never destroyed. All
that should happen in garbage collection is that the memory
“owned” by the object is recycled. While important for the
application as a whole this isn’t a significant event in the object’s
lifecycle – and we shouldn’t expect the object to respond in any
significant way. (Which is consistent with the difficulty of
writing effective finalize methods – which Stroustrup also
alludes to later in the same passage.)

The idea of an object continuing to exist without its memory may
sound a little strange – but objects exist without other resources that
make them useful (a Graphics object still exists after its native peer
has been released by calling dispose). In any case, the rules of
garbage collection ensure that a program cannot tell if the object is
there or not. While from the point of view of designing my
programs I find the idea that the object is going to sit there forever
holding onto any resources I haven’t told it to release compelling.

The Design of Java’s Garbage
Collection

One of the important points taken up by the “Patterns” movement of
software design is that a “solution” has consequences. With any
design decision there are tradeoffs: resolving one problem may make
others worse or even introduce new ones. When the designers of
Java adopted garbage collection to manage memory they didn’t
provide a solution to all the resource management problems a
developer will ever encounter. Nor did they believe that they had:

Garbage collection (GC) is probably the most widely
misunderstood feature of the Java platform. GC is typically advertised
as removing all memory management responsibility from the
application developer. This just isn’t the case. On the other hand,
some developers bend over backwards trying to please the collector,

19

Overload issue 59 february 2004

and often wind up doing much more work than is required. A solid
understanding of the garbage collection model is essential to writing
robust, high-performance software for the Java platform. [JPAppGC]

There are memory management problems that Java’s garbage
collection based model for object lifetimes doesn’t solve, but
nothing is harder to fix than a problem people won’t believe in.
And the orthodox belief that “you don’t need to worry about
memory leaks” denies the obvious – memory is a finite resource
that needs to be managed.

The following will explore the “infinite memory/immortal
objects” design model of the object lifecycle and the way in which
it helps to deal with the management of resources in a Java program.

The next section “Garbage Collection and the Object Lifecycle”
provides necessary detail of how garbage collection operates for
discussing the problems that it does solve and those that are left for
the programmer to address.

In “Managing Memory” we will be looking at the memory
management problems that programmers can still encounter and
the solutions to them. (The solutions are easy once you realise that
the problems and solutions exist.)

In “Managing Other Resources” we will examine the
management of other resources. In many programming languages
(and C++ is often cited in the literature) these can be dealt with by
the same mechanisms as managing memory. However, in Java, the
commonality in the way these problems are addressed is less
obvious – garbage collection addresses a lot of memory
management issues but leaves other resource management issues
to the developer.

Garbage Collection and the
Object Lifecycle

In this section I explain what “garbage collection” does for the
developer and why it fails to be the “silver bullet” that many
think it is. With this knowledge we will be then equipped to
tackle the problems of managing both memory and other
resources that may be associated with an object.

In abstract terms “garbage collection” is a service provided by
the Java runtime environment to reclaim memory from objects that
the program is not going to use again. How does it know which
objects are not going to be used again? It doesn’t – if it knew
instantly, and with complete accuracy, which objects are not going
to be used then the orthodox view would be valid. But, even in
theory, it is not possible to achieve complete accuracy in a useful
timeframe. Instead garbage collection follows rules that can quickly
identify objects that definitely won’t be used again.

Although the details of how the runtime environment works out
which objects the program can or cannot access depend upon the
implementation of Java, there are certain rules that it must follow.
(I cannot give a single reference for these rules as they are spread
around the Java Language Specification and the JVM specification
and are not always stated explicitly.) These rules tell the runtime
environment which objects the program cannot use – the trouble is
that they can sometimes indicate that an object is “in use” when the
programmer has forgotten all about it and will, in practice, never
use it again. The object is dead but still consuming resources – such
“zombie objects” can lead to a program consuming more and more
memory until it fails (by slowing to a crawl or by crashing).

The rules the collector has to follow are as these:
1. There are some references referred to as the “root set” (I’ll get

back to this) – objects referenced by these are in use.

2. Any object referenced by a reference in an object that is in use
is also in use. (This is obviously recursive.)

3. Don’t collect memory from any object that is in use. There is no
requirement to collect memory from objects that are not in use.

4. Before collecting memory from an object call its finalize
method – remembering that finalize might set a reference
somewhere to the object that changes it to be in use.

5. Don’t call finalize on the same object twice.
The definition of the “root set” is key to the working of the
collector and has changed subtly since the early days of Java (as
users of the SINGLETON anti-pattern may have discovered). But
for the programmer it suffices to assume that it includes any
objects whose methods are active on a call stack, those
referenced by local variables on a call stack, and by static
member variables. (Actually the latter are not really in the root
set – they are “in use” indirectly, by way of the corresponding
class and classloader objects – they could become unused if the
class was not loaded by the default classloader.)

It is significant that there is no requirement to collect memory from
objects that are not in use. There is no guarantee that an object’s
memory will be collected – or that finalizewill ever be called.
There is a deprecated API – System.runFinalizersOnExit–
that purports to ensure that all finalizers will be called, but this
has proved problematic:

This method is inherently unsafe. It may result in finalizers
being called on live objects while other threads are concurrently
manipulating those objects, resulting in erratic behavior or deadlock.
[JDK1.4.1]

Because one can never be sure that a Java object will be finalised
or have its memory collected it is never a good idea (as already
noted) to put any functional code in a finalizer. And, unless
its finalizer contains functional code, once an object
becomes eligible for collection, it will have no further effect on
the state of the program – it can be forgotten.

Because comparisons are often drawn with C++ it is worth
expanding on this point of difference between the lifecycle of a C++
object and that of a Java object. A typical C++ object has a lifecycle
like that of a Java variable of primitive type (like an int): it is
created where it is declared and no longer exists after the program
leaves the scope in which it is declared. In C++ objects are notified
when their life comes to an end (a special destructor “method” is
called). In C++ programmers use this to free resources when an
object goes out of scope1. The result of this is that the lifecycle of
a C++ object has a clear and predictable beginning (it is created)
and a clear and predictable end (it is destroyed). In Java objects also
have a clear and predictable beginning but they don’t have a clear
end: instead the program just stops using them – after which they
may be finalised, after which their memory may be collected.

Instead of dying (like a C++ object) it has attained a form of
immortality – but this is at the cost of the programmer needing to
ensure that it frees up any resources it might be holding when she
finishes with it.

Managing memory

When a programmer needs an object she gets it from somewhere
(usually by creating it using new), probably stores a reference to
1 Although C++ objects may also be created dynamically like Java objects (that is, by using
new) these are idiomatically managed by special “smart pointer” classes that ensure
that the memory doesn’t leak. But, just as there are many Java books that fail to teach
idiomatic memory management, there are many C++ books that fail to teach this.

20

Overload issue 59 february 2004

it in a local variable, uses it for something (typically by calling
some methods on it), and then she forgets about it. This is a very
natural way to behave – we all do it unless we have had a reason
to learn to do otherwise. Parents will recognise this as the way
young children treat objects in the real world: they pick up a toy
(or a piece of cutlery), make use of it for a while and then forget
about it. Once a child has forgotten a toy it won’t be long before
they want to use their hands for something else and the toy will
be left unattended. Eventually, a parent acts and, having decided
that the object isn’t being used will either send a message to the
child (“pick that up and put it away!”) or collect and deal with it.

Programmers (and children) get an important benefit from
having things cleared up for them: it makes their life a lot simpler.
Most of the time this is good – it allows them time to concentrate
on matters that are important (most Java programmers are trying to
solve problems, not to manage memory). The Java programmers I
know were obviously children once and learnt some of the same
strategies. But there are differences: instead of holding objects in
their hands they now have reference variables. Children run out of
hands, while programmers can endlessly create more variables,
which means that there is no practical limit to the number of
forgotten objects that a programmer might be “carrying around”.

Java garbage collection is also different to most parents: it will
never ask the programmer to “put that away” it simply deals with
those objects that have been left lying around. Children don’t like
being nagged and neither do programmers, so this might seem great
– except that putting things away is sometimes necessary. My
youngest son recently negotiated a “no nagging” deal for his
bedroom and has demonstrated that it becomes unusable in about
a week – and he has no idea how to resolve this problem. He tried
putting a couple of things away, but that didn’t look any better – so
he gave up.

Programs can get into the same state as that bedroom if the
programmer relies on the garbage collector to magically take care
of everything. Java developers who believe that you don’t have to
worry about memory management cause more problems than does
the need to do it “by hand” in C or C++. These programs might
function correctly for a while, but they use increasing amounts of
memory until they collapse. Once this happens I’ve seen developers
make a token effort at addressing the problem and then give up in
the hope that it won’t matter.

This doesn’t need to be the case: there are idiomatic ways to
manage memory in Java – it is ignorance of these idioms that causes
problems, not the language. Java’s garbage collection is a tool for
managing memory – not a substitute. Garbage collection isn’t
unique to Java and, despite it frequently being cited as an advantage
over C++ one may choose to use “garbage collection” in C++ but,
by deliberate intent or accident, most developments in these
languages don’t use it. Each language provides a context and the
developer must learn the idioms that work in that context.

In Java the programmer needs to ensure that there are no “live”
references to objects that are no longer in use. This doesn’t come
naturally – the lessons learned in childhood are not automatically
transferred into the made-up world of the JVM. There are parallels:
in the real world children have to learn to behave responsibly with
the objects they come in contact with, in the JVM world
programmers have to learn to behave responsibly with the objects
they come in contact with. The difference is that in the real world
children learn from adults whereas in JVM world programmers
usually learn from other programmers. (Science fiction writers such

as William Golding [Golding] have speculated on the effect that a
lack of adult input might have on children.) Why do these
differences arise? In part it is because in the made-up world of the
JVM we are freed from the constraints that arise in the real world.
In part it is because the rules of the JVM world have been devised
for the convenience of the implementers of that world.

Programmers are not stupid (and neither are children) but they
are in the business of producing simplified descriptions of things
(usually represented in code). Sometimes, however, they come up
with descriptions that are too simple to work. One such description
is a lifecycle of a Java object that goes: “creation (using new or
createInstance), use (by accessing its methods or member
variables) and forget about it (garbage collection will sort it out)”.
This is similar to a child in the real world: “create a game (by
finding some toys), use (play with them) and forget about it (parents
will sort them out)”. In the real world parents will soon indicate that
there is some learning to do, in the JVM world programmers need
to discover this for themselves.

How does all this affect us as programmers? Well, the first thing
that is clear is that if we have any references to unwanted objects
then those objects will lurk around in limbo. This is quite easy to
do unintentionally: all we have to do put the object into a collection
and forget to remove it, or into a long lived variable and forget to
reset it, or...

The answer is simple: ensure that any long-lived references are
set to nullwhen the object they reference is no longer in use. The
problem the programmer has to address is deciding when use of an
object is complete.

References that exist in function scope are rarely a problem:
unless the code is written in a perverse style (e.g. excessively long
methods) then the scope of the reference will be approximately the
scope of use for the corresponding object. When this happens the
reference will go out of scope in a timely manner and the object
will become eligible for collection.

Instance reference members live as long as the instance that
contains them – which can be a very long time (e.g. a SINGLETON

lives “forever”). The problem for the developer implementing the
class is that it is the user of the class that controls its lifetime – and
must be relied upon to initiate any action that resets the reference.
In many cases this is not worth the effort of solving (an obsolete
reference will only hold memory for a single forgotten object)
unless the referenced object also holds non-memory resources that
must be released in a timely manner. (A subject we’ll revisit later.)

It becomes more important to deal with problems when there is
a possibility of holding references to multiple objects. For example,
it is possible to implement a stack using an array and a “top” index.
If references to multiple objects are pushed onto such a stack the
objects will be held in memory until the entries in the array are
cleared (or the array itself becomes eligible for garbage collection).
This implies that the “pop” operation should reset the reference to
the old “top” element.

Collections are where the problem becomes severe: for example,
there is a long-lived collection buried in the depths of the Swing
library that maps events to listeners. User code that adds listeners
to Swing objects causes these objects to be added to the collection.
In practice user code to remove these objects is rather rare and, in
early versions of Swing, this used to lead to the collection becoming
progressively larger each time a dialog (for instance) was displayed.
More recent versions of Swing addressed this problem by using a
special type of container: one that holds weak references.

Weak References

Weak references are a feature introduced with JDK 1.2 with
WeakHashMap and WeakReference. These allow some
additional flexibility in garbage collection. A weak reference is
recognised by the garbage collector as one that does not prevent
an object being collected (but that must be reset should the object
be collected). They allow the developer to keep track of an object
for as long as there is a use of it somewhere else in the program,
but to release it once that use is complete.

The use of WeakHashMap in the Swing library is typical of the
scenarios where weak references are useful: in the OBSERVER

pattern the subject should rarely affect the lifetime of the observers.

Managing other resources

In addition to the need to put objects away, there are also objects
that need to be switched off. It took a lot of batteries going flat
before my children learnt to switch off torches, walkie-talkies,
Gameboys and other toys that contain batteries. Java objects can
also contain resources that need to be “switched off” – graphic
contexts, file handles, etc. These are objects that need to know
when the programmer has done with them. For these objects the
programmer needs to develop the discipline needed to supply the
required notification.

In the vast majority of cases this is simply a matter of putting a
call to a release method where it will be executed on exit from a
block of code. There is even a convenient language construct for
doing this: the finally block. It looks like this:

public void repaint() {
Graphics g = getGraphics(); // Allocate
if (null != g) {
try { paint(g); }
finally { g.dispose(); } // Release

}
}

In this code the scope rules are used to ensure that the paired
operations of allocation and deletion always occur as a pair (and

in sequence). This isn’t hard – although correct examples are rare
in the literature.

As with managing memory the issue becomes problematic when
references to the owner of the resource are long lived (i.e. have instance
or class scope). If the graphics object in the above example were
referenced by a class member and accessed by a number of methods
then it could be difficult to determine when use was completed. It may
become necessary for the owning object to provide its own equivalent
of the disposemethod and to rely on its user to call it.

The management of resources is at its worst when there are long-
lived references to the same resource-owning object in independent
parts of the system. If this happens it can be very difficult to release
the resource at the right time – without either implementing some
convention for communicating between them or electing one to be
“the boss” none of these can confidently release the resource.
Fortunately, in real code this is rare. (There are options: weak
references, proxy objects that hold a use count, etc.)

Conclusion

I hope this has shown that there are memory management issues
to be addressed in Java and that these issues can be addressed. As
so often in our profession it is the acknowledgement that there is
a problem that is the key step to finding a solution.

Alan Griffiths
alan@octopull.demon.co.uk

References

[Stroustrup91] Bjarne Stroustrup, 1991, The C++ Programming
Language (2nd edition), Addison Wesley
[Golding] William Golding, Lord of The Flies, Faber and Faber
[Flanagan] David Flanagan, 1997, Java in a Nutshell
[Niemeyer/Peck97] Patrick Niemeyer & Joshua Peck, 1997,
Exploring Java (2nd edition), O’Reilly
[Eckel98] Bruce Eckel, 1998, Thinking in Java, Prentice Hall
[JPAppGC] http://java.sun.com/docs/books/

performance/1st_edition/html/JPAppGC.fm.html

21

Overload issue 59 february 2004

From Mechanism to Method:
Further Qualifications

by Kevlin Henney

Qualification is often used as a simple constraint on behavior. For
instance, a non-const member function cannot be executed on a
const-qualified object. In the general case, a const-qualified
member function can be used with both const- and non-const-
qualified objects; the exception is when the function is also
overloaded privately as non-const. This exception highlights the
other common use of qualification to distinguish between two
functions and two different outcomes, although normally in a more
substitutable fashion (i.e., so that the non-const version is
effectively a subtype specialization of the const version [1]).

Qualification, Separation,
and Unification

You can see this kind of substitutability in action with iterator access
in the C++ Standard’s container requirements: non-const container
access yields iterators whereas const container access yields
const_iterators, and, furthermore, an iterator may be
used where a const_iterator is expected. In this case,

qualification-based separation leads to iterator and
const_iterator types.

Qualification can also be used as a means for unification.
Consider an object that supports both reader locks and writer locks
for safe multithreaded access: so long as there are no writers,
multiple reader locks can be acquired and the owners can look at
the object without changing it (i.e., only const operations); the
owner of a writer lock has exclusive read-write access to an object
(i.e., both const and non-const operations). Translating these
concepts directly into code suggests the following:

class table {

public:

void lock() const; // acquire lock for reading

void lock(); // acquire lock for

// reading and writing

void unlock() const; // release reader lock

void unlock(); // release writer lock

...

};

The acquisition and release of the lock now reflects the
permissions of the calling context:

[continued on next page]

22

Overload issue 59 february 2004

[continued from previous page]

void reader_example(const table *target) {

target->lock(); // acquires lock for reading

...

target->unlock(); // releases reader lock

}

void writer_example(table *target) {

target->lock(); // acquires lock for

// reading and writing

...

target->unlock(); // releases writer lock

}

Such access is made exception safe by introducing an
acquisition-release object [2, 3]:

template<typename lockee_type>

class locker {

public:

locker(lockee_type &target) : target(target) {

target.lock();

}

~locker() {

target.unlock();

}

private:

locker(const locker &);

locker &operator=(const locker &);

lockee_type ⌖

};

What’s neat about this design is that only a single locker template
is needed to cater for both const and non-const variants:

void reader_example(const table *target) {

locker<const table> guard(*target);

// acquires reader lock

...

}

void writer_example(table *target) {

locker<table> guard(*target);

// acquires writer lock

...

}

Code that is written to be both scope constrained and const
correct will avoid pessimistic locking scenarios, where a lock is
acquired for longer than is strictly necessary or the lock acquired
is too strong for the required access.

Write-Back Proxies

Consider a slightly different scenario: objects that can be loaded on
demand into memory and, when changed, written back. It is safe to
assume that non-const operations will cause change and const
operations won’t, and that users will perform predominantly const
or non-constoperations on a given object in a particular role:

class datapoint {

public:

double upper_bound() const;

void upper_bound(double);

double lower_bound() const;

void lower_bound(double);

...

};

The only problem is that the objects are independent of your loading
and saving framework. They do not contain convenient features that
would make this problem trivial to resolve, such as a dirty flag to
show when they’ve been modified. A simplistic, verbose, and error-
prone approach would be to save or not in response to each call:

void view(const datapoint *target) {

double = target->upper_bound();

// no save required

...

}

void manipulate(datapoint *target,

double new_upper_bound) {

...

target->upper_bound(new_upper_bound);

// save required

save(target); // assume a non-member

// save for target

}

This code also assumes that the object has been preloaded into
memory.

Custom Proxies

The standard solution to such problems is to manage the level of
indirection with a proxy object [4, 5]. A custom proxy, written to
handle each of the member functions individually, can be written
to encapsulate both the lazy loading and the save policy:

class datapoint_view {

public:

double upper_bound() const {

if(!target)

load();

return target->upper_bound();

}

void upper_bound(double new_upper_bound) {

if(!target)

load();

target->upper_bound(new_upper_bound);

save();

}

...

private:

void load() const;

void save();

mutable datapoint *target; // null when

// not loaded

persistence_key target_key; // used by load

};

Clients now work in terms of datapoint_view instead of
datapoint. Although conventional, proxies and targets do not
necessarily have to inherit from a common base class, in this
case, unless the datapoint author included an interface class
for another reason, it may not even be possible to perform such
inheritance without further adaptation.

However, although simple in many ways, this design is tediously
repetitive. Each function follows a similar flow: load if not yet
loaded, forward call, and then optionally a call to save state. It is
also hardwired to a single target type. A generic solution would
allow arbitrary data types to be managed in the same way. Smart
pointers offer the most common idiom for such generic managed
indirection.

Smart References

Consider first a simple case for a generic loading-and-saving
smart pointer: working with built-in types or user-defined value
types that, like built-ins, are manipulated only in terms of
operators. The focus of operations is, therefore, on the
dereferenced value. Another proxy variant, a smart reference,
allows basic reads and writes to be distinguished:

template<typename target_type>

class loading_ptr {

public:

...

class reference {

public:

explicit reference(const loading_ptr *that)

: that(that) {}

operator target_type() const {

return *that->target;

}

reference &operator=(const target_type &rhs) {

*that->target = rhs;

that->save();

return *this;

}

private:

const loading_ptr *that;

};

reference operator*() const {

if(!target)

load();

return reference(this);

}

...

private:

...

friend class reference;

void load() const;

void save() const;

mutable target_type *target; // null when

// not loaded

persistence_key target_key; // used by load

};

A smart reference cannot be a perfect match for a real reference [6],
but such a limitation on transparency is true to a greater or lesser
extent of any kind of proxy. For instance, the UDC (user-defined
conversion) operator means that the result of dereferencing a
loading_ptr is an rvalue rather than an lvalue. The disadvantage
of the UDC as it stands is that it uses up the allotment of one user-
defined conversion. A little generic thinking gets round this problem:

template<typename target_type>

class loading_ptr {

public:

...

class reference {

public:

...

template<typename result_type>

operator result_type() const {

return *that->target;

}

...

private:

loading_ptr *that;

};

...

};

The downside is that this permissive conversion can create some
fresh new ambiguities: the templated UDC now eagerly matching
all possibilities unless explicitly disambiguated. You have to
choose between evils according to which least affects your code –
I guess that you probably don’t need reminding that the world is
not a perfect place.

Almost all the overloadable operators can be overloaded to make
working with the smart reference reflect the natural use of its target
type more accurately. This is fine for built-in types and like-minded
value classes, but not for targets with named members: for them,
operator-> must be overloaded.

Bracketing Smart Pointers

But over-eagerness to implement operator-> will lead you
straight into a brick wall:

template<typename target_type>

class loading_ptr {

public:

...

target_type *operator->() const {

if(!target)

load();

return target;

}

...

};

Sure, the object may have been successfully loaded into memory,
but when and how will it be saved? The save needs to occur after
the pointer has been returned and a member dereferenced through
it – in other words, outside the body of operator-> over
which you have control.

It would appear that you can never have too many proxies: the
solution is to return a smart pointer from loading_ptr’s
operator-> and have its destructor perform the save:

template<typename target_type>

class loading_ptr {

public:

...

class pointer {

public:

explicit pointer(const loading_ptr *that)

: that(that), accessed(false) {

}

target_type *operator->() const {

accessed = true;

return that->target;

}

~pointer() {

if(accessed)

that->save();

}

private:

const loading_ptr *that;

bool accessed;

};

23

Overload issue 59 february 2004

24

Overload issue 59 february 2004

pointer operator->() const {

if(!target)

load();

return pointer(this);

}

...

private:

friend class pointer;

...

};

What makes this idiom tick is that operator-> chains: if the
result of operator-> also supports an operator->, this latter
operator is called automatically, and so on until the result chain
reaches a real pointer. What makes this idiom tock is the binding of
a temporary object’s lifetime to the end of the surrounding full
expression. So, when used in a simple expression, the load is
performed in the first operator->, which returns a temporary
object used to access the members – either function or data – of the
underlying target, and the save is performed by the destruction of
the temporary object at the end of the expression:

void manipulate(loading_ptr<datapoint> target,

double new_upper_bound) {

...

target->upper_bound(new_upper_bound);

// ^load if necessary ^save

}

As a point of implementation, note that you have to ensure that
only one destructor execution performs the save because you are
returning the pointer proxy by copy.

This versatile bracketing technique has acquired various names
over time: locking pointer in the context of thread synchronization
[7], call wrappers [8], and execute-around pointers [9].

The Depths of Qualification

But before you get too distracted or overwhelmed by the many
levels and kinds of proxy you have at your disposal, remember
that part of the design requirement was to distinguish between
const and non-const usage. The code currently assumes the
non-const case (i.e., always save). How can you distinguish a
const target?

A common, but alas incorrect, solution to this problem is to
reflect the qualification of the smart pointer in the qualification of
the result:

template<typename target_type>

class loading_ptr {

public:

...

pointer operator->() {

if(!target)

load();

return pointer(this);

}

const target_type *operator->() const {

if(!target)

load();

return target; // return actual pointer as

// no save needed

}

...

};

There are certainly designs in which you would want such deep
qualification, but this isn’t one of them. For a composition
relationship through a pointer, where an object pointed to by
another is considered a part of a whole, qualification should run
deeply, just as it does for a data member by value. For
association, where the relationship represented is not whole-part,
qualification should be shallow, which is the case for many
indirection-based relationships. Making it deep arises from
confusion – albeit commonplace – over levels of indirection: the
qualification of your smart pointer relates to whether or not you
can affect the smart pointer itself, not its referand.

Many Roads Lead to Rome

There are two user roles with respect to target usage for the write-
back proxy: a read-only role, which we can equate to accessing a
const target, and a write-mostly role, which we can equate to
accessing a non-const target and typically accessing non-const
members. If deep qualification were the only solution to this kind
of problem, iterators to const containers would be stuck on the
starting blocks. The good news is that not only is there a solution,
there are many solutions, each with a different set of tradeoffs.

Separately Qualified Types

Taking a leaf straight out of the standard library, the iterator
model can be used as the inspiration for a pair of class templates:

template<typename target_type>

class loading_ptr {

public:

...

class pointer {

...

};

pointer operator->() const {

if(!target)

load();

return pointer(this);

}

...

};

template<typename target_type>

class const_loading_ptr {

public:

const_loading_ptr(

const loading_ptr<target_type> &);

...

const target_type *operator->() const {

if(!target)

load();

return target;

}

...

};

Note the converting constructor from a loading_ptr to a
const_loading_ptr. This could also be supported by
introducing a UDC to a const_loading_ptr in the
loading_ptr template. Either way, a loading_ptr is
substitutable for a const_loading_ptr. Note also that there
is potentially a certain amount of duplicated code. A simple
alternative that offers both substitutability and factoring of
common code is to introduce an inheritance relationship:

template<typename target_type>

class const_loading_ptr {

...

};

template<typename target_type>

class loading_ptr

: public const_loading_ptr<target_type> {

...

};

Some members will be fully “specialized” and “overridden” in the
derived class (i.e., operator-> will be provided in
loading_ptr and will block the one in const_loading_ptr
from view). This is compile-time polymorphism rather than run-time
polymorphism – there are no virtual functions in sight, nor should
there be.

Qualified Type Specialization

The const_loading_ptr solution is OK except that it leaves
us with two different type names. This means that for an arbitrary
type T, which may or may not be const qualified, you cannot
simply write loading_ptr<T> and expect it to do the right
thing (i.e., loading_ptr<const datapoint> is not
equivalent to const_loading_ptr<datapoint>) .
Template specialization with respect to qualification offers a
simplification [10]:

// primary class template

template<typename target_type>

class loading_ptr {

public:

...

class pointer {

...

};

pointer operator->() const {

if(!target)

load();

return pointer(this);

}

...

};

// partial specialization

template<typename target_type>

class loading_ptr<const target_type> {

public:

loading_ptr(

const loading_ptr<target_type> &);

...

const target_type *operator->() const {

if(!target)

load();

return target;

}

...

};

This means that one template name, loading_ptr, covers
both cases, with loading_ptr<datapoint> corresponding
to the primary template definition and loading_ptr<const
datapoint> corresponding to the partial specialization.
Inheritance can again be used to provide substitutability and cure
the common code:

// forward declare primary class template

template<typename target_type>

class loading_ptr;

// partial specialization

template<typename target_type>

class loading_ptr<const target_type> {

...

};

template<typename target_type>

class loading_ptr

: public loading_ptr<const target_type> {

...

};

It is worth pointing out that not all compilers support
specialization with respect to qualification.

Explicit Qualification Check

There are only a few parts of the loading_ptr template that
need to be different between the const and non-const variant.
Instead of partially specializing the whole class template, why
not just do so for the affected functions? This is an elegant and
economic idea; unfortunately it also won’t work: the C++
Standard currently disallows partial specialization of function
templates. You can overload or fully specialize a function
template, but alas neither of these options is directly suitable for
the member functions in this particular problem.

However, the effect of const partial specialization can, to a
limited degree, be emulated. Instead of focusing on the
loading_ptr, focus on the result of operator->. Return the
pointer proxy in each case and determine only in the destructor
whether or not a save is required.

Here is a brute force run-time type checked approach:
template<typename target_type>

loading_ptr<target_type>::pointer::~pointer() {

if(accessed &&

typeid(target_type *)

!= typeid(const target_type *))

that->save();

}

Because typeid ignores top-level qualifiers, the code is phrased
in terms of pointers. The trick that allows the const
discrimination to work is to recall that const qualifying
something that is already const qualified has no effect.
However, this approach lacks both elegance and economy. You
can eliminate the run-time type check by introducing a predicate:

template<typename target_type>

loading_ptr<target_type>::pointer::~pointer() {

if(accessed && !is_const(that->target))

that->save();

}

Here, it is overloading with respect to const that allows the
predicate approach to work:

template<typename type>

bool is_const(type *) {

return false;

}

template<typename type>

bool is_const(const type *) {

return true;

}

25

Overload issue 59 february 2004

26

Overload issue 59 february 2004

If these functions are inlined – and your compiler is doing at least
a halfway decent job with inlining – there will be no run-time
overhead in this approach. Compile-time selection is the territory
of traits – a far more elegant approach:

template<typename target_type>

loading_ptr<target_type>::pointer::~pointer() {

if(accessed && !is_const<target_type>::value)

that->save();

}

The following mono-trait class template uses const partial
specialization to make the distinction:

template<typename type>

struct is_const {

static const bool value = false;

};

template<typename type>

struct is_const<const type> {

static const bool value = true;

};

This approach can also be made to work using const-qualified
pointers and partial specialization [11] if your compiler does not
support direct const specialization.

Qualified Double Dispatch

There is a way to have selection without explicit control flow and
to simulate the partial specialization of function templates. Double
dispatch allows you to select an action on an object externally
based on the type of the object. A family of functions performs the
selection on your behalf calling back on the object you pass. This
is normally described in terms of different classes in a hierarchy
and forms the basis of the conventional form of the VISITOR pattern
[5]. We can also frame double dispatch in terms of qualification,
which is simply a different, more constrained form of subtyping.

Depending on the kind of extensibility you want in your design,
you can define your dispatch functions either outside or inside the
class. The following code uses class statics to retain some
consistency with the previous solutions:

template<typename target_type>

class loading_ptr {

public:

...

class pointer {

public:

...

~pointer() {

if(accessed)

save(that); // select appropriate

// save strategy

}

private:

template<typename save_type>

static void save(

loading_ptr<save_type> *that) {

that->save();

}

template<typename save_type>

static void save(

loading_ptr<const save_type> *) {

// do nothing as no save is needed

}

loading_ptr *that;

bool accessed;

};

...

};

If overloading with respect to the full loading_ptr type does
not work for your compiler, restructure the code so that you
overload with respect to the target pointer.

Conclusion

Overloading with respect to qualification combines with templates
to provide a valuable form of subtyping and specialization. Whilst
not all of the techniques demonstrated are within reach of all
compilers, there is enough overlap between their applicability to
allow you some implementation wriggle room.

The write-backproxy allows a number of issues to be explored,
although it is not intended to demonstrate all that you would need in
such a design. For instance, matters of object lifetime and thread
synchronization have been glossed over. There is also an important
assumption in the applicability of the core design: if the non-const
access is not write mostly there will be a lot of wasted saves. However,
as C++ is currently defined there is no way that a proxy can both be
made generic and distinguish on the qualification of the actual target
member accessed, so this is unfortunately a natural constraint.

Kevlin Henney
kevlin@curbralan.com

References
[1] Kevlin Henney. “From Mechanism to Method: Good
Qualifications,” C/C++ Users Journal C++ Experts Forum,
January 2001, www.cuj.com/experts/1901/henney.htm
[2] Bjarne Stroustrup. C++ Programming Language, 3rd Edition
(Addison-Wesley, 1997).
[3] Kevlin Henney. “C++ Patterns: Executing Around
Sequences,” EuroPLoP 2000, July 2000, also available from
www.curbralan.com

[4] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal. Pattern-Oriented Software
Architecture: A System of Patterns (Wiley, 1996).
[5] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software (Addison-Wesley, 1995).
[6] Scott Meyers. More Effective C++: 35 New Ways to Improve
Your Programs and Designs, (Addison-Wesley, 1996).
[7] Kevlin Henney. “C++ Advanced Design Issues: Asynchronous
C++,” Visual Tools Developers’ Academy (Oxford, September 1996).
[8] Bjarne Stroustrup. “Wrapping C++ Member Function Calls,”
C++ Report, June 2000.
[9] Kevlin Henney. “From Mechanism to Method:
Substitutability,” C++ Report, May 2000, also available from
www.curbralan.com

[10] Kevlin Henney. “From Mechanism to Method: Distinctly
Qualified,” C/C++ Users Journal C++ Experts Forum, May
2001, www.cuj.com/experts/1905/henney.htm
[11] Boost library website, www.boost.org

This article was originally published on the C/C++ Users
Journal C++ Experts Forum in September 2001 at
http://www.cuj.com/experts/documents/s=7991/

cujcexp1909Henney/

Thanks to Kevlin for allowing us to reprint it.

