
3

Overload issue 61 june 2004

contents credits & contacts

Overload Editor:

Alan Griffiths
overload@accu.org
alan@octopull.demon.co.uk

Contributing Editor:

Mark Radford
mark@twonine.co.uk

Readers:

Ian Bruntlett
IanBruntlett@antiqs.uklinux.net

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Advertising:

Chris Lowe
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:

http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

Publications Officer:

John Merrells
publications@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

Letters to the Editor(s) 6

The Tale of a Struggling Template

Programmer Stefan Heinzmann 7

Lvalues and Rvalues Mikael Kilpeläinen 12

When is a “Pattern” not a “Pattern”?

Alan Griffiths 14

Efficient Exceptions? Roger Orr 15

Where Egos Dare Allan Kelly 21

A Template Programmer’s Struggles

Resolved

Phil Bass and Stefan Heinzmann 24

4

Overload issue 61 june 2004

Editorial: New Things
Under the Sun

One of the things that has changed is the ease with which ideas,
techniques and even tools circulate. And this isn’t just the advent
of new technologies – when I started in the industry the only books
around the office tended to be manuals for the system being used.
Now I can look around the office to find copies of DeMarco’s
“Peopleware”, Senge’s “Fifth Discipline”, Cockburn’s “Effective
Use Cases” and “Agile Software Development”, along with a
miscellany of books on Design Patterns and Extreme
Programming. Some of the ideas these contain are even being put
into practice! It may be taking time, but change is happening. And
Overload has a role to play in ensuring that useful knowledge is
not forgotten.

Of course, the trouble with change is ensuring that we keep the
good and discard the bad. And that is particularly on my mind at
the moment. The more observant of you may have noticed a change
to Overload (but I hope that there is nothing that has caused you to
notice). Let me explain.

At the AGM Tom Hughes stood down from the post of
Publications Officer having successfully steered the journals
through a number of changes in the last few years. This gave the
previous Overload editor, John Merrells, the opportunity to join the
committee as the new Publications Officer (which might be
considered a promotion). That left a gap to be filled as Overload
editor – and, when it was offered to me, I took it on. I hope that you
will all join me in thanking Tom and John for their efforts over the
years, and to wish John success in his new role.

It was only a year ago that I joined the Overload team as a
“contributing editor” – and took on the some of the editorial tasks,
such as producing the editorial. These are tasks that I’ve
subsequently shared with Overload’s remaining contributing editor,
Mark Radford. The first of these editorials reviewed the changes
that had happened to Overload since John took it over (from me)
and concluded: “All of this makes Overload a much more
impressive publication than it was six years ago.”

The last year has not changed that opinion: I’m very happy with
the way that Overload has developed under John Merrells’
guidance. I hope that you are too. It should therefore be no surprise
that I’ve not taken on the editorial role with any dynamic agenda
for change. Most of the Overload team remains in place and will
be performing the same role: helping authors to prepare their work
for publication. And with any luck you, the readers, will continue
to find interesting things happening to write articles about.

Having said that, I must immediately confess that some changes
are intended: John Merrells, Paul Johnson (the new C Vu editor)
and I have agreed that the distinction between the journals has not

been clear to the readership. In part this has been due to a failure
to route articles to the other journal when that was appropriate. In
the future we intend to ensure that articles are re-routed if
appropriate. I trust that this won’t upset anyone.

Which all begs the question “in which journal does an article
belong?” While those working on the journals tend to agree on each
specific article that has been discussed, it isn’t that easy to explain.
Especially as some members (and the ACCU website) appear to
have views that differ markedly from ours. So let me go on record
about a couple of things:
● Overload is no longer a C++ based publication: it covers a much

broader range of material – the current issue discusses team
working; design patterns; the use of exceptions in C#, Java and
C++; and the high competency threshold set by C++.

● Overload is not a minority interest: the vast majority of ACCU
members (just over 85%) subscribe to Overload.

So what is Overload about? In the editorial mentioned above I said
of Overload articles that “there is a tendency for them to be about
designs, illustrated using C++, rather than about C++ itself”. Having
thought about it over the past year I no longer think that captures it
at all: The articles assume that most basic development skills have
been mastered and address problems faced by journeyman (or
master) developers. (While the industry does not have a recognised
apprenticeship system it does have recognised masters.) These
articles might examine the effect of applying alternative solutions; or
discuss new tools and ideas; or show old ideas in a new light. There
are reports back from those venturing away from the mainstream
approaches in the hopes of finding something better. And don’t
forget that what is “mainstream” for one technology may be new
ground for another – we need to exchange ideas.

And the exchange of ideas was the theme of a “Birds of a
Feather” [BOF] session on C++ that I led at the conference. (Why
C++? – because I’m currently working in that language and missing
the support that is available for working in Java.) In that BOF I led
a discussion of tools and techniques that people had enjoyed in
other languages that they lacked when working in C++. Many
things came to light from developers using Java:
● Using a refactoring IDE (Eclipse, IntelliJ) changes the way that

you think about maintaining and developing code (and makes
things achievable that were not before).

● Having a de-facto standard for a unit test framework (JUnit)
makes test driven development that much easier to establish.

● Tools for automating integration, build and smoke test processes
(CruiseControl, AntHill) make frequent (or continuous) builds
easy to put in place – not a continuous battle.

Mark’s editorial “An Industry That Refuses To Learn” (Overload 60) clearly struck
a chord of recognition – as you can see from the letters page. It is disappointing,
however, that no-one makes the case for there being improvements in the

industry. Despite the depressing repetition of mistakes and rediscovery of ideas, some
things have changed for the better!

5

Overload issue 61 june 2004

I’m sure there are others, but these types of tool have a long
history in the SmallTalk community – and only became
commonplace when ex-SmallTalkers reimplemented them after
moving to Java.

The BOF wasn’t entirely a matter of discussing the greener
grass and sighing with regret: an interesting discussion of various
unit testing frameworks developed with people relating why
they’d written their own (about half the room had done this).
People expressed various dissatisfactions with CppUnit,
CricketTest, CppUnitLight, and CxxUnit, but,
interestingly, boost::test got no bad reports. There were not
enough reports on boost::test to announce it a winner, but
people were sufficiently interested to say they’d go away and try
it. (I’ve not had any reports back yet – but I’ll keep you
informed.)

Another thing that was discussed was whether there were
technical obstacles to the development of C++ refactoring tools. It
was felt that the difficulty of compiling C++ and the way that a
piece of code can appear in multiple translation units made this a
lot harder than equivalent tools for SmallTalk or Java. But it was
thought possible.

Developers, it seems, are not the only ones to recognise the
potential for refactoring tools for C++. After I mentioned
refactoring tools for C++ in my “Christmas List” (Overload 58),
Giovanni Asproni emailed me with links to an alpha version of a
C++ refactoring tool: http://www.xref-tech.com/ and to
SlickEdit: http://www.slickedit.com/which advertises these
features. Microsoft has also listed “refactoring” as a feature of their
forthcoming IDE. I’ve not, as yet, had time to review any of these
offerings, so the reality may be less than the promise, but I am
looking forward with anticipation.

Of course, it isn’t just within the C++ arena that things are
happening. I’ve been hearing from developers taking a first look at
Java’s JDK 1.5, which it seems has grown a host of new features.
But while I’ve heard a few rumours I can’t yet provide an informed
report of any interesting developments there.

I’d love to be able to report on progress in other areas:
● Languages like Python and C# are widely used by ACCU

members. (But not, at the moment, by me).
● New development tools have become available and some of

them change the way we can think about developing software.
(I’ve mentioned some of these above.)

● Ideas and techniques for handling various elements of the
development process are being explored. (I know of one
developer who took the suggestion that “test driven development
wouldn’t be appropriate to a compiler” as a challenge, and has
used that approach to write a compiler.)

● Anything else that develops the art/craft/science of software
development.

I want to know more, and my guess is that many of you do too. I
also know that my time is limited and have no reason to believe
that yours is any different. But if you are reading this and
thinking “doesn’t he know about X” then you can help the rest of
us by submitting an article. (It is only fair, you discovered about
A, F and M through articles in Overload.)

C++ wasn’t the only thing I talked about at the Spring
Conference – I ran a second BOF in conjunction with Neil Martin
that discussed the possible role that ACCU could play in promoting
a professional approach to software development. Lots of ideas
were discussed, including certification schemes. Neil went away to
investigate what the implications of becoming a certifying body
were, and I got a mailing list set up that includes the people that
expressed an interest. While Neil has reported back to the list
nothing else has happened (yet). Perhaps someone reading this can
provide the necessary impetus.

I hope that I’m going to enjoy editing Overload, I have
certainly discovered that it involves work. I’m writing the first
draft of this editorial on the train home from working at a client’s
for the last few days – and it has to go to the production editor
tonight! (So no chance to mull it over for a few days.) But, so
long as worthwhile articles are submitted, I feel that the effort
is worthwhile.

Things are changing: new people, new ideas, some things
don’t – some problems are there just because there are people
involved. But let me repeat a suggestion made to me at the
Extreme Tuesday Club (sorry, I’ve forgotten your name, but I
owe you a pint) of something that isn’t just an old idea
reinvented: aspect oriented programming. What do you think?
Seen it before?

While Mark had a valid point that some good old things have
been forgotten, there are sometimes new things under the sun, and
these may be good too.

Alan Griffiths
alan@octopull.demon.co.uk

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy Deadlines
All articles intended for publication in Overload 62 should be submitted to the editor by July 1st 2004, and for Overload 63 by
September 1st 2004.

6

Overload issue 61 june 2004

Software Project Management
Classics?

Dear Mark
Your Overload 60 editorial was very timely for me. An open-

source software project on which I am involved is just getting
going, and it is clear that good communication between participants
is of paramount importance. I’m also rather unimpressed by the
project management tomes that line the shelves of today’s
bookshops. I have a question, arising from your editorial, that I’d
be interested in pursuing via the ACCU, but I’m not sure which
would be the best forum.

First some brief background: I’m an ex-academic, just over
halfway through a career change into software development. I have
only a little formal education in computer science and virtually none
in project management.

Frederick Brooks’ book “The Mythical Man-Month” was one of
the first project management books I read, and it still stands head
and shoulders above the doorstops. Not only do I re-read Brooks,
but many of his ideas have taken root in my head (I like to think);
the doorstops are in general eminently forgettable.

I completely agree with you on the waste exemplified in your
story about your friends from Bucks: knowledge sent out to fallow,
and new generations treading the same ground blindly. This kind
of amnesia is surely unimaginable in any other field (not even pop
music is so forgetful).

Is there a good list of ‘classics’ of software project management,
like Brooks’ essays? If not, I’d be interested in doing a straw poll
of ACCU members and keeping a tally linked from my homepage
(http://www.iau.ukfsn.org).

Yours sincerely
Ivan Uemlianin

The Invisibility of Software Design

Mark
I read your editorial in April’s Overload with a sense of

depressing agreement. I have been in the industry for around ten
years and I have worked in most phases of the software
development cycle, from requirements through to some post-
installation customer support. I have worked as a programmer, a
designer and as a consultant advising companies on development
strategy and technology policy. I think that I am just getting to the
point were I can understand what is going on and might have
something to say about it.

I have been appalled by the lack of learning from experience that
is evident in the industry but I am not sure that it is entirely down
to the practitioners. I am beginning to think there is a structural
problem with IT that exasperates people’s tendency to want to
reinvent everything and I think that it contributes and fuels the
‘follow the hype’ climate.

I think that the problem lies in the invisibility of software design
in the delivered product. I think that this invisibility has at least two
important consequences:

Firstly, it means that good design is not recognised by the users
because they can not see it. There is no end-user pay-back for
elegant design. Contrast this with civil engineering where design is
very visible e.g. it is simple to see that the Millennium Bridge has
a wonderfully elegant design. This means that the industry as a

whole does not place much emphasis on quality of design, so
practitioners do not see it as important either. Therefore if it is not
important why learn about how others have done it in the past?

Secondly, it means that it is difficult for those that do want to
learn to know where to start. You can gain a great deal of
information about civil engineering and structural design by looking
at buildings, bridges, etc. In fact the conversation of many architects
will be peppered with references to this building or that bridge.
Things are different for software engineers, there might be brilliant
examples of software design installed on the computer I am using
right now and I would never know. Even worse than not knowing,
even if I did know I could not look at them because the source code
will be secret.

This issue of secrets constantly nags at me. I think that the
software industry’s obsession with intellectual property is an
important reason for the glacial pace of its advance. As an industry
we keep things private and secret more than any other (at least in
my experience). How is a rookie programmer supposed to learn
how those that went before him did things if everything they
produced is hidden behind a cloak of secrecy? Unless he is lucky
enough to work in a very experienced team he is left blind. This
point is made clear in your editorial: unless I am lucky enough to
know your friends how could I know that they had solved the
problems of the transactional programming model 25 years ago? It
is easy to see how medieval architects solved the problems of load
on cathedral walls, you can go and look at the flying buttresses!

One light on the horizon is the increasing use of Open Source
Licensing. This has led of a large body of software being made
available for those that want to learn. I for one have found that I
have learnt more about software design from my involvement in
a number of Open Source projects in the last few years than I have
in most of my professional programming jobs. I have also found
that I am more motivated to do an elegant design and professional
coding job if I think that many people are likely to look at my
code. I realise, that as a professional, I should always be motivated
to do this, but I, like most practitioners in our industry, am only
human.

So my advice to a new programmer that wants to “stand on the
shoulders of giants” rather than be condemned to “reinvent the
wheel” is this: Ignore just about everything the software vendors
tell you, listen to the old hands on your team and spend some of
your spare time reading and contributing to Open Source Software.

Regards
Richard Taylor

rjt-accu@thegrindstone.me.uk

Software’s No Different...

Mark,
In many ways I would not classify software as being any

different from many other industries. There is plenty of wheel
reinventing going on all over the place (hence the creation of a term
to describe it). Until we have lots of people regularly being killed
for software related reasons, I don’t see things changing.

This paper does an excellent job of covering the issues:
sunnyday.mit.edu/steam.pdf

Derek M Jones
derek@knosof.co.uk

Letters to the Editor(s)

7

Overload issue 61 june 2004

The Tale of a Struggling
Template Programmer

by Stefan Heinzmann

By relieving the brain of all unnecessary work, a good notation sets
it free to concentrate on more advanced problems, and in effect
increases the mental power of the race. Alfred N. Whitehead

I’m not exactly a beginner in C++ templates. Hey, I’ve even got
“the book” on it [1]! But, admittedly, I’m not a guru – if I were, I
wouldn’t need the book. So I was fairly confident that I could
easily come up with a little tool I have wanted to write for a
while now. But it wasn’t as easy as I thought. For your
amusement I’m going to show you what I set out to do and what
roadblocks I bumped into.

First, let me describe what I wanted to do. I have repeatedly
come across the need to do table lookups in constant tables of
key/value pairs. I program for embedded systems, so I am keen on
keeping the table itself in nonvolatile memory (ROM, Flash, or
whatever). I want to use binary search instead of linear search for
efficiency. This requires the table to be stored in sorted order. Sorted
according to the key alone, that is. Here’s an example of such a table
(binary search is not really beneficial with such a small table, but
this is only a toy example):

const struct { int key; const char *value; }

table[] = {

{ 0, "Ok" },

{ 6, "Minor glitch in self-destruction module" },

{ 13, "Error logging printer out of paper" },

{ 101, "Emergency cooling system inoperable" },

{ 2349, "Dangerous substances released" },

{ 32767, "Game over, you lost" }

};

The first problem is to ensure the table is sorted. This is a
compile-time task, so in theory it could be a job for template (or
preprocessor) metaprogramming. If you’re good at that, I’ve got
some homework for you. It’s too difficult for me. I just resolved
to tell the programmer to make sure the table is sorted.

The second problem is simpler: Provide a lookup function that,
given a key, returns the associated value, or a default value if the
key could not be found in the table. Naturally, I wanted to
implement this as a function template that adapts to the actual key
and value types. As I want the tables to be put in nonvolatile
memory, they will in practice be of POD type (C-style arrays of C-
style structs). This is a much easier problem to solve, wouldn’t you
agree? So pour yourself a glass of your favorite beverage, install
yourself in your armchair and chuckle while watching me making
a fool of myself.

The STL contains binary search algorithms, so it is sensible to
use them instead of inventing my own. The first attempt at my
function template uses std::equal_range and goes like this:

template<typename Key, typename Val, unsigned n>

const Val &lookup(const std::pair<Key,Val>(&tbl)[n],

const Key &key, const Val &def) {

typedef const std::pair<Key,Val> Entry;

Entry entry(key, Val());

std::pair<Entry*,Entry*> range

= std::equal_range(tbl, tbl+n, entry);

if(range.first != range.second)

return range.first->second;

return def;

}

You probably know or guessed that std::equal_range
returns the range of entries which compare equal to the value to
be searched. If there are no duplicates in the collection, this range
will encompass either zero or one element. Also note the
declaration of the function parameter tbl, which looks a bit
weird at first glance. This declaration specifies that tbl is a
reference to an array whose elements are of type const
std::pair<Key,Val> and whose size is n elements. Since
Key, Val and n are template parameters the compiler deduces
all this information at compile time. This version of lookup hence
requires the table to be an array of std::pair objects. The
example table above thus has to be changed to use
std::pair<int,const char*> instead of the anonymous
struct. You use it like this:

std::cout << lookup(table,6,"???") << std::endl;

But alas, it doesn’t work. As std::pair has constructors, it is
not an aggregate, and thus can not be initialized with the curly
braces notation. Try it: Your compiler will complain. For the
same reason it will most probably not be put into read-only
storage. Clearly, std::pair needs to be replaced by something
that allows aggregate initialization:

template<typename Key, typename Val>

struct Pair {

Key key;

Val val;

};

template<typename Key, typename Val, unsigned n>

const Val &lookup(const Pair<Key,Val>(&tbl)[n],

const Key &key, const Val &def) {

typedef const Pair<Key,Val> Entry;

Entry entry = { key, Val() };

std::pair<Entry*,Entry*> range

= std::equal_range(tbl, tbl+n, entry);

if(range.first != range.second)

return range.first->val;

return def;

}

That didn’t work either. Here’s what Visual C++ 7.1 had to say:

main.cpp(33) : error C2782: 'const Val

&lookup(const Pair<Key,Val> (&)[n],const Key

&,const Val &)' : template parameter 'Val' is

ambiguous

main.cpp(11) : see declaration of 'lookup'

could be 'const char [4]'

or 'const char *'

Ok, fair enough, I thought, the compiler might have a point here.
It can’t figure out the proper type for Val, because it occurs
twice in lookup’s signature (once as part of the Pair, once as

8

Overload issue 61 june 2004

the type of the def argument). What can we do about this? Well,
I decided to try a separate template parameter for the array
element type, like this:

template<typename Key, typename Val,

typename Elem, unsigned n>

const Val &lookup(Elem(&tbl)[n],

const Key &key, const Val &def) {

Elem entry = { key, Val() };

std::pair<Elem*,Elem*> range

= std::equal_range(tbl, tbl+n, entry);

if(range.first != range.second)

return range.first->val;

return def;

}

I imagined that it would be easier for the compiler to figure out
the various type promotions/decays when doing the initialization
of the variable entry inside the function template. This stuff
would then not get in the way when it tried to deduce the
template parameters. The compiler still had something to
complain about, however:

main.cpp(13) : error C2440: 'type cast' : cannot

convert from 'int' to 'const char [4]'

There are no conversions to array types,

although there are conversions to references or

pointers to arrays

main.cpp(32) : see reference to function

template instantiation 'Val (&lookup<int,const

char[4],const Pair<Key,const char *>,7>(Elem

(&)[7],const Key &,Val (&)))' being compiled

with

[

Val=const char [4],

Key=int,

Elem=const Pair<int,const char *>

]

main.cpp(16) : error C2440: 'return' : cannot

convert from 'const char *const ' to 'const char

(&)[4]'

Reason: cannot convert from 'const char *const '

to 'const char [4]'

There are no conversions to array types,

although there are conversions to references or

pointers to arrays

The first error looked like complete idiocy to me. Why would the
compiler want to convert an int to a const char [4]
anyway? It had deduced the template arguments correctly, hadn’t
it? Compiler confusion!

Let’s look at the second error then, as it actually made some
sense to me. I’m using the Val template parameter for the return
type as well as the default value, so it is no surprise that the compiler
thinks it should be an array when I’m providing an array in the call
to lookup. That can be fixed by forcing the pointer decay in the call
to lookup, like this:

std::cout << lookup(table,6,(const char*)"???")

<< std::endl;

Disgusting, isn’t it? It could be done with a more “politically
correct” type of cast, of course, but it is actually a nuisance to
need one in the first place. Let’s see what we can do about
this:

template<typename EKey, typename EVal,

unsigned n, typename Key, typename Val>

const EVal &lookup(const Pair<EKey,EVal>(&tbl)[n],

const Key &key, const Val &def) {

typedef const Pair<EKey,EVal> Elem;

Elem entry = { key, Val() };

std::pair<Elem*,Elem*> range

= std::equal_range(tbl, tbl+n, entry);

if(range.first != range.second)

return range.first->val;

return def;

}

Note that I reordered the template parameters to match the order
of occurrence in the function argument list. I thought that was a
good idea as the number of template parameters is growing. My
stupid compiler still doesn’t get it:

main.cpp(14) : error C2440: 'type cast' : cannot

convert from 'int' to 'const char [4]'

There are no conversions to array types,

although there are conversions to references or

pointers to arrays

main.cpp(33) : see reference to function template

instantiation 'const EVal &lookup<int,const

char*,7,int,const char[4]>(const Pair<Key,Val>

(&)[7],const Key &,const char (&)) ' being compiled

with

[

EVal=const char *,

Key=int,

Val=const char *

]

main.cpp(18) : warning C4172: returning address of

local variable or temporary

I still can’t figure out why the compiler wants to convert an int
to a const char [4], but the warning is sensible: Val and
EVal aren’t necessarily the same, so the compiler is probably
compelled to introduce a temporary in the last return statement.
This temporary of course goes away too soon. Ok, that’s easy to
fix:

template<typename EKey, typename EVal,

unsigned n, typename Key, typename Val>

EVal lookup(const Pair<EKey,EVal>(&tbl)[n],

const Key &key, const Val &def) {

typedef const Pair<EKey,EVal> Elem;

Elem entry = { key, Val() };

std::pair<Elem*,Elem*> range

= std::equal_range(tbl, tbl+n, entry);

if(range.first != range.second)

return range.first->val;

return def;

}

When Val is a const char* the return by value is no more
expensive that the return by reference I used before. Alas, the
value type could well be something more complicated (a
struct full of stuff), so I’m not very happy to have a copy
made. But if it must be it shall be...

The weird error remains, however. So how about asking a
different compiler? Here’s what GCC 3.3 says:

main.cpp: In function 'EVal lookup(const Pair<EKey,

EVal> (&)[n], const Key&, const Val&) [with EKey =

int, EVal = const char*, unsigned int n = 7, Key =

int, Val = char[4]]':

main.cpp:33: instantiated from here

main.cpp:14: error: ISO C++ forbids casting to an

array type 'char[4]'

A number of further errors follow, but they’re related to a
different problem to which I’m going to turn later. Let’s first try
to find out what the error above means. Line 14 is where entry
gets initialized. So what’s wrong with this? When two compilers
more or less agree, they might actually be right.

Both compilers seem to believe that I want a conversion from
EVal to Val (give or take a const). I would have thought it ought
to be the other way round. I construct a temporary of type Val and
expect the compiler to convert it to an EVal in order to initialize
the second field of the variable entry. In my particular case Val is
an array and EVal is a pointer, so the conversion should simply be
a decay. But why convert anyway? I’ve got an idea: Let’s construct
an EVal directly:

template<typename EKey, typename EVal,

unsigned n, typename Key, typename Val>

EVal lookup(const Pair<EKey,EVal>(&tbl)[n],

const Key &key, const Val &def) {

typedef const Pair<EKey,EVal> Elem;

Elem entry = { key, EVal() };

std::pair<Elem*,Elem*> range

= std::equal_range(tbl, tbl+n, entry);

if(range.first != range.second)

return range.first->val;

return def;

}

That sorts it out. But it feels as if I had merely dodged the issue. I
still don’t know why the original attempt failed. If you know, tell
me.

That brings us to the next errors I mentioned above. GCC
emits a lot of error messages which are too numerous to print
here, but most of them contain the text “no match for
operator<”, which is actually quite right since I obviously
forgot to define how to compare a Pair to another. So I guess
I have two options here. I could either provide operator< for
a Pair or I could provide a custom predicate to
std::equal_range to do the comparison. I only want to
compare the keys, so I feel that the first option amounts to
cheating. If someone else wanted to compare two Pairs and
did not know about my ruminations here she would probably
expect operator< to take both fields of the Pair into
account.

So I think I should rather provide a special predicate with a
sensible name like LessKey that makes it clear that only the
key is being compared. Here we go:

template<typename Key, typename Val>

struct LessKey : std::binary_function<

const Pair<Key,Val>&,

const Pair<Key,Val>&,bool> {

result_type operator()(first_argument_type a,

second_argument_type b) const

{ return a.key < b.key; }

};

Look Ma! I even made it adaptable by deriving from
std::binary_function! I earned extra brownie points for
that, didn’t I? My lookup function template now looks like this:

template<typename EKey, typename EVal,

unsigned n, typename Key, typename Val>

EVal lookup(const Pair<EKey,EVal>(&tbl)[n],

const Key &key, const Val &def) {

typedef LessKey<EKey,EVal> Pred;

typedef const Pair<EKey,EVal> Elem;

Elem entry = { key, EVal() };

std::pair<Elem*,Elem*> range

= std::equal_range(tbl, tbl+n, entry, Pred());

if(range.first != range.second)

return range.first->val;

return def;

}

Needless to say, GCC still isn’t happy. It emits a series of warnings
regarding the implicit usage of typename. Here’s just one of them:

main.cpp:14: Warning: 'LessKey<Key,

Val>::result_type' is implicitly a typename

main.cpp:14: Warning: implicit typename is

deprecated, please see the documentation for

details

The same happens for first_argument_type and
second_argument_type. I could ignore those as they’re
only warnings, but I want to get it right. Furthermore I think I
know what’s amiss: I need to use the keyword typename to
make clear that they are types. Next try:

template<typename Key, typename Val>

struct LessKey : std::binary_function<

const Pair<Key,Val>&,

const Pair<Key,Val>&,bool> {

typename result_type operator()(

typename first_argument_type a,

typename second_argument_type b) const

{ return a.key < b.key; }

};

Now, GCC defecates an even bigger heap of error messages onto
me (‘scuse my French!). I don’t want to spare you the experience:

main.cpp:13: error: Fehler beim Parsen before

'operator'

9

Overload issue 61 june 2004

10

Overload issue 61 june 2004

/usr/include/c++/3.3/bits/stl_algo.h: In function

'std::pair<_ForwardIter, _ForwardIter>

std::equal_range(_ForwardIter, _ForwardIter, const

_Tp&, _Compare) [with _ForwardIter = const

Pair<int, const char*>*, _Tp = Pair<int, const

char*>, _Compare = LessKey<int, const char*>]':

main.cpp:22: instantiated from 'EVal lookup(const

Pair<Key, Val> (&)[n], const Key&, const Val&)

[with EKey = int, EVal = const char*, unsigned int

n = 7, Key = int, Val = char[4]]'

main.cpp:40: instantiated from here

/usr/include/c++/3.3/bits/stl_algo.h:3026: error:

no match for call to '(LessKey<int, const char*>)

(const Pair<int, const char*>&, const Pair<int,

const char*>&)'

/usr/include/c++/3.3/bits/stl_algo.h:3031: error:

no match for call to '(LessKey<int, const char*>)

(const Pair<int, const char*>&, const Pair<int,

const char*>&)'

/usr/include/c++/3.3/bits/stl_algo.h: In function

'_ForwardIter std::lower_bound(_ForwardIter,

_ForwardIter, const _Tp&, _Compare) [with

_ForwardIter = const Pair<int, const char*>*, _Tp =

Pair<int, const char*>, _Compare = LessKey<int,

const char*>]':

/usr/include/c++/3.3/bits/stl_algo.h:3034:

instantiated from 'std::pair<_ForwardIter,

_ForwardIter> std::equal_range(_ForwardIter,

_ForwardIter, const _Tp&, _Compare) [with

_ForwardIter = const Pair<int, const char*>*, _Tp =

Pair<int, const char*>, _Compare = LessKey<int,

const char*>]'

main.cpp:22: instantiated from 'EVal lookup(const

Pair<Key, Val> (&)[n], const Key&, const Val&)

[with EKey = int, EVal = const char*, unsigned int

n = 7, Key = int, Val = char[4]]'

main.cpp:40: instantiated from here

/usr/include/c++/3.3/bits/stl_algo.h:2838: error:

no match for call to '(LessKey<int, const char*>)

(const Pair<int, const char*>&, const Pair<int,

const char*>&)'

/usr/include/c++/3.3/bits/stl_algo.h: In function

'_ForwardIter std::upper_bound(_ForwardIter,

_ForwardIter, const _Tp&, _Compare) [with

_ForwardIter = const Pair<int, const char*>*, _Tp =

Pair<int, const char*>, _Compare = LessKey<int,

const char*>]':

/usr/include/c++/3.3/bits/stl_algo.h:3036:

instantiated from `std::pair<_ForwardIter,

_ForwardIter> std::equal_range(_ForwardIter,

_ForwardIter, const _Tp&, _Compare) [with

_ForwardIter = const Pair<int, const char*>*, _Tp =

Pair<int, const char*>, _Compare = LessKey<int,

const char*>]'

main.cpp:22: instantiated from 'EVal lookup(const

Pair<Key, Val> (&)[n], const Key&, const Val&)

[with EKey = int, EVal = const char*, unsigned int

n = 7, Key = int, Val = char[4]]'

main.cpp:40: instantiated from here

/usr/include/c++/3.3/bits/stl_algo.h:2923: error:

no match for call to '(LessKey<int, const char*>)

(const Pair<int, const char*>&, const Pair<int,

const char*>&)'

I hope the occasional German word in there doesn’t irritate you.
Having part of the output of tools translated to German with the
remainder in English leads to interesting effects. That’s a story
for another day.

Are you actually able to spot what’s wrong from the
gobbledygook above? I wasn’t. Give me a hint if you are. All it tells
me is that GCC ran into a parsing error in a system library because
of the code I wrote (!). Is this a GCC bug? Visual C++ 7.1 is happy
with it, no matter whether the typename keywords are there or
not. So do I need them or not? How do I write this correctly?

Time to consult “the book”[1]! On page 131 we can find the
following description:

“The typename prefix to a name is required when the name
1. Appears in a template
2. Is qualified
3. Is not used as in a list of base class specifications or in a list of

member initializers introducing a constructor definition
4. Is dependent on a template parameter
Furthermore, the typename prefix is not allowed unless at least
the first three previous conditions hold.”

Ok, let’s see whether I can make any sense of this: Rules 1 and
3 are obviously met. Rule 4 seems to be met indirectly, since
result_type is defined by the base class
std::binary_function, which in turn is a class template that
depends on both template parameters Key and Var. However, rule
2 seems to be violated, as I can not see any qualification. So I
conclude that typename shouldn’t even be allowed where I put
them. So GCC is technically right although it should have generated
better error messages. Visual C++ accepted wrong code without
complaint. But what is wrong with the original version without
typename, why is GCC issuing a warning? Rule 2 pretty much
excludes that a typename is missing elsewhere.

I solved the problem by not using return_type and its
siblings from std::binary_function. The following is
accepted by both GCC and Visual C++:

template<typename Key, typename Val>

struct LessKey : std::binary_function<

const Pair<Key,Val>&,

const Pair<Key,Val>&,bool> {

bool operator()(const Pair<Key,Val> &a,

const Pair<Key,Val> &b) const

{ return a.key < b.key; }

};

Again, I had chickened out instead of solving the problem.
Swallowing my pride, I went on to the next challenge:

const char *result = lookup(table,6,0);

I guess you see what I want to achieve?!? I want lookup to
return a null pointer if the key wasn’t found in the table. For a
table that contains strings as values this is sensible, wouldn’t
you agree?

It doesn’t compile. You already guessed why: The third argument
to the lookup function gets interpreted as an integer as opposed to

a null pointer, so the compiler comes up with the wrong choices for
the template parameters and as a consequence the statement
“return def;” fails to compile. I would have to write something
like this:

const char *result = lookup(table,6,(char*)0);

But that’s ugly; can you really expect that from an innocent user
of my templates? What about this:

const char *result = lookup(table,6,NULL);

Nope, the compiler still interprets the NULL as an integer
constant. Back to square 1. GCC’s error message is actually quite
interesting:

main.cpp: In function 'int main()':

main.cpp:40: Warnung: passing NULL used for non-

pointer converting 3 of 'EVal lookup(const

Pair<Key, Val> (&)[n], const Key&, const Val&)

[with EKey = int, EVal = const char*, unsigned int

n = 7, Key = int, Val = int]'

main.cpp: In function 'EVal lookup(const Pair<Key,

Val> (&)[n], const Key&, const Val&) [with EKey =

int, EVal = const char*, unsigned int n = 7, Key =

int, Val = int]':

main.cpp:40: instantiated from here

main.cpp:25: error: invalid conversion from 'const

int' to 'const char*'

The compiler does indeed notice that NULL is being used as a
non-pointer, but it still pigheadedly decides to instantiate the
template with Val = int.

Despair sets in, creeping slowly from the back of my head
towards the front. Is there any hope to get this right? Am I trying
to do something frivolous? Illegal? Immoral? Fattening?

Time to step back and take a deep breath. What can we learn
from this?

It doesn’t take much to get into serious trouble with templates.
This doesn’t mean that templates themselves are to blame. It is
rather the interaction between templates and other C++ “features”
that cause problems. It is similar to combining drugs: Each one
is harmless when taken alone, but taken together they might kill
you.

Over the last years we have seen an increasing number of tricks
and workarounds attempting to control and contain the unwanted
effects of these interactions. Library designers are forced to know
and use them to prevent unpleasant surprises for the mere mortal
library user. Here’s a short list of idiosyncrasies that I just came up
with ad-hoc. You’re invited to add your favorites to it. Maybe we
could create a “C++ derision web page” from it. I hope you don’t
take this seriously enough to be offended.

● Angle brackets being mistaken as shift operators in nested
template declarations

● The need to put in additional typename keywords in obscure
circumstances

● The need to put in additional template keywords in even more
obscure circumstances

● The need to use this-> explicitly to control name lookup in
templates in another set of obscure circumstances

● The often unwanted effects of automatic type
conversions/promotion/decay on template argument deduction
and overload resolution.

● The fact that bool converts to int automatically. This has the
effect that returning a member function pointer is sometimes
superior to returning a bool because it doesn’t convert as easily.
(Savour this: Member function pointers are better booleans than
bool!)

● The fact that the literal 0 converts to the null pointer.
● The C/C++ declaration syntax (need I say more?)
● Argument-Dependent Lookup

To me it seems the more experience I’ve gained programming in
C++ the more I realize how inadequate my skill still is. I have
been programming in C++ for a considerable time now, I have
read numerous books on the subject, and still I don’t seem to
have it under control. This bothers me. How can an average
programmer be expected to cope with this? Imagine for a
moment yourself giving a lecture to a classroom full of the type
of programmers you meet in your working life. Your topic is the
sort of stuff I came across in my example above. Just imagine the
puzzled faces.

I don’t know what to do about this. If the other languages weren’t
even worse in one way or another I would probably switch. But so
far I haven’t seen anything I like 100%. I had a look at Haskell, and
I generally liked what I saw, particularly regarding generic
programming, but I couldn’t see how to apply this to embedded
programming, where you deal extensively with low-level stuff that
is rather close to the hardware level. Here I would like to be able
to predict what kind of code is being generated. With Haskell I feel
I have no control over this. Maybe that’s because I’m not
experienced enough with it.

My dream language would take Haskell’s elegant type
inference machinery and built-in list/tuple/array manipulation
and combine it with a more “conventional” syntax. It must
support object-oriented and imperative programming styles,
because I can’t see how I could do without them in embedded
programming.

My feeling is that languages that have genericity tagged on as an
afterthought are not really satisfactory. Backwards compatibility is
likely to prevent cleaning up the rough edges. The result is the sort
of thing we have now with C++: The language is very complicated
and has lots of obscure and surprising special cases. I am asking
myself if it would not be possible to deprecate troublesome features
in a language more aggressively. I know of course that C++ has
become popular precisely because of its backward compatibility and
that right now the standard committees for C and C++ are
cooperating closely to ensure that this remains so.

Back in now ancient times the ANSI C standard introduced
function prototypes, offering a better alternative to K&R style
function declarations. I haven’t seen any K&R style code for a while
now. It still exists, but it is now customary to require a compiler
switch to make the compiler accept the old form. Can’t something
similar be done with C++? Something like a C++ generation 2 that
is not backwards compatible with the current generation, but is link-
compatible with it. And the compiler would continue to accept the
old version while it is gradually being phased out.

To wind up, let’s see where we are with my little problem. Here’s
the complete code as it stands now:

[concluded at foot of next page]

11

Overload issue 61 june 2004

12

Overload issue 61 june 2004

[continued from previous page]

#include <iostream>

#include <algorithm>

#include <functional>

template<typename Key, typename Val>

struct Pair { Key key; Val val; };

template<typename Key, typename Val>

struct LessKey : std::binary_function<

const Pair<Key,Val>&, const Pair<Key,Val>&,bool> {

bool operator()(const Pair<Key,Val> &a,

const Pair<Key,Val> &b) const

{ return a.key < b.key; }

};

template<typename EKey, typename EVal,

unsigned n, typename Key, typename Val>

EVal lookup(const Pair<EKey,EVal>(&tbl)[n],

const Key &key, const Val &def) {

typedef LessKey<EKey,EVal> Pred;

typedef const Pair<EKey,EVal> Elem;

Elem entry = { key, EVal() };

std::pair<Elem*,Elem*> range

= std::equal_range(tbl, tbl+n, entry, Pred());

if(range.first != range.second)

return range.first->val;

return def;

}

const Pair<int, const char*> table[] = {

{ 0, "Ok" },

{ 6, "Minor glitch in self-destruction module" },

{ 13, "Error logging printer out of paper" },

{ 101, "Emergency cooling system inoperable" },

{ 2349, "Dangerous substances released" },

{ 32767, "Game over, you lost" }

};

int main() {

const char *result = lookup(table,6,(char*)0);

std::cout << (result ? result : "not found")

<< std::endl; }

It has the following problems:
● It requires the ugly cast for passing the null pointer as the third

argument to lookup
● lookup returns the result by value, which can be inefficient
● It is still unclear why I couldn’t use the typedefs from std::

binary_function in the LessKey predicate (only with gcc)
● Neither do I know why the compiler wanted to convert the wrong

way between Val and EVal
So if you want to have a go, you’re invited to contribute your
solutions. I’d like to know how this is done right!

Stefan Heinzmann
stefan_heinzmann@yahoo.com

Conventional Programming
Languages: Fat and Flabby

For twenty years programming languages have been steadily
progressing toward their present condition of obesity; ... it is now
the province of those who prefer to work with thick compendia of
details rather than wrestle with new ideas. John Backus, 1977

Acknowledgements

Thanks to the reviewers Phil Bass, Thaddaeus Frogley and Alan
Griffiths for their comments.

The Book

[1] D. Vandevoorde, N. M. Josuttis, C++ Templates: The
complete guide, Addison-Wesley, 2003

Developers are people too, and hate to admit that they are confused or
that their understanding is incomplete. We should be grateful therefore
that Stefan was willing to write this article which illustrates the
potential C++ has for causing these symptoms even in experienced
developers. It is said that an admission of ignorance is the first step to
wisdom and further steps were taken when one of Overload's Readers
became interested in solving the problem presented above. If you wish
to tackle this exercise yourself then you may want to postpone reading
the results of their collaboration (which, in the traditional manner,
appears towards the end of this magazine). (AG)

Lvalues and Rvalues
by Mikael Kilpeläinen

The two concepts, lvalue and rvalue, can be somewhat confusing
in C++. Nevertheless, the difference is important to understand.
The basic consequences related to these concepts are interesting
and good to know in many cases.

In C++ every expression yields either an lvalue or an rvalue and
accordingly every expression is called either an lvalue or an rvalue
expression. An example of an lvalue is an identifier. As a further
example, a reference to an object is an lvalue. Every expression that
is not an lvalue is an rvalue. A good example of this is an expression
that produces an arithmetic value. An intuitive approach would be
to think of expressions as functions and then an lvalue can be
thought as the result of a function returning a reference.

Examples:
1. The subscript operator is a function of the form T& operator[](T*,

ptrdiff_t) and therefore A[0] is an lvalue where A is of array type.
2. The dereference operator is a function of the form T&

operator*(T*)and hence *p is an lvalue where p is of pointer type.

3. The negate operator is of the form T operator-(T) and therefore
-x is an rvalue.

The terms lvalue and rvalue were inherited from C. The original
meaning comes from the assignment: an lvalue being the left side
of the assignment and rvalue the right side. However, in the
modern C++, lvalue can be considered more as a locator value. An
lvalue refers to a defined region of storage. Although, this is not
true with the function lvalues since functions are not objects.
Similarly, an rvalue can be considered as a value of an expression.
This separation of two concepts helps to define and talk about
things, though some would say that it has caused more confusion.
Nevertheless, exact definitions are needed to clarify a language.

An rvalue should not be confused with the constness of an object.
An rvalue does not mean the object would be immutable. There is some
confusion about this, since non-class rvalues are non-modifiable. This
is not the case with user types. A class rvalue can be used to modify an
object through its member functions. Albeit in practice, it can be said
that objects are modified only through modifiable lvalues. A modifiable
lvalue is an lvalue that can be used to modify the object. Other lvalues
are non-modifiable lvalues, const reference is a good example of this.

13

Overload issue 61 june 2004

As mentioned already, non-class rvalues do not have the same
qualities as the user type rvalues. One might wonder about this.
After all, C++ was designed so that user types would behave like
built-ins, at least as uniformly as possible. Still this
inconsistency exists and the reasons for it shall be explored later.
Non-class rvalues are not modifiable, nor can have cv-qualified
types (the cv-qualifications are ignored). On the contrary, the
class rvalues are modifiable and can be used to modify an object
via its member functions. They can also have cv-qualified types.
In case of built-ins, some operators require an lvalue as does
every assignment expression as the left side. The built-in
address-of operator requires an lvalue which reflects the
character of lvalues rather well.

Examples:
int var = 0;

var = 1 + 2; // ok, var is an lvalue here

var + 1 = 2 + 3; // error, var + 1 is an rvalue

int* p1 = &var; // ok, var is an lvalue

int* p2 = &(var + 1); // error, var + 1 is an rvalue

UserType().member_function(); // ok, calling a

// member function of the class rvalue

The only real reason I can think of for needing the class
rvalues to be modifiable, is to allow the calling of the non-
const members of the proxies1 and similar. That is, a proxy
represents a type and it ought to behave accordingly. Keeping
this in mind when considering coherent behaviour along with
the const-correctness, one would make the mutating members
non-const. For this to work the modifiable rvalues are needed.
Although this may seem quite irrelevant, it is actually quite an
important reason. It can be used to emulate lvalue behaviour
and hence many things are made possible. Thinking about the
modifiable class rvalues more closely, they enable many
usable concepts and there are only a few rare cases when that
introduces problems. After all, the big difference between the
built-in types and the user types is that the user types can have
members. This difference effectively makes the non-class
rvalues non-modifiable.

An rvalue cannot be used to initialise non-const reference. That
is, an rvalue cannot be converted to an lvalue, but when an lvalue
is used in a context where an rvalue is expected, the lvalue is
implicitly converted to an rvalue. This binding restriction and the
modifiable class rvalue lead to interesting consequences. It allows
us to call all member functions for a user type but not mutating free
functions. This can be confusing as one needs to know whether an
operator is a member or not, and after all it is not consistent. The
same problem motivates us to implement operators as non-members
where possible, for consistency with built-in types. Also, since the
member functions can be called, the called function can return a
non-const reference to the object itself. This means that a modifiable
lvalue referring to a temporary object can be created, making it
possible to call a function that takes a non-const reference. Time
has shown this to be very dangerous as it allows mistakes that can
be hard to find, mostly because of the implicit conversions. That
ought not to be the case here, since it is not easy to make such a
mistake by accident.

Examples:
struct A {

A& operator=(const A&) { return *this; }

};

void func(A&);

..

func(A() = A()); // fine, operator= yields an lvalue

ofstream(“some”) << some_variable; // fine as long

// as the operator<< is a member

Forbidding the binding of rvalues to non-const references does
not come without problems, however. It makes it difficult to
provide uniform behaviour with unusual copy semantics, like
those of auto_ptr, which is why they are a bad idea. This is
why a special reference has been proposed for the next C++
standard. It would only bind to an rvalue. The proposal
actually makes a distinction between the rvalue and the lvalue
references by introducing a new syntax. This would allow
detection of an rvalue which is crucial for the move
semantics2. The proposed resolution would effectively allow
the uniform behaviour but still not compromise on the safety
issues.

The biggest problem with non-consistency seems to be the
confusion among the people. Of course it would be desirable to be
consistent in the eyes of purists but you cannot always get it all.
After taking a little trouble to understand, an lvalue and an rvalue
are quite easy concepts.

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Acknowledgement
I would like to thank Rani Sharoni for providing helpful
comments.

References

[1] ISO/IEC 14882-1998 Standard for the C++ language
[2] ISO/IEC 9899-1999 Programming language C
[3] Andrew Koenig and Barbara E. Moo, Accelerated C++,
Practical Programming by Example, 2000, Addison Wesley
[4] Bjarne Stroustrup, The Design and Evolution of C++, 1994,
Addison Wesley
[5] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software, 1995, Addison Wesley
[6] Howard E. Hinnant, Peter Dimov and Dave Abrahams, A
Proposal to Add Move Semantics Support to the C++ Language,
2002, http://std.dkuug.dk/jtc1/sc22/wg21/docs/
papers/2002/n1377.htm

Related links

[1] auto_ptr update, Scott Meyers,
http://www.awprofessional.com/content/images/

020163371X/autoptrupdate%5Cauto_ptr_update.html

[2] Generic<Programming>: Move Constructors, Andrei
Alexandrescu, http://www.cuj.com/documents/s=8246/
cujcexp2102alexandr/alexandr.htm

1 Proxy: provide a surrogate or placeholder for another object to control access to
it.

2 A proposal to add support for move semantics to the C++ has been made and the
rvalue-reference proposal is part of it.

14

Overload issue 61 june 2004

When is a “Pattern” not a
“Pattern”?

by Alan Griffiths

We all go through life listening to and telling stories: it is an
important part of human social behaviour. Parents tell children
bedtime stories, we read novels, watch TV and films, and many
successful computer games are based on allowing the player to
participate within a story. Incidentally, one of the things that that
seems to have been lost in many of these formats is the idea of
participation – although, to the annoyance of their mother, my
children re-invented it for bedtime stories (she preferred reading
from a book to collaborative invention).

Stories are also important in the development of computer
software. Not only the stories about how the system will be used, but
also the stories about how it will work. As with the stories in the wider
world they can take a number of forms: Among these are “design
patterns” and that is the form that I want to examine in this essay.

Before continuing, I should mention that there are those that
think “Patterns” are like the Platonic Ideals to be found in
philosophy: unchangeable and perfect examples of a concept. (This
is not to say that any particular write-up of a pattern is ever perfect
– Plato’s Ideals exist in the “real world”, not the mundane one.)

For me the important aspect of a pattern is that it narrates the
way that a design context is transformed by the application of a
solution. I don’t expect to ever meet an idealised design context and
so don’t demand that a pattern is the one true solution to a design
problem. (Only that it tells me enough to decide for myself if
applying the solution will advance the task.)

To demonstrate this I am going to present two “patterns” with a
common beginning, one that many developers are familiar with. In
fact, a good number of developers will be familiar with the whole
of both stories to the extent that I’m not going to worry about some
of the formalities of writing about patterns – such as citing “existing
implementations”. These are left as an exercise for the interested
reader.

Story Number 1

Initial Context
When a program is working with numerical values it is necessary
to represent these using the types and names available in the
language. Many languages provide some native data types (such
as the C/C++ types int and double) which support a rich
array of operations and conversions. Some of these operations
and conversion may not be appropriate to the types of numerical
value being worked with. For example, double might provide
the range of values and operations required for working with
temperature and pressure. However, it is possible to make
mistakes by, for example, assigning a temperature value to a
pressure variable.

Problem
How can such (hard to diagnose and expensive to fix) mistakes
be avoided?

Solution
Encode the problem domain types in the variable names so that
the programmer is reminded of the appropriate use of the
variable. For example, by using a prefix indicating the type of
the variable. Vis: cgdEngine and ntnsOil.

Resulting Context
The developer can see from its name the appropriate manner in
which to make use of a variable. An error like:

ntnsOil = cgdEngine
is noticeable “at a glance”. However, there is an overhead to this
solution: the developer needs to maintain a catalogue of problem
domain type prefixes and the corresponding types within the
programming language. Note that this catalogue may be explicit
(written down) or implicit (what everyone knows).

This is a perfectly good pattern that is adequately captured in the
above form. It would gain little from written in a more formal
structure (e.g. Coplien). It could also be written in a less formal
manner (e.g. Alexandrian) and still be considered a valid pattern.

As for existing usage: this is one of several design approaches
referred to as “Hungarian Notation” and there is no shortage of
developers willing to attest to its effectiveness.

Story Number 2

Initial Context
When a program is working with numerical values it is necessary
to represent these using the types and names available in the
language. Many languages provide some native data types (such
as the C/C++ types int and double) which support a rich
array of operations and conversions. Some of these operations
and conversion may not be appropriate to the types of numerical
value being worked with. For example, doublemight provide
the range of values and operations required for working with
temperature and pressure. However, it is possible to make
mistakes by, for example, assigning a temperature value to a
pressure variable.

Problem
How can such (hard to diagnose and expensive to fix) mistakes
be avoided?

Solution
Encode the problem domain types as user defined types so that
the compiler enforces the appropriate use of the variable. For
example, types “centigrade” and “newtons” may be
defined so that they only support the appropriate operations and
conversions.

Resulting Context
An error like:

oil_pressure = engine_temperature
will not compile. However, there is an overhead to this solution: the
developer needs to maintain a library of problem domain types and
code the support for the allowed operations and conversions.

Like the first story this is a perfectly good pattern but it is clearly
a different one.

Once again it isn’t hard to find developers that are willing to
attest to the effectiveness of this approach.

Two Paths to Choose From

What are we to make of this? We have two “patterns” that start
from the same position, and apply different solutions with
“success”. Which design should we choose for our work?

[concluded at foot of next page]

Efficient Exceptions?
by Roger Orr

I recently read a comment on a code review that produced a fair
amount of discussion about exceptions. Slightly simplified, the
C# code being reviewed was:

public bool isNumeric(string input) {
bool ret = true;
bool decimalFound = false;

if(input == null
|| input.Length < 1) {

ret = false;
}
else {
for(int i = 0

; i < input.Length
; i ++) {

if(!Char.IsNumber(input[i]))
if((input[i] == ‘.’)

&& !decimalFound) {
decimalFound = true;

}
else {
ret = false;

}
}

return ret;
}

The review comment that started the discussion was quite short:

Your isNumeric function might be more efficient as:

public bool isNumeric(string input) {
try {
Double.Parse(input);
return true;

}
catch(FormatException /*ex*/) {
return false;

}
}

I thought some of the discussion inspired by this comment might
be of more general interest. There are several important issues
that are relevant here, and later in the article I will return to some
of them. However the first thing that struck me was the use of
the word “efficient” and it is this word that the bulk of the article
addresses.

What Does it Mean to be Efficient?

In the coding context efficiency is usually concerned with size
and/or speed.

The second piece of code is more efficient in terms of source
code size. And it is probably slightly more efficient in terms of
image code size; but it is almost certainly not more efficient in terms
of runtime memory use, particularly on failure, since exceptions in
C# will allocate memory.

So I started wondering about runtime efficiency – which for
simplicity I will from here on refer to as ‘performance’. Would the
proposed replacement function be any faster than the original function?

[continued on next page]

15

Overload issue 61 june 2004

[continued from previous page]

Well, it would be easy if one solution always leads to a better
result than the other does. Then one pattern would be better than
the other (and closer to that Ideal). But this turns out not to be the
case – it is not always the same solution that produces the better
result.

Clearly both approaches resolve the problem stated in the
initial context. But when the two resulting contexts are examined
closely it becomes apparent that a careful assessment of costs
and benefits is required. Specifically: we have to chose between
the cost of maintaining the “prefix catalogue” or of maintaining
the “type library” described in the two solutions. (This may
appear to be lower in the first story as the catalogue need not be
maintained explicitly.) At the same time we have to choose
between the benefits of visual and compiler based error
detection.

In some circumstances the second solution may not even be an
option: the cost of implementing user-defined types may be so high
as to be prohibitive – in some languages there is no support for it.
(Although it may be possible to add them – some “lint” style tools
add the notion of “strong typedef” to C for this purpose.) Even
where possible in the language, the developer skills available to the
project may not be up to providing the desired user defined types
reliably.

It is far rarer that the first solution isn’t available: languages
whose maximum identifier length is significantly constrained are

thankfully rare these days. But there are occasions where
identifiers are displayed to users who would not appreciate these
prefixes.

It could even be worse: the initial context may sometimes be
better than either of the resulting contexts described above. This
happens whenever the cost of introducing a new type is higher than
the risk involved in reusing an existing type – or when the language
doesn’t allow user-defined types or long identifiers.

Will the True Pattern Please
Stand Up?

What is this: two (or three) patterns that might apply to the same
problem? That doesn’t fit with the popular view of patterns as a
template for solving problems: match the initial context and the
problem, and the solution follows automatically.

One way to defend this viewpoint is to insist that there are
additional forces at work, ones not captured by the initial context.
But look at what these forces are: the cost and/or benefits of aspects
the resulting context. Discussing these as part of the initial context
would seriously unbalance the story and lead to turgid prose. No,
there is no escaping from it: there is still a role for the designer!
These patterns don’t replace thought – you still have to decide
which option is better.

Alan Griffiths
alan@octopull.demon.co.uk

16

It is often said that it is better to use library functions than to
write your own code; apart from any other considerations library
functions are often optimised by experts using a wide variety of
techniques. However, in this case using the library function adds
exception handling into the equation – would the advice still
stand?

I thought I’d try to get some actual performance figures.
I wrote a simple test harness that called the first and the second

functions 1,000,000 times.

(execution times in seconds)

Unoptimised C#
Argument Function #1 Function #2
1 0.19 0.92
12345 0.56 1.13
10 digits 1.01 1.38
20 digits 1.91 1.79

Optimised C#
Argument Function #1 Function #2
1 0.10 0.89
12345 0.33 1.01
10 digits 0.65 1.36
20 digits 1.28 1.76
30 digits 2.07 1.92
40 digits 2.55 2.38

So the first function is quite a bit faster for relatively short
strings, but degrades until it is eventually slower than the second
function. Similar results are generated when optimisation is
turned on, although the number of digits at the ‘break even’ point
is slightly more.

The main question I was investigating though is what happens
when a non-numeric value is supplied and an exception is
thrown.

Argument Function #1 Function #2
X 0.20 147.60 (unoptimised)
X 0.11 143.24 (optimised)

Yes, that’s right – the decimal point is in the right place for
function #2! The code path through the exception throwing
route took almost 3 orders of magnitude longer than the raw
code.

This is why, for this article, I’m just not interested in minor
optimisations of the source code, since the impact of exceptions
dwarfs them.

This was very intriguing – I wondered whether it was only a C#
issue or it was also an issue with Java and C++.

Here is an approximately equivalent pair of functions in
Java:

public boolean isNumeric(String input) {
boolean ret = true;
boolean decimalFound = false;

if(input == null
|| input.length() < 1) {

ret = false;
}
else {
for(int i = 0

; i < input.length()
; i ++) {

if(!Character.isDigit(
input.charAt(i)))

if((input.charAt(i) == ‘.’)
&& !decimalFound) {

decimalFound = true;
}
else {
ret = false;

}
}

}
return ret;

}

Overload issue 61 june 2004

The Dangers of Performance
Figures

Note: performance figures are very dangerous! They depend
on all sorts of factors, such as the language being used, the
compiler settings, the operating system being used and the
hardware that the program runs on.

Although I’ve done my best to produce repeatable performance
figures for this article please do not take any of the figures as
being more than indicative of the overall performance of the
languages mentioned. A small change to the programs being
tested could produce variations in the figures produced.

For those who care I was using Windows 2000 SP4 on a 733
MHz single CPU machine with 768 Mb of RAM. (Yes, maybe
it’s time I bought a newer machine!)

I was using:
● C# with csc from Visual Studio .NET (version 7.00.9466), both

with and without optimising
● Java with JDK 1.3.0 and JDK 1.4.2
● C++ with Microsoft VC++ 6 (version 12.00.8804) both with

(/Ox) and without (/Od) optimising. In both cases I was also
using /GX /GR.

● C++ with gcc 2.95.3-4 under Cygwin (with and without -O)
(I also repeated a couple of the C++ tests with the Microsoft
.NET and .NET 2003 C++ compilers but the results did not
change enormously.)

It is important to note that I was not principally looking to
optimise the hand written code – I was interested in the effect on
performance of using exceptions. For this reason I deliberately
kept the implementations of each function similar to ones in the
other languages – hence, for example, the use of the member
function at() in the C++ code rather than the more idiomatic
[] notation. In fact, after being challenged about this, I tested
both methods and to my shock found that at() was actually
faster than operator[] with MSVC6. If you find this
unbelievable it only goes to show how unexpected performance
measurements can be, and how dependent they are on the
optimiser!

I also made the IsNumeric method an instance method of a
class in all languages for consistency and ease of testing.
Changing this would have equally affected the performance of
both the exception and the non-exception code so I left it as it was.

and:

public boolean isNumeric(String input) {
try {
Double.parseDouble(input);
return true;

}
catch(NumberFormatException ex) {
return false;

}
}

Surely code that looks so similar must behave the same way :-) ?
Here are the results for the non-exception case:

jdk 1.3.0
Argument Function #1 Function #2
1 0.13 0.81
12345 0.42 1.15
10 digits 0.76 1.68
20 digits 1.48 23.16

jdk 1.4.2
Argument Function #1 Function #2
1 0.10 0.76
12345 0.29 1.12
10 digits 0.51 1.63
20 digits 0.94 28.08

The results here are comparable to the optimised C# results – apart
from the last line. What happens here? The parseDouble
method is much slower once you exceed 15 digits – this is to do (at
least with the versions of Java I’m using) with optimisations inside
Double.parseDoublewhen the number is small enough to be
represented as an integer value. Whether this matters in practice of
course depends on the range of input values the program actually
passes to the isNumeric function.

The exception results look like this:

Argument Function #1 Function #2
X 0.16 15.33 (jdk 1.3.0)
X 0.12 18.15 (jdk 1.4.2)

Well, this is not quite as awful as the C# case – the performance
of the second function is ‘only’ two orders of magnitude worse
than the first function when the exception is thrown.

For completeness, how about a C++ solution?
The roughly equivalent functions I came up with were:

bool IsNumeric1::isNumeric(std::string
const & input) const {

bool ret = true;
bool decimalFound = false;

if(input.length() < 1) {
ret = false;

}

else {
for(int i = 0

; i < input.length()
; i ++) {

if(!isdigit(input.at(i)))
if((input.at(i) == ‘.’)

&& !decimalFound) {
decimalFound = true;

}
else {
ret = false;

}
}

}
return ret;

}

and:

bool IsNumeric2::isNumeric(std::string
const & input) const {

try {
convert<double>(input);
return true;

}
catch(std::invalid_argument const & ex) {
return false;

}
}

where convert was derived from code in
boost::lexical_cast from www.boost.org (in the
absence of a standard C++ library function with similar syntax and
semantics to the C# and Java parse functions) and looks like this:

template<typename Target>
Target convert(std::string const & arg) {
std::stringstream interpreter;
Target result;
if(!(interpreter << arg)

|| !(interpreter >> result)
|| !(interpreter >> std::ws).eof())

throw std::invalid_argument(arg);
return result;

}

I decided using a reference in C++ kept the source code looking
more equivalent although a smart pointer could have been used
instead as its behaviour is more like that of a reference in the
other two languages.

How did C++ fare in the comparison?

MSVC unoptimised
Argument Function #1 Function #2
1 0.14 13.04
12345 0.46 17.46
10 digits 0.83 23.83
20 digits 1.57 34.31

17

Overload issue 61 june 2004

18

Overload issue 61 june 2004

MSVC optimised
Argument Function #1 Function #2
1 0.07 5.73
12345 0.21 7.65
10 digits 0.40 11.25
20 digits 0.74 17.12

Our initial choice for the convert function is very slow –
perhaps it is a bad choice. The cost of using stringstream
objects seems to be very high, although that might be a problem
with my compilers’ implementations. This is not really an
entirely fair comparison either – the convert template function
is generic whereas the C# and Java code is type-specific. So let
me replace the generic convert function with:

double convert(std::string const & arg) {
const char *p = arg.c_str();
char *pend = 0;
double result = strtod(p, &pend);
if(*pend != ‘\0’)
throw std::invalid_argument(arg);

return result;
}

This produces the following improved performance figures:

MSVC unoptimised
Argument Function #1 Function #2
1 0.14 1.82
12345 0.46 2.71
10 digits 0.83 5.10
20 digits 1.57 8.62

MSVC optimised
Argument Function #1 Function #2
1 0.07 1.80
12345 0.21 2.71
10 digits 0.40 4.94
20 digits 0.74 8.39

And finally I recompiled the C++ code with gcc under Cygwin.

gcc unoptimised
Argument Function #1 Function #2
1 0.29 0.63
12345 0.98 0.70
10 digits 1.79 0.85
20 digits 3.44 3.87

gcc optimised
Argument Function #1 Function #2
1 0.05 0.33
12345 0.11 0.40
10 digits 0.17 0.55
20 digits 0.27 3.55

However, what about the exception throwing case (which is after
all the motivating example) ?

Argument Function #1 Function #2
X 0.17 11.69 (MSVC unoptimised)
X 0.08 11.03 (MSVC optimised)
X 0.40 4.15 (gcc unoptimised)
X 0.06 3.17 (gcc optimised)

Even discounting the cost of solution #2 there is one to two
orders of magnitude difference between the return code and
exception throwing case, but with some significant differences
between the two compilers.

What is the Cost of an Exception?

Exceptions tend to be expensive for a number of reasons,
described below:

The exception object itself must be created.
This is not usually very expensive in C++, although it does
obviously depend on the exact class being used. In Java and in
C# the exception object contains a call stack, and the runtime
environment has to create this before the exception is thrown.
This may be quite expensive, particularly if the function call
stack is deep.

The act of throwing the exception can be expensive.
For example, when using Microsoft compilers under Windows,
throwing a C++ exception involves calling the OS kernel to raise
an operating system exception, which includes capturing the state
of the thread for passing to the exception handler. This approach
is by no means universal – gcc under Cygwin does not use native
operating system exceptions for its C++ exceptions, which seems
to have as a consequence that the execution time cost of an
exception is lower.

Then, in C++, a copy of the supplied object is thrown, which can
impose some overhead for non-trivial exception objects.

There is the cost of catching the exception.
This in general involves unwinding the stack and finding suitable
catch handlers, using run time type identification to match the
types of the thrown object to each potential catch handler. For
example, if I throw a std::invalid_argument object in
C++ this might be caught by:

● catch(std::invalid_argument const &)
● catch(std::exception)
● catch(...)

with different behaviour in each case. The cost of this rises with
both the depth of the exception class hierarchy and the number of
catch statements that there are between the throw and the
successful catch.

Note that some experts in compiler and library implementation
claim that high performance exception handling is theoretically
possible; however in practice it seems than many of the popular
compilers out there do have less than optimal performance in this
area.

19

Overload issue 61 june 2004

Should I Care How Slow Exceptions
Are?

Let’s take stock of where we have reached. I’ve investigated the
‘efficiency’ claims for the proposed replacement code and found
that it is almost always slower for numeric input and very
significantly slower for non-numeric input.

On examining the two functions you can quickly see that they
do not produce the same answers for all inputs; this is probably
much more significant than which function runs faster since in most
applications ‘right’ is better than ‘fast but wrong’.

Consider the results the two C# implementations give for the
following inputs:

Input Function #1 Function #2
“+1” False True
“-1” False True
“.” True False
“ 1” False True
“1 “ False True
“1e3” False True
“1,000” False True
“Infinity” False True
null False Exception

The library function understands a much broader range of numeric
input than the hand-crafted code does. And that’s leaving aside all
discussion about locales (should ‘,’ be a decimal point or a
thousands separator?), which the library function takes in its stride.
This probably provides an explanation of why our own conversion
function is faster than the library call – it isn’t a complete solution!

The problem with the initial code review was the word ‘efficient’;
I would like to make use of the library call to take advantage of its
rich functionality despite the loss of efficiency. However I’d like to
reduce the expense of the exception – is this possible?

The exception is being thrown when the input is not numeric so
its cost only matters in this case. Ideally I’d like to find out how
many times the function returns false in typical use; unfortunately
a simple profiler will only tell me how many times the function is
called and not differentiate on return code. I either need to use a
better profiler or to add some instrumentation to my program.

In the best case I might find that the function usually succeeds
and then I probably don’t mind taking a performance hit on the rare
failures. However I might find that the function is called a lot and
is roughly evenly divided between success and failure – in this case
I will want to reduce the cost.

As it happens, it is fairly easy to do this in the C# case. Closer
investigation of the Double class reveals a TryParse method
that has exactly the behaviour we require in IsNumeric. It needs
a couple of additional arguments but the resultant code is clear:

using System.Globalization;
...
public bool isNumeric(string input) {
double ignored;
return = Double.TryParse(input,

NumberStyles.Float |
NumberStyles.AllowThousands,

NumberFormatInfo.CurrentInfo,
out ignored);

}

The results of running this function are:

Optimised C#
Argument Function #1 Function #2 Function #3
1 0.10 0.89 1.08
12345 0.33 1.01 1.29
10 digits 0.65 1.36 1.55
20 digits 1.28 1.76 1.95
X 0.11 143.24 1.90

Unfortunately Double.Parse(string) is slightly faster
than TryParse for the ‘good’ case but this is outweighed by the
drastic improvement in speed on ‘bad’ inputs. In the absence of
specific measurements of performance I would prefer this
solution.

The Java case is more difficult – there is no direct equivalent to
TryParse. I tried the following:

public boolean isNumeric(String input) {
java.text.NumberFormat numberFormat

= java.text.NumberFormat.
getInstance();

java.text.ParsePosition parsePosition
= new java.text.ParsePosition(0);

Number value = numberFormat.parse(
input, parsePosition);

return ((value != null)
&& (parsePosition.getIndex()

== input.length()));
}

However the performance is ‘disappointing’. The new method is
indeed faster when an exception occurs – but an order of
magnitude slower when the input is in fact numeric. The biggest
cost is creating the numberFormat object – caching this makes
it a lot faster, but additional coding work would need to be done
to make it threadsafe (see the JDK 1.4 documentation for
NumberFormat).

jdk 1.3.0
Argument Funct’n #1 Funct’n #2 Funct’n #3 Funct’n #3

+ caching
1 0.13 0.81 14.54 2.39
12345 0.42 1.15 16.00 3.77
10 digits 0.76 1.68 18.11 5.88
20 digits 1.48 23.16 51.19 34.70
X 0.16 15.33 11.79 0.85

The decision is much harder here – can I do anything else?
One option is to check for common failure cases before
passing the string into Double.Parse. This means
measuring or guessing what the ‘common failures’ are – an
example of such a guess would be to check if the first digit is
alphabetic.

Moving on, the C++ case is easier – I can simply return failure
from strtod by using a return code rather than throwing an
exception.

20

Overload issue 61 june 2004

bool try_convert(std::string const & arg) {
const char *p = arg.c_str();
char *pend = 0;
(void)strtod(p, &pend);
return (*pend == ‘\0’);

}

Arg Funct’n #1 Funct’n #2 Funct’n #3
X 0.17 11.69 0.31 (MSVC unoptimised)
X 0.08 11.03 0.26 (MSVC optimised)

Anything Else?

There are a couple of other points worth noting about using
exceptions.

It can be hard to correctly identify which exceptions should be
caught, and mismatches can cause other problems.

Firstly, catching too much. If your code catches too broad a
category of exceptions (for example “catch (Exception)”,
or “catch (...)” in C++) can mean that error cases other than
the one you are expecting are caught and do not flow to the
appropriate higher level handler where they can be correctly dealt
with. This can be even more of an issue in some C++ environments,
such as MSVC, where non-C++ exceptions are also swallowed by
catch (...).

Conversely, failing to make the exception net wide enough can
lead to exceptions leaking out of the function and causing a failure
higher up. This has happened to me when using JDBC in Java
where the exception types thrown for data conversion errors, such
as invalid date format, seem to vary depending on the driver being
used.

Debugging exceptions can be a problem. Many debuggers
cannot easily filter exceptions, so if your program throws many
exceptions it can make the debugging process slow or unwieldy, or
swamp output with spurious warnings.

In some environments you can stop when an exception is about
to be thrown, but it is very hard to follow the flow of control after
that point. The standard flow-of-control mechanisms are usually
easier to trace.

Finally the code you write must be exception safe – when
exceptions occur you must make sure that the unwinding of the
stack up to the catch handler doesn’t leave work undone. The main
dangers to avoid are leaving objects in inconsistent states and
neglecting to release resources. This includes, but is not restricted
to, dynamically allocated memory – don’t fall for the popular
misconception that exception safety is only an issue for C++
programs (see, for example, [1]).

When Are Exceptions Exceptional?

Let’s go back to first principles – what are exceptions for?
The exception mechanism can be seen as a way to provide

separation of concerns for error handling. It is particularly
useful when the code detecting the error is distant from the code
handling the error; exceptions provide a structured way of
passing information about the error up the call stack to the error
handler.

Exceptions also make errors non-ignorable by default, since
uncaught exceptions terminate the process. More traditional
alternatives such as error return values are often ignored and also

the flow of error information has to be explicitly coded which leads
to increased code complexity.

Exceptions can, in principle, be viewed as no more than a
mechanism to transfer control within a program. However, unless
care is taken, using exceptions as a flow of control mechanism can
produce obscure code. Stroustrup wrote: ‘Whenever reasonable, one
should stick to the “exception handling is error handling” view’ [2].

If exceptions are being used for handling errors that need non-
local processing then the possible runtime overhead is unlikely to
be an issue. Typical uses of exceptions of this type, where errors
are relatively uncommon and the performance impact is secondary,
include:
● signalling errors which require aborting an entire unit of work,

for example an unexpected network disconnection
● support for pre/post conditions and asserts
Grey areas where, since exceptions are thrown for ‘non-
exceptional’ or ‘non-error’ conditions, programmers disagree
about the validity of using exceptions include:
● dealing with invalid user input
● handling uncommon errors in a recursive algorithm – for

example a parse failure for a SQL statement or numeric overflow
in a calculation

● handling end of file (or, more generally, handling any kind of
‘end of data’ condition)

Examples of abuse include:
● using exceptions to handle optional fields missing
● using exceptions to give early return for common special cases
My own rough guideline for the ‘grey areas’ is that if all
exceptions became fatal then most programs should still run at
least four days out of five.

Others have a more flexible approach and use exceptions more
widely than this, sometimes unaware of the consequences of this
decision.

Conclusion

It is important to recognise that using exceptions has an
associated cost in C# and to a slightly lesser extent in Java and
C++.

Using exceptions in the main execution path through the
program may have major performance implications. Their use in
time-critical software, in particular to deal with non-exceptional
cases, should be carefully justified and the impact on performance
measured.

When this is an issue alternative techniques which may be faster
include: using return values instead of exceptions to indicate
‘expected’ error conditions; and checking for common failures
before risking the exception.

Roger Orr
rogero@howzatt.demon.co.uk

Acknowledgements

Thanks to Phil Bass and Alan Griffiths for reviewing earlier
drafts of this article.

References

[1] Alan Griffiths, “More Exceptional Java”, Overload, June
2002
[2] Bjarne Stroustrup, C++ programming language, 3rd edition,
p375

21

Overload issue 61 june 2004

Where Egos Dare
by Allan Kelly

Recently I have had reason to look through some old software
engineering textbooks, the kind of thing I used to read as an
undergraduate and junior programmer. This reminded me of a
few concepts I haven’t thought about in several years. One of
these is egoless programming. As I recall my university lecturers
were very keen on this concept, it seemed to be a good thing.
Although, to be honest, I’ve always had my doubts...

What Exactly is Egoless
Programming?

I guess it all depends on what you mean by ego, so I turned to my
favourite text on management and psychology (and all that kind
of stuff) where I found the following definition:

“ego has to make sense of the internal conflict in our mind
between the id and superego and the external world. The ego is the
decision-making part of personality and is engaged in rational and
logical thinking. It is governed by the reality principle.” (Mullins, 2002)

Now this looks a bit confusing. Does egoless programming mean
programming without rational and logical thinking? Well, I’ve
seen my fair share of programs and I must say a lot of them do
seem to lack rational and logical thinking, but I really don’t think
anyone wants to advocate this as a design and programming
technique. What would an irrational program look like? What
would an illogical program look like?

I’ll admit, the first half of the sentence “conflict in our minds”
makes sense, I often experience conflict when I’m programming:
do I use ++i or i++, or even i:=i+1? And I’m often torn between
doing something the “modern” way (say with a template function
specialisation) or the “old fashioned way” (with lots of verbose
code). So maybe conflict-less programming would be a good idea.

But then, if there was no conflict why do we need people? It is
the human judgement, honed over years of programming that makes
developers so valuable. If there is no conflict, if there is an obvious
solution every time, we can automate it, bring on the Case tools.
Or even just enhance the compiler. The fact is, resolving conflicts
and balancing competing forces is a fundamental part of what we
as software developers do.

So clearly this is not the right definition for ego.
Maybe what the books mean is superego-less programming, if

egoless is good, then surely, super-egoless must be better?
“Super ego is the conscience of the self, the part of our personality

which is influenced by significant others in our life. “ (Mullins, 2002)
Well programming without consciousness, that doesn’t sound
good. Once or twice I’ve programmed into the wee small hours
of the morning and come pretty close to coding in my sleep but I
wouldn’t recommend it.

I’m sure I’ve met managers who would prefer it if our significant
others didn’t influence our lives. A manager once asked me to
cancel a holiday, however the thought of how my significant other
would react prevented me from agreeing.

So, I don’t think superego-less programming is a good thing
either. That leaves us with id-less programming.

“id consists of the instinctive, hedonistic part self..” (Mullins, 2002)
This sounds more like it. Id-less programming – programming
without fun. This is work, this is serious, fun has no place in
code. (Erh, why did I get into this business?)

While I’ve known many managers who don’t see fun as an
essential part of the job, I can’t say any have really objected to a bit

of fun. After, a bit of fun, a few smiles in the office, makes the day
much more, erh, fun.

Try Again

So I’m not a lot closer to understanding what egoless
programming is meant to give me. Maybe I’m reading too much
of the definition, maybe what we want is a simpler definition of
ego. So this time I turned my dictionary, this definition looks
more hopeful:

“ego n. pl. egos 1. The part of a person’s self that is able to recognise
that person as being distinct from other people in things. 2. A person’s
opinion of his or her own worth: men with fragile egos.” (Collins, 2001)

So maybe egoless means we can’t tell ourselves from other
people, we lose ourselves in some kind of great group. Let’s
forget that 20th century literature and popular philosophy
emphasise the individual, we want to hire programmers who
can’t tell themselves from anybody else. That might get really
confusing at times, and where is the difference of opinions that
can lead to so many useful insights?

Or maybe you want people who think they are worthless, we
want programmers who don’t have very high opinion of
themselves. I can see this be a great position for manager to be in
when it comes to the annual pay reviews, or for contract renewal.

Manager: Well then Bob, I’d like to renew your contract for
another 3 months

Bob: No, no, you don’t want me, remember that bug in my code?
John had to fix it last week?

Manager: Yes, I see, well, I can’t throw you out on the streets, so
what say I keep you for another three months with a 25%
reduction?

Bob: I am not worthy

It seems to me that ego is an essential part of people, and even of
software people. On the whole it’s more fun to work with people
who are confident – I’m sure most people would say no if invited
to join a team of people racked by self-doubt. Actually, we want
programmers with egos. We want programmers who care, we
want people who say “I’m proud to have worked on this project.”

It seems “egoless programming” doesn’t really stand up to
analysis. We want people who are rational, logical, proud of their
work and bring a positive attitude to work.

Origins and Setting

The term egoless programming originated with Gerald M.
Weinberg’s “The Psychology of Programming” in 1971. In the
Silver Anniversary edition (Weinberg, 1998) and in IEEE
Software (Weinberg, 1999) Weinberg has reprised his original
ideas and claimed he has been misunderstood and misinterpreted.
To be fair, Weinberg was making an argument for teams, it just
happened people remembered the sound bite, egoless
programming, and forgot a lot of his other ideas.

For Weinberg egoless programming is about code reviews and
letting others comment on your work. Although the benefits of code
reviews are well known they are not always conducted routinely.
There are a variety of problems, not least because it often takes
longer to review code than it takes to write it in the first place.

In Weinberg’s original essay he suggested programmers’ egos lead
them to hide their code, and protect it, they don’t want other people
passing comment on it. Does this really happen? There is no shortage
of programmers posting their code on SourceForge for all to view.

22

Overload issue 61 june 2004

I think the problem is more the social setting of the review. In
reviewing your code, and giving feedback, there is a great capacity
to hurt someone’s feelings. Receiving feedback can be hard, and
it can hurt. Simply being told “think of egoless programming” is
like being told to keep “the British stiff upper lip.”

Giving criticism so it doesn’t hurt, and receiving criticism
without feeling personally attacked, are skills themselves. One
organisation I know did code reviews by e-mail, a day or two after
your check-in you would receive an e-mail from your reviewer
listing your mistakes. This may be efficient but it is also brutal.
Some developers would actually hold off check-ins until the last
minute then make a lot in a short space of time, this usually meant
the reviewers could not get the reviews done before the release
negating the whole point of a review. I think this kind of humanless
code reviewing from 30,000 feet is a bit like carpet bombing,
painless for the reviewers but indiscriminate and uncaring.

Neglected Teams

Programming teams are hardly new concepts, they have been
knocking around software development books for many years.
Ever since programming projects got beyond the abilities of one
person we have had teams.

The problem is that our traditional text books devote hundreds
of pages to technical issues and almost nothing to team work. A
statement to the effect that “much software is developed in teams,
good teams need egoless programming” is about as far as many go.

For example, to take a standard textbook; if Pressman (1994)
even mentions teams in the text it doesn’t make it into the index.
His fourth edition (Pressman, 1997) edition is slightly better but
with over 800 pages you could easily miss the few pages on
teamwork. Other texts can be better, for example Somerville
(2001), devotes a whole chapter (20 pages) to managing people,
and six pages alone to team working, pretty good going until you
notice it is an 800 page book!

So, while we can all agree that teamwork is important few of us
actually devote time to thinking about how to make it work. There
is an assumption somewhere that teams just work, once told we are
a team then all is sweetness and light.

Personally I don’t see this myself. Teamworking is a skill just
as much as C++ or SQL is, and we need to learn it. In fact, each
team needs to relearn the skill itself. This may be especially true
of programmers, I know quite a few like myself who preferred the
warm dry computer room at school to the cold, wet, muddy football
pitch where our teamwork skills where supposed to be developed.

The point is teamwork doesn’t just happen, we need to be
encouraged to work in teams. It can be scary talking to new people,
it can be terrifying trusting somebody else to do work, and it can
be demoralising to see somebody else do a piece of work that you
really want to do – and I haven’t even mentioned fixing people’s
bugs!

Simply extolling the virtues of teamwork, asking people to
practice “egoless programming” doesn’t make it happen. If a
company wants these objectives it has to work for them.

The Irony

Perhaps the greatest irony of all is that people are social animals,
we actually like interacting with other people, working and
playing with other people. In fact work can be so much more
enjoyable when you work with a great team, people we trust,
people we value. When we trust people work becomes so much

easier, we don’t need to keep an eye on them, we don’t need to
secretly double check their code, and we feel happy for them to
the see our code.

There are times when competing is the right solution. Put two
teams on a football field, two companies in the same market, any
company and Microsoft! Competition is the bedrock of capitalism,
competition drives us, we all want to win. But competition is not
always the right answer, sometimes we get more by co-operating
then competition.

This is why companies exist, because as a group of co-operating
individuals we can achieve something that the same individuals
can’t achieve by competition. And that is why programming teams
exist, because some programs are too big for one person to write.

It Isn’t Easy

One of the most difficult things for a team to do is to overcome
Conway’s Law (Kelly, 2003, Conway, 1968, Coplien, 2003).
This is usually stated as:

“if n developers work on a compiler, it will be an n pass compiler”
It is so easy on any project to count the number of developers and
divide the project into that number of pieces, even if the project
can divided into more, or less pieces. This way we can keep
everyone busy, everyone can have their own space and get on
with a piece of work.

But is this always sensible? If a project naturally has a front and
a back-end why divide it into three pieces just because we have
three programmers? The bigger question is: What are we trying to
optimise here? Are we just trying to make three programmers look
busy?

A common variation on Conway’s Law states:
“if n developers work on a compiler, it will be an n-1 pass

compiler, somebody has to manage “
This assumes that the role of managers is as police. They are
there to command and control the workers (programmers) and
ensure they get the work done.

Actually, I think we need to extend Conway’s law, it’s really
Conway’s Trap:

“The sub-optimal team structure and system design that occurs
when n programmers divide any given piece of work into n pieces
and allocate one piece per programmer.”

This formula is easy to apply, has a superficial attractiveness and
is easy to manage. It’s particularly easy to manage if some of the
n programmers don’t particularly like working in a team or
communicating with other programmers. Unfortunately, there is
no real reason for dividing the project into n pieces, no reason to
believe the n pieces are of equal size, or equal complexity and for
the project to complete each n piece must be delivered.

Teamwork

If we want our teams to really work well and develop good
software we need to move away from simple exhortations to
“egoless programming.” We need to break our projects into the
optimal development pieces and work as teams, rather than
slavishly divide by the number of programmers and work as a
group of individuals.

This means we have to think seriously about making our teams
work well together. Fortunately some of the more recent writings
on software development have started to put a greater emphasis on
teamwork (e.g. Eckstein, 2003, Cockburn, 2002) and the (in)famous
pair programming (Beck, 2000, Coplien, 2003) is a good example

of this. But learning to work as a team doesn’t start and stop with
pair programming.

It helps if a team actually knows one another. Do they lunch
together? Do they socialise together? Some companies try to get
teams to socialise by arranging a Friday afternoon “beer bash”,
these can have an artificial feel to them (especially if everyone is
driving home) but is a start.

Other high profile “teambuilding activities” like white-water
rafting or paintballing can also be the subject of jokes and mockery.
It’s important to match your team building efforts to the attitude of
the team, maybe a trip to the pub or the cinema is more in keeping
with your team. Even ad hoc communal gathering areas such as
kitchens can be far more effective than one off events.

This requires ongoing expense and commitment from the
company, after all that kitchen space is a continuing cost while a
paintball day is a one-off expense. But this long-term commitment
is what is required to build a good team, it doesn’t happen overnight.

Companies need to look at their own mechanisms: do they reward
people for teamwork? Or do they award annual bonuses based on
individual heroic coding efforts? And are teams broken up once a
project finishes, or can they move together onto the next project?
Are people allowed to sit together? Or are people squeezed into
whatever space can be found when they arrive on day one?

There is a lot individual managers can do here too. If they see
their role as commanding and controlling the developers they aren’t
going to get the best from them. They need to learn to develop their
teams, encourage people to work together and learn together.

Keep Your Ego, Make Teams Work

The fact is we want developers to have egos, we want them to be
proud of their work, we want them to think logically and
rationally. But we want to harness these egos within a team. We
want the team to succeed. This can only happen if we are
socially aware and build towards this goal.

We can’t expect any of this to happen just because we say it
should happen. We need to work hard to make these teams work,

people need to learn how to work in teams, how to work with their
colleagues, how to give constructive feedback and how to accept
feedback.

Unfortunately, neither Microsoft nor Rational sells a tool to do
this, its something you have to create yourselves. You can bring in
outside help but this is a long process, the rewards are great but it
won’t happen overnight.

Allan Kelly
allan@allankelly.net

Bibliography

Beck, K. (2000) Extreme Programming Explained, Addison-
Wesley.
Cockburn, A. (2002) Agile Software Development, Addison-
Wesley.
Collins (2001) Collins Paperback English Dictionary, Harper
Collins, Glasgow.
Conway, M. E. (1968) How do committees invent?, Datamation.
Coplien, J., and Harrison, N. (2003) Organizational Process
Patterns (forthcoming), http://www.easycomp.org/cgi-
bin/OrgPatterns, Wiki web site for book
Eckstein, J. (2003) Scaling Agile Processes (forthcoming),
Dorset House, New York.
Kelly, A. (2003) “The original Conways Law”, Overload.
Mullins, L. J. (2002) Management and organisational behaviour,
Prentice Hall.
Pressman, R. S. (1994) Software Engineering: A practictioner’s
approach (European Adaptation), McGraw-Hill Book Company.
Pressman, R. S. (1997) Software Engineering: a practioner’s
approach (European adaptation), McGraw-Hill.
Somerville, I. (2001) Software Engineering, Pearson Education,
Harlow.
Weinberg, G. M. (1998) The Psychology of Computer
Programming, Dorset House Publishing.
Weinberg, G. M. (1999) Egoless Programming, IEEE Software.

23

Overload issue 61 june 2004

The Vision Thing

One way to get a team working together is through shared
vision. While “vision” may seem a bit abstract, vague or
ephemeral, it does actually have strong supporters who argue
that creating a shared vision is a powerful tool for managers and
teams:

“Where there is a genuine vision (as opposed to the all-too-
familiar ‘vision statement’), people excel, and learn, not because
they are told to, but because they want to.” (Senge, 1990)

There is a brilliant example of the power of vision in an IT
project by Conklin. He described the management of the Digital
Alpha AXP project in the early 1990s. This project employed
over 2,000 engineers both in hardware (chip design, machine
design, integration) and software (at least two operating systems,
compilers, editors, etc., etc.). He called this Enrolment
Management and at the centre of it was vision.

This shared vision was not a weak, ephemeral thing but a strong
substantial, lasting vision which moved people to produce
seemingly extraordinary work:

“given the group’s commitment to the larger result, we found more
aggressive behaviour. For example, the OpenVMS AXP group publicly

committed to their target schedule and stated, ‘We don’t know how
to achieve this, but we commit to finding a way’.” (Conklin, 1996)

Enrolment management used a simple four-point methodology:
1. Establish an appropriately large shared vision;
2. Delegate completely and elicit specific commitments;
3. Inspect rigorously, providing supportive feedback;
4. Acknowledge every advance, learning as the program

progresses.
The case study describes how the project management admitted
they had no project plan. Nor could they possibly draw one up
in the time available. Instead they took the difficulties as
challenges and used each new problem as an opportunity to
enforce the vision and increase the speed of development.

Perhaps most interesting about this is the similarities between
many of Conklin’s ideas and those of the Agile Development
proponents. Perhaps the biggest difference is that most Agile
advocates duck the issue of large teams engaging in Agile
Development, but Conklin, in 1990, was doing Agile Development
with 2,000 engineers.
Conklin, P. F. (1996) “Enrolment Management: Managing the
Alpha AXP Program”, IEEE Software , 13, 53-64.
Senge, P. (1990) The Fifth Discipline, Random House Books.

24

Overload issue 61 june 2004

A Template Programmer’s
Struggles Resolved

by Stefan Heinzmann and Phil Bass

This article is the result of the conversations between the two
authors (Phil Bass and Stefan Heinzmann) that were triggered by
the latter’s article in this very issue of Overload [1]. Stefan
originally wanted to have the resolution of the problems outlined
in his article published in the next issue in order to keep you in
creative suspension for a while, but the Editor found that to be
too cruel, so we tried to finish this article in record time.

Article [1] ended with 4 unsolved problems which are repeated here:
● It requires the ugly cast for passing the null pointer as the third

argument to lookup
● lookup returns the result by value, which can be inefficient
● It is still unclear why I couldn’t use the typedefs from
std::binary_function in the LessKey predicate (only
with GCC)

● Neither do I know why the compiler wanted to convert the wrong
way between Val and EVal

The first two problems relate to the lookup function template,
while the last two problems relate to the LessKey predicate. In
addition, the text itself lists as a fifth problem: How to ensure at
compile time that the lookup table is sorted. Just for a change,
let’s tackle those problems in reverse order.

Ensuring the Lookup Table is Sorted

Thaddaeus Frogley suggested that rather than sorting the table at
compile time, which may be impossible, the debug build could
check the sorting when the program starts up. You would need to
write a function that checks the table sorting and call it in an
assert macro that is run at program startup. As an additional
service, the checking code could generate a sorted version of the
table in a format that can be cut and pasted into the source code,
so that the burden of keeping the table sorted is not on the
struggling programmer. We’ll not actually show any code for this
here, as we believe that it is fairly straightforward. Furthermore,
this issue was not the main point in [1] anyway.

The LessKey Predicate

Here, we owe you an explanation why the typedefs in the
binary_function base class could not be used in the
definition of LessKey::operator(). It turns out that this is
because of the name lookup rules, namely two-phase lookup. If
you want to know the full story you need to turn to The Book [2]
chapter 9.4.2, but here’s the bottom line:

As std::binary_function is a base class for LessKey
that depends on LessKey’s template parameters, it is called a
dependent base class. The C++ standard says that nondependent
names are not looked up in dependent base classes. Hence a
standard conforming compiler will not find result_type and
its siblings and emit an error message. The error messages that were
actually emitted by GCC weren’t particularly helpful, in particular
the mentioning of typename was misleading, but the code was
definitely wrong. So what can we do about it? There are a number
of possibilities here, though none are particularly appealing:
● Dodge the issue in the way Stefan did it, i.e. by not using
result_type etc. inside LessKey. The downside of this is
that the fairly complicated element type must be written out
several times.

● Explicitly qualify the typedef names with the name of the base
class. This makes the names dependent, therefore they are looked
up and found in the base class. However that removes the whole
point of using the typedefs, because the base class name is a
complicated template.

● Bring the typedef names into the scope of the derived class
with a using declaration. That doesn’t save any typing either,
because the base class name needs to be spelled out, too.

● Add another typedef to the derived class. That is also fairly
verbose, so it may not be an improvement over the first solution.

That’s disappointing, isn’t it? It means that deriving from
std::binary_function in order to make the predicate
adaptable according to the rules of the STL is only half as useful
as you’d wish it to be. It makes you wonder whether you want to
derive from std::binary_function at all. After all, you
can make your predicate adaptable by providing the required
typedefs yourself, like this:

template<typename Key, typename Val>

struct LessKey {

typedef bool result_type;

typedef const Pair<Key,Val> &first_argument_type;

typedef first_argument_type second_argument_type;

result_type operator()(first_argument_type a,

second_argument_type b) const

{ return a.key < b.key; }

};

If you don’t want the predicate to be adaptable, you can apply a
clever trick that appeared in [3]: You make the predicate work on
the key type directly. This removes the need to construct an element
with all its associated problems mentioned in [1]. If we needn’t
construct an element, we need no default constructor for the Val
type either, which is an additional advantage. Here’s the code:

template<typename Key, typename Val>

struct CleverLessKey {

typedef const Pair<Key,Val> Elem;

bool operator()(Elem &elem, const Key &key) const

{ return elem.key < key; }

bool operator()(const Key &key, Elem &elem) const

{ return key < elem.key; }

};

Note the overloading of operator() to allow passing the
arguments in any order. Inside the lookup function template the
key can now be passed directly to equal_range:

template<typename EKey, typename EVal,

unsigned n, typename Key, typename Val>

EVal lookup(const Pair<EKey,EVal>(&tbl)[n],

const Key &key, const Val &def) {

typedef CleverLessKey<EKey,EVal> Pred;

typedef const Pair<EKey,EVal> Elem;

std::pair<Elem*,Elem*> range

= std::equal_range(tbl, tbl+n, key, Pred());

if(range.first != range.second)

return range.first->val;

return def;

}

This bends the intuitive rule of what a good predicate is; ordinarily
you would think both argument types had to be the same, but as far
as we know there’s nothing in the C++ standard that would make
this illegal. It certainly works with VC++ 7.1 and GCC 3.3.

The Comeau compiler [4] disagrees, however. Apparently, the
library implementation used by Comeau contains compile-time
concept checks that verify whether the two argument types of the
predicate are the same. As ours are not, those checks fail and the
compiler rejects the code. We feel that this is overly restrictive.

That leads us to the weird error mentioned in [1] where the
compiler apparently wanted to convert an int to a const char
[4]. We owe you an explanation here, too. Let us repeat the
relevant code where the error occurs:

template<typename EKey, typename EVal,

unsigned n, typename Key, typename Val>

EVal lookup(const Pair<EKey,EVal>(&tbl)[n],

const Key &key, const Val &def) {

typedef LessKey<EKey,EVal> Pred;

typedef const Pair<EKey,EVal> Elem;

Elem entry = { key, Val() }; // error here

std::pair<Elem*,Elem*> range

= std::equal_range(tbl, tbl+n, entry, Pred());

if(range.first != range.second)

return range.first->val;

return def;

}

The error message was strange, but there’s indeed an error. The
compiler correctly deduces the following type for Val, namely
const char [4]. That means that Val() tries to default
construct a temporary of type const char [4], which is
impossible. No conversion from int to const char [4] is
involved, the error displayed by the compiler is again rather
misleading here.

The fix employed in [1] was correct, but there is another, more
elegant possibility:

template<typename EKey, typename EVal,

unsigned n, typename Key, typename Val>

EVal lookup(const Pair<EKey,EVal>(&tbl)[n],

const Key &key, const Val &def) {

typedef LessKey<EKey,EVal> Pred;

typedef const Pair<EKey,EVal> Elem;

Elem entry = { key }; // second part of Pair

// omitted

std::pair<Elem*,Elem*> range

= std::equal_range(tbl, tbl+n, entry, Pred());

if(range.first != range.second)

return range.first->val;

return def;

}

As you may have noted, it is not actually necessary to explicitly
initialize the val member of the variable entry, as we don’t
use it anyway. Omitting the initializer for val causes it to be
value-initialized, which in practice does the same as calling
EVal() explicitly.

Anyway, we will use our clever predicate henceforth, despite the
problems with the Comeau compiler.

The lookup Function Template

Now that we’ve got those niggles out of the way, we can turn to
the remaining problems. Remember what the question was:
Given the following program fragment, how can we implement
the lookup() function as a function template that works for
arbitrary instantiations of Pair<Key,Val>?

template<typename Key, typename Val>

struct Pair {

Key key;

Val val;

};

const Pair<int, const char*> table[] = {

{ 0, "Ok" },

{ 6, "Minor glitch in self-destruction module" },

{ 13, "Error logging printer out of paper" },

{ 101, "Emergency cooling system inoperable" },

{ 2349, "Dangerous substances released" },

{ 32767, "Game over, you lost" }

};

int main() {

const char *result = lookup(table,6,(char*)0);

std::cout << (result ? result : "not found")

<< std::endl;

}

The implementation we arrived at in the last chapter still has
those two problems:
● It requires an ugly cast for passing the null pointer as the third

argument to lookup.
● lookup returns the result by value, which can be inefficient.

Replacing equal_range by lower_bound

First, note that the lookup() function given above is based on
std::equal_range(), but actually behaves more like
std::lower_bound(). It returns the mapped value of the
first element matching the key, if any. Since lower_bound()
is a simpler and slightly more efficient algorithm we will use it in
the subsequent code samples. However, it is a bit trickier to use,
as you’ll see shortly.

While equal_range returns a pair of iterators, lower_bound
returns just one. If there are suitable elements (according to the
predicate) in the collection, the returned iterator points to the first one
found. Otherwise it points to the place where such an element could
be inserted without breaking the sorting order. This makes it more
complicated to test for success. Here’s what lookupwould look like
using lower_bound instead of equal_range:

template<typename EKey, typename EVal,

unsigned n, typename Key, typename Val>

EVal lookup(const Pair<EKey,EVal>(&tbl)[n],

const Key &key, const Val &def) {

CleverLessKey<EKey,EVal> pred;

const Pair<EKey,EVal> *pos

= std::lower_bound(tbl, tbl+n, key, pred);

if(pos == tbl+n || pred(key,*pos))

return def;

return pos->val;

}

25

Overload issue 61 june 2004

26

Overload issue 61 june 2004

Generalization for Arbitrary Maps

Lets take a step back and look at the problem from a generic
angle: Why restrict ourselves to arrays? Surely, it should be
possible to write lookup() so that it works with any map-like
container. In particular, we would expect to be able to write:

// ... table definition, etc. as before ...

using namespace std;

int main() {

map<int, const char*> message_map;

message_map[6]

= "Minor glitch in self-destruction module";

cout << lookup(message_map, 6, "not found”)

<< endl;

cout << lookup(message_map, 6, 0) << endl;

cout << lookup(table, 6, "not found") << endl;

cout << lookup(table, 6, 0) << endl;

}

Although this is a slightly different problem, it points the way
towards a solution to the original problem that removes the
remaining blemishes in Stefan’s code.

The lookup function needs to be implemented in quite different
ways for maps and arrays. For a map, lookup should call
std::map<>::find(); for an array, it should call
std::lower_bound(). These two functions have different
interfaces. The former is a member function taking a single parameter;
the latter is a non-member function taking four parameters (for the
overload we need). Somehow, the lookup function template must
deduce these differences from the type of the container passed to it.

In principle, we could just provide separate overloads for maps
and arrays:

template<typename Key, typename Val>

const Val& lookup(const std::map<Key,Val>&,

const Key&, const Val&);

template<typename Key, typename Val, unsigned n>

const Val& lookup(const Pair<Key,Val>(&)[n],

const Key&, const Val&);

But that gets us back to where we came in. Stefan’s article was
all about the difficulties of implementing the second of those
lookup() function overloads.

An alternative approach treats lookup as an algorithm that can
be applied to any map-like container. There is a single lookup()
function, but there can be several types of “map”. Or, more
precisely, we define a generic Map concept, write the lookup()
function template in terms of the Map interface and provide as
many implementations of the Map concept as we need (including
std::map<>s and arrays of Pair<>s).

Using the Map concept, the lookup algorithm would look
something like this:

// pseudo-code

template<typename Map>

const MapVal& lookup(const Map&, const MapKey&,

const MapVal&);

Here, we have used MapKey and MapVal to stand for the Map’s
key and mapped value types. In real C++ code these types would
be deduced from the Map type. In the case of std::map<> the
MapKey and MapVal types are immediately available: MapKey
is std::map<>::key_type and MapVal is
std::map<>::mapped_type. In the case of arrays things
are less straightforward. Arrays are not classes, so we can’t add
nested typedefs. Instead we can use the traits class technique.

template<typename Map>

const typename map_traits<Map>::mapped_type&

lookup(const Map& map,

const typename map_traits<Map>::key_type&

target_key,

const typename map_traits<Map>::mapped_type&

default_value);

Now we can put information about the differences between maps
and arrays in the traits class and use that information in our
implementation of lookup().

Note that now there’s only one template parameter for the compiler
to deduce: The type of the map itself. Only the first argument to the
lookup function participates in this deduction, as the types of the
other arguments are dependent on the result of this deduction. This
greatly reduces the chance for deduction problems such as ambiguities.

Implementation of lookup() Traits

As noted above, lookup() will need to call either
std::map<>::find() or std::lower_bound(). A
map_traits<>::find() function is introduced to hide this
from the lookup() function itself. Then lookup() needs to
check whether the key was found and return either the default
value or the value part of the element matching the key. Here, we
use a map_traits<>::end() function to get the appropriate
past-the-end iterator for the ‘key found’ test. Retrieving the
mapped value via an iterator depends on the element type (not the
map type), so an element traits template with a
mapped_value() member is used for that.

The traits functions represent operations that might be useful in
other contexts. In those cases writing

map_element_traits<Map>::mapped_value(element)

for example, is both tedious and verbose. So, we provide non-
member wrapper functions to simplify the code in these situations
and take advantage of them in the lookup() function itself.

// The mapped_value() convenience function

template<typename Elem>

inline

const typename map_element_traits<Elem>::mapped_type&

mapped_value(const Elem& element) {

return map_element_traits<Elem>::mapped_value(

element);

}

// The find() convenience function

template<typename Map>

inline

typename map_traits<Map>::const_iterator

find(const Map& map,

const typename map_traits<Map>::key_type& key) {

return map_traits<Map>::find(map, key);

}

// The lookup() function

template<typename Map>

const typename map_traits<Map>::mapped_type&

lookup(const Map& map,

const typename map_traits<Map>::key_type&

target_key,

const typename map_traits<Map>::mapped_type&

default_value) {

typename map_traits<Map>::const_iterator i

= find(map, target_key);

return (i == end(map))

? default_value : mapped_value(*i);

}

The traits templates are declared (but not defined) and then
specializations are defined for each of the map-like containers we
wish to support. This prevents the instantiation of the traits
templates with unexpected template arguments (e.g. via template
argument deduction), which should help to minimize the number
of incomprehensible error messages if the programmer makes a
mistake.

template<typename Elem> struct map_element_traits;

template<typename Map> struct map_traits;

Traits for std::map<>

The traits templates for std::map<> are straightforward. A
partial specialisation of the map element traits template is
provided for any std::pair<>.

template<typename Key, typename Val>

struct map_element_traits< std::pair<Key,Val> > {

typedef std::pair<Key,Val> value_type;

typedef typename value_type:: first_type key_type;

typedef typename value_type::second_type

mapped_type;

static const key_type& key(

const value_type& element) {

return element.first;

}

static const mapped_type& mapped_value(

const value_type& element) {

return element.second;

}

};

Similarly, a partial specialization of the map traits template is
provided for any std::map<>.

template<typename Key, typename T, typename Cmp,

typename A>

struct map_traits< std::map<Key,T,Cmp,A> > {

typedef std::map<Key,T,Cmp,A> map_type;

typedef typename map_type::key_type key_type;

typedef typename map_type::mapped_type mapped_type;

typedef typename map_type::value_type value_type;

typedef typename map_type::const_iterator

const_iterator;

static const_iterator begin(const map_type& map)

{ return map.begin(); }

static const_iterator end(const map_type& map)

{ return map.end(); }

static const_iterator find(const map_type& map,

const key_type& key)

{ return map.find(key); }

};

These traits classes adapt std::map for use with our
lookup() function.

Traits for Arrays of Key,Value Pairs

The traits for arrays of Pair<Key,Val> are similar to those for
std::map<> . There is a partial specialisation of
map_element_traits<> for Pair<Key,Val>.

template<typename Key, typename Val>

struct map_element_traits< Pair<Key,Val> > {

typedef Pair<Key,Val> value_type;

typedef Key key_type;

typedef Val mapped_type;

static const key_type& key(

const value_type& element)

{ return element.key; }

static const mapped_type& mapped_value(

const value_type& element)

{ return element.val; }

};

And there is a partial specialisation of map_traits<> for
arrays of Pair<Key,Val>.

template<typename Key, typename Val, unsigned n>

struct map_traits< Pair<Key,Val>[n] > {

typedef Key key_type;

typedef Val mapped_type;

typedef Pair<Key,Val> value_type;

typedef const value_type* const_iterator;

static const_iterator begin(

const value_type (&map)[n])

{ return &map[0]; }

static const_iterator end(

const value_type (&map)[n])

{ return &map[n]; }

static const_iterator find(

const value_type (&map)[n],

const key_type& target_key) {

const_iterator i = std::lower_bound(begin(map),

end(map), target_key,

key_value_compare<value_type>());

return (i == end(map) || key(*i) != target_key)

? end(map) : i;

}

};

27

Overload issue 61 june 2004

28

Overload issue 61 june 2004

The find() function uses lower_bound() passing a key
comparison predicate with two asymmetric function call
operators. The predicate class is generated from the following
template:

template<typename Elem>

struct key_value_compare {

typedef typename

map_element_traits<Elem>::key_type

key_type;

typedef typename

map_element_traits<Elem>::value_type

value_type;

bool operator()(const value_type& x,

const value_type& y) const {

return map_element_traits<Elem>::key(x) <

map_element_traits<Elem>::key(y);

}

bool operator()(const value_type& elem,

const key_type& key) const {

return map_element_traits<Elem>::key(elem) <

key;

}

bool operator()(const key_type& key,

const value_type& elem) const {

return key <

map_element_traits<Elem>::key(elem);

}

};

This is a generalisation of the CleverLessKey class shown
above. It uses the key() function from the map element traits to
ensure that the predicate class can be generated for any element
of a map-like class and only those elements. A third
operator() overload is provided so that two elements can be
compared to each other. We omitted the additional typedefs
needed for adaptability.

Problem Solved! - Problem Solved?

The code presented in the previous sections does fix all the
imperfections in Stefan’s version. At least, it does if you are using
the GCC compiler (Code tested on gcc 3.2 and 3.3.). But VC++
7.1 produces an error. It turns out that it fails to find the
map_traits specialization for Pair<Key,Val>. The reason
is related to const qualification. VC++ is happy if the
map_traits template is specialized for const
Pair<Key,Val> instead of just Pair<Key,Val>, but that
creates an error when compiled with GCC. We don’t know yet
whether this is because of a compiler error or because of an
imprecision in the C++ standard. In practice, you will therefore
have to provide both (otherwise identical) specializations.

So here is the entire code in all its glory:

#include <iostream>

#include <algorithm>

#include <map>

#include <functional>

// Generic map element declarations.

template<typename Elem> struct map_element_traits;

template<typename Elem> inline

const typename map_element_traits<Elem>::mapped_type&

mapped_value(const Elem& element) {

return map_element_traits<Elem>::mapped_value(

element);

}

template<typename Elem> inline

const typename map_element_traits<Elem>::key_type&

key(const Elem& element) {

return map_element_traits<Elem>::key(element);

}

template<typename Elem>

struct key_value_compare {

typedef typename

map_element_traits<Elem>::key_type

key_type;

typedef typename

map_element_traits<Elem>::value_type

value_type;

bool operator()(const value_type& x,

const value_type& y) const {

return map_element_traits<Elem>::key(x) <

map_element_traits<Elem>::key(y);

}

bool operator()(const value_type& elem,

const key_type& key) const {

return map_element_traits<Elem>::key(elem) <

key;

}

bool operator()(const key_type& key,

const value_type& elem) const {

return key <

map_element_traits<Elem>::key(elem);

}

};

// Generic map declarations.

template<typename Map> struct map_traits;

template<typename Map> inline

typename map_traits<Map>::const_iterator

find(const Map& map,

const typename map_traits<Map>::key_type&

key) {

return map_traits<Map>::find(map, key);

}

template<typename Map> inline

typename map_traits<Map>::const_iterator

end(Map const& map) {

return map_traits<Map>::end(map);

}

// The lookup() function

template<typename Map>

const typename map_traits<Map>::mapped_type&

lookup(const Map& map,

const typename map_traits<Map>::key_type&

target_key,

const typename map_traits<Map>::mapped_type&

default_value) {

typename map_traits<Map>::const_iterator pos

= find(map, target_key);

return (pos == end(map))

? default_value

: mapped_value(*pos);

}

// specializations for std::map

template<typename Key, typename Val>

struct map_element_traits< std::pair<Key,Val> > {

typedef std::pair<Key,Val> value_type;

typedef typename value_type:: first_type

key_type;

typedef typename value_type::second_type

mapped_type;

static const key_type& key(

const value_type& element) {

return element.first;

}

static const mapped_type& mapped_value(

const value_type& element) {

return element.second;

}

};

template<typename Key, typename T, typename Cmp,

typename A>

struct map_traits< std::map<Key,T,Cmp,A> > {

typedef std::map<Key,T,Cmp,A> map_type;

typedef typename map_type::key_type

key_type;

typedef typename map_type::mapped_type

mapped_type;

typedef typename map_type::value_type

value_type;

typedef typename map_type::const_iterator

const_iterator;

static const_iterator begin(const map_type& map)

{ return map.begin(); }

static const_iterator end(const map_type& map)

{ return map.end(); }

static const_iterator find(const map_type& map,

const key_type& key)

{ return map.find(key); }

};

// Our own Pair type suitable for aggregate

// initialization

template<typename Key, typename Val>

struct Pair {

Key key;

Val val;

};

// Specializations for Pair

template<typename Key, typename Val>

struct map_element_traits< Pair<Key,Val> > {

typedef Pair<Key,Val> value_type;

typedef Key key_type;

typedef Val mapped_type;

static const key_type& key(

const value_type& element)

{ return element.key; }

static const mapped_type& mapped_value(

const value_type& element)

{ return element.val; }

};

template<typename Key, typename Val, unsigned n>

struct map_traits< Pair<Key,Val>[n] > { // for GCC

typedef Key key_type;

typedef Val mapped_type;

typedef Pair<Key,Val> value_type;

typedef const value_type* const_iterator;

static const_iterator begin(

const value_type (&map)[n])

{ return &map[0]; }

static const_iterator end(

const value_type (&map)[n])

{ return &map[n]; }

static const_iterator find(

const value_type (&map)[n],

const key_type& target_key) {

const_iterator i = std::lower_bound(

begin(map), end(map), target_key,

key_value_compare<value_type>());

return (i == end(map) || key(*i) != target_key)

? end(map) : i;

}

};

template<typename Key, typename Val, unsigned n>

struct map_traits< const Pair<Key,Val>[n] > {

// for VC++

typedef Key key_type;

typedef Val mapped_type;

typedef Pair<Key,Val> value_type;

typedef const value_type* const_iterator;

static const_iterator begin(

const value_type (&map)[n])

{ return &map[0]; }

static const_iterator end(

const value_type (&map)[n])

{ return &map[n]; }

29

Overload issue 61 june 2004

30

Overload issue 61 june 2004

static const_iterator find(

const value_type (&map)[n],

const key_type& target_key) {

const_iterator i

= std::lower_bound(

begin(map), end(map), target_key,

key_value_compare<value_type>());

return (i == end(map) || key(*i) != target_key)

? end(map) : i;

}

};

// Test code

typedef const Pair<int, const char*> Elem;

Elem table[] = {

{ 0, "Ok" },

{ 6, "Minor glitch in self-destruction module" },

{ 13, "Error logging printer out of paper" },

{ 101, "Emergency cooling system inoperable" },

{ 2349, "Dangerous substances released" },

{ 32767, "Game over, you lost" }

};

using namespace std;

int main() {

map<int, const char*> message_map;

message_map[6]

= "Minor glitch in self-destruction module";

const char *result

= lookup(message_map, 6, "not found");

cout << "lookup(map, 6, \"not found\") = "

<< result << endl;

result = lookup(message_map, 6, 0);

cout << "lookup(map, 6, 0) = " << result

<< endl;

result = lookup(table, 5, "not found");

cout << "lookup(table, 5, \"not found\") = "

<< result << endl;

result = lookup(table, 6, 0);

cout << "lookup(table, 6, 0) = "

<< result

<< endl;

}

Afterwords

Phil’s Afterword

First, I completely agree with Stefan that C++ is too big,
complicated and difficult to use for most programmers and most
organisations. C++ is a great language for developing high
quality, flexible and efficient software components - but (and I’ve
said this before) most software is not like that.

The main lesson we can take from this apparently simple exercise
is that experience counts. I became involved in Stefan’s problem
because I felt instinctively that the first step should have been to
reduce the number of template parameters, not (as Stefan tried to do)
to increase it. How did I know this would help? I’d been there before.

My advice to C++ programmers struggling with templates (or any
other part of the language) is this: learn the rules, don’t guess; don’t
panic; simplify the problem as far as you can; think carefully;
experiment; and, finally, don’t be afraid to ask for help.

If there is a moral to this story I would say it is that software is
a very young discipline. As a profession we still have a lot to learn.
One of the problems that remains unsolved is how to design a
programming language that is easy to learn, is easy to use, is
applicable to a wide range of applications and which generates
compact and efficient code. In my opinion, C++ is about the state
of the art. It makes most of this possible, but it’s not always easy.

Phil Bass
phil@stoneymanor.demon.co.uk

Stefan’s Afterword

So we’ve solved all the problems. And I’ve learned a lot in the
process! That’s a happy end, isn’t it?

I don’t think so. Look at what I wanted to achieve at the
beginning and what we ended up with. All this is just a clever way
to call std::lower_bound, isn’t it? (Or the find member
function of std::map). Ok, I’m a bit sarcastic here.

If we subtract the test code and the code related to
std::map, which don’t really count here, we have written in
excess of 100 lines of source code, some of it quite tricky. And
most of it is just the scaffolding needed to make
std::lower_bound usable in a nice way with constant
ROMable key/value pairs. If we include all compiler quirks and
crappy error messages, this matter was suitable for filling a fair
number of Overload pages.

Clearly there’s something amiss here. If this sort of thing does
not get easier a lot of programmers will get frustrated by C++.

Stefan Heinzmann
stefan_heinzmann@yahoo.com

Editor’s Afterword

Reading Stefan's contributions to this issue brought back memories for
me of an article I wrote nine years ago (Overload 8). There isn't space to
reproduce it in this issue, or the editorial response it elicited (this was
longer than the article). I won't go into the detail of the arguments, but
just quote from the end of that response:

"At the end of the day, I basically agree with Alan - C++ is harder
to use than C - and I think his comparison between a Stylophone and
a violin is well drawn. I don't blame the language (and I don't really
think Alan does either) - I blame IT management for giving everyone
a violin and saying "right, now play a tune!" What C++ highlights is
the need for better training, better tools and more realistic expectations."
- Sean A Corfield

Nine years have passed and nothing significant has changed. C++
is still to hard to use, lacks decent tools and expectations are seldom
realistic.

Alan Griffiths

References

[1] Stefan Heinzmann: “The tale of a struggling template
programmer”, this issue of Overload
[2] D. Vandevoorde, N. M. Josuttis: C++ Templates: The
complete guide, Addison-Wesley 2003
[3] Rich Sposato: “A More Flexible Container”, Overload issue
58 December 2003
[4] http://www.comeaucomputing.com

