
3

overload issue 68 august 2005

contents credits &
contacts

Overload Editor:

Alan Griffiths
overload@accu.org
alan@octopull.demon.co.uk

Contributing Editor:

Mark Radford
mark@twonine.co.uk

Advisors:

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@gmail.com

Pippa Hennessy
pip@oldbat.co.uk

Advertising:

Thaddaeus Frogley
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:
http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

Publications Officer:

John Merrells
publications@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

C++ Interface Classes - Noise Reduction

Mark Radford 6

A Technique for Register Access in C++

Pete Goodliffe 9

Investigating Java Class Loading

Roger Orr 14

Software Project Management:

Stakeholder Metrics to Agile

Projects

Tom Gilb 18

C-side Re-sort

Kevlin Henney 22

overload issue 68 august 2005

Editorial: Size Does Matter

Why shouldn’t one write a test harness for “hello world”? As in
all design questions it is a matter of trade-offs: there is a cost to
doing it (a test harness for this program is typically more
complex than the program itself) and a benefit (a test harness that
confirms the program works). In this case the cost doesn’t justify
the benefit – as one respondent put it “I can just run the program
to see that it works”.

OK, you might say that is a silly example, but it reflects the basis
on which the habits of those working in software development
form. Their first programs are that simple. And they write them
accordingly. As they become more accomplished they tackle bigger
and bigger problems the same way – usually long past the point at
which this is the most effective approach. Because they can still
succeed the need for change isn’t apparent to them. Typically it
takes both a failure of catastrophic proportions, and also an open
mind, before they appreciate the need for a different approach.
Even so, old habits die hard and resisting the temptation to fix an
urgent problem with “a quick ‘low risk’ hack” requires
determination and vigilance.

This form of inertia (clinging to approaches that have become
inappropriate) isn’t restricted to the individual developer - one only
has to look at the recent G8 response to climate change to see it
operating at the scale of nations. But that example is outside the
scope of this publication. What is relevant here is that it also applies
to larger software development units: teams, departments and
whole organisations.

The Scale of a Project

There are many ways to attempt to characterise the scale of a
project:
● the number of developers;
● the value (and risk) to the business;
● the count of function points (or use cases, or stories…);
● the budget;
● the size of the codebase;
● the length of time the project is active;
● the range of technologies employed;
● Etc.

All of these affect the effectiveness of different methods of
working. I hope no-one would claim that what is appropriate for
one developer working on a low profile project for a few days is
appropriate for a couple of dozen working on a high profile
project for a couple of years. The choice of appropriate methods

is an important decision and may need revision as a project
progresses. Alastair Cockburn provides a lucid discussion of his
research into the effect of scale on development process in
“Agile Software Development”.

It is very easy for an organisation that is accustomed to running
projects of one size to continue to deploy the same practices on a
project for which they are inappropriate. And, as with our developer
in the first example, it often takes a significant failure before the
assumptions that underlie this decision can be questioned. In fact,
the practices are often habituated to an extent that means they are
not even examined as a potential cause.

Opinions as to the cause of failure all too often fail to bear close
examination, or are superficial – they identify a mistake by an
individual without following up and discovering the circumstances
that made that mistake inevitable. (There are many examples of
this cited in “High-Pressure Steam Engines and Computer
Software” - http://www.safeware-eng.com/index.php/
publications/HiPreStEn.) If we look at those cases where
there has been a thorough examination of failing projects it has
been found that the individual errors of engineers and operators
compounded inappropriate working and management practices.
(Commonly cited examples include: Three Mile Island, Chernobyl,
Challenger, Bhopal, and Flixborough.)

As Projects Grow

A typical development department will begin by delivering small
projects, and its approach to the development and deployment of
software is appropriate to this circumstance. In a small project
everyone involved in development (which will often be the one
and only developer) can be expected to have an understanding of
each of the elements of the project, their interactions and the
context in which these elements work. They will also have an
understanding of the status of any ongoing work.

Sooner or later the department will begin to undertake medium
(or even large) scale projects - I’ll explain what I mean by
“medium” and “large” in a moment. The point I want to make first
is that there is nothing obvious to alert an organisation that a new
project with an extra developer or two, lasting a little longer, using
an extra technology or two, and with a bit more functionality than
usual requires a different approach.

It would be great to have a rule that took the size of a project
and gave the appropriate development practices. Sadly, it isn’t that
simple. There are just too many factors affecting both the size of
the project and the level of risk that an organisation is prepared to

T
he way that one goes about developing and delivering a software project
depends critically on the scale of the project. There is no “one size fits all”
approach. As a trivial example to illustrate this, no one would consider writing

a test harness for a “hello world” program. (Actually, I have tried this question out on
some TDD proponents over the last year - and I have only found one that insists that
they would do so.)

4

5

overload issue 68 august 2005

accept. In practice, I find that it is only by observing as the project
progresses that a useful measure emerges. But it is rare to find an
organisation that will take early indicators on board and make
changes when it is not clear that anything will go wrong.

Small, Medium or Large

The distinction I use is based upon whether the whole project will
“fit in the head” of all developers (small project), a few of the
developers (medium project), or none of the developers (large
project). It may not be immediately apparent, but a project can
move between these categories during its lifecycle - and not just
in one direction. (One project I am aware of moved from small to
medium to large and then back to medium, and if the current
initiatives succeed may yet make it back to small.)

In a typical medium sized project there will be one or more
people with this general understanding and a number of people with
specialised knowledge of particular areas. It is possible to run such
a project without taking account of these specialisations without a
big risk of disaster. Disaster can happen when firstly, a subsystem
reaches a state that requires specialised knowledge to work on it;
secondly, that this specialised knowledge is lost to the team; and
thirdly, work is undertaken that involves that subsystem. There are
development practices that mitigate these risks but, like any
insurance scheme, these have a cost that eliminates them from
consideration on a small project.

In a large project no-one will have an understanding of the whole
thing in detail – those with a general understanding of the overall
structure will rely on the expertise of those with a detailed
knowledge of individual components and vice versa. Any
significant development activity will cross boundaries of expertise
- and, in consequence, will entail a risk of changing things without
the specialised knowledge that makes the change safe. (There are
ways to mitigate this risk, but not with a “small project” mentality.)

It is rare, therefore, to find a “large project” running smoothly
with “small project” practices - typically many pieces of work will
be failing. But even with this clue that something is systemically
wrong the reaction is often inappropriate - after all the developer(s)
implementing any piece of work that went wrong clearly made
mistakes. And this brings me back to the arguments presented in
“High-Pressure Steam Engines and Computer Software” (this really
is a good paper - if you are not familiar with it, go and read it).
Working practices should be chosen to both minimise the likelihood
of mistakes and to ensure that any mistakes are detected and
corrected before they derail the project.

Changing Working Practices

So what do you do when you are on a project that is showing
symptoms of a mismatch between the working practices and the
nature of the project?

If you are a single developer working on a three-day project then
it is probably easy to decide not to allocate work based on
“SecondBestResource”. (Indeed, if you succeed in employing this
pattern, then you probably have worse problems than the project
failing!) But problems can be subtle - is the cost of setting up and

maintaining a build server for the project really justified? (Even if
it is required for conformance to departmental policy!)

On a larger project it is much harder to institute change - not least
because changes need to be negotiated with other project members
(who will not be inclined to change unless you first convince them
that there is a need). But even when you’ve successfully convinced
everyone that a build server would be a good idea someone needs
to spend time setting it up and maintaining it. And this is often the
sticking point - there are “brownie points” to be had implementing
features the customer will use, and the customer doesn’t care less
about version control, test infrastructure, or the internal review of
work items. In these circumstances who would want to be seen
spending time on this stuff? It requires co-operation to tackle these
issues.

Strategies for Co-operation

There are two basic strategies for co-operation: either someone
takes responsibility and orchestrates the activities of others, or
everyone takes responsibility for dealing with the problems she
or he identifies.

Both can work for small and medium sized projects and, in many
cases, it is easier to get one person to take responsibility than to
ensure that everyone does - which can make the first strategy easier
to implement. However, as the size of a project increases, it
becomes harder and harder for one person to keep track of
everything that needs doing and on large projects it becomes
impossible. There are, of course, ways to scale the first strategy -
break down the project’s issues into groups (by sub-team, by
technology, by geography, or whatever) and ensure that someone
takes responsibility for each group. However, this always seems to
leave some issues that everyone disowns.

The strategy of everyone taking responsibility does scale a lot
better if everyone co-operates. The difficulty is getting everyone to
“buy into” this approach to begin with. It takes trust - and at the
beginning of a project this has typically not been earned. It can be
very difficult to convince everyone that “freeloaders” will not be a
problem - until they’ve participated in a team that works this way.
The thing that is missed is that the team is a small enough social
unit that “freeloaders” are quickly identified and dealt with along
with other problems.

A Personal Strategy

As a member of a project one should behave as one believes
others ought to behave. The worst thing that can be done on
encountering a problem is to ignore it on the basis that “someone
else” should deal with it. The next worst thing is to bury it in a
write-only “issues list” in the hope that one day someone will
deal with it. If everyone behaves like that then nobody deals with
anything.

Everyone - including you and me - who encounters a problem
has a responsibility to do something with it: either deal with it, or
find someone better qualified to agrees to take responsibility.

Alan Griffiths
overload@accu.org

Copy Deadlines

All articles intended for publication in Overload 69 should be submitted to the editor by September 1st 2005, and for Overload 70
by November 1st 2005.

6

overload issue 68 august 2005

C++ Interface Classes
– Noise Reduction
by Mark Radford

Interface classes are a principle mechanism for separating a
class’ interface from its implementation in C++. I wrote an
introduction to interface classes in a previous article [1], and Alan
Griffiths and I included the technique in our survey of techniques
for separating interface and implementation in C++ [2].

In this article, I intend to explore interface classes – and their
implementation classes – further. The topics I plan to cover are:
● How interface and implementation classes can be designed into

the code in such a way as to reduce implementation “noise”
● How factory functions can be used to facilitate the above
● A way of managing instance lifecycles when factory functions

are used to encapsulate different memory allocation mechanisms

An Example Class

In [2] Alan and I used telephone_list – a telephone address
book class – in order to illustrate several C++
interface/implementation separation techniques. Here I will again
use (a slightly modified version of) that example.

The telephone_list interface class looks like this:
class telephone_list

{

public:

virtual ~telephone_list() {}

virtual std::string name() const = 0;

virtual std::pair<bool, std::string>

number(const std::string& person) const = 0;

virtual telephone_list&

add_entry(const std::string& name,

const std::string& number) = 0;

protected:

telephone_list() {}

telephone_list(const telephone_list& rhs) {}

private:

telephone_list& operator=(const

telephone_list& rhs);

};

In order for this to have functionality, and in order for instances
to be created, an implementation class is needed – I’m going to
call it telephone_list_imp:

class telephone_list_imp : public

telephone_list

{

public:

telephone_list_imp(const std::string&

list_name);

private:

virtual ~telephone_list_imp();

virtual std::string name() const;

virtual std::pair<bool, std::string>

number(const std::string& person) const;

virtual telephone_list&

add_entry(const std::string& name,

const std::string& number);

typedef std::map<std::string, std::string>

dictionary_t;

std::string name_rep;

dictionary_t dictionary_rep;

telephone_list_imp(const telephone_list_imp&

rhs);

telephone_list_imp& operator=(const

telephone_list_imp& rhs);

};

In [1] I also described implementation only classes, and this is an
approach I have applied here. Apart from the constructors, all
member functions have been made private. This strengthens the
separation of interface from implementation by making it
possible to create instances of telephone_list_imp, while
usage must be via pointers and/or references to
telephone_list.

Hiding the Implementation and
Creating Instances

This whole design is geared up to functionality being used
through pointers/references to telephone_list. Therefore, the
only reason to make the definition of telephone_list_imp
visible to client code is so that instances can be created. It follows
that client code has to carry a certain amount of “noise” – in the
form of the publicly visible definition of telephone_list_imp
– just so instances can be created.

Further, C++ has the problem of physical dependencies between
header files, and the consequent recompilations that result from
modifications being made to them. This is a consequence of the file
inclusion model inherited from C. Let’s say for the sake of an
example, that one day telephone_list_imp is modified,
abandoning the std::map implementation in favour of a different
container. The fact that client code – which has no dependency on
the modified implementation detail – needs to recompile,
emphasises the fact that telephone_list_imp is just noise to the
client code.

The two issues discussed above add up to the fact that it would
be better if telephone_list_imp’s definition could be kept out
of client code altogether. Ideally, the best place for the definition of
telephone_list_imp is in an implementation (typically .cpp)
file. This leads to another problem of how clients can create
instances, but this is straightforward to solve: in the header file,
provide a factory function for creating instances of
telephone_list_imp. The header file
telephone_list_imp.h (with include “guards” removed for
brevity) now looks like this:

#include “telephone_list.h”

#include <string>

telephone_list* create_telephone_list(const

std::string& list_name);

7

overload issue 68 august 2005

Note that there is no mention of the implementation class – the
telephone_list interface class is all that’s needed. In fact, only a
forward declaration of telephone_list is needed – however, the
header file has been included because users might reasonably expect
that when they write #include "telephone_list_imp.h" in
client code, the base class’ definition will be made available.

The fragment of the implementation file containing the
telephone_list_imp and factory function definition looks like this:

class telephone_list_imp : public

telephone_list

{

public:

telephone_list_imp(const std::string&

list_name);

private:

virtual ~telephone_list_imp();

virtual std::string name() const;

virtual std::pair<bool, std::string>

number(const std::string& person) const;

virtual telephone_list&

add_entry(const std::string& name,

const std::string& number);

typedef std::map<std::string, std::string>

container;

std::string name_rep;

container dictionary_rep;

telephone_list_imp

(const telephone_list_imp& rhs);

telephone_list_imp& operator=

(const telephone_list_imp& rhs);

};

telephone_list* create_telephone_list

(const std::string& list_name)

{

return new telephone_list_imp(list_name);

}

...

At this point in the exercise the aim of removing
telephone_list’s implementation from having visibility in
client code has been achieved. Clients deal with
pointers/references to telephone_lists , while
telephone_list_imp remains buried safely in its
implementation file. All should be well, but the solution to one
problem has created another.

How are Instances Deleted?

There are two observations to make about the (“naïve”)
implementation of create_telephone_list():
● The mechanism used to create instances is now encapsulated and

hidden from public view
● So far, the return type is a simple pointer to telephone_list

This means clients can apply the delete operator to pointers
returned from create_telephone_list(). However, they
have to rely on documentation to know they must do this. There
is no way it can be made clear in the code, and clients can’t
assume it because using the delete operator is not compatible
with all mechanisms for allocating class instances on the heap in
C++. A solution to the problem (not the only one) is, rather than
return a simple pointer, to return a smart pointer such as Boost’s
shared_ptr (see [3]). The (fragmented form of the) header file
telephone_list_imp.h now looks like this:

#include “telephone_list.h”

#include “boost/shared_ptr.hpp”

#include <string>

boost::shared_ptr<telephone_list>

create_telephone_list(const std::string&

list_name);

While the implementation of create_telephone_list() now
looks like this:

boost::shared_ptr<telephone_list>

create_telephone_list(const std::string&

list_name)

{

telephone_list* p = new

telephone_list_imp(list_name);

return boost::shared_ptr<telephone_list>(p);

}

In passing note the avoidance of the expression:
return boost::shared_ptr<telephone_list>(new

telephone_list_imp(list_name));

This is because boost::shared_ptr “remembers” the concrete
type created, and uses it when the instance is deleted – i.e.
telephone_list_imp having a private destructor means
boost::shared_ptr’s attempt to delete via it causes a compile
error. The mechanism used ensures that the “remembered” type is
telephone_list, and thus avoids compilation problems.
Another option is simply to make telephone_list_imp’s
destructor public. I chose the option in the code fragment because
it adheres to the principle of all usage being through the interface
class.

The above approach solves the problem of deleting the instance
that had its creation mechanism encapsulated. The cost of achieving
this is the hard-wiring of a specific smart pointer into the code.
Further, there is a remaining problem that it doesn’t solve.

Different Allocation Mechanisms

The memory allocation scheme used so far is not the only one
available in C++. For example, the placement form of new could
be used to construct instances in conjunction with using
malloc() to allocate the memory. However, if
create_telephone_list() returns a simple pointer and relies
on the client code to apply the delete operator, then there’s no
way its implementation can ever be changed to use an alternative
allocation mechanism.

In some design scenarios, as well as having a factory function
to create instances, it is possible to have a disposal function to delete
them. However in the design scenario under consideration, there is
a serious drawback to this approach. The implementation class
telephone_list_imp is implemented in a way that results in

8

overload issue 68 august 2005

particular complexity characteristics – i.e. those associated with its
implementation container std::map. Imagine that there arises a
need for a second implementation with different characteristics.
Why this may be so is outside the scope of this article – suffice to
say that if this is done, telephone_list_imp ceases to be the
only implementation of telephone_list in town. Getting back
to disposing of instances, it is not hard to see that in order for clients
to pass instances to a disposal function, either instances of each
implementation class would need to use the same memory
allocation mechanism, or disposal functions would need some way
of recovering the implementation class from a pointer/reference to
the interface class.

The analysis of the complexities and tradeoffs involved in using
disposal function may at some point be the subject of another
article, but in this one I want to look at a different approach. The
approach I want to look at involves associating a disposal function
with class instances at the time their factory function creates them.
Here, just for illustration’s sake, is a fragment of a home grown
smart pointer that achieves this:

template <typename T> class ref_counted_ptr

{

public:

ref_counted_ptr(T* p, void (*delete_fn)(T*))

: pointee(p),

del(delete_fn)

{

...

}

~ref_counted_ptr() { del(pointee); }

T* operator->()

{

return pointee;

}

...

private:

T* pointee;

void (*del)(T*);

...

};

Using ref_counted_ptr, the declaration of the factory
function now looks like this:

ref_counted_ptr<telephone_list>

create_telephone_list(const std::string&

list_name);

Its implementation now looks like this:

ref_counted_ptr<telephone_list>

create_telephone_list(const std::string&

list_name)

{

telephone_list* mem =

static_cast<telephone_list*>(std::malloc

(sizeof telephone_list_imp));

if (!mem)

throw std::bad_alloc();

telephone_list* pobj = new (mem)

telephone_list_imp(list_name);

return ref_counted_ptr<telephone_list>(pobj,

del_telephone_list);

}

As if by magic, a function called del_telephone_list() has
appeared in the above code fragment – it looks like this:

void del_telephone_list(telephone_list* p)

{

p->~telephone_list();

std::free(p);

}

However, as I said, ref_counted_ptr is for illustration only.
There is actually no need to write a custom smart pointer just to
associate a disposal function with a class instance, because
boost::shared_ptr has a mechanism for accommodating a
disposal function. Actually, boost::shared_ptr has a
somewhat more sophisticated mechanism that allows the disposal
function to be either a pointer to a function, or a function object.
For this article, I’ll stick to the approach already used – that of
using del_telephone_list() as shown above. The factory
function implementation now looks like this:

boost::shared_ptr<telephone_list>

create_telephone_list(const std::string&

list_name)

{

telephone_list* mem =

static_cast<telephone_list*>(std::malloc(sizeo

f telephone_list_imp));

if (!mem)

throw std::bad_alloc();

telephone_list* pobj = new (mem)

telephone_list_imp(list_name);

return

boost::shared_ptr<telephone_list>(pobj,

del_telephone_list);

}

In passing I should mention that there are various tradeoffs in
possible implementations of reference counted smart pointers,
and boost::shared_ptr addresses only one set of tradeoffs. I
just thought it best to point that out; sorry, but I’m not going into
any more detail on that topic. The reader is referred to the Boost
documentation (see [3]).

Finally

Cases where solutions to problems are the solutions are rare –
usually there are alternatives that come with their own sets of
tradeoffs. I hope I have succeeded in making the tradeoffs clear.
This article has covered the three points set out in the

[concluded at foot of next page]

introduction, having followed one train of thought. Others have
been alluded to in passing but not covered, but perhaps in future
articles.

Mark Radford
mark@twonine.co.uk

References

1 Mark Radford, C++ Interface Classes – An Introduction
(Overload 62, and also available from
http://www.twonine.co.uk/articles/CPPInterface

ClassesIntro.pdf)
2 Alan Griffiths and Mark Radford, Separating Interface and

Implementation in C++, (Overload, and also available at
http://www.twonine.co.uk/articles/SeparatingIn

terfaceAndImplementation.pdf)

3 www.boost.org

9

overload issue 68 august 2005

A Technique for
Register Access
in C++

Pete Goodliffe

Exploiting C++'s features for efficient and safe hardware register
access.

This article originally appeared in C/C++ Users Journal, and is
reproduced by kind permission.

Embedded programmers traditionally use C as their language of
choice. And why not? It's lean and efficient, and allows you to get
as close to the metal as you want. Of course C++, used properly,
provides the same level of efficiency as the best C code. But we can
also leverage powerful C++ features to write cleaner, safer, more
elegant low-level code. This article demonstrates this by discussing
a C++ scheme for accessing hardware registers in an optimal way.

Demystifying Register Access

Embedded programming is often seen as black magic by those not
initiated into the cult. It does require a slightly different mindset; a

resource constrained environment needs small, lean
code to get the most out of a slow processor or a
tight memory limit. To understand the approach I
present we'll first review the mechanisms for
register access in such an environment. Hardcore
embedded developers can probably skip ahead;
otherwise here's the view from 10,000 feet.

Most embedded code needs to service hardware
directly. This seemingly magical act is not that hard
at all. Some kinds of register need a little more fiddling
to get at than others, but you certainly don't need an
eye-of-newt or any voodoo dances. The exact
mechanism depends on how your circuit board is
wired up. The common types of register access are:
● Memory mapped I/O The hardware allows us to

communicate with a device using the same
instructions as memory access. The device is
wired up to live at memory address n; register 1
is mapped at address n, register 2 is at n+1, register
3 at n+2, and so on.

● Port mapped I/O Certain devices present pages
of registers that you have to map into memory
by selecting the correct device ‘port’. You might
use specific input/output CPU instructions to
talk to these devices, although more often the
port and its selector are mapped directly into the
memory address space.

● Bus separated It’s harder to control devices
connected over a non-memory mapped bus. I2C
and I2S are common peripheral connection
buses. In this scenario you must either talk to a
dedicated I2C control chip (whose registers are
memory mapped), telling it what to send to the
device, or you manipulate I2C control lines
yourself using GPIO1 ports on some other
memory mapped device.

Offset Size Name R/W Description

+0x00 1 byte STATUS RW UART status register. Bits:
0: TX buffer has empty space
1: RX buffer has empty space
2: Transmit underrun
3: Receive overflow

Write 1 to bits 2 or 3 to clear a status report.

+0x01 1 byte TXCTL RW Transmit control. Bits:
0: enable transmitter
1-3: no of bytes in transmit buffer to send

+0x02 1 byte RXCTL RW Receive control. Bits:
0: enable receiver
1-3: no of bytes in receive buffer to be read

+0x04 4 bytes TXBUF W Transmit buffer.
0-7: Byte 1
8-15: Byte 2
16-23: Byte 3
24-31: Byte 4

+0x08 4 bytes RXBUF R Receive buffer.
0-7: Byte 1
8-15: Byte 2
16-23: Byte 3
24-31: Byte 4

Reading this register clears the buffer,
and resets the RXCTL count.

Device base address is 0xfffe0000.
Register offsets are byte indexes from this base.

Figure 1: Registers in a sample UART line driver device

1 General Purpose Input/Output - assignable control lines not specifically designed for
a particular data bus.

[continued from previous page]

10

overload issue 68 august 2005

Each device has a data sheet that describes (amongst other
things) the registers it contains, what they do, and how to use
them. Registers are a fixed number of bits wide - this is usually
determined by the type of device you are using. This is an
important fact to know: some devices will lock up if you write
the wrong width data to them. With fixed width registers, many
devices cram several bits of functionality into one
register as a 'bitset'. The data sheet would describe this
diagrammatically in a similar manner to Figure 1.
So what does hardware access code look like? Using
the simple example of a fictional UART line driver
device presented in Figure 1, the traditional C-style
schemes are:
● Direct memory pointer access. It’s not unheard of

to see register access code like Listing 1, but we all know that
the perpetrators of this kind of monstrosity should be taken
outside and slowly tortured. It’s neither readable nor
maintainable.
Pointer usage is usually made bearable by defining a macro name
for each register location. There are two distinct macro flavours.
The first macro style defines bare memory addresses (as in
Listing 2). The only real advantage of this is that you can share
the definition with assembly code parsed using the C
preprocessor. As you can see, its use is long-winded in normal
C code, and prone to error - you have to get the cast right each
time. The alternative, in Listing 3, is to include the cast in the
macro itself; far nicer in C. Unless there’s a lot of assembly code
this latter approach is preferable.
We use macros because they have no overhead in terms of code
speed or size. The alternative, creating a physical pointer variable
to describe each register location, would have a negative impact
on both code performance and executable size. However, macros
are gross and C++ programmers are already smelling a rat here.
There are plenty of problems with this fragile scheme. It’s
programming at a very low level, and the code’s real intent is not
clear- it’s hard to spot all register accesses as you browse a
function.

● Deferred assignment is a cute technique that allows you to write
code like Listing 4, defining the register location values at link
time. This is not commonly used; it's cumbersome when you
have a number of large devices, and not all compilers provide
this functionality. It requires you to run a flat (non virtual)
memory model.

● Use a struct to describe the register layout in memory, as in
Listing 5. There's a lot to be said for this approach - it’s logical
and reasonably readable. However, it has one big drawback: it
is not standards-compliant. Neither the C nor C++ standards
specify how the contents of a struct are laid out in memory. You

#define UART_TXBUF 0xfffe0004

#define UART_TXCTL 0xfffe0001

*(volatile uint32_t *)UART_TXBUF = 10;

*(volatile uint8_t *)UART_TXCTL = 3;

Listing 2

#define UART_TXBUF ((volatile uint32_t*) 0xfffe0004)

#define UART_TXCTL ((volatile uint8_t*) 0xfffe0001)

*UART_TXBUF = 10;

*UART_TXCTL = 3;

Listing 3

extern volatile uint32_t UART_TXBUF;

extern volatile uint8_t UART_TXCTL;

UART_TXBUF = 10;

UART_TXCTL = 3;

// compile this with:

// gcc listing4.c

// -gUART_UART_TXBUF=0xfffe0004

// -gUART_TXCTL=0xfffe0001

Listing 4

struct uart_device_t

{

uint8_t STATUS;

uint8_t TXCTL;

.. and so on ...

};

static volatile uart_device_t *

const uart_device

= reinterpret_cast

<volatile uart_device_t *>(0xfffe0000);

uart_device->TXBUF = 10;

uart_device->TXCTL = 3;

Listing 5

#define UART_RX_BYTES 0x0e

uint32_t uart_read()

{

while ((*UART_RXCTL & UART_RX_BYTES) == 0)

// manipulate here

{

; // wait

}

return *UART_RXBUF;

}

Listing 6

Using Volatile

This low-level purgatory is where we use C’s volatile keyword. volatile signals to the compiler that a value may change under the
code’s feet, that we can make no assumptions about it, and the optimiser can’t cache it for repeated use.

This is just the behaviour we need for hardware register access. Every time we write code that accesses a register we want it to result
in a real register access. Don’t forget the volatile qualification!

*((volatile uint32_t *)0xfffe0004) = 10;

*((volatile uint8_t *)0xfffe0001) = 3;

Listing 1

11

overload issue 68 august 2005

are guaranteed an exact ordering, but you don't know how the
compiler will pad out non-aligned items. Indeed, some compilers
have proprietary extensions or switches to determine this
behaviour. Your code might work fine with one compiler and
produce startling results on another.

● Create a function to access the registers and hide all the gross
stuff in there. On less speedy devices this might be prohibitively
slow, but for most applications it is perfectly adequate, especially
for registers that are accessed infrequently. For port mapped
registers this makes a lot of sense; their access requires complex
logic, and writing all this out longhand is tortuous and easy to
get wrong.

It remains for us see how to manipulate registers containing a
bitset. Conventionally we write such code by hand, something
like Listing 6. This is a sure-fire way to cause yourself untold
grief, tracking down odd device behaviour. It's very easy to
manipulate the wrong bit and get very confusing results.

Does all this sound messy and error prone? Welcome to the
world of hardware devices. And this is just addressing the device:
what you write into the registers is your own business, and part of
what makes device control so painful. Data sheets are often
ambiguous or miss essential information, and devices magically
require registers to be accessed in a certain order. There will never
be a silver bullet and you'll always have to wrestle these demons.
All I can promise is to make the fight less biased to the hardware’s
side.

A More Modern Solution

So having seen the state of the art, at least in the C world, how
can we move into the 21st century? Being good C++ citizens
we’d ideally avoid all that nasty preprocessor use and find a way
to insulate us from our own stupidity. By the end of the article
you'll have seen how to do all this and more. The real beauty of
the following scheme is its simplicity. It’s a solid, proven
approach and has been used for the last five years in production
code deployed in tens of thousands of units across three
continents.
Here's the recipe…

Step one is to junk the whole preprocessor macro scheme, and
define the device's registers in a good old-fashioned enumeration.
For the moment we'll call this enumeration Register. We
immediately lose the ability to share definitions with assembly
code, but this was never a compelling benefit anyway. The
enumeration values are specified as offsets from the device's base
memory address. This is how they are presented in the device's
datasheet, which makes it easier to check for validity. Some data
sheets show byte offsets from the base address (so 32-bit register
offsets increment by 4 each time), whilst others show 'word'
offsets (so 32-bit register offsets increment by 1 each time). For
simplicity, we'll write the enumeration values however the
datasheet works.

The next step is to write an inline regAddress function that
converts the enumeration to a physical address. This function will
be a very simple calculation determined by the type of offset in the
enumeration. For the moment we'll presume that the device is
memory mapped at a known fixed address. This implies the
simplest MMU configuration, with no virtual memory address
space in operation. This mode of operation is not at all uncommon
in embedded devices. Putting all this together results in Listing 7.

The missing part of this jigsaw puzzle is the method of
reading/writing registers. We'll do this with two simple inline
functions, regRead and regWrite, shown in Listing 8. Being
inline, all these functions can work together to make neat,
readable register access code with no runtime overhead
whatsoever. That's mildly impressive, but we can do so much
more.

Different Width Registers

Up until this point you could achieve the same effect in C with
judicious use of macros. We’ve not yet written anything
groundbreaking. But if our device has some 8-bit registers and
some 32-bit registers we can describe each set in a different
enumeration. Let’s imaginatively call these Register8 and
Register32. Thanks to C++’s strong typing of enums, now we can
overload the register access functions, as demonstrated in Listing 9.

Now things are getting interesting: we still need only type
regRead to access a register, but the compiler will automatically
ensure that we get the correct width register access. The only way
to do this in C is manually, by defining multiple read/write macros
and selecting the correct one by hand each time. This overloading
shifts the onus of knowing which registers require 8 or 32-bit writes
from the programmer using the device to the compiler. A whole
class of error silently disappears. Marvellous!

Extending to Multiple Devices

An embedded system is composed of many separate devices,
each performing their allotted task. Perhaps you have a UART
for control, a network chip for communication, a sound device

static const unsigned int baseAddress =

0xfffe0000;

enum Registers

{

STATUS = 0x00, // UART status register

TXCTL = 0x01, // Transmit control

RXCTL = 0x02, // Receive control

. and so on ...

};

inline volatile uint8_t *regAddress

(Registers reg)

{

return reinterpret_cast<volatile

uint8_t*>(baseAddress + reg);

}

Listing 7

inline uint8_t regRead(Registers reg)

{

return *regAddress(reg);

}

inline void regWrite

(Registers reg, uint8_t value)

{

*regAddress(reg) = value;

}

Listing 8

12

overload issue 68 august 2005

for audible warnings, and more. We need to define multiple
register sets with different base addresses and associated bitset
definitions. Some large devices (like super I/O chips) consist of
several subsystems that work independently of one another;
we’d also like to keep the register definitions for these parts
distinct.

The classic C technique is to augment each block of register
definition names with a logical prefix. For example, we’d define
the UART transmit buffer like this:

#define MYDEVICE_UART_TXBUF

((volatile uint32_t *)0xffe0004)

C++ provides an ideal replacement mechanism that solves more
than just this aesthetic blight. We can group register definitions
within namespaces. The nest of underscored names is replaced by
:: qualifications - a better, syntactic indication of relationship.
Because the overload rules honour namespaces, we can never write
a register value to the wrong device block: it's a syntactic error. This
is a simple trick, but it makes the scheme incredibly usable and
powerful.

Namespacing also allows us to write more readable code with a
judicious sprinkling of using declarations inside device setup
functions. Koenig lookup combats excess verbiage in our code.
If we have register sets in two namespaces DevA and DevB, we
needn't quality a regRead call, just the register name. The
compiler can infer the correct regRead overload in the correct
namespace from its parameter type. You only have to write:

uint32_t value = regRead(DevA::MYREGISTER);

// note: not DevA::regRead(...)

Variable Base Addresses

Not every operating environment is as simplistic as we've seen so
far. If a virtual memory system is in use then you can't directly
access the physical memory mapped locations - they are hidden
behind the virtual address space. Fortunately, every OS provides
a mechanism to map known physical memory locations into the
current process' virtual address space.

A simple modification allows us to accommodate this memory
indirection. We must change the baseAddress variable from a
simple static const pointer to a real variable. The header file defines
it as extern, and before any register accesses you must arrange to
define and assign it in your code. The definition of baseAddress
will be necessarily system specific.

Other Usage

Here are a few extra considerations for the use of this register
access scheme:
● Just as we use namespaces to separate device definitions, it’s a

good idea to choose header file names that reflect the logical

// New enums for each register width

enum Registers8

{

STATUS = 0x00, // UART status register

... and so on ...

};

enum Registers32

{

TXBUF = 0x04, // Transmit buffer

... and so on ...

};

// Two overloads of regAddress

inline volatile uint8_t *regAddress

(Registers8 reg)

{

return reinterpret_cast<volatile uint8_t*>

(baseAddress + reg);

}

inline volatile uint32_t *regAddress

(Registers32 reg)

{

return reinterpret_cast<volatile uint32_t*>

(baseAddress + reg);

}

// Two overloads of regRead

inline uint8_t regRead(Registers8 reg)

{

return *regAddress(reg);

}

inline uint32_t regRead(Registers32 reg)

{

return *regAddress(reg);

}

..similarly for regWrite ...

Listing 9

Proof of Efficiency
Perhaps you think that this is an obviously a good solution, or
you're just presuming that I'm right. However, a lot of old-
school embedded programmers are not so easily persuaded.
When I introduced this scheme in one company I met a lot of
resistance from C programmers who could just not believe that
the inline functions resulted in code as efficient as the proven
macro technique.

The only way to persuade them was with hard data - I compiled
equivalent code using both techniques for the target platform (gcc
targeting a MIPS device). The results are listed in the table below.
An inspection of the machine code generated for each kind of
register access showed that the code was identical. You can't
argue with that!

It's particularly interesting to note that the #define method in C
is slightly larger than the C++ equivalent. This is a peculiarity
of the gcc toolchain - the assembly listing for the two main
functions is identical: the difference in file size is down to the
glue around the function code.

Register access method Results (object file size in bytes)

Unoptimised Optimised

C++ inline function scheme 1087 551
C++ using #defines 604 551
C using #defines 612 588

13

overload issue 68 august 2005

device relationships. It’s best to nest the headers in directories
corresponding to the namespace names.

● A real bonus of this register access scheme is that you can easily
substitute alternative regRead/regWrite implementations. It’s
easy to extend your code to add register access logging, for
example. I have used this technique to successfully debug
hardware problems. Alternatively, you can set a breakpoint on
register access, or introduce a brief delay after each write (this
quick change shows whether a device needs a pause to action
each register assignment).

● It’s important to understand that this scheme leads to larger
unoptimised builds. Although it’s remarkably rare to not optimise
your code, without optimisation inline functions are not reduced
and your code will grow.

● There are still ways to abuse this scheme. You can pass the wrong
bitset to the wrong register, for example. But it’s an order of

magnitude harder to get anything wrong.
● A small sprinkling of template code allows us to avoid repeated

definition of bitRead/bitWrite. This is shown in Listing 11.

Conclusion

OK, this isn’t rocket science, and there’s no scary template
metaprogramming in sight (which, if you’ve seen the average
embedded programmer, is no bad thing!) But this is a robust
technique that exploits a number of C++’s features to provide
safe and efficient hardware register access. Not only is it
supremely readable and natural in the C++ idiom, it prevents
many common register access bugs and provides extreme
flexibility for hardware access tracing and debugging.

I have a number of proto-extensions to this scheme to make it
more generic (using a healthy dose of template metaprogramming,
amongst other things). I'll gladly share these ideas on request, but
would welcome some discussion about this.

Do Overload readers see any ways that this scheme could be
extended to make it simpler and easier to use?

Pete Goodliffe
<pete@cthree.org>

Pete Goodliffe is a senior C++ programmer who never stays at the
same place in the software food chain. An ACCU columnist, he has a
passion for curry and doesn't wear shoes.

// Template versions of bitRead/Write - put

// them at global scope and you don't have to

// copy bitRead/Write into every device

// namespace

template <typename RegType>

inline uint32_t bitRead

(RegType reg, uint32_t bits)

{

uint32_t regval = *regAddress(reg);

const uint32_t width = bits & 0xff;

const uint32_t bitno = bits >> 16;

regval >>= bitno;

regval &= ((1<<width)-1);

return regval;

}

template <typename RegType>

inline void bitWrite(RegType reg,

uint32_t bits, uint32_t value)

{

uint32_t regval = *regAddress(reg);

const uint32_t width = bits & 0xff;

const uint32_t bitno = bits >> 16;

regval &= ~(((1<<width)-1) << bitno);

regval |= value << bitno;

*regAddress(reg) = regval;

}

Listing 11

// A macro that defines enumeration values for

// a bitset

// You supply the start and end bit positions

#define REG_BIT_DEFN(start, end)

((start<<16)|(end-start+1))

enum STATUS_bits

{

TX_BUFFER_EMPTY = REG_BIT_DEFN(0, 0),

RX_BUFFER_EMPTY = REG_BIT_DEFN(1, 1),

TX_UNDERRUN = REG_BIT_DEFN(2, 2),

RX_OVERFLOW = REG_BIT_DEFN(3, 3)

};

... similarly for other bitsets ...

#undef REG_BIT_DEFN

inline uint32_t bitRead(Registers32 reg,

uint32_t bits)

{

uint32_t regval = *regAddress(reg);

const uint32_t width = bits & 0xff;

const uint32_t bitno = bits >> 16;

regval >>= bitno;

regval &= ((1<<width)-1);

return regval;

}

inline void bitWrite(Registers32 reg,

uint32_t bits,

uint32_t value)

{

uint32_t regval = *regAddress(reg);

const uint32_t width = bits & 0xff;

const uint32_t bitno = bits >> 16;

regval &= ~(((1<<width)-1) << bitno);

regval |= value << bitno;

*regAddress(reg) = regval;

}

Listing 10

14

overload issue 68 august 2005

Investigating Java
Class Loading
by Roger Orr

Introduction

The class loader in Java is a powerful concept that helps to
provide an extensible environment for running Java code with
varying degrees of trust. Each piece of byte code in a running
program is loaded into the Java virtual machine by a class loader,
and Java can grant different security permissions to runtime
objects based upon the class loaders used to load them.

Most of the time this mechanism is used implicitly by both the
writer and user of a Java program and ‘it just works’. However
there is quite a lot happening behind the scenes; for example when
you run a Java applet some of the classes are being loaded across
the Internet while others are read from the local machine. The class
loader does the work of getting the byte code from the target Web
site and it also helps to enforce the so-called ‘sandbox’ security
model.

Another place where class loaders are used is for Web services.
Typically the main application classes are loaded from a WAR
(Web ARchive) file but may make use of standard Java classes as
well as other classes or JAR (Java ARchive) files that may be
shared between multiple applications running inside a single
server. In this case the principal reason for the extra class loaders
is to ensure that each Web application remains as independent of
the others as possible and in particular that there is no conflict
should a class with the same name exist in two different WAR
files. Java achieves this because each class loader defines a
separate name space - two Java classes are the same only if they
were loaded with the same class loader. As we shall see this can
have some surprising results.

Using an Additional Class Loader

In the case of a browser or a Web server the framework usually
provides all the various class loaders. However you can use
additional class loaders, and it is surprisingly easy to do so. Java
provides an abstract base class, java.lang.ClasssLoader, which all
class loaders must extend. The normal model is that each class
loader has a link to its ‘parent’ class loader and all requests for
loading classes are first passed to the parent to see if they can be
loaded, and only if this delegated load fails does the class loader
try to satisfy the load. The class loaders for a Java program form
a tree, with the ‘bootstrap’ class loader as the top node of the tree

and this model ensures that standard Java classes, such as String,
are found in the usual place and only the application’s own
classes are loaded with the user-supplied class handler. (Note
that this is only a convention and not all class loaders follow the
same pattern. In particular it is up to the implementer of a class
loader to decide when and if to delegate load requests to its
parent)

One important issue when creating a class loader is deciding
which class loader to use as the parent. There are several
possibilities:
● No parent loader. In this case the loader will be responsible for

loading all classes.
● Use the system class loader. This is the commonest practice.
● Use the class loader used to load the current class. This is how

Java itself loads dependent classes.
● Use a class loader for the current thread context.

Java provides a simple API for getting and setting the default
class loader for the current thread context. This can be useful since
Java does not provide any way to navigate from a parent class
loader to its child class loader(s). I demonstrate setting the thread’s
default class loader in the example below.

Java provides a standard URLClassLoader that is ready to use,
or you can implement your own class loader.

As an example of the first case, you might want to run a Java
program on workstations in your organisation, but be able to hold
all the Java code centrally on a Web server. Here is some example
code that uses the standard java.net.URLClassLoader to instantiate
an object from a class held, in this instance, on my own Web site:

/**

*This is a trivial example of a class loader.

*It loads an object from a class on my own

*Web site.

*/

public class URLExample

{

private static final String defaultURL =

"http://www.howzatt.demon.co.uk/";

private static final String defaultClass =

"articles.java.Welcome";

public static void main(String args[])

throws Exception

{

final String targetURL = (args.length

< 1) ? defaultURL : args[0];

final String targetClass = (args.length

< 2) ? defaultClass : args[1];

// Step 1: create the URL class loader.

System.out.println("Creating class

loader for: " + targetURL);

java.net.URL[] urls = { new java.net.URL

(targetURL) };

ClassLoader newClassLoader = new

java.net.URLClassLoader(urls);

Thread.currentThread()

.setContextClassLoader

(newClassLoader);

Java provides a security model known as the ‘sandbox model’
where untrusted code executes in its own environment with no
risk of doing any damage to the full environment. All attempts
to ‘get out of the sandbox’, such as opening files on the local
machine or issuing network requests to arbitrary ports, are first
checked by a security manager assigned to the JVM (Java
Virtual Machine). The security manager can thereby provide
complete control over the level of access the running program
has to the rest of the machine. This makes it relatively safe to
run code, such as a Java applet, which may be downloaded
from a remote Web site over which you have no control as the
security manager can validate the downloaded code and
restrict its access to predefined sets of actions.

15

overload issue 68 august 2005

// Step 2: load the class and create an

instance of it.

System.out.println("Loading: " +
targetClass);

Class urlClass =
newClassLoader.loadClass
(targetClass);

Object obj = urlClass.newInstance();
System.out.println("Object is: \""

+ obj.toString() + "\"");

// Step 3: check the URL of the
loaded class.
java.net.URL url

= obj.getClass().getResource
("Welcome.class");

if (url != null)
{
System.out.println("URL used: "

+ url.toExternalForm());
}

}
}

When I compile and run this program it produces the folllowing
output:

Creating class loader for:

http://www.howzatt.demon.co.uk/

Loading: articles.java.Welcome

Object is: “Welcome from Roger Orr’s Web site”

URL used:

http://www.howzatt.demon.co.uk/articles/java/W

elcome.class

The URLClassLoader class supplied with standard Java is doing
all the hard work. Obviously there is more to write for a complete
solution, for example a SecurityManager object may be
required in order to provide control over the access rights of the
loaded code.

The source code for the ‘Welcome.class’ looks like this:
package articles.java;

public class Welcome

{

private WelcomeImpl impl

= new WelcomeImpl();

public String toString()

{

return impl.toString();

}

}

Notice that the class has a dependency upon WelcomeImpl - but
we did not have to load it ourselves. The same class loader
newClassLoader we use to load Welcome is used by the system
to resolve references to dependent classes, and so the system
automatically loaded WelcomeImpl from the Web site as it was
not found locally. There is little code needed for this example
and ‘it just works’ as expected.

Writing your own Class Loader

Although undoubtedly useful the URLClassLoader does not
provide everything and there will be cases where a new class
loader must be written. This might be because you wish to provide
a non-standard way of reading the bytes code or to give additional
control over the security of the loaded classes. All you need to do
is to override the findClass method in the new class loader to try
and locate the byte code for the named class; the implementation of
other methods in ClassLoader does not usually need overriding.

Here is a simple example of a class loader which looks for class
files with the .clazz extension by providing a findClass
method. This automatically produces a class loader that
implements the delegation pattern - the new class loader is only
used when the parent class loader is not able to find the class. At
this point the findClass method shown below is invoked and
the myDataLoad method tries to obtain the class data from a
.clazz file. Although only an example it does illustrate the
principles of writing a simple class loader of your own.

import java.io.*;

public class MyClassLoader extends ClassLoader

{

public MyClassLoader(ClassLoader parent)

{

super(parent);

}

protected Class findClass(String name)

throws ClassNotFoundException

{

try

{

byte[] classData = myDataLoad(name);

return defineClass(name, classData,

0, classData.length);

}

catch (Exception ex)

{

throw new ClassNotFoundException();

}

}

// Example: look for byte code in files

with .clazz extension

private byte[] myDataLoad

(String name) throws Exception

{

ByteArrayOutputStream bos

= new ByteArrayOutputStream();

InputStream is =

getClass().getResourceAsStream

(name + “.clazz”);

if (is != null)

{

int nextByte;

while ((nextByte = is.read()) != -1)

{

bos.write((byte) nextByte);

}

}

return bos.toByteArray();

}

}

16

overload issue 68 august 2005

We might want to get the Java runtime to install the class loader
when the application starts. This can be done by defining the
java.system.class.loader property - for this JVM instance - as the
class name of our class loader. An object of this class will be
constructed at startup, with the ‘parent’ class loader being the
default system class loader. The supplied class loader is then
used as the system class loader for the duration of the application.

For example:
C:>javac Hello.java

C:>rename Hello.class Hello.clazz

C:>java Hello

Exception in thread "main" java.lang.NoClass

DefFoundError: Hello

C:>java -Djava.system.class.loader=MyClass

LoaderHello

Hello World

Class Loading - Java’s Answer to
DLL Hell?

In practice, for both applets and Web servers, everything does not
always work without problem. Unfortunately from time to time
there are interactions between the various class loaders and, in
my experience, these are typically rather hard to track down.The
sort of problems I have had include:
● strange runtime errors caused by different versions of the same

class file(s) in different places in the CLASSPATH.
● problems with log4j generating NoClassDefFound or

ClassCastException errors.
● difficulties registering protocol handlers inside a WAR file.

My experience is that resolving these sort of problems is made
more difficult by the lack of easy ways to see which class loader
was used to load each class in the system. For any given object it
is quite easy to track down the class loader - the getClass()
method returns the correct ‘Class’ object and calling the
getClassLoader() method then returns the actual class loader
used to instantiate this class. The class loader can be null - for
classes loaded by the JVM ‘bootstrap’ class loader.

Since Java treats any classes loaded by different class loaders as
different classes it can be critical to find out the exact class loaders
involved. However I do not know of a way to list all classes and
their loaders. The Java debugger ‘JDB’ has a ‘classes’ command
but this simply lists all the classes without, as far as I know, any
way to break them down by class loader.

I wanted to find a way to list loaded classes and their
corresponding class loader so I could try and identify the root cause
of this sort of problem. One way is to extract the source for
ClassLoader.java, make changes to it to provide additional
logging and to place the modified class file in the bootstrap class
path before the real ClassLoader. This is a technique giving
maximum control, but has a couple of downsides. Firstly you need
access to the boot class path - this may not always be easy to
achieve. Secondly you must ensure the code modified matches the
exact version of the JVM being run. After some experimentation,
I decided to use reflection on ClassLoader itself to provide me
pretty well what I wanted.

Reflecting on the Class Loader

Reflection allows a program to query, at run time, the fields and
methods of objects and classes in the system. This feature, by no
means unique to Java, provides some techniques of particular use
for testing and debugging. For example, a test harness such as
JUnit can query at run time the methods and arguments of public
methods of a target object and then call all methods matching a
particular signature. This sort of programming is very flexible,
and automatically tracks changes made to the target class as long
as they comply with the appropriate conventions for the test
harness. However the downside of late binding like this is that
errors such as argument type mismatch are no longer caught by
the compiler but only at runtime.

There are two main types of reflection supported for a class; the
first type provides access to all the public methods and fields for
the class and its superclasses, and this is the commonest use of
reflection. However there is a second type of reflection giving
access to all the declared methods and fields on a class (not
including inherited names). This sort of reflection can be used,
subject to the security manager granting permission, to provide
read (and write) access even to private members of another object.

I noticed that each ClassLoader contains a ‘classes’ Vector that
is updated by the JVM for each class loaded by this class loader.

[Code from ClassLoader.java in ‘java.lang’]

// Invoked by the VM to record every loaded

class with this loader.

void addClass(Class c) {

classes.addElement(c);

}

I use reflection to obtain the original vector for each traced class
loader and replace it with a proxy object that logs each addition
using addElement. The steps are simple, although a lot of work
is going on under the covers in the JVM to support this
functionality. The class for the ClassLoader itself is queried with
the getDeclaredField to obtain a ‘Field’ object for the
(private) member ‘classes’. This object is then marked as
accessible (since by default private fields are not accessible) and
finally the field contents are read and written.

The complete code looks something like this:
// Add a hook to a class loader (using

reflection)

private void hookClassLoader(

final ClassLoader currLoader)

{
try
{
java.lang.reflect.Field field =

ClassLoader.class.getDeclaredField

("classes");

field.setAccessible(true);

final java.util.Vector currClasses =

(java.util.Vector)field.get

(currLoader);

field.set(currLoader,

new java.util.Vector() {

public void addElement(Object o) {

showClass((Class)o);

17

overload issue 68 august 2005

currClasses.addElement(o);

}

});

}

catch (java.lang.Exception ex)

{

streamer.println("Can't hook " +

currLoader + ": " + ex);

}

}

The end result of running this code against a class loader is that
every time the JVM marks the class loader as having loaded a
class the showClass method will be called. In this method we
can take any action we choose based on the newly loaded class.
This could be to simply log the class and its loader, or something
more advanced.

When I first used reflection to modify the behaviour of a class
in Java like this I was a little surprised - I’ve done similar tricks in
C++ but it involves self-modifying code and assembly instructions.

Limitations of this Approach

There are several problems with this approach.
● First of all, it requires sufficient security permissions to be able

to access the private member of ClassLoader. This is not
usually a problem for stand-alone applications but will cause
difficulty for applets since the container by default installs a
security manager that prevents applet code from having access
to the ClassLoader fields.

● Secondly, the code is not future proof since it relies upon the
behaviour of a private member variable. This does not worry me
greatly in this code as it is solely designed to assist in debugging
a problem and is not intended to be part of a released program,
but some care does need to be taken. What I have done by
replacing private member data with a proxy breaks encapsulation.

● Thirdly, the technique is not generally applicable since there
must be a suitable member variable in the target class - in this
case I was able to override Vector.addElement().

● Fourthly, the code needs calling for each class loader in the
system - but there is no standard way for us to locate them all!

● Fifthly, the bootstrap class loader is not included in this code
since it is part of the JVM and does not have a corresponding
ClassLoader object.

It is possible to partly work around the fourth and fifth problems
by registering our own class loader at the head of the chain of
class loaders. Remember that each class loader in the system
(apart from the JVM’s own class loader) has a ‘parent’ class
loader. I use reflection to insert my own class loader as the
topmost parent for all class loaders.
Once again I achieve my end by modifying a private member
variable of the classloader - this time the ‘parent’ field.

/**

* This method injects a ClassLoadTracer

object into the current class loader chain.

* @param parent the current active class

loader

* @return the new (or existing) tracer object

*/

public static synchronized ClassLoadTracer

inject(ClassLoader parent)

{

// get the current topmost class loader.

ClassLoader root = parent;

while (root.getParent() != null)

root = root.getParent();

if (root instanceof ClassLoadTracer)

return (ClassLoadTracer)root;

ClassLoadTracer newRoot = new

ClassLoadTracer(parent);

// reflect on the topmost classloader to

install the ClassLoadTracer ...

try

{

// we want root->parent = newRoot;

java.lang.reflect.Field field =

ClassLoader.class.getDeclaredField(

"parent");

field.setAccessible(true);

field.set(root, newRoot);

}

catch (Exception ex)

{

ex.printStackTrace();

System.out.println("Could not install

ClassLoadTracer: " + ex);

}

return newRoot;

}

The end result of calling the above method against an existing
class loader is that the top-most parent becomes an instance of
my own ClassLoadTracer class. This class, yet another
extension of ClassLoader, overrides the loadClass method to
log successful calls to the bootstrap class loader (thus solving the
fifth problem listed above). It also keeps track of the current
thread context class loader to detect any class loaders added to
the system and thus helps to resolve the fourth problem.

Note however that this is only a partial solution since there is no
requirement that class loaders will follow the delegation technique
and so it is possible that my ClassLoadTracer will never be
invoked. However, for the cases I have used it the mechanism
seems to work well enough for me to get a log of the classes being
loaded by the various class loaders.

Conclusion

Class loaders are powerful, but there does not seem to be enough
debugging information supplied as standard to resolve problems
when the mechanism breaks down. I have shown a couple of uses
of reflection to enable additional tracing to be provided where such
problems exist. The techniques shown are of wider use too,
enabling some quite flexible debugging techniques that add and
remove probes from target objects in the application at runtime.

All the source code for this article is available at:
http://www.howzatt.demon.co.uk/articles/

ClassLoading.zip

Thanks are due to Alan Griffiths, Richard Blundell and Phil
Bass who reviewed drafts of this article and suggested a number
of improvements.

Roger Orr
rogero@howzatt.demon.co.uk

18

overload issue 68 august 2005

A Simple Evolutionary Project Management Method

Tag: Quantified Simple Evo Project. Version: July 8, 2003. Owner: Tom@Gilb.com.
Status: Draft.

Project Process Description
1. Gather from all the key stakeholders the top few (5 to 20) most critical performance goals (including qualities and savings) that

the project needs to deliver. Give each goal a reference name (a tag).
2. For each goal, define a scale of measurement and a ‘final target’ goal level. For example, Reliability: Scale: Mean Time

Between Failure, Goal: >1 month.
3. Define approximately 4 budgets for your most limited resources (for example, time, people, money, and equipment).
4. Write up these plans for the goals and budgets (Try to ensure this is kept to only one page).
5. Negotiate with the key stakeholders to formally agree these goals and budgets.
6. Plan to deliver some benefit (that is, progress towards the goals) in weekly (or shorter) cycles (Evo steps).
7. Implement the project in Evo steps. Report to project sponsors after each Evo step (weekly, or shorter) with your best available

estimates or measures, for each performance goal and each resource budget.
● On a single page, summarize the progress to date towards achieving the goals and the costs incurred.
● Based on numeric feedback, and stakeholder feedback; change whatever needs to be changed to reach the goals within the

budgets.
8. When all goals are reached: “Claim success and move on” (Gerstner 2002). Free the remaining resources for more profitable

ventures

Project Policy
1. The project manager, and the project, will be judged exclusively on the relationship of progress towards achieving the goals

versus the amounts of the budgets used. The project team will do anything legal and ethical to deliver the goal levels within the
budgets.

2. The team will be paid and rewarded for ‘benefits delivered’ in relation to cost.
3. The team will find their own work process, and their own design.
4. As experience dictates, the team will be free to suggest to the project sponsors (stakeholders) adjustments to the goals and

budgets to ‘more realistic levels.’

Figure 1: A recommended Project Management Method

Software Project
Management:
Adding Stakeholder
Metrics to Agile
Projects

by Tom Gilb

Abstract. Agile methods need to include stakeholder metrics in
order to ensure that projects focus better on the critical
requirements, and that projects are better able to measure their
achievements, and to adapt to feedback. This paper presents a
short, simple defined process for evolutionary project management
(Evo), and discusses its key features.

Introduction

In 2001, a British Computer Society Review paper indicated that
only 13% of 1027 surveyed IT projects were ‘successful’ (Taylor
2001). In the same year, a Standish report indicated that although
there has been some recent improvement, 23% of their surveyed
projects were considered total failures and only 28% totally
successful (that is, on time, within budget and with all the
required functionality) (Johnson 2001: Extracts from Extreme
Chaos 2001, a Standish Report). The US Department of Defense,
a few years ago, estimated that about half its software projects

failed (Personal Communication, Norm Brown, SPMN (Software
Program Managers Network)/Navy). While these figures
represent an improvement on the 50% reported for failed DoD
projects when the Waterfall Method dominated (Jarzombek
1999), they are still of extreme concern. We must be doing
something very wrong. What can senior management and IT
project management do about this situation in practice?

Some people recommend complex development process
standards such as CMM (Capability Maturity Model®), CMMI
(Capability Maturity Model® Integration), SPICE (Software
Process Improvement and Capability dEtermination) and their like.
I am not convinced that these are ‘good medicine’ for even very
large systems engineering projects, and certainly they are overly
complex for most IT projects.

Other people recommend agile methods – these are closer to my
heart – but maybe, for non-trivial projects they are currently ‘too
simple’?

Stakeholder Metrics

I believe agile methods would benefit if they included ‘stakeholder
metrics’. I have three main reasons for suggesting this:
● to focus on the critical requirements: All projects, even agile

projects, need to identify all their stakeholders, and then identify
and focus on the ‘top few’ critical stakeholder requirements.

● to measure progress: Critical requirements need to be quantified
and measurable in practice. Quantified management is a

19

overload issue 68 august 2005

necessary minimum to control all but the smallest upgrade
efforts.

● to enable response to feedback: By responding to real experience
and modifying plans accordingly, projects can make better
progress. This is something that agile projects with their short
cycles can especially utilize.

In this paper, I shall present a simple, updated ‘agile’,
evolutionary project management process and explain the
benefits of a more focused, quantified approach.
I recommend the evolutionary project management process and
policy shown in Figure 1.

This simple project process and policy captures all the key
features: you need read no more! However, in case any reader
would like more detail, I will comment on the process and policy
definition, statement by statement, in the remainder of this paper.

Project Process Description

1. Gather from all the key stakeholders the top few (5 to 20)
most critical goals that the project needs to deliver.

Projects need to learn to focus on all the stakeholders that
arguably can affect the success or failure. The needs of all these
stakeholders must be determined – by any useful methods –
and converted into project requirements. By contrast, the
typical agile model focuses on a user/customer ‘in the next
room’. Good enough if they were the only stakeholder, but
disastrous for most real projects, where the critical stakeholders
are more varied in type and number. Agile processes, due to
this dangerously narrow requirements focus, risk outright
failure, even if the one identified ‘customer’ gets all their needs
fulfilled.

2. For each goal, define a scale of measurement and a ‘final
target’goal level. For example, Reliability: Scale: Mean Time
Before Failure, Goal: >1 month.

Using Evo, a project is initially defined in terms of clearly
stated, quantified, critical objectives. Agile methods do not have
any such quantification concept. The problem is that vague
targets with no quantification and lacking in deadlines do not
count as true goals: they are not measurable, and not testable
ideas.

Note that in Evo the requirements are not cast in
concrete, even though they are extremely specific. During a
project, the requirements can be changed and tuned based on
practical experience, insights gained, external pressures, and
feedback from each Evo step (See also point 4 under ‘Project
Policy’).

3. Define approximately 4 budgets for your most limited
resources (for example, time, people, money, and
equipment).

Conventional methods do set financial and staffing
budgets, but usually at too macro a level. They do not seem to
directly, and in detail, manage the array of limited resources we
have. Admittedly there are some such mechanisms in place in
agile methods, such as the incremental weekly (or so)
development cycle (which handles time). However, the Evo
method sets an explicit numeric budget for any useful set of
limited resources, effort, calendar time, financial spend, or
memory space.

4. Write up these plans for the goals and budgets (Ensure this
is kept to only one page).

All the key quantified performance targets and resource
budgets should be presented simultaneously on a single overview
page. Additional detail about them can, of course, be captured
in additional notes, but not on this one ‘focus’ page.

5. Negotiate with the key stakeholders to formally agree these
goals and budgets.

Once the requirements, derived from the project’s
understanding of the stakeholder needs, are clearly articulated, we
need to go back to the real stakeholders and check that they agree
with our ‘clear’(but potentially incorrect or outdated) interpretation.

It is also certainly a wise precaution to check back later,
during the project evolution, with the stakeholders, especially
the specific stakeholders who will be impacted by the next Evo
step:
● as to how they feel about a particular choice of step content

(that is, how they see the proposed design impacting
performance and cost, and whether the original impact
estimates are realistic in the real current implementation
environment, and

● to check for any new insights regarding the long term
requirements.

6. Plan to deliver some benefit (that is, ‘progress towards the
goals’) in weekly (or shorter) cycles (Evo steps).

A weekly delivery cycle is adopted by agile methods; this
is good. However, the notion of measurement each cycle, on
multiple performance and resource requirements, is absent.
Using Evo, the choice of the next Evo step is based on highest
stakeholder value to cost ratios. It is not simply, “What shall we
do next?” It is “What is most effective to do next - of highest
value to the stakeholders with consideration of resources?”

The agile methods’ notion of agreeing with a user about
the function to be built during that weekly cycle is healthy, but
the Evo method is focused on systematic, weekly, measured
delivery towards long-range higher-level objectives, within
numeric, multiple, resource constraints. This means that the Evo
method is more clearly focused on the wider stakeholder-set
values, and on total resource cost management.

The Evo method is not focused on simply writing code
(‘we are programmers, therefore we write code’). The Evo
method is focused on delivering useful results to an organically
whole system. We reuse, buy or exploit existing code just as
happily as writing our own code. We build databases, train and
motivate users, improve hardware, update telecommunications,
create websites, improve the users’working environment, and/or
improve motivation. So we become more like systems engineers
(‘any technology to deliver the results!’), than programmers
(‘what can we code for you today?’).

Table 1 shows the use of an Impact Estimation table (Gilb
2004) to plan and track critical performance and cost
characteristics of a system (Illustration courtesy of Kai Gilb).
The pair of numbers in the three left hand columns (30, 5 etc.)
show initial benchmarks (30, 99, 2500) and Goal levels (5, 200,
100,000). The ‘%’ figures are the real scale impacts (like 20)
converted to a % of the way from benchmark to the Goal levels
(like 20% of the distance from benchmark to Goal).

20

overload issue 68 august 2005

Step 12 Step 13
Buttons.Rubber Buttons.Shape and Layout

Estimate Actual Estimate Actual

Goals
User-Friendliness.Learn -10 33% -5 17% -5 20% 5 -20%
30 min<->5 min by one year

Reliability -3 -3% -1 -1% 20 20% 2 2%
99 days <-> 200 days by one year

Budgets
Project-Budget 2000 2% 2500 3% 1000 1% 1000 1%
25000 <-> 1000000 by one year

Table 1: An Impact Estimation Table

7. Implement the project in Evo steps and report your progress
after each Evo step.

Report to the project sponsors after each Evo step (weekly,
or shorter) with your best available estimates or measures, for
each performance goal and each resource budget.
● On a single page, summarize the progress to date towards

achieving the goals and the costs incurred.
● Based on the numeric feedback and stakeholder feedback,

change whatever needs to be changed to reach the goals
within the budgets.

All agile methods agree that the development needs to be done
in short, frequent, delivery cycles. However, the Evo method
specifically insists that the closed loop control of each cycle is
done by:
● making numeric pre-cycle estimates,
● carrying out end-cycle measurements,
● analyzing deviation of measurements from estimates,
● making appropriate changes to the next immediate planned

cycles,
● updating estimates as feedback is obtained and/or changes are

made,
● managing stakeholder expectations (‘this is going to late, if

we don’t do X’).

The clear intention to react to the feedback from the metrics and
to react to any changes in stakeholder requirements is a major
feature of Evo. It helps ensure the project is kept ‘on track’ and
it ensures relevance. It is only by the use of stakeholder metrics
that Evo is allowed to have such control.

Figure 2 shows results being cumulated numerically step
by step until the Goal level is reached. In a UK Radar system
(Author experience), the system was delivered by gradually
building database info about planes and ships, tuning recognition
logic, and tuning the radar hardware.

8. When all the goals are reached: ‘Claim success and move on’
(Gerstner 2002). Free remaining resources for more
profitable ventures.

A major advantage of using numeric goal and budget
levels, compared to ‘a stream of yellow stickies from users’ (a

reference to agile method practice), is that it is quite clear when
your goals are reached within your budgets. In fact, ‘success’ is
formally well defined in advance by the set of the required
numeric goal and budget levels.

Projects need to be evaluated on ‘performance delivered’
in relation to ‘resources used’. This is a measure of project
management ‘efficiency’. When goals are reached, we need to
avoid misusing resources to deliver more than is required. No
additional effort should be expended to improve upon a goal,
unless a new improved target level is set.

Project Policy

1. The project manager, and the project, will be judged
exclusively on the relationship of progress towards achieving
the goals versus the amounts of the budgets used. The project
team will do anything legal and ethical to deliver the goal
levels within the budgets.

Projects need to be judged primarily on their ability to meet
critical performance characteristics, in a timely and profitable way.
This cannot be expected if the project team is paid ‘by effort
expended’.

2. The team will be paid and rewarded for benefits delivered in
relation to cost.

Teams need to be paid according to their project efficiency,
that is by the results they deliver with regard to the costs they
incur. Even if this means that super efficient teams get terribly
rich! And teams that fail go ‘bankrupt.’

When only 13% of 1027 IT projects are ‘successful’ (Taylor
2001), we clearly need to find better mechanisms for rewarding
success, and for not rewarding failure. I suggest that sharp numeric
definition of success levels and consequent rewards for reaching
them, is minimum appropriate behavior for any software project.

3. The team will find their own work process and their own
design.

Agile methods believe we need to reduce unnecessarily
cumbersome corporate mandated processes. I agree. They also
believe in empowering the project team to find the processes,
designs and methods that really work for them locally. I heartily
agree!

21

overload issue 68 august 2005

However, I also strongly believe that numeric definition of goals
and budgets, coupled with frequent estimation and measurement
of progress, are much-needed additional mechanisms for
enabling this empowerment. The price to pay for this, a few
estimates and measures weekly, seems small compared to the
benefits of superior control over project efficiency.

4. As experience dictates, the team will be free to suggest to the
project ‘sponsors’ (one type of stakeholder) adjustments to
‘more realistic levels’ of the goals and budgets.

No project team should be ‘stuck’ with trying to satisfy
unrealistic or conflicting stakeholder dreams within constrained
resources.

Further, a project team can only be charged with delivering
inside the ‘state of the art’ performance levels at inside the ‘state
of the art’ costs. Exceeding ‘state of the art’performance is likely
to incur ‘exponential’ costs.

Summary

A number of agile methods have appeared, trying to simplify
project management and systems implementation. They have all
missed two central, fundamental points; namely quantification
and feedback.

Evolutionary project management (Evo) uses quantified
feedback about critical goals and budgets. Further, Evo also insists
that early, frequent, small, high stakeholder value deliveries (Evo
steps) are made to real users: this is only possible if supported by
stakeholder metrics.

It is the use of stakeholder metrics that allows better focus, more
measurement of progress, and more flexibility to change. It is time
agile methods adopted quantified, critical stakeholder metrics.

Tom Gilb
www.gilb.com

References

Abrahamsson, Pekka, Outi Salo, Jussi Ronkainen and Juhani
Warsta, Agile Software Development Methods. Review and Analysis,
VTT Publications, Espoo, Finland, 2002, ISBN 951-38-6009-4,
URL: www.inf.vtt.fi/pdf/, 107 pp.

Gerstner, Louis V. Jr., Who Says Elephants Can’t Dance? Inside IBM’s
Historic Turnaround, HarperCollins, 2002, ISBN 0007153538.

Gilb, Tom, Principles of Software Engineering Management, Addison-
Wesley, 1988, ISBN 0201192462.

Gilb, Tom, Competitive Engineering: A Handbook for Systems & Soft-
ware Engineering Management using Planguage, See www.Gilb.com
for draft manuscript, 2004.

Jarzombek, S., Proceedings of the Joint Aerospace Weapons Systems Sup-
port, Sensors and Simulation Symposium, Government Printing
Office Press, 1999. Source Larman & Basili 2003.

Johnson, Jim, Karen D. Boucher, Kyle Connors, and James Robin-
son, “Collaborating on Project Success,” Software Magazine, Feb-
ruary 2001.www.softwaremag.com/
L.cfm?Doc=archive/2001feb/CollaborativeMgt.html

Johnson, Jim, “Turning Chaos into Success,” Software Magazine,
December 1999. www.softwaremag.com/L.cfm?Doc=
archive/1999dec/Success.html

Larman, Craig, Agile and Iterative Development: A Manager’s Guide,
Addison Wesley, 2003.

Larman, Craig, and Victor Basili, “Iterative and Incremental Development:
A Brief History,” IEEE Computer, June 2003, pp 2-11.

Taylor, Andrew, “IT projects sink or swim,” BCS Review, 2001.
http://www.bcs.org.uk/review/2001/articles/
itservices/projects.htm

Figure 2: Cumulation of results towards goal level

22

overload issue 68 august 2005

C-side Re-sort
by Kevlin Henney

Testing is one way of making the essentially invisible act of
software development more visible [7]. Testing can occur at
many different levels of a system’s architecture, from whole
system down to individual code modules, and in many different
stages of a system’s development. In the context of modern agile
software development, testing is normally associated with Test-
Driven Development (TDD), an approach that subsumes
conventional unit-level testing, complementing its traditionally
quantitative role with a qualitative practice of design.

In spite of the attention given to object-oriented development,
TDD and modern testing frameworks, it is worth understanding
how and why unit testing has an important role to play in general,
regardless of the technologies or broader development philosophy
involved. This understanding also applies to TDD when considered
solely in terms of its testing aspect.

This article walks through a simple example, highlighting some
of the motivation behind basic unit testing and the practices
involved [8] but without following through into TDD. Thus it is a
programmer testing responsibility to carry out code-centric tests,
but automated tests ensure that unit-level tests are executed as code
on code rather than by programmer on code. Example-based test
cases, as opposed to exhaustive tests, ensure that test cases adopt a
sustainable black-box approach to testing.

Standard portable C is used in the narrative example to remind
and emphasise that the applicability of unit-testing techniques is
not restricted to object-oriented programming. It also
demonstrates that, at the very minimum, nothing more than the
humble assert is needed to realise test cases. The narrative also
highlights the relationship between the contract metaphor and
testing, and the tension between programming by contract as an
assertion style and the use of contracts to inform test cases. Thus
the story also helps to clarify some of the common
misunderstandings concerning the relationship between
programming by contract and testing.

A Sort of Beginning

Consider the following situation: a cross-platform C program
whose logic involves, amongst other things, the sorting of a large
number of integers; furthermore, sorting is found to dominate the
performance and needs to be optimised.

The sorting function used is the C standard library qsort function.
In spite of its name, it is not required to be implemented as
quicksort. However, it is not the time complexity that is considered
to be the issue — the implementations on the supported platforms
appear to be fairly optimal in this respect — but the cost of
comparison. The qsort function is generic in the sense that it works
with untyped chunks of memory, i.e. void * to pass an array and
size_t to indicate element count and size, but this means that the
comparison must be passed in as a pointer to a function that
performs the comparison correctly based on the actual types:

int int_comparison(const void *lhs_ptr,

const void *rhs_ptr)

{

int lhs = *((const int *) lhs_ptr);

int rhs = *((const int *) rhs_ptr);

return lhs < rhs ? -1 : lhs == rhs ? 0 : 1;

}

This function is based on strcmp semantics, so that the result is
less than zero, equal to zero or greater than zero depending on
whether the left-hand argument compares less than, equal to or
greater than the right-hand argument. The cost of continually
calling a function through a pointer to perform what is essentially
the single machine instruction for comparing integers is what is
incurring the overhead.

The Programmer’s Responsibility

The favoured solution is to replace the use of qsort with a
custom-written function — let’s call it quickersort — that is
written directly in terms of int:

void quickersort(int base[], size_t length);

It is not necessarily hard to find a good algorithm — there is no
shortage of published examples available — but who is
responsible for ensuring that the function is correctly
implemented? It is supposed to be a drop-in replacement and an
improvement: a function that does not work or whose
performance is worse than with qsort is unlikely to impress.

Of course, it is a programmer’s responsibility to be diligent in
implementation, but care in coding is not enough: sorting
algorithms are notorious for defects that arise from typos, thinkos,
assumptions and oversights; second guessing a would-be
optimisation’s effectiveness is often a fool’s game; someone else
may know a more effective solution. Peer review and static
analysis of code can help — and should be employed — but the
ultimate proof of the pudding is in the eating: the code needs to be
tested.

But with whom does the responsibility for testing lie?
Ultimately a test of the software as a whole will pick up many
problems, but this system view is somewhat second hand, removed
from the point of the change that has been so precisely specified.
Given that system-level testing is often a responsibility separated
from that of code development, leaving problems to be discovered
so indirectly introduces long feedback loops and a greater element
of chance into the process of development. And given the precise
nature of the requirement — to speed up sorting — and of the
change — replace qsort with a hand-crafted alternative that is
functionally equivalent but faster — to hand off a slower, defective
piece of code as a fait accompli can be considered less than
professionally responsible.

It is therefore a programmer testing responsibility to ensure a
basic level of confidence in the code. Programmers are in the best
position to catch a large class of possible problems before they
introduce friction into the development process by causing others
and themselves further problems. However, no programmer is
perfect and programmers do not have unlimited time to spend
crafting and checking their code. Some defects may remain,
appearing only in a larger, more integrated context. This system
perspective can be considered a separate responsibility, owned and
exercised by others.

Test Automation

Returning to the programmer perspective, the next question is
what to test for and how? Perhaps the most obvious feature of the
requirement, as related to the code, is that quickersort should run
faster than qsort. To do this effectively requires more data than
can be typed in conveniently at a command-line driven test

23

overload issue 68 august 2005overload issue 68 august 2005

harness. Other than being arbitrary, the specific values don’t
matter, so a function can be used to populate an array of given
length at runtime:

int *fill_unsorted(int base[], size_t length);

// returns base

A simple implementation can be written in terms of the standard
rand function, but alternative, more application-specific
distributions may be appropriate. Given this, it is possible to
write a simple function to compare qsort and quickersort against
one another on the same arbitrary data set:

void a_test_of_sorts(size_t length)

{

size_t byte_length = length * sizeof(int);

int *for_qsort = fill_unsorted((int *)

malloc(byte_length), length);

int *for_quickersort = (int *)

memcpy(malloc(byte_length), for_qsort,

byte_length);

clock_t start;

start = clock();

qsort(for_qsort, length, sizeof(int),

int_comparison);

print_result(“qsort”, length,

clock() - start);

start = clock();

quickersort(for_quickersort, length);

print_result(“quickersort”, length,

clock() - start);

free(for_quickersort);

free(for_qsort);

}

Arrays of the specified length are allocated and populated with
the same data set, and then the times for qsort and for
quickersort are taken and reported. The following reporting
function presents results in comma-separated format with times
in milliseconds:

void print_result(const char *label,

size_t length, clock_t elapsed)

{

printf(“%i, %i, %s\n”, (int) length,

(int)(elapsed * 1000 / CLOCKS_PER_SEC),

label);

}

This simple infrastructure allows simple and repeatable
automated tests. The code above can be wrapped in an outer
loop driven either from outside the C code in a script or from
within main. The outer loop can step through different array
lengths, generating results that can be piped into a file for
analysis. This performance test can be included for automatic
execution as part of the check-in process or the integration build.

A Contractual Dead End

However, having demonstrated that quickersort is indeed
quicker than qsort, the programmer still has unfinished
business. Mindful of producing an algorithm that is fast but
wrong, the programmer needs to check that the resulting array
satisfies the functional contract for sorting. In this case the
functional contract can be phrased in terms of pre- and
postconditions, but it is perhaps more subtle than many might
first assume [6]:
● precondition: base is a valid non-null pointer to the initial

element of an array of initialised ints at least length elements
long.

● postcondition: The values in the array defined by base and length
are sorted in ascending order, with equal values adjacent to one
another, and they are a permutation of the values in the array
before it was sorted.

It is not uncommon for programmers to assume that sorting
operations have no precondition and have only the requirement
for the array to be sorted as the postcondition.

Given a contract phrased in assertive form, there is a common
assumption that the “right thing to do” with it is to place
corresponding assertions within the production code and check
the pre- and postcondition directly. It is worth noting that, with
the exception of base being non-null, the truth or falsehood of
the precondition cannot be established within a function written
in standard C. It is also worth noting that attempting to check the
postcondition in the function has some unfortunate
consequences:

void quickersort(int base[], size_t length)

{

#ifndef NDEBUG

size_t byte_length = length * sizeof(int);

int *original = (int *) malloc(byte_length);

assert(base);

memcpy(original, base, byte_length);

#endif

...// sorting algorithm of choice

#ifndef NDEBUG

assert(is_sorted(base, length));

assert(is_permutation(base, original,

length));

free(original);

#endif

}

Perhaps the most visible effect is the reduced readability of the
code: the plumbing needed to support the postcondition check is
anything but discreet. The infrastructure code is also error prone
and somewhat incomplete: although undoubtedly useful,
is_sorted and is_permutation are not standard functions.
They must be written by the programmer especially for this
task... and they need to be tested. They are sufficiently complex
that to be sure of their correctness more than a walkthrough is
needed: is_sorted is not so much of a challenge, although it is
easy to introduce off-by-one errors; an effective version of
is_permutation is more demanding, even with the simplifying
assumption that base is already sorted; getting either of them

24

overload issue 68 august 2005

wrong leads to wasted time and effort spent determining whether
it is the quickersort algorithm or the implementation of the
postcondition check that is incorrect — or, in the worst case,
both.

The resulting complexity rivals and typically exceeds that of
the actual quickersort implementation. Indeed, this
observation can be taken quite literally: it is not only the
complexity of the code, the coding and the testing that have risen;
it is also the operational complexity. The complexity of
is_sorted is O(n) but, unless more heap memory is used, that
of is_permutation is O(n2). It is unlikely that the programmer,
whose goal is to produce a faster sorting operation, would be
happy to decelerate the performance to O(n2). Even with an O(n
log n) implementation of is_permutation, the effect of the
extra algorithms and the additional dynamic memory usage will
trounce any performance advantage that quickersort might
otherwise have delivered.

This issue serves to highlight the difference between production
and debugging builds. By default, the standard assert macro is
enabled, but when NDEBUG is defined it compiles to a no-op, hence
the use of the NDEBUG conditionally compiled code in the previous
sketch of a self-checking quickersort. A release build should ensure
that NDEBUG is defined for compilation; any bugs in the
implementation of quickersort can be trapped only in non-release
builds.

There is also duplicity in this attempt to writing self-checking
code. Conditional compilation often causes more problems than it
resolves [12]. In this case it leads to a style of development perhaps
best described as debug by contract. The operational test,
a_test_of_sorts, can only be run meaningfully with a release
build of quickersort, so any faults cannot be detected by this
active use of quickersort. A released version of the whole program
will also not detect any defects, so any defects that remain in the
final version of quickersortwill emerge only as incorrect results
at runtime after the program has been deployed — assuming that
its users notice.

What about system-level testing? Those responsible for testing
the system as a whole — whether another programmer on the same
the team, a dedicated tester on the same team or a separate testing
team — will have to be supplied with two builds of the system: a
release version and a debug-enabled version with different
operational behaviour, but (one hopes) identical functional
behaviour. This is more often a recipe for extra work than it is one
for assuring quality. Assuming that system regression testing misses
something as fundamental as incorrectly sorted data, if the debug-
enabled version trips an assertion in a faulty quickersort, the tester
must now feed the problem back to the programmer to fix... wait
for the fix... and then proceed. This longer feedback cycle was
precisely one of the issues supposed to be addressed by introducing
programmer testing responsibility. The code is fast but wrong, and
wrong in a way that could have been easily detected by the
programmer.

Here’s One I Prepared Earlier

What is lacking is some basic sign-off on the functionality of the
code. The programmer could poke values in at a simple
command line test harness to see whether they were sorted
correctly or not. Or the programmer could use automated tests.

There are two refactoring steps that provide a (very) basic reality

check on the functional behaviour.
The first is to do away with the need for is_sorted and

is_permutation:

void quickersort(int base[], size_t length)

{

#ifndef NDEBUG

size_t byte_length = length * sizeof(int);

int *sorted = (int *)

malloc(byte_length);

assert(base);

memcpy(sorted, base, byte_length);

qsort(sorted, length, sizeof(int),

int_comparison);

#endif

... // sorting algorithm of choice

#ifndef NDEBUG

assert(memcmp(base, sorted, byte_length)

== 0);

free(original);

#endif

}

In other words, compare the result against the expected result
produced by another means — a luxury that is not always
available, but is on hand in this particular example. The next step
is to recognise and capitalise on the similarity between this new
assertion code and the functionality of a_test_of_sorts:

void a_test_of_sorts(size_t length)

{

...

assert(memcmp(for_quickersort, for_qsort,

byte_length) == 0);

free(for_quickersort);

free(for_qsort);

}

For the scenario defined by a_test_of_sorts , the
introduction of this single assert and the elimination of all
the infrastructure in quickersort is a great simplification
that achieves the same effect as before. The assertion for a non-
null base in quickersort can be retained, but the benefits of
keeping it appear somewhat marginal — most modern
operating systems will trap incorrect uses of null pointers and,
unless an operation’s implementation actually requires it, it is
entitled to weaken its precondition and therefore accommodate
a null.

Test by Example

However, although the performance-related automated tests now
have the additional effect of checking the functional correctness
of their results — and at no extra cost — the programmer can
only confirm that quickersort passes for large sets of
randomly generated data. Certain scenarios and boundary cases
may or may not have been checked as a result. Without checking
or rigging the generated data sets, the programmer cannot be
sure that a_test_of_sorts is providing suitable coverage of
these.

25

overload issue 68 august 2005

The programmer can make these situations explicit by writing
example-based test cases that check certain situations with
specific values. For example, the following test ensures that
sorting an empty array does not contain any off-by-one memory
accesses:

int empty[] = { 2, 1 };

quickersort(empty + 1, 0);

assert(empty[0] == 2);

assert(empty[1] == 1);

In a similar vein, the following test ensures the same for sorting a
single-element array and ensures that the single-element’s value
remains unchanged:

int single[] = { 3, 2, 1 };

quickersort(single + 1, 1);

assert(single[0] == 3);

assert(single[1] == 2);

assert(single[2] == 1);

The following ensures that sorting an array of identical elements
is an identity operation:

int identical[] = { 3, 2, 2, 2, 1 };

quickersort(identical + 1, 3);

assert(identical[0] == 3);

assert(identical[1] == 2);

assert(identical[2] == 2);

assert(identical[3] == 2);

assert(identical[4] == 1);

And likewise for an ascending sequence of elements:

int ascending[] = { 2, -1, 0, 1, -2 };

quickersort(ascending + 1, 3);

assert(ascending[0] == 2);

assert(ascending[1] == -1);

assert(ascending[2] == 0);

assert(ascending[3] == 1);

assert(ascending[4] == -2);

Of course, it is worth testing that quickersort actually does
something, given that all the previous test cases could be met
successfully with an empty implementation! Here is a test on a
reverse-sorted array:

int descending[] = { 3, 2, 1, 0, -1 };

quickersort(descending + 1, 3);

assert(descending[0] == 3);

assert(descending[1] == 0);

assert(descending[2] == 1);

assert(descending[3] == 2);

assert(descending[4] == -1);

Further tests, based on other sample data characteristics, can be
added in this style: ascending with some adjacent identical
values, arbitrarily ordered distinct values, arbitrary values
including some duplicates, arbitrary values including INT_MIN,
etc.

At this point programmer testing responsibility can be said to
have been reasonably fulfilled: both operational and functional
aspects of quickersort are checked in automated tests, with
example-based test cases providing basic unit-testing coverage of
the functionality.

Sortie

The mistaken notion that testing is someone else’s problem is
unfortunately quite common, regardless of development process
[10]:

Programmers today aren’t sure their code is bug-free because
they’ve relinquished responsibility for thoroughly testing it. It’s not
that management ever came out and said, “Don’t worry about testing
your code—the testers will do that for you.” It’s more subtle than
that. Management expects programmers to test their code, but they
expect testers to be more thorough; after all, that’s Testing’s full-time
job.

The notion that testing is part of programming and not something
foreign can be seen to have support both from perspectives that
support agile development [4]:

Responsibilities of developers include understanding
requirements, reviewing the solution structure algorithm with peers,
building the implementation, and performing unit testing.

And from dedicated testing practitioners [1]:

I find the projects I work on usually go more smoothly when
programmers do some unit and component testing of their own code.
Through the ascendance of approaches like Extreme Programming,
such a position is becoming less controversial. [...] So, a good
practice is to adopt a development process that provides for unit
testing, where programmers find bugs in their own software, and for
component testing, where programmers test each other’s software.
(This is sometimes called ‘code swapping.’) Variations on this
approach use concepts like pair programming and peer reviews of
automated component test stubs or harnesses.

Systems should be tested at the many levels at which they are
conceived, from the system level down to the function level.
These different views often suggest a division of responsibility
and ownership with respect to different kinds of testing [2]:

Unit testing involves testing the individual classes and
mechanisms; is the responsibility of the application engineer who
implemented the structure. [...] System testing involves testing the
system as a whole; is the responsibility of the quality assurance
team.

Programmers inevitably write code and scripts to test parts of
their system, but these are often ad hoc fragments scattered
around personal directories rather than versioned along with
other project artefacts and integrated into system builds. There
are good grounds for aiming for a higher level of automation
[11]:

As long as you’ve got them, developer and customer tests should
be automated as much as possible and run as part of the daily build.

26

overload issue 68 august 2005

If the tests are not automated or if they take too much time, they
won’t be run often enough. Big batches of changes will be made
before testing, which will make failure much more likely, and it will
be much more difficult to tell which change caused the tests to fail.

We can also appreciate automation from the human as well as the
technological perspective [3]:

Teams do deliver successfully using manual tests, so this can’t
be considered a critical success factor. However, every programmer
I’ve interviewed who once moved to automated tests swore never
to work without them again. I find this nothing short of astonishing.

Their reason has to do with improved quality of life. During the
week, they revise sections of code knowing they can quickly check
that they hadn’t inadvertently broken something along the way.When
they get code working on Friday, they go home knowing that they
will be able on Monday to detect whether anyone had broken it over
the weekend—they simply rerun the tests on Monday morning. The
tests give them freedom of movement during the day and peace of
mind at night.

Assertions in production code often end up encouraging a code-
and-fix mindset rather than a more considered one. A failed
production-code assertion in an arbitrary situation gives you
something — but not a great deal — to work with. A failed
assertion in a specified test case gives you a precise scenario that
defines the context for failure.

The relationship between testing and contracts is often
misunderstood, and often in a way that creates extra work
without offering significant improvement in design quality.
There is a far higher probability that a programmer will
incorrectly specify a postcondition than a unit test. For example,
at the time of writing, the first entry that Google brings up for
“design by contract” is an explanation of how to write bug-free
software in Eiffel, a language that famously supports pre- and
postcondition checking [5]. It can be considered ironic that this
paper contains poorly and incorrectly specified pre- and
postconditions. Tests would have uncovered these defects
immediately.

The specification of a precondition and a postcondition for a
sorting operation is subtle but not necessarily hard — just harder
than many expect. However, converting those conditions into
practical assertions raises a good many questions and generates
a great deal of code complexity. By contrast, it is trivial to test
such an operation and there is little complexity involved —
literally: the example-based test cases in the sorting example
have O(1) operational complexity and a McCabe cyclomatic
complexity value of 1, whereas the attempt to write a correct

postcondition in code involved greater complexity on all fronts.
Thus contracts lay down the lines that tests can follow, and vice
versa [9]:

We like to think of unit testing as testing against contract. We
want to write test cases that ensure that a given unit honors its
contract. This will tell us two things: whether the code meets the
contract, and whether the contract means what we think it means.
We want to test that the module delivers the functionality it promises,
over a wide range of test cases and boundary conditions.

And this relationship between contracts and testing provides us
with a hint and a useful bridge to expanding the role of testing
into design. The example in the sorting story was tightly scoped
in terms of interface and implementation, and it was strictly
focused on demonstrating the responsibilities and practice of
more conventional unit testing. Test-Driven Development takes
this a step further, empowering unit testing to support and
contribute to design. But that’s another story.

Kevlin Henney
kevlin@curbralan.com

kevlin@acm.org

References

[1] Rex Black, Critical Testing Processes, Addison-Wesley, 2004.
[2] Grady Booch, Object-Oriented Analysis and Design with

Applications, 2nd edition, Benjamin/Cummings, 1994.
[3] Alistair Cockburn, Crystal Clear: A Human-Powered Methodology

for Small Teams, Addison-Wesley, 2005.
[4 James O Coplien and Neil B Harrison, Organizational Patterns of

Agile Software Development, Prentice Hall, 2005.
[5] “Building bug-free O-O software: An introduction to Design by

Contract™”, http://archive.eiffel.com/doc/
manuals/technology/contract/.

[6] Kevlin Henney, “Sorted”, Application Development Advisor,
July 2003, available from http://www.curbralan.com.

[7] Kevlin Henney, “Five Considerations”, keynote at ACCU Spring
Conference, April 2005.

[8] Kevlin Henney, “Driven to Tests”, Application Development
Advisor, May 2005.

[9] Andrew Hunt and David Thomas, The Pragmatic Programmer,
Addison-Wesley, 2000.

[10] Steve Maguire, Writing Solid Code, Microsoft Press, 1993.
[11] Mary Poppendieck and Tom Poppendieck, Lean Software

Development, Addison-Wesley, 2003.
[12] Henry Spencer and Geoff Collyer, “#ifdef Considered

Harmful, or Portability Experience with C News”, USENIX,
June 1992,
http://www.literateprogramming.com/ifdefs.pdf

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support
nor disparage any trade mark claim. On request we will withdraw all references to a specific trade mark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author
is, by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column
(not a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

