


CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed 
as such. The use of such terms is not intended to support nor disparage any trade mark claim. 
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author. 
By submitting material to ACCU for publication, an author is, by default, assumed to have granted 
ACCU the right to publish and republish that material in any medium as they see fit. An author 
of an article or column (not a letter or a review of software or a book) may explicitly offer single 
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) 
members to copy source code for use on their own computers, no material can be copied from 
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers 
who care about professionalism in 
programming. That is, we care about 
writing good code, and about writing it in 
a good way. We are dedicated to raising 
the standard of programming.

The articles in this magazine have all 
been written by ACCU members - by 
programmers, for programmers - and 
have been contributed free of charge.

Overload is a publication of  ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 The Policy Bridge Design Pattern
Matthieu Gilson offers some thoughts on 
implementing policy bridge in C++.

12 Live and Learn with Retrospectives
Rachel Davies presents a powerful technique to 
help with learning from experience.

15 Continuous Integration with 
CruiseControl.Net
Paul Grenyer asks: ‘Is CC any good? Should we 
all give it a go?’

20Working with GNU Export Maps
Ian Wakeling takes control of the symbols 
exported from shared libraries built with the GNU 
toolchain.

24 auto_value: Transfer Semantics for Value 
Types
Richard Harris looks at std::auto_ptr and explores 
its reputation for causing problems.

OVERLOAD 79

June 2007

ISSN 1354-3172

Editor

Alan Griffiths
overload@accu.org

Contributing editor

Paul Johnson
paul@all-the-johnsons.co.uk

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Alistair McDonald
alistair@inrevo.com

Anthony Williams
anthony.ajw@gmail.com

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Ric Parkin
ric.parkin@ntlworld.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Farnsworth
simon@farnz.co.uk

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@cthree.org

Copy deadlines
All articles intended for publication in 
Overload 80 should be submitted to 
the editor by 1st July 2007 and for 
Overload 81 by 1st September 2007.



EDITORIAL ALAN GRIFFITHS
Rip It Up and Start Again
In my early days as a programmer, I often found myself 
responsible for maintaining poorly written, buggy code with 
no clear references as to the intended behaviour (or design). 
Much of it I didn’t even write myself. A common reaction to 
such circumstances is a desire to re-write the code in a much 
more understandable and comprehensible form. I even tried 
that a couple of times.
IProgrammers like to rewrite systems
In most projects code “rots” over the course of time. It
is natural for a programmer to make the simplest change
that delivers the desired (results rather than the change
that results in the simplest code). This is especially true

when developers do not have a deep understanding of the codebase – and
in any non-trivial project there are always some developers that don't
understand part (or all) of the codebase. The result of this is that when
functionality is added to a program or a bug corrected then there is more
likelihood that the change will result in less elegant, more convoluted code
that is hard to follow than the converse.
As a result of my early attempts at rewrite, I discovered that there are
problems in rewriting software one doesn't understand: the resulting code
often doesn't meet the most fundamental requirement – to do all the useful
stuff that the previous version did. Even with an existing implementation
the task of collecting system requirements isn't trivial – and getting the
exercise taken seriously is a lot harder than for a “green field” project.
After all, for the users (or product managers, or other domain experts), the
exercise has already been done for the old system – and all the
functionality is there to be copied.
Of course, for a developer writing new code of one's own is less frustrating
than trying to work out what is happening in some musty piece of code
that has been hacked by a parade of developers with varying thoughts on
style and levels of skill. So developers rarely need convincing that they
could do a better job of writing the system than the muppets that went
before. (Even on those occasions that the developers proposing a rewrite
are those the muppets responsible for the original.)
That doesn't stop them trying.

Managers don't like to rewrite systems
Managers are typically not sympathetic to the desire to rewrite a piece of
existing software. A lot of work has been invested in bringing a system to
its current state – and to deliver the next enhancement is the priority. With
software-for-use the users will be expecting something from their
“wishlist” with software-for-sale then a new version with more items on

the marketing “ticklist” is needed. In both cases, even
if the codebase is hard to work with, the cost of
doing that is usually trivial compared to the cost of

writing all the existing functionality again together with the new
functionality. 
A typical reason for rewriting to be considered is that the old system is
too hard to change effectively – often because the relationship between
the code and the behaviour is hard to understand. So it ought not to be a
surprise that the behaviour is not understood well enough to replicate. The
consequence of this is that, all too often, by the time the programmers
realise that they can't deal effectively with making changes to the codebase
a point has been reached where they are incapable of effectively rewriting
it.
In view of this it is understandable that management prefer to struggle on
with a problematic codebase instead of writing a new one. A rewrite is a
lot of work and there is not guarantee that the result of the rewrite will be
any better than the current situation.
And they know from experience that programmers cannot estimate the
cost of new work accurately.

When is a rewrite necessary?
There are, naturally, occasions where a rewrite is appropriate. Sometimes
it is necessitated by a change of technology – one system I worked on
rewriting was a Windows replacement for the previous DOS version.  This
example worked out fairly well – the resulting codebase is still in used over
a decade later. Another project replaced a collection of Excel spreadsheets
with programs written in C++, at least that was the intent – years later there
are still Excel spreadsheets being used. (The project did meet some of its
goals – the greater efficiency of the C++ components supported a massive
increase in throughput.)
I remember one system I worked on where there was one module that was
evil. Only five hundred hundred lines of assembler – but touching it made
brains hurt (twenty five years later I still remember the one comment that
existed in this code “account requires” - which, as the code dealt with stock
levels, was a non-sequeter). Not only was the code a mess, it was tightly
coupled to most of the rest of the modules: every change caused a cascade
of problems throughout the system. After a couple of releases where things
went badly following a change to this module - weeks of delay whilst
unforeseen interactions  where chased down and addressed - I decided that
it would be cheaper to rewrite this module than to make the next change
to the existing code. I documented the inputs, the outputs, the improved
internal design and the work necessary and asked permission. As luck

Alan Griffiths is an independent software developer who has been using “Agile Methods” since 
before they were called “Agile”, has been using C++ since before there was a standard, has been 
using Java since before it went server-side and is still interested in learning new stuff. His homepage 
is http://www.octopull.demon.co.uk and he can be contacted at overload@accu.org
2 | Overload | June 2007



EDITORIALALAN GRIFFITHS
would have it the piece of code in question had sprung from the brain of
the current project manager. He didn't believe things were as bad as I said.
We tried conclusion: he would make the next change (whatever it was),
and if it took longer to get working than the time (three weeks) I had
estimated for a rewrite then I got to do the rewrite. The next change was
a simple one – he had a version ready for testing in a couple of hours. He
nearly got it working after two months and then conceded the question. I
got to do the rewrite, which worked after my estimated three weeks and
was shorter and measurably more maintainable (even by the boss).

But that was one of the good times – on most occasions a rewrite doesn't
solve the problem. There are lots of reasons why maintaining a system may
be problematic – but most of them will also be a problem while rewriting
it. A poorly understood codebase is a symptom of other issues: often the
developers have been under pressure to cut corners for a long time (and
that same pressure will affect the rewrite), on other occasions they are new
to the project and, in addition to lacking an understanding of the codebase
they don't have a grasp of the system they propose to reproduce.

So, the caution is, to be sure that the underlying problem (the real cause
of the problems with the codebase) will be addressed by the rewrite. An
organisation (it is usually the organisation and not individuals) that
produced messy code in the original system is prone to produce messy
code in the rewrite.

The worst of all possible worlds

There is one thing worse than rewriting a system without a clear
understanding of the causes of problems in the code. And it is seen far more
often than common sense would suggest. This is to split up people with
knowledge of the system and put some of them to rewriting the system
and some of them to updating the existing one. The result is that both
groups come under the sorts of pressure that cause code rot, and that the
rewrite is always chasing a moving target. It is hard to maintain morale in
both groups – both “working on the old stuff” and “chasing a moving
target” demotivating.  This is probably the most expensive of all solutions
– it is more-or-less guaranteed that a significant amount of effort and skill
will be wasted. And quality will suffer.

A curious change of roles
Recently I got was recruited to develop the fourth version of a system in
three years. This rewrite was largely motivated by the  developers – who
felt they could offer a much more functional system by starting again. We
never found out the truth of this conclusion as, several months into the
project and following a change of line management, the rewrite was
cancelled and our effort was diverted into other activities (such as getting
the existing system deployed throughout the organisation).
As part of the re-evaluation that followed I had occasion to take a look at
the the existing codebase and, after talking to the users of the system, it
was clear that the most important of the desired new functions were easy
to add. The principle problems with the existing code was a lack of
pecifications and/or tests (and the little user documentation that did exist
was wildly inaccurate).  Addressing these issues took some time and has
involved a few missteps, but after a few months and a couple of release
we have a reasonably comprehensive set of automated test for both the
legacy functionality and for the new functionality we've been adding. It
may take another release cycle but we will soon be in the position to know
that if the build succeeds then we are able to deploy the results. (And, since
the build and test cycle is automated, we know whether the build succeeds
half an hour after each check-in.)
So we have discarded the work on the fourth version and are now
developing the third and have addressed the most serious difficulties in
maintaining it. As I see it our biggest problem now is the amount of work
needed to migrate a change from development into production – we need
to co-ordinate the efforts of several support teams in each of a number of
locations around the world. It can take weeks to get a release out (to the
extent that code is now being worked on that will not be in the next release
to production, nor the one that will follow, but the one after). In these
circumstances it seems strange that a rewrite of the software is now being
mooted. The reason? Because it is written in C++ and, in the opinion of
the current manager, Java is a more suitable language. 
This situation is a novelty for me: none of the developers currently thinks
a rewrite is a good idea (neither those that worked on the rewrite, nor those
that prefer Java) and, rather than the developers, it is the manager
suggesting a rewrite. There may, of course, be good
reasons for a rewrite – but the developers have a bug-free,
maintainable system to work with and are not keen on
replacing it with an unknown quantity.
June 2007 | Overload | 3



FEATURE MATTHIEU GILSON
The Policy Bridge Design Pattern
Matthieu Gilson offers some thoughts on using a 
policy based mechanism to build efficient classes 
from loosely coupled components.
Abstract
he problem considered in this paper is not new and relates to generic
programming: how to build a class made of several ‘components’ that
can have various implementations where these components can

communicate with each other, while keeping the design of the components
independent? For instance, an object would consist of an update
mechanism plus a data structure, where both belong to a family of various
mechanisms and data structures (distinct mechanisms perform distinct
processes, etc.; thus some couples of mechanism-data are compatible and
others are not).
To be more precise, such components would be implemented in classes
(or similar entities) and use methods from other ‘classes’, while their
design is kept orthogonal. The introduction illustrates this problem and
then presents a solution using member function templates.
An alternative solution (so-called Policy Bridge) is then presented, where
the ‘components’ are implemented in policies [Alexandrescu01],
[Vandevoorde/Josuttis03] and the pattern ‘bridges’ them to construct an
instantiated type. The term ‘bridge’ here refers to the usual Bridge
pattern: the instantiated type can be seen as an interface that inherits the
functionality of all the policies it is made of. The compatibility between
the policies (for instance checking the interface at a call of a function from
another policy) is checked at compile time. A common interface can be
implemented with the cost of a virtual function for each call.
So far, the functionality achieved by the policy bridge is similar to the ones
using member function templates and a brief comparison with meta-
functions is explored as well. The code may be heavier but in a sense the
design is more modular with policies. A combination of policies with
meta-functions, to bring more genericity to encode the components, is then
introduced. Policy-based visitors that enable visiting of some of the
policies involved in the construction of an object via its interface.
A generic version of the policy bridge is then presented and the automation
of such a code for an arbitrary number of policies (using macros from the
preprocessor library of Boost [Boost]).
The example code runs under g++ (3.4.4 and 4.02), Visual C++ (7.1 and
8), and Comeau.

Introduction

The “why” and the “why not”
Let us play with neurons. Such objects can be abstracted mathematically,
with various features and mechanisms to determine their activity:

activation mechanism (their internal update method); synapses to connect
them; etc. In order to simulate a network made of various types of neurons
interconnected with various types of connections, and keep the design as
flexible as possible to be able to combine the different mechanisms
together at will.
Without even going as far as connecting neurons, a fair number of design
issues arise. Say we have a data structure which represents a feature of one
type of neuron:
 class Data1
 {
 public:
   Data1(double a) : a_(a) {}
   const double & a() {return a_;}
 protected:
   const double a_;
 };

and an update mechanism to model the state of our neuron where the update
method uses the parameter a implemented in the data:
 class UpdateMech1
 {
 public:
   const double & state() const {return state_;}
   UpdateMech1() : state_(0.) {}
   void update(double a) {state_ += a;}
 protected:
   double state_;
 };

Our neuron is somehow the ‘merging’ of both classes, and another update
method at the level of Neuron1 has to be declared so as to link the
parameter of UpdateMech1::update with   Data1::a():
 class Neuron1
   : public Data1
   , public UpdateMech1
 {
 public:
   Neuron1(double a) : Data1(a) {}
   void update() {UpdateMech1::update(Data1::a());}
 };

To make it more generic for various data and mechanisms (say we have
Data1 and  Data2, UpdateMech1 and UpdateMech2), we can
templatise the features and mechanisms:
 template <class Data, class UpdateMech>
 class Neuron
   : public Data
   , public UpdateMech
 {
   ...
   void update() {UpdateMech::update(Data::a());}
 };

T

Matthieu Gilson Matthieu is a PhD student in neuroscience at 
the University of Melbourne and the Bionic Ear Institute, 
mainly playing with mathematics but also computer simulation. 
He started to develop in C++ a couple of years ago and 
strangely finds design patterns somehow beautiful (almost as 
maths). He still remains sane thanks to music, sport, cooking 
and beer brewing.
4 | Overload | June 2007



FEATUREMATTHIEU GILSON

the template version does not require
virtual functions, and thus the internal

mechanisms remain fast
Yet, all of the DataX would now require a method a and all the
UpdateMechX would require an update method with a double as
parameter, which is not flexible. The alternative using abstract base classes
for both the family of the data classes (DataBase) and the family of the
update mechanisms (UpdateMechBase), while Neuron would hold one
member variable for each family, would face similar limitations:
 class Neuron
 {
   ...
   void update() {u_.update(d_.a());}
   DataBase * d_;
   UpdateMechBase * u_;
 };

Indeed, the interface DataBase should have a pure virtual method a:
 struct DataBase
 {
   virtual const double & a() = 0;
 };

and this would cause the interface to be rigid (even more than with the
template version): it could be necessary for other update mechanisms to
get a non-constant a, which does not fit this method a; if some more
variables are needed by only a particular UpdateMechX, the whole
common interface still has to be modified; etc. Actually, the family of the
data classes needs no common interface here, provided that for each
combination with a specific UpdateMechX, the latter knows how to call
the variable it needs. On the contrary, the machinery implemented in
DataX and UpdateMechX and their way to communicate with each other

should remain as unconstrained as possible (in terms of constructors, etc.),
only Neuron would need a common interface in the end.
Speed could be another reason to discard this alternative choice, since the
template version does not require virtual functions, and thus the internal
mechanisms remain fast (only function calls).
The former version of Neuron can be modified to make the combinations
between the DataX and the UpdateMechX more flexible. An option is to
change UpdateMechX into class templates where DataX is the template
argument of UpdateMechX, and to derive them from the classes DataX,
as shown in Listing 1.
This way, we can define various update mechanisms and various data
classes, and combine them together. The Data family and the
UpdateMech family are kept somehow independent in terms of design:
basically, UpdateMech1 only requires to know the name of the method
a implemented in all of the DataX to be combined with UpdateMech1;
type checks require that a returns a type convertible into const double.

Interdependence between features and mechanisms
The construction Neuron<UpdateMech<Data> > still has quite strong
limitations, in the sense that Data and UpdateMech are no longer on the
same level in the derivation tree above Neuron. Imagine that one of the
data classes also needs to use a method that belongs to the family of the
UpdateMechX. Or imagine there are not just one update mechanism but
two (e.g. a learning mechanism PlasticityMech in addition to the
UpdateMech for some specific neurons), and they both would have to use
something from the Data class family; both would derive from Data, and
Neuron would derive from both, so the derivation from Data must be
virtual, as shown in Listing 2.
Since there was no virtual machinery before, this may imply costs. But
even if we would not care, there is a last reason to seek for another solution:
there may eventually be a need to implement mechanisms with ‘new’

Listing 2

class Data1;

template <class Data>
class UpdateMech1
  : virtual public Data
{ ... };

template <class Data>
class PlasticityMech1
  : virtual public Data
{ ... };

template <class UpdateMech, class PlasticityMech>
class Neuron
  : public UpdateMech
  , public PlasticityMech
{ ... };

Listing 1

class Data1
{
  ...
  const & double a();
};

template <class Data>
class UpdateMech1
  : public Data
{
  ...
  void update() {state_ += Data::a();}
};

template <class UpdateMech>
class Neuron
  : public UpdateMech
{ ... };

Neuron<UpdateMech1<Data1> > nrn1;
nrn1.update();
June 2007 | Overload | 5



FEATURE MATTHIEU GILSON

any further change would possibly mess up 
our beautiful (but rigid) derivation tree
interactions that we cannot really predict at this stage; and any further
change would possibly mess up our beautiful (but rigid) derivation tree.
Let us go back to thinking of our design and what we wanted of it. The
key idea here is that UpdateMech1 requires that Neuron has a method
a that is used by UpdateMech1, but the fact that Neuron inherits a from
Data1 does not matter to UpdateMech1. Other mechanisms may have
‘requirements’, which makes mechanisms compatible or not (to be
detected at compile time). They would need to be all at the ‘same level’
in the derivation tree, i.e. any mechanism or feature is equally likely to need
something in another one. In other words, we want a design likely to
combine any compatible update and data ‘classes’ in a flexible way and
thus define a neuron out of them; these mechanisms can communicate
together while they are kept as ‘orthogonal’ as possible (they only know
the name of the methods belonging to other mechanisms they need to call);
and as few virtual functions as possible should be involved in the internal
machinery (within Neuron), to try to keep fast computation.

A solution with member function templates
One solution can be to use member function templates (in the classes that
define the features or mechanisms) for the methods that require a feature
from outside their scope (Listing 3) and to call update_impl from the
class Neuron with *this as an argument (Listing 4).
Note that UpdateMech1 has to be a friend of Data1 if a_impl is
protected. We would need to add similar declarations for any other
mechanism to be combined with Data1, or define all the methods as
public in the features and mechanisms. Another slight drawback is that
the calls to the member function templates must come from Neuron,
which means that having a pointer to one of the mechanisms (such as
UpdateMech) is not sufficient to call the update method if it is a template
method (we still would need to pass the Neuron object as an argument).
In the end, this solution is valid and would be suitable for our requirements.
Yet, we will now consider an alternative design, which brings further

possibilities. The trade-off is mainly the increase in complexity in the
design.

Details of the design

Another implementation of the ‘direct’ call: making use of 
policies
The purpose is still to allow any mechanism to call ‘directly’ any method
from another ‘mechanism’ from which Neuron derives (via the class
Neuron). To give a rough idea, instead of the function template nested in
the mechanism class (UpdateMech1::update_impl<class
TypeImpl>(TypeImpl &)), the whole class UpdateMech1 is now a
class template with a non template function (UpdateMech1<class
TypeImpl>::update_impl()). This idea has something to do with the
well-known trick used together with curiously recurring pattern (CRTP
[Alexandrescu01], [Vandevoorde/Josuttis03]):
 template <class TypeImpl>
 class UpdateMech
 {
   void update_impl()
   {
     state_ += static_cast<TypeImpl &>(*this).a();
   }
 };

Defined this way, UpdateMech can be seen as a policy [Alexandrescu01],
[Vandevoorde/Josuttis03] on the implemented type TypeImpl with the
template argument Neuron. It allows us to call the method a that Neuron
inherits from Data by means of static_cast, which converts the self-
reference *this to the instantiated policy object back to Neuron.
This use of policies is somewhat different from [Alexandrescu01]: a usual
example is the pointer class SmartPtr defined on a type T (to make it
shorter than TypeImpl) and some properties of the pointers can be
implemented by policies. For instance, let us build a policy to count the
references of the pointed element (Listing 5) and the smart pointer class
template is then as shown in Listing 6.
The policy CountRef here is a mechanism that uses the type T, and
SmartPtr uses T and CountRef, so there is no recursion in the design.
However, we want to build Neuron which uses DataPolicy<Neuron>
and UpdatePolicy<Neuron>.

Listing 4

template <class Data, class UpdateMech>
class Neuron
  : public Data
  , public UpdateMech
{
  ...
  void update() {UpdateMech::update_impl(*this)}
};

Listing 3

class UpdateMech1
{
  ...
protected:
  template <class TypeImpl>
  void update_impl(TypeImpl & obj) {state_ += 
obj.a_impl();}
};

class Data1
{
  friend class UpdateMech1;
protected:
  const double & a_impl();
  ...
};
6 | Overload | June 2007



FEATUREMATTHIEU GILSON
Merging the protected ‘spaces’ of several policies
First, we rewrite the mechanisms Data1 and UpdateMech1 as policies
(see Listing 7).

Note that the typdedef VarTypeInit was added in Data1 to define
the type of the parameter required to initialise this policy.
Then the Neuron pattern straightforwardly combines these two policies,
i.e. it derives from the two policies applied on itself (see Listing 8).
The requirements for the policy any DataPolicyX is to define a type
VarTypeInit to be used in its constructor and have a method a_impl
that returns a type that can be converted to const double &. Likewise
for UpdatePolicyX which must have a method update_impl (no
return type is required).

Listing 8

template <template <class> class DataPolicy
  , template <class> class UpdatePolicy>
class  Neuron
  : public DataPolicy<Neuron<DataPolicy,
     UpdatePolicy> >
  , public UpdatePolicy<Neuron<DataPolicy,
     UpdatePolicy> >
{
  friend class DataPolicy<Neuron>;
  friend class UpdatePolicy<Neuron>;

public:
  Neuron(DataPolicy::VarTypeInit a)
    : DataPolicy<Neuron>(a)
    , UpdatePolicy<Neuron>()
  {}
  const double & a() {
     return DataPolicy<Neuron>::a_impl();}
  void update()
     {UpdatePolicy<Neuron>::update_impl();}
};

Listing 7

template <class TypeImpl>
class Data1
{
protected:
  typedef double VarTypeInit;
  Data1(VarTypeInit a) : a_(a) {}
  const double & a_impl() {return a_;} 
private:
  const double a_;
};

template <class TypeImpl>
class UpdateMech1
{
public:
  const double & state() const {return state_;}
protected:
  UpdateMech1() : state_(0.) {}
  void update_impl()
  {
    state_ += 
       static_cast<TypeImpl &>(*this).a_impl();
  }
private:
  double state_;
};

Listing 5

template <class T>
class CountRef
{
private:
  int * count_;
protected:
  void CountPolicy() {count_ = new int();
     *count_ = 1;}
  bool release()
  {
    if (!--*count_) {
      delete count_; count_ = NULL; return true;
    } else return false;
  }
  T clone(T & t) {++*count_; return t;}
  ...
};

Listing 6

template <class T
  , template <class> CountPolicy>
class SmartPtr
  : public CountPolicy<T>
{
public:
  SmartPtr(T * ptr) : CountPolicy<T>(), 
     ptr_(ptr) {}
  ~SmartPtr()
  {
    if (CountPolicy<T>::release())
      delete ptr_;
  }
  ...
protected:
  T * ptr_;
};
June 2007 | Overload | 7



FEATURE MATTHIEU GILSON
Now, we can simply define Neuron1 as a combination of Data1 and
UpdateMech1:
  typedef Neuron<Data1, UpdateMech1> Neuron1;

The policies can communicate together, via the casting back to
TypeImpl. Indeed, thanks to the friend declarations in Neuron, each
policy can access to the members of Neuron, which inherits the protected
members of all the policies. Note also that the public function members of
the policies and of Neuron will be public for TypeImpl. What is private
within a policy cannot be accessed by other policies, to keep safe variables
(e.g. via protected accessors). An alternative option is to use protected
derivation instead of the public one here in the design of Neuron, in order
to prevent public members of the policies from being accessible from
TypeImpl.

Compatibility between classes
Now, we define two new policies Data2 and UpdateMech2 (respectively
in the same family as Data1 and UpdateMech1), but the data a_ is no

longer constant in Data2, and the update method of UpdateMech2
changes its value. Furthermore, Data2 has a learning method which
modifies its variable a_ according to the variable state_ (see Listing 9).
These two policies are  ‘compatible’ in the sense that the update policy
modifies the data a_, which is not constant as a return type of a_impl in
Data2 and the type Neuron2 defined by:
 typedef Neuron<Data2, UpdateMech2> Neuron2;
 Neuron2 nrn2;
 nrn2.update();

is thus ‘legal’. So is the combination between Data2 and UpdateMech1.
However, the class Neuron3 defined here:
 typedef Neuron<Data1, UpdateMech2> Neuron3;
 Neuron3 nrn3;
 nrn3.update();

is ill-defined because the implemented update_impl method of
UpdateMech2 tries to modify the data a_ of Data1 which is constant,
and the method  cannot be called on an object of this type. Such an
incompatibility is detected at compile time (the member function
templates described achieve same functionalities). Depending on the
compiler, the incompatibility is detected when defining the type
Neuron<Data1, UpdateMech2> (g++) or when calling the method
update (VC8).

Managing the bridged objects via dedicated interfaces
The term bridged objects here refers to instantiated types using a policy
bridge. If we want to design an interface for all the neurons to access
a_impl (with const double & as common return type) and
update_impl, we can add another derivation to Neuron with pure
virtual methods. For example for update_impl:
 struct InterfaceBase
 {
   virtual void update() = 0;
 };

which provides the common method update that has to be defined in a
derived class. We can either do it in Neuron (or in a derived class if
needed). Defining it in Neuron saves some code:
 
template <...> class Neuron : public InterfaceBase,
   ...;
void Neuron<...>::update() {
   UpdatePolicy<Neuron>::update_impl();}

but then the order of the policies in the list of the template arguments is
then fixed. On the contrary, in a dedicated derivation (instead of a
typedef like Neuron1 above), the order of the template argument list
can be changed at will:
 class Neuron4
   : public Neuron<Data1, UpdateMech1>
   , public InterfaceBase;Listing 9

template <class TypeImpl>
class Data2
{
protected:
  typedef double VarTypeInit;
  Data2(VarTypeInit a) : a_(a) {}
  double & a_impl() {return a_;}
  void learning()
  {
    if (static_cast<TypeImpl &>
       (*this).state_impl()>10) --a_;
  }
private:
  double a_;
};

template <class TypeImpl>
class UpdateMech2
{
public:
  const double & state() const {return state_;}
protected:
  UpdateMech2() : state_(0.) {} 
  void update_impl()
  {
    state_ += 
       ++static_cast<TypeImpl &>(*this).a_impl();
  }
private:
  double state_;
};
8 | Overload | June 2007



FEATUREMATTHIEU GILSON

We can no longer use the policy bridge to
build neurons with distinct algorithms
and we can also imagine combining more than two policies to define
neurons. The latter option would keep the design more generic (see the
generic version PolicyBridgeN of Neuron), with no member function
but the constructor. Yet, the same code would be duplicated in all the
derived classes. Note that such an interface also allows us to store neurons
in standard containers.
Now, to implement a special interface for the ‘learning’ neurons, we just
have to derive the suitable policy (only Data2 here, but we can imagine
more) from another abstract base class with a pure virtual method called
learning:
 
struct Interface1
{
  Interface1() {list_learning_nrn.push_back(this);}
  virtual void learning() = 0;
  std::list<Interface1 * const>
     list_learning_neurons;
};
template <class TypeImpl> 
   class Data2 : public Interface1 {...};

Thus, learning neurons can be handled and updated specifically (for their
learning mechanisms only) separately from the rest of the neurons (useful
when the distinct processes happen at distinct times for example):
 for(std::list<Interface1 * const>::iterator i = 
       Interface1::list_learning_neurons.begin();
     i != Interface1::list_learning_neurons.end();
     ++i)
   (*i)->learning();

This polymorphic feature only uses the derivation from an abstract base
class and the cost is the one of a virtual function call at run time. Note that
any bridged class (whatever the bridge like Neuron) can actually share
the same interface, and thus can be handled together as shown here. An
alternative solution could be to use the variant pattern and suitable visitors
[Boost], [Tiny].

Further considerations

Comparison with the use of member function templates
So far, apart from the dedicated interfaces, this design based on policies
has functionality comparable with member function templates. Another
difference is that the body of Neuron does not have to be changed for a
new mechanism with a method that requires internal communication (like
when adding Data2::learning). We indeed do not need to change
Neuron with policy, whereas we would have to define in the body of
Neuron a call for Data2::learning<TypeImpl> when using
member function templates.
Note that the computation speed is equivalent for the two options, since
all the internal mechanisms are based on function calls (no virtual function,
only the use of an interface involves a virtual function call).

More genericity with the combination of policies and meta-
functions
Further refinement can be obtained using meta-functions (that implement
polymorphism at compile-time). So far, we only considered policies with
one sole template argument, which is eventually the type of the bridged
object (TypeImpl). Say we want to parametrise some of the policies with
more template parameters. For example, the learning in data class
Data2 would depend on an algorithm embedded in a class, thus we need
to add an extra template parameter for Data2 (and not Data1):
 template<class TypeImpl, class Algo> class Data2;

We can no longer use the policy bridge to build neurons with distinct
algorithms because the template signature of Data2 is different now (one
template parameter in the original design of the policy bridge Neuron).
Meta-functions can help here:
 template<class Algo>
 struct GetData2
 {
   template <class TypeImpl>
   struct apply
   { 
     typedef Data1<TypeImpl, Algo> Type;
   };
};

With this design, TypeImpl will be provided by the bridge, and all the
other template parameters can be set via GetData2 (with suitable

Listing 10

template <class GetData, class GetUpdateMech>
class Neuron
   : public GetData::template
       apply<Neuron<GetData, GetUpdateMech> 
>::Type
  , public GetUpdateMech::template
      apply<Neuron<GetData, GetUpdateMech> >::Type
{
  typedef typename GetData::
     template apply<Neuron>::Type InstData;
  typedef typename GetUpdateMech
     ::template apply<Neuron>::Type 
    InstUpdateMech ;
  
  friend InstData;
  friend InstUpdateMech;

protected:
  Neuron(InstData::VarTypeInit 
        var_init)
    : InstData(var_init)
    , InstUpdateMech()
  {}
};
June 2007 | Overload | 9



FEATURE MATTHIEU GILSON
defaulting if needed). The policy bridge then becomes as shown in
Listing 10.
No t e  t ha t  t he  i n s t an t i a t ed  po l i cy  GetData::template
apply<Neuron>::Type was renamed into InstData using typedef
(likewise for InstUpdateMech) in order to simplify the code. A neuron
type can thus be simply created:
 typedef Neuron<GetData2<Algo1>, 
    GetUpdateMech2> Neuron5;

Policy-based visitors
Non-template classes with member function templates can be used with
usual visitors because they have a plain type. We adapt here the processing
using basic visitors [Alexandrescu01] (with an abstract base class
VisitorBase) to be able to visit the policies which a bridged object is
made of:
 class VisitorBase
 {
   virtual ~VisitorBase() {}
 };
 template <class T>
 class Visitor
 {
   virtual void visit(T &) = 0;
 };

In particular, such a visitor must have the same behaviour for all the types
T = Policy1<...>, for a given Policy1. We thus need a tag to identify
each policy, which is common to all the instantiated types related to the
same policy, and a solution is to use Policy<void> because it will never
be used in any bridged object. A particular visitor for Data1 and Data2
would be implemented:
 class DataVisitor
   : public VisitorBase
   , public Visitor<Data1<void> >
   , public Visitor<Data2<void, void> >
 {
   void visit(Data1<void> & d) {...}
   void visit(Data2<void, void> & d) {...}
 };

Now, a method apply_vis(VisitorBase & vis) has to be defined
at the interface level (pure virtual method), and defined at the same level
as update to call the method in the policy (here in Neuron1, likewise
for Neuron2):
 void Neuron1::apply_vis(VisitorBase & vis)
 {
   InstData::apply_impl(vis);
 }

Finally, the ‘visitable part’ of the policy Data1 (the data that the visitor
wants to access, a_ here) has to be moved in the specialised instantiation
Data1<void> from which derive all the Data1<TypeImpl>. The
function apply_impl has also to be defined in its body (here with a
solution using dynamic_cast to check the compatibility of the visitor),
as shown in Listing 11.
This way, the argument of the call of visit is the parent object of type
Data1<void> instead of the object itself. The cost of the passage of the
visitor is thus a dynamic_cast plus a virtual function call. In the case
the visitor is not compatible, nothing is done here, but an error could be
thrown or returned by the method apply_impl. Likewise with
Data2<void, void> for the visitable part of Data2.

Policy Bridge design for an arbitrary number of 
policies

Recap of the code
In the end, the code can be abstracted to bridge N policies (the dedicated
methods such as  update, etc. are ‘decentralised’ in derived classes), in
Listing 12 with N = 15.
This design requires each policy to define a type TypeInit, which is set
to a ‘fake void’ type  NullType when no initialisation variable is required
(same NullType as used for TypeList in [Alexandrescu01]). The
overriding of the pure virtual functions defined in the interface are left to
the implementation of the instantiated types here. A class Neuron1 is
derived from a suitable instantiation as shown in Listing 13.
A dedicated version of PolicyBridge2 could be written to create
neurons with the common interface hard-wired: InterfaceBase should
be put in the template argument list and the methods update, a and apply
can be centralised in the PolicyBridge2bis code (to save some code
lines), shown in Listing 14.

Automation of the code generation
The code of PolicyBridgeN can be generated for all values of N in a
define range using preprocessor macros such as REPEAT  (cf.
boost::preprocessor [Boost], the TTL library [Tiny]), i.e. to create
the class templates PolicyBridge1 up to PolicyBridgeN, where N
is an arbitrary limit. 
See http://www.bionicear.org/people/gilsonm/prog.html for details on this
implementation.

Conclusion
The policy bridge pattern aims to build classes that inherit ‘properties’ or
functionalities from a certain number of policies (variable and function
members from the protected ‘space’). Each policy can call members from
other ones and the compatibility between the policies is checked at compile
time. This approach is modular and flexible, and keeps the design of
policies related to distinct functionalities somehow ‘orthogonal’.
A common interface can be designed in order to provide a main ‘gate’ (to
all the common functionalities that have to be public, and the cost is the
one of a virtual-function call), to store them in standard containers, etc.
Moreover, specific interfaces can similarly be design for particular
functionalities belonging to a restrained number of mechanisms, allowing
us to pilot the bridged objects according to what they are actually made
of. Usual visitors can be adapted and applied to these objects in order to
interact with some of the policies involved in the design. Meta-functionsListing 11

template <class TypeImpl> class Data1;

template <>
class Data1<void>
{
  friend class DataVisitor;
protected:
  Data1(double a) : a_(a) {}
  const double & a_impl() const {return a_;}
  void apply_vis_impl(VisitorBase & vis)
  {
    Visitor<Data1<void> > * pv = 
      dynamic_cast<Visitor<Data1<void> > *>(& 
vis);
    if (pv) pv->visit(*this);
  }
private:
  const double a_;
};

template <class TypeImpl>
class Data1
  : public Data1<void>
{
protected:
  typedef double TypeInit;
  Data1(TypeInit a = 0.) : Data1<void>(a) {}
};
10 | Overload | June 2007



FEATUREMATTHIEU GILSON
can help and bring further refinement to use policies with more than one
template parameter.
Such design proved to be useful and efficient in a simulation program
where objects of various types interact: for instance neurons with distinct
intern mechanisms, as well as diverse synapses to connect them; these
objects are created at the beginning of the program execution and they
evolve and interact altogether during the simulation. Requirements such
as ‘fast’ object creation or deletion have not been considered here so far,
‘optimisation’ was sought for only for the function calls (call via the
common interface class). Visitors were used for adequate object
construction and linking objects from distinct kind (in particular between
synapses and neurons to check compatibility when creating a synaptic
connection), but not used during the execution: the interface then provides
a faster way to access the functionalities of the objects.
Code is available online at http://www.bionicear.org/people/gilsonm/
index.html to illustrate how such a design can be used. 

Acknowledgements
The author thanks Nicolas di Cesare for earlier discussion about design
pattern, and Alan Griffiths, Phil Bass and Roger Orr for very helpful
comments that brought significant improvements of the text during the
review process. MG is funded by a scholarship from the NICTA Victorian
Research Lab (www.nicta.com.au).

References
[Alexandrescu01]A. Alexandrescu. Modern C++ design: generic 

programming and design patterns applied, Addison-Wesley, 
Boston, MA: 001. Includes bibliographical references and index.

[Vandevoorde/Josuttis03]David Vandevoorde, Nicolai M. Josuttis C++ 
templates : the complete guide, Addison Wesley, 2003.

[Boost]Boost c++ libraries. http://www.boost.org/
[Tiny]Tiny Template Library. http://tinytl.sourceforge.net/

Listing 14

template <...>
PolicyBridge2bis<InterfaceBase, GetData, 
GetUpdateMech>
{
  void update() 
  {
    GetUpdateMech::template <...>::
       Type::update_impl();
  }
  ...
};

Listing 13

class Neuron1
  : public PolicyBridge2<GetData1, GetUpdateMech1>
  , public InterfaceBase
{
public:
  Neuron1(TypeInit0 a)
    : PolicyBridge2<GetData1, GetUpdateMech1>(
       a, NullType()) {}
   void update()
  {
     GetUpdateMech1::apply<PolicyBridge2<GetData1,
        GetUpdateMech1>
      >::Type::update_impl();
  }
   const double & a() { ... }
   void & apply_vis(VisitorBase & vis) { ... }
};

Listing 12

template <class GetPolicy0
  , ...
  , class GetPolicy14>
class PolicyBridge15
   : public GetPolicy0::template
       apply<PolicyBridge15<GetPolicy0, ...,
          GetPolicy14> >::Type
  , ...
  , public GetPolicy14::template
       apply<PolicyBridge15<GetPolicy0, ...,
          GetPolicy14> >::Type
{
protected:
  typedef GetPolicy0::template 
apply<PolicyBridge15>::Type
    InstPolicy0;
  ...
  typedef GetPolicy14::
     template apply<PolicyBridge15>::
     Type InstPolicy14;

  friend InstPolicy0;
  ...
  friend InstPolicy14;

  typedef typename InstPolicy0::TypeInit 
TypeInit0;
  ...
  typedef typename InstPolicy14::
     TypeInit TypeInit14;

  PolicyBridge15(TypeInit0 var_init0
      , ...
      , TypeInit14 var_init14)
    : InstPolicy0(var_init0)
    , ...
    , InstPolicy14(var_init14)
  {}
};
June 2007 | Overload | 11



FEATURE RACHEL DAVIES
Live and Learn with 
Retrospectives

How can a team learn from experience? Rachel Davies 
presents a powerful technique for this.
oftware development is not a solitary pursuit it requires collaboration
with other developers and other departments. Most organisations
establish a software lifecycle that lays down how these interactions

are supposed to happen. The reality in many teams is that their process does
not fit their needs or is simply not followed consistently. It’s easy to
grumble when this happens and it can be frustrating if you have ideas for
improvements but are not sure how to get them off the ground. This article
offers a tool that may help your team get to grips with process improvement
based on the day-to-day experience of the team. Retrospectives are a tool
that a team can use for positive change to shift from following a process
to driving their process.
Retrospectives are meetings that get the whole team involved in the review
of past events and brainstorming ideas for working more effectively going
forward. Actions for applying lessons learned are developed for the team
by the team. This article aims to explain what you need to do to facilitate
a retrospective for your team.

Background
The term ‘Retrospective’ was coined by Norman Kerth author of Project
Retrospectives: a handbook for team reviews [Kerth]. His book describes
how to facilitate three-day off-site meetings at the end of a project to mine
lessons learned. Such retrospectives are a type of post-implementation
review – sometimes called post-mortems! It seems a pity to wait until the
end of a project to start uncovering lessons learned. In 2001, Extreme
Programming teams adapted retrospectives to fit within an iterative
development cycle [Collins/Miller01]. Retrospectives also got added to
another agile process, Scrum [Schwaber04] and nowadays it’s the norm
for teams applying agile development to hold many short “heartbeat”
retrospectives during the life of the project so that they can gather and apply
lessons learned about their development process during the project rather
than waiting until the end. 

Learning from experience
Experience without reflection on that experience is just data. Taking a step
back to reflect on our experience is how we learn and make changes in our
daily lives. Take a simple example, if I hit heavy delays driving to work
then it sets me thinking about alternative routes and even other means of
getting to work. After some experimentation, I settle into a new routine.
No one wants to be doomed to repeating the same actions when they are
not really working (some definition of madness here). Although a
retrospective starts with looking back over events, the reason for doing this
is to change the way we will act in the future – retrospectives are about

creating change not navel-gazing. Sometimes we need to rethink our
approach rather than trying to speed up our existing process.
Retrospectives also improve team communication. There’s an old adage
“a problem shared is a problem halved”. Retelling our experiences to
friends and colleagues is something we all do as part of everyday life. In
a team effort, none of us know the full story of events. The whole story
can only be understood by collating individual experiences.  By exploring
how the same events were perceived from different perspectives, the team
can come to understand each other better and adjust to the needs of the
people in their team.

Defusing the time-bomb
Let’s move onto how to run an effective retrospective. Where a team has
been under pressure or faced serious difficulties tempers may be running
high and relationships on the team may have gone sour. Expecting magic
to happen just by virtue of bringing the team together in a room to discuss
recent events is unrealistic. Like any productive meeting, a retrospective
needs a clear agenda and a facilitator to keep the meeting running
smoothly. Without these in place, conversations are likely to be full of
criticism and attributing blame. Simply getting people into a room to vent
their frustrations is unlikely to resolve any problems and may even
exacerbate them. Retrospectives use a specific structure designed to defuse
disagreements and to shift the focus to learning from the experience. The
basic technique is to slow the conversation down – to explore different
perspectives before jumping to conclusions.

The prime directive
By reviewing past events without judging what happened, it becomes
easier to move into asking what could we do better next time?  The key is
to adopt a systems thinking perspective. To help maintain the assumption
that problems arise from forces created within the system rather than
destructive individuals Norm Kerth declared a Prime Directive for
retrospectives that he proposed is a fundamental ground-rule for all
retrospectives.
This purpose of this prime directive is often misunderstood. Clearly, there
are times when people messed up – maybe they don’t know any better or
maybe they really are lazy or bloody-minded. However, in a retrospective
the focus is solely on process improvements and we use this Prime
Directive to help us suspend belief. Poor performance by individuals is best
dealt with managers or HR department and should be firmly set outside
the scope of retrospectives.

S

Rachel Davies Rachel is an independent agile coach based 
in the UK, a frequent presenter at industry conferences and a 
director of the Agile Alliance. She has been working in the 
software industry for nearly 20 years. She can be reached via 
her website: www.agilexp.com

Regardless of what we discover, we must understand and truly believe
that everyone did the best job he or she could, given what was known at
the time, his or her skills and abilities, the resources available, and the

Prime Directive
12 | Overload | June 2007



FEATURERACHEL DAVIES

if in the heat of the moment this rule is
flouted then you can try use a ‘talking stick’

so only one person is talking at a time
Getting started with ground rules
To run an effective retrospective someone needs to facilitate the meeting.
It’s the facilitator’s job to create an atmosphere in which team members
feel comfortable talking. 
Setting ground-rules and a goal for the retrospective helps it to run
smoothly. There are some obvious ground-rules that would apply to most
productive meetings – for example, setting mobile phones to silent mode.
So what special ground-rules would we need to add for a retrospective?
It’s important for everyone to be heard so an important ground-rule is ‘No
interruptions’ – if in the heat of the moment this rule is flouted then you
can try use a ‘talking stick’ so only one person is talking at a time – the
person holding the talking stick token (the token does not have to be a stick
– Norm uses a mug and teams I have worked with have used a fluffy toy
which is easier to throw across a room than a mug). 
Once the ground-rules for the meeting are established then they should be
written up on flipchart paper and posted on the wall where everyone can
see them. If people start to forget the ground-rules then it is the facilitator’s
job to remind everyone. For example, if someone answers a phone call in
the meeting room then gently usher them out so that their conversation
does not disrupt the retrospective. 

Safety check
Another important ground rule is that participation in exercises during a
retrospective is optional. Some people can feel uncomfortable or exposed
in group discussions and it’s important not to exacerbate this if you want
them to contribute at all. When a team do their first few retrospectives, it’s
a useful to run a ‘Safety Check’ to get a sense of who feels comfortable
talking. To do this run an anonymous ballot, ask each person to indicate
how likely they are to talk in the retrospective by writing a number on slips
of paper using a scale 1 to 5 (where 1 indicates ‘No way’ and 5 ‘No
problem’) – the facilitator collects these slips of paper in, tallies the votes
and posts them on a flipchart in the room. The purpose of doing this is for
the participants to recognise that there are different confidence levels in
the room and for the facilitator to assess what format to use for discussions.
Where confidence of individuals is low, it can be effective to ask people
to work in small groups and to include more exercises where people can
post written comments anonymously.

Action replay
Sportsmen use the action replay to analyse their actions and look for
performance improvements. The equivalent in retrospectives is the
Timeline. 
Start by creating a space for the team to post events in sequence that
happened during the period they are reflecting over; moving from left to
right – from past to present. Each team member adds to the timeline using
coloured sticky notes (or index cards). The facilitator establishes a key for
the coloured cards. For example, pink – negative event, yellow – neutral
event and green – positive event. The use of colour helps to show patterns

in the series of events. This part of the meeting usually goes quickly as team
members work in parallel to build a shared picture.
The exercise of creating a timeline serves several purposes – helping the
team to remember what happened, providing an opportunity for everyone
on the team to post items for discussion and trying to base conversations
on actual events rather than general hunches. The timeline of event is a
transient artefact that helps to remind the team what happened but it is not
normally kept as an output of the retrospective.

Identifying lessons learned
Once a shared view of events has been built, the team can start delving for
lessons-learned. The team is invited to walk the timeline from beginning
to end with the purpose of identifying ‘What worked well that we want to
remember?’ and ‘What to do differently next time?’ 
The facilitator reads each note on the timeline and invites comments from
the team. The team work to identify lessons learned both good and bad.
It’s important to remind the team at this stage that the idea is to identify
areas to focus on rather than specific solutions as that comes in Action
Planning. 
As a facilitator, try to scribe a summary of the conversation on a flipchart
(or other visible space) but try to check with the team that what you have
written accurately represents the point being made. Writing down points
as they are originally expressed helps show that a person’s concerns have
been listened to.
In my experience, developers are prone to talking at an abstract level –
making general claims that are unsubstantiated. As a facilitator, it’s
important to dig deeper and check assumptions and inferences by asking
for specific examples that support the claims being made.

Action planning
Typically, more issues are identified than can be acted on immediately.
The team will need to prioritise issues raised before starting action
planning. The team needs to be realistic rather than wishful thinking mode.
For an end of iteration retrospective, between three and five actions would
be sensible.
Before setting any new actions the team should review if there are
outstanding actions from their previous retrospective. If so then it’s worth
exploring why and whether the action needs to be recast. Sometimes
people are too ambitious in framing an action and need to decrease the
scope to something they can realistically achieve. For each action, try to
separate out the long-term goal from the next step (which may be a baby-
step). The team may even decide to test the water by setting up a process
improvement as an experiment where the team take on a new way of
working and then review its effectiveness at the next retrospective. Also
it’s important to differentiate between short-term fixes and attempting to
address the root cause. Teams may need both types of action – a book,
which provides a nice model for differentiating between types of action,
is Edward DeBono’s Six Action Shoes [DeBono93].
June 2007 | Overload | 13



FEATURE RACHEL DAVIES

The power of regular retrospectives and 
regular exercise is that they prevent big 
problems from happening
Each action needs an owner responsible for delivery plus it can be a good
idea to identify a separate person to act as a buddy and work with that
person to make sure the action gets completed before next retrospective.
Some actions may be outside the direct sphere of influence of the team and
require support from management – the team may need to sell the problem!
Your first action in this case, is to gather evidence that will help the team
convince their boss action is required.

Wrapping-up
Before closing the retrospective, the facilitator needs to be clear what will
happen to the outputs of the meeting. The team can display the actions as
wallpaper in the team’s work area. Or the team may choose to use a digital
camera to record notes from flipcharts/whiteboards so the photos can be
upload a shared file space or transcribed onto a team wiki. Before making
outputs visible to the wider organisation the facilitator should need to
check with the team that they are comfortable with this.

Perfecting retrospectives
To run a retrospective it helps to hone your facilitation skills – a
retrospective needs preparation and follow through. The facilitator should
work through the timings in advance and vary the exercises every now and
again. A good source of new exercises is the book Agile Retrospectives
[Derby/Larsen06]. A rough guide to timings is a team need 30 minutes
retrospective time per week under review so using this formula allow 2
hours for a monthly retrospective and a whole day for a retrospective of a
several months work. 
In addition, to planning the timings and format, the facilitator also needs
to review: Who should come? Where to hold the meeting? When to hold
the meeting?  When a team first starts with retrospectives they will find
that they come up with plenty of actions that are internal to the team. Once
the team has its own house in order then they usually turn to interactions
with other teams and it’s worth expanding the invitation list to include
people who can bring a wider perspective on these. As a team lead or
manager it’s hard to maintain a neutral perspective on events. If you work
alongside other teams that use retrospectives then it may be possible to take
turns to facilitate them for each other. As standard practice at the end of
my retrospectives, I gather a ‘return on time invested’ rating from
participants and this might be used a tool for assessing whether a new
facilitator is doing a good job if you are trying to build a team of facilitators
in an organisation.
Finding a suitable meeting space can make a big difference. It may  help
to pick a meeting room away from your normal work area so that  it’s
harder for people to get dragged back to work partway through  the
retrospective. Where possible try to avoid boardroom layout –  sitting

around a large table immediately places a big barrier between  team
members – and instead look for somewhere that you can set up a  semi-
circle of chairs. You also need to check the room has at least a  couple of
metres of clear wall space or whiteboards. I have learned  that when an
offsite location is booked for a retrospective it’s  important to check that
there will be space to stick paper up on the  wall. I have sometimes been
booked to facilitate retrospectives in  boardrooms with flock wallpaper,
bookcases and antique paintings so  we used the doors and up-ended tables
to create temporary walls.
As for timing, when working on an iterative planning cycle, you need to
hold the retrospective before planning the next efforts. However, running
retrospective and planning as back-to-back meetings will be exhausting for
everyone so try to separate them out either side of lunch or even on separate
days.

Final words
I am sometimes asked, by people wanting to understand more about
retrospectives, ‘Can you tell me a story that demonstrates a powerful
outcome that resulted from a retrospective?’. I have come to realize that
this question is similar to ‘Can you tell me about a disease that was cured
by taking regular exercise?’. 
I have worked with teams where running regular heartbeat retrospectives
made a big difference in the long term but because the changes were
gradual and slow they don’t make great headlines. For example, one team
I worked with had an issue of how to handle operational requests that came
in during their planned product development iterations. It took us a few
months before we established a scheme that worked for everyone but
without retrospectives it might have taken a lot longer.
The power of regular retrospectives and regular exercise is that they
prevent big problems from happening so there should be no war stories or
miraculous transformations! 

References
[Kerth] Project Retrospectives: A Handbook for Team Reviews by 

Norman L. Kerth. Dorset House. ISBN: 0-932633-44-7
[Collins/Miller01] ‘Adaptation: XP Style’ XP2001 conference paper by 

Chris Collins & Roy Miller, RoleModel Software 
[Schwaber04] Agile Project Management with Scrum by Ken Schwaber. 

Microsoft Press, 2004. ISBN: 978-0735619937
[DeBono93] Six Action Shoes by Edward DeBono HarperCollins 1993. 

ISBN: 978-0006379546
[Derby/Larsen06] Agile Retrospectives: Making Good Teams Great by 

Esther Derby and Diana Larsen. Pragmatic Programmers 2006. 
ISBN: 0-9776166-4-9
14 | Overload | June 2007



FEATUREPAUL GRENYER
Continuous Integration with 
CruiseControl.Net
Is CC any good? How could it be better? Did it make a real 
difference where it was installed? Should we all give it a go?
What is continuous integration?
ontinuous integration is vital to the software development process
if you have multiple build configurations and/or multiple people
working on the same code base. WikiPedia [WikiPedia] describes

continuous integration as ‘…a software engineering term describing a
process that completely rebuilds and tests an application frequently.’
Generally speaking, continuous integration is the act of automatically
building a project or projects and running associated tests; typically after
a checkin or multiple checkins to a source control system.

Why should you use continuous integration?
My Dad takes a huge interest in my career and always wants to know what
I’m doing. He knows almost nothing about software engineering, but he
does know a lot about cars, so I often use the production of a car as an
analogy to software engineering.
Imagine a car production factory where one department designs and builds
the engine, another department designs and builds the gear box and a third
department designs and builds the transmission (prop shaft, differential,
etc.). The engine has to connect to the gearbox and the gearbox to the
transmission. These departments work to a greater or lesser degree in
isolation, just like teams or individuals working on different libraries or
areas of a common code base on some projects. 
A deadline has been set in the factory for all the parts of the car to be ready
and the car will be assembled and shipped the next day. During the time
to the deadline the gearbox is modified to have four engine mountings, as
a flaw in the original design is identified, instead of the three the
specification dictates and the ratio of the differential is changed as the sales
department has promised the customer the car will have a higher top speed.
The deadline has arrived and the first attempt to assemble the engine,
gearbox and transmission is made. The first problem is that the gearbox
cannot be bolted onto the engine correctly as there are insufficient
mountings on the engine. However this can be fixed, but will take an extra
two weeks while the engine block is recast and the necessary mountings
added. 
Two weeks later the engine, gearbox and transmission are all assembled,
bolted into the car and it’s out on the test track. The car is flat out down
the straight and it is 10 miles per hour slower than sales department
promised it would be as the engine designers did not know about the
change in differential ratio and the maximum torque occurs at the wrong
number of revs. So the car goes back to the factory have the valve timings
adjusted which takes another two weeks.
When presented like this it is clear that there is a problem with the way
development has been managed. But all too often this the way that software
development is done – specs are written and software developed only to
be put together under the pressure of the final deadline. Not surprisingly
the software is delivered late, over budget and spoils reputations. We’ve
all been there.
The problems could have been avoided or at least identified in time to be
addressed, by scheduling regular integrations between the commencement

of production and the deadline. Exactly the same applies to software
engineering. All elements of the system should be built together and tested
regularly to make sure that it builds and that it performs as expected. The
ideal time is every time a checkin is made. Integration problems are then
picked up as soon as they are created and not the day before the release
and the ideal way to do this is using an automated system such as
CruiseControl.

CruiseControl.Net
CruiseControl, written in Java, is one of the better known continuous
integration systems it is designed to monitor a source control system, wait
fo r  check ins ,  do  bu i lds  and  run  t e s t s .  Cru i seCont ro l .Ne t
[CruiseControl.Net] is,  obviously, a .Net implementation of
CruiseControl, designed to run on Windows although it can be used with
Mono[Mono]. 
I found the simple start-up documentation for CruiseControl.Net sadly
lacking, so in this article I am going to go through a simple
CruiseControl.Net configuration step-by-step using my Aeryn [Aeryn]
C++ testing framework. Aeryn is an ideal example as it has both Makefiles
for building in Unix-like environments and a set of Microsoft Visual C++
build files. It also has a complete test suite which is run as part of the build.

Download and install
You can download CruiseControl.Net from the CruiseControl.Net
website. It comes in several different formats including source and a
Windows MSI installer. Download and install the Windows MSI and
select the defaults. This will install CruiseControl.Net as a service and
setup a virtual directory that so it can be used with Microsoft’s Internet
Information Service [IIS] to give detailed information about the builds (I’ll
cover this in Part 2). Also download and install the CCTray Windows MSI.
CCTray is a handy utility for monitoring builds I’ll discuss later.
CruiseControl.Net can run as both a command line program and a
Windows service. It is useful to start off with the command line version
and then move to the Windows service once all the configuration bugs have
been ironed out.

Project block
CruiseContro l .Net  uses  an  XML conf igura t ion  f i l e  ca l led
ccnet.config, which is located in the CruiseControl.Net server
directory (the default CruiseControl.Net install directory is: C:\Program
Files\CruiseControl.NET). The configuration must be wrapped in
a <cruisecontrol> block and contain at least one <project> block:

C

Paul Grenyer  has been a member of the ACCU since 2000 
when he started his professional career. As well as founding 
the ACCU Mentored Developers and serving on the 
committee, Paul has written a number of articles for CVu and 
Overload. Paul now contracts at an investment bank in Canary 
Wharf.
June 2007 | Overload | 15



FEATURE PAUL GRENYER
  <cruisecontrol>
    <project name="Aeryn" ></project>
  </cruisecontrol>

The above is the minimal project block. In the above example the project
is simply given the name Aeryn. It will be added as we step through the
configuration. To run CruiseControl.Net from the command line, open a
command prompt and change to the server directory, type ccnet and
hit return. The output is similar to that shown in Figure 1.
This starts CruiseControl.Net, but it has nothing to do so it just sits and
waits. Now is a good point at which to configure CCTray. Bring up the
CCTray window by double clicking on the CCTray icon (usually a green,
red or orange circle with CC in the centre) in the system tray. First register
the CruiseControl.Net server:

1. Select the file menu and settings.
2. Then select the Add button from the Build Projects tab.
3. Click the Add Server button from the project dialog.
4. Select the ‘Connect directly using .Net remoting’ radio button.
5. Enter localhost to connect to a server on the local machine or the

IP address or host name for a server on a remote machine and click
Ok.

6. Select the project (in this case Aeryn) from the projects list box and
click Ok.

7. Click Ok on the CruiseControl.Net Tray Settings dialog.
CCTray will connect to the CruiseControl.Net server and you should see
the CCTray main window, looking something like Figure 2.
CCTray is designed not only to run on the same machine as
CruiseControl.Net, but on any number of client machines as well.

Source control block
CruiseControl.Net can be configured to monitor a number of source
control systems for changes. Theses include subversion, CVS, Perforce,
ClearCase and Visual Source Safe. The CruiseControl.Net documentation
includes a complete list. One of the strengths of CruiseControl.Net is that
it is easy to add support, via a plugin, for other source control systems. I
plan to write about creating CruiseControl.Net plugins in future articles.
Aeryn uses Subversion [SVN] and CruiseControl.Net. A subversion client
must be installed to use it (TortoiseSVN doesn’t appear to have the right
executable). The minimum parameters needed are the (trunk) URL of the
repository and the working directory (a path to check the code out to).
However, this assumes that svn.exe (subversion client executable) is
also in the working directory, so it is necessary to specify the path to it.
The full working directory must also exist.
<project name="Aeryn">
  <sourcecontrol type="svn">
    <trunkUrl>http://aeryn.tigris.org/svn/aeryn/
       trunk/</trunkUrl>
    <workingDirectory>c:\temp\ccnet\aeryn
       </workingDirectory>
    <executable>C:\Program Files\Subversion\bin\
       svn.exe</executable>
  </sourcecontrol>
</project>Figure 2

Figure 1

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\>cd C:\Program Files\CruiseControl.NET\server

C:\Program Files\CruiseControl.NET\server>ccnet
CruiseControl.NET Server 1.2.1.7 -- .NET Continuous Integration Server
Copyright (C) 2003-2006 ThoughtWorks Inc.  All Rights Reserved.
.NET Runtime Version: 2.0.50727.42      Image Runtime Version: v1.1.4322
OS Version: Microsoft Windows NT 5.1.2600 Service Pack 2        Server locale: en-GB

[CCNet Server:DEBUG] The trace level is currently set to debug.  This will cause CCNet to log at the most 
verbose level, which is useful for setting up or debugging the server.  Once your server is running 
smoothly, we recommend changing this setting in C:\Program 
Files\CruiseControl.NET\server\ccnet.exe.config to a lower level.
[CCNet Server:INFO] Reading configuration file "C:\Program Files\CruiseControl.NET\server\ccnet.config"
[CCNet Server:INFO] Registered channel: tcp
[CCNet Server:INFO] CruiseManager: Listening on url: tcp://192.168.0.100:21234/CruiseManager.rem
[CCNet Server:INFO] Starting CruiseControl.NET Server
[Aeryn:INFO] Starting integrator for project: Aeryn
[Aeryn:INFO] No modifications detected.

[CCNet Server:DEBUG] The trace level is currently set to debug.  This will cause CCNet to log at the most 
verbose level,  which is useful for setting up or debugging the server.  Once your server is running 
smoothly, we recommend changing this setting in C:\Program Files\CruiseControl.NET\server\ccnet.exe.
config to a lower level.
[CCNet Server:INFO] Reading configuration file "C:\Program Files\CruiseControl.NET\server\ccnet.config"
[CCNet Server:INFO] Registered channel: tcp
[CCNet Server:INFO] CruiseManager: Listening on url: tcp://192.168.0.100:21234/CruiseManager.rem
[CCNet Server:INFO] Starting CruiseControl.NET Server
[Aeryn:INFO] Starting integrator for project: Aeryn
[Aeryn:INFO] No modifications detected.

Figure 3

16 | Overload | June 2007



FEATUREPAUL GRENYER
CruiseControl.Net monitors ccnet.config, so simply making the
above changes and saving the file should be all that needs to be done.
Alternatively the server can be started again from the command line, giving
an output similar to Figure 3.
There is some extra debug information, such as the last checkin message,
omitted from Figure 3. The final message is No modifications
detected. This means that CruiseControl.Net has identified that there
have been no recent changes to the repository. Therefore it has not checked
anything out and it has not attempted to build anything.
One way to test that it checks code out correctly would be to commit a
change to the repository, however this is unnecessary. CCTray can be used
to force the checkout. Select the project from the CCTray list box and click
Force Build. You will get an output similar to Figure 4.
The SVN source control block, unlike some of the other source control
blocks, supports username and password parameters. This allows code to
be checked out on machines where the current user, such as the system

account if CruiseControl.Net is running as a service, does not have the
necessary permissions.
 <sourcecontrol type="svn">
   <trunkUrl>http://aeryn.tigris.org/svn/aeryn/
      trunk/</trunkUrl>
   <workingDirectory>c:\temp\ccnet\aeryn
      </workingDirectory>
   <executable>C:\Program Files\Subversion\bin\
      svn.exe</executable>
   <username>fprefect<username>
   <password>towel<password>
 </sourcecontrol>

The drawback is that the username and password are stored in
ccnet.config in unencrypted human readable format. However,
CruiseControl.Net only needs to be able to check code out, it doesn’t need
to check it back in, so if the repository you are using supports anonymous
checkouts this is less of a disadvantage.

Devenv task block (Visual Studio 7.x Task)
One of the two basic build systems supported by Aeryn is Microsoft Visual
Studio solutions. CruiseControl.Net has two special task blocks for visual
studio solutions: <devenv> and <msbuild>. <devenv> is used to build
version 7.x solutions and <msbuild> to build version 8 solutions using
Microsoft’s MSBuild [MSBuild]. Aeryn uses visual studio 7.1 solutions
and therefore requires <devenv>. 
The minimum parameters needed are the solution file to build and the
configuration to build (e.g. debug or release). However this assumes
that Visual Studio 7.x is installed at a specific location, but Visual Studio
7.x can be installed to any path and the default path varies across versions,
so it is best to specify the path to the devenv.com executable for the
version being used. 
<sourcecontrol type="svn">
    ...
</sourcecontrol>
<tasks>
  <devenv>
    <solutionfile>C:\temp\ccnet\aeryn\aeryn2.sln
       </solutionfile>
    <configuration>Debug</configuration>
    <executable>C:\Program Files\Microsoft Visual
       Studio .NET 2003\Common7\IDE\devenv.com
       </executable>
  </devenv>
</tasks>

There are a number of other useful <devenv> parameters, two of which
are: <buildtype> and <buildTimeoutSeconds>. The build types
are Build, Clean and Rebuild and have their normal visual studio

[Aeryn:DEBUG] Starting process [C:\Program Files\Subversion\bin\svn.exe] in working directory 
[c:\temp\ccnet\aeryn] with arguments [log http://aeryn.tigris.org/svn/aeryn/trunk/ -r "{2007-05-
04T16:06:42Z}:{2007-05-04T17:26:17Z}" --verbose --xml --non-interactive --no-auth-cache]
...
[Aeryn:INFO] No modifications detected.
[Aeryn:INFO] Building: Paul Grenyer triggered a build (ForceBuild)
[Aeryn:DEBUG] Starting process [C:\Program Files\Subversion\bin\svn.exe] in working directory 
[c:\temp\ccnet\aeryn] with arguments [checkout http://aeryn.tigris.org/svn/aeryn/trunk/ 
c:\temp\ccnet\aeryn --non-interactive --no-auth-cache]
[Aeryn:DEBUG] A    C:\temp\ccnet\aeryn\corelib
[Aeryn:DEBUG] A    C:\temp\ccnet\aeryn\corelib\corelib.vcproj
[Aeryn:DEBUG] A    C:\temp\ccnet\aeryn\corelib\Makefile
[Aeryn:DEBUG] A    C:\temp\ccnet\aeryn\Doxyfile
[Aeryn:DEBUG] A    C:\temp\ccnet\aeryn\include
...
[Aeryn:DEBUG] A    C:\temp\ccnet\aeryn\examples\lift\TestClient\main.cpp
[Aeryn:DEBUG] U   C:\temp\ccnet\aeryn
[Aeryn:DEBUG] Checked out revision 157.
[Aeryn:INFO] Integration complete: Success - 04/05/2007 18:26:50

Figure 4

Listing 1

<cruisecontrol>
  <project name="Aeryn">
    <workingDirectory>c:\temp\ccnet\aeryn
       </workingDirectory>
    ...
    <tasks>
      <devenv>
        <solutionfile>aeryn2.sln</solutionfile>
        <configuration>Debug</configuration>
        <executable>C:\Program Files\Microsoft
           Visual Studio … .NET 2003\Common7\IDE\
           devenv.com</executable>
        <buildtype>Rebuild</buildtype>
        <buildTimeoutSeconds>300
           </buildTimeoutSeconds>
      </devenv>
      <devenv>
        <solutionfile>aeryn2.sln</solutionfile>
        <configuration>Release</configuration>
        <executable>C:\Program Files\Microsoft
           Visual Studio … .NET 2003\Common7\IDE\
           devenv.com</executable>
        <buildtype>Rebuild</buildtype>
        <buildTimeoutSeconds>300
           </buildTimeoutSeconds>
      </devenv>
    </tasks>
    ...
  </project>
</cruisecontrol>
June 2007 | Overload | 17



FEATURE PAUL GRENYER
meanings. The default is Rebuild. Build timeout is the number of
seconds that CruiseControl.Net will wait before assuming the build has
hung and should be killed. The default is 600 (10mins):
 <devenv>
   <solutionfile>C:\temp\ccnet\aeryn\aeryn2.sln
      </solutionfile>
   <configuration>Debug</configuration>
   <executable>C:\Program Files\Microsoft Visual
      Studio .NET 2003\Common7\IDE\devenv.com
      </executable>
   <buildtype>Rebuild</buildtype>
   <buildTimeoutSeconds>300</buildTimeoutSeconds>
 </devenv>

Aeryn has both a debug and a release configuration and the building of both
should be tested. That requires two <devenv> blocks and two fully hard
coded solution paths. This introduces a possible maintenance headache if
the working directory is moved. Solution paths can be relative if a working
directory is specified in the project block, as shown in Listing 1. 
Again, the changes to ccnet.config should be automatically picked up
by the server when it is saved or the server can be restarted from the
command line. Using CCTray to force the build will cause both
configurations to build.

Exec (make) task block
The other build system supported by Aeryn is make on both Windows and
Linux. Obviously CruiseControl.Net can only run the Windows version.
CruiseControl.Net doesn’t have a specific make task block, so a generic
executable block must be used instead. 
I think that a task block supporting make is a fundamental omission from
CruiseControl.Net. As creating new task blocks is very easy; I have written
a make task block and am currently trying to get it incorporated into
CruiseControl.Net. If I am unsuccessful I will be making it available as a
plugin.
The parameters are the path to the executable, the arguments to pass to the
executable, the number of seconds to wait before assuming that the process
has hung and should be killed, and the working directory. The working
directory is only needed if it is different from the working directory
specified by the project block.
 <exec>
   <executable>C:\MinGW\bin\mingw32-make.exe"
      </executable>
   <buildArgs>-f Makefile rebuild</buildArgs>
   <buildTimeoutSeconds>300</buildTimeoutSeconds>
 </exec>

This disadvantage of using an <exec> block to run make is that it does
not give any INFO level log output indicating that the task is running or
whether it was successful, as the <devenv> and <msbuild> blocks do.
CruiseControl.Net also generates a DEBUG level error as the output from
calling make is not in XML format. This is not a
serious problem as when CruiseControl.Net is
running in production debug logging should be
turned off. The make task block I have written
solves both these issues.
Saving the changes to ccnet.config and
using CCTray to force the build should cause the
make configurations to build along with the
visual studio configurations.

Publisher block – email
CruiseControl.Net uses publisher blocks to
notify developers of the status of the build. The
most useful publisher block is email. The email
block can be used to send status emails to groups
of email addresses.
For example the developer responsible for
maintaining the CruiseControl.Net server may

want an email every time a build takes place. However, the rest of the
developers on the team probably only want to receive an email when the
status of the build changes (e.g. from fixed to broken or vice-versa) or
while the build is broken. To achieve this, two groups can be setup, a
“developers” group and a “buildmaster” group, each group is configured
individually. 
Emails can be triggered by three different notification events:

Always An email is sent every time a build takes place.
Change An email is sent when the status of the build changes,

either from fixed to broken or from broken to fixed.
Failed Sends an email whenever a build fails.

An SMTP server must also be specified along with the relevant username
and password when needed. The <email> block has the same security
issues as the source control block in terms of the username and password
being in human readable format. However, most of the time a build server
will be fixed within a particular network and access to the SMTP server
on a corporate network or through the ISP will not require a username or
password. 
If CruiseControl.Net is being run on a roaming computer such as a laptop
then this becomes more of an issue. I use Google mail for my every day
email and the Google SMTP server uses a non-standard port and requires
a secure connection. This is not supported by the email block or, it appears,
the underlying .Net SMTP class. I am sure that both the username and
password issue and the port and security issue could be overcome by
writing a custom email block based on the existing one, however that is
outside the scope of this article.
 See Listing 2. Assuming the SMTP details and email addresses are correct,
emails will be sent at the end of each build.
When setting up email notifications from continuous integration on multi-
developer projects it is important to be aware of how the members of the
team feel about potentially receiving a lot of extra email and having the
fact that their code changes have broken the build highlighted to the team. 
During the setting up of the server it is sensible to restrict emails to the
person doing the setup. I found that people became irritated with only a
small increase in email to begin with. However as the builds became more
successful and the appropriate email rules implemented (see above), this
became less of an issue. 
To get people to accept that they have broken the build and agree to fix it,
I found that it was important to get buy-in for continuous integration. This
is an ongoing task. The management, however, is on side and pushing quite
hard. I am sure that as soon as the next release is built smoothly everyone
will be more enthusiastic about continuous integration and maintaining
working builds.

Running CruiseControl.Net as a Service
CruiseControl.Net can be run as a Windows Service. This has the
advantage that whenever the dedicated build server is rebooted or someone

Listing 2

<project name="Aeryn"> ...
  <publishers>
    <email from=paul.grenyer@gmail.com  mailhost="mailhost.zen.co.uk"
       includeDetails="TRUE">
      <users>
        <user name="Paul Grenyer" group="buildmaster"… 
           …address="paul.grenyer@gmail.com"/>
        <user name="Aeryn Developers" group="developers"…
           …address="continuousintegration@aeryn.tigris.org"/>
      </users>
      <groups>
        <group name="developers" notification="change"/>
        <group name="buildmaster" notification="always"/>
      </groups>
    </email>
  </publishers>
</project>
18 | Overload | June 2007



FEATUREPAUL GRENYER
logs in or logs out, the CruiseControl.Net server keeps running. Running
CruiseControl.Net as a service uses exactly the same ccnet.config file. 
During the development of the configuration it useful to have lots of debug
information. Once the configuration is complete and working; this extra
debug information is no longer useful and should be turned off. To adjust
t he  l ogg ing  l e ve l ,  ed i t  t he  <level value>  t a g  i n  t he
ccservice.exe.config file in the CruiseControl.Net server
directory. The available levels are DEBUG, INFO, WARN, ERROR, OFF. The
default is Debug. Changing the setting to INFO reduces a lot of
unnecessary noise:
  <level value="INFO" />

Changes to ccservice.exe.config  are not picked up by
CruiseControl.Net until it is restarted.
CruiseControl.Net is installed as a Windows service as part of the standard
setup. Before it can be started it must be configured to run as a user that
has access to the source control system (unless the username and password
have been put into source control block) and the compilers and applications
that are used in the configuration. 

1. Open the Services dialog (Control Panel->Administrative Tools-
>Services) and double click on CruiseControl.Net Server. 

2. In the General tab set Start Type to Automatic so that
CruiseControl.Net starts when the build server starts.

3. In the Log On tab select the This Account radio button and enter
the username and password of a user who has rights to the necessary
source control and application.

4. Click Ok and use the Services dialog to start CruiseControl.Net.
CruiseControl.Net writes a log file called ccnet.log to the Service
directory. It can be useful to monitor this with a tool such as tail [Tail].
When CruiseControl.Net is running as a service a build can be forced from
CCTray in the same way as when it was running from the command line.
The complete ccnet.config file is shown in Listing 3.

Final test
As a final test modify a source file in such a way as to break the build.
Commit the file to the source control system and see that it triggers the
CruiseControl.Net build and that the build fails. Then undo the

modification, commit it again and see that the build
succeeds.  ccnet.config  should also be
committed to the source control system and
checking it in will also trigger a build.

Part 2
In this article I have demonstrated how easy it is to
s e t u p  c o n t i n uo u s  i n t e g ra t i o n  w i t h
CruiseControl.Net. I found the documentation
lacking and I hope this article has started to rectify
that situation. I have highlighted some of
CruiseControl.Net’s shortcomings, not only its lack
of documentation, but that it is missing at least one
fundamentally important task block and that the
source control and email blocks need to have
additional features. I intend to address these issues
with plugins in future articles. 
I think it is clear that, because continuous
integration highlights integration issues early, it is
something we should all be doing on multi-
developer projects or projects with multiple build
systems. This is what I have found in the relatively
short period of time I have been using continuous
integration.
In part two, I am going to look at setting up a
webserver to allow more detailed information to be
obtained about the status of the CruiseControl.Net
server and its projects and builds. 

Acknowledgments
Thank you to Jez Higgins, Peter Hammond, Roger
Orr, Paul Thomas and Alan Griffiths for reviews
and suggestions.

References
[WikiPedia] http://en.wikipedia.org/wiki/

Continuous_Integration
[CruiseControl.Net] http://

ccnet.thoughtworks.com/
[Aeryn] http://www.aeryn.co.uk
[Mono] http://www.mono-project.com
[IIS] http://www.microsoft.com/

windowsserver2003/iis/default.mspx
[SVN] http://subversion.tigris.org/
[MSBuild] http://msdn2.microsoft.com/en-us/

library/wea2sca5(VS.80).aspx
[Tail] http://tailforwin32.sourceforge.net/

Listing 3

<cruisecontrol>
  <project name="Aeryn">
    <workingDirectory>c:\temp\ccnet\aeryn</workingDirectory>
    <sourcecontrol type="svn">
      <trunkUrl>http://aeryn.tigris.org/svn/aeryn/trunk/</trunkUrl>
      <workingDirectory>c:\temp\ccnet\aeryn</workingDirectory>
      <executable>C:\Program Files\Subversion\bin\svn.exe
         </executable>
    </sourcecontrol>
    <tasks>
      <devenv>
        <solutionfile>aeryn2.sln</solutionfile>
        <configuration>Debug</configuration>
        <executable>C:\Program Files\Microsoft Visual Studio…
           ….NET 2003\Common7\IDE\devenv.com</executable>
        <buildtype>Rebuild</buildtype>
        <buildTimeoutSeconds>300</buildTimeoutSeconds>
      </devenv>
      <devenv>
        <solutionfile>aeryn2.sln</solutionfile>
        <configuration>Release</configuration>
        <executable>C:\Program Files\Microsoft Visual Studio…
           ….NET 2003\Common7\IDE\devenv.com</executable>
        <buildtype>Rebuild</buildtype>
        <buildTimeoutSeconds>300</buildTimeoutSeconds>
      </devenv>
      <exec>
        <executable>C:\MinGW\bin\mingw32-make.exe</executable>
        <buildArgs>-f Makefile rebuild</buildArgs>
        <buildTimeoutSeconds>300</buildTimeoutSeconds>
      </exec>
    </tasks>
    <publishers>
      <email from=paul.grenyer@gmail.com… 
         …mailhost="mailhost.zen.co.uk" includeDetails="TRUE">
        <users>
          <user name="Paul Grenyer" group="buildmaster"…
             …address="paul.grenyer@gmail.com"/>
          <user name="Aeryn Developers" group="developers"…
             …address="continuousintegration@aeryn.tigris.org"/>
        </users>
        <groups>
          <group name="developers" notification="change"/>
          <group name="buildmaster" notification="always"/>
        </groups>
      </email>
    </publishers>
  </project>
</cruisecontrol>
June 2007 | Overload | 19



FEATURE IAN WAKELING
Working with GNU Export Maps
Taking control over the symbols exported from shared 
libraries built with the GNU toolchain.
Introduction
ecently I’ve been preparing version 2 of an internal shared library
for my company and I needed to make sure that both the old version
of the library and the new one could be loaded into a process at the

same time, without causing problems. I knew from previous work that the
answer was probably GNU export maps, but my memory was distinctly
rusty on the details. Having been to the discussion on writing for the ACCU
at the conference, it occurred to me that other people might also find some
notes on the topic useful.

Exporting C++ from a shared library
When exporting symbols from a shared library, the GNU ELF shared
library linker behaves in a significantly different way to the Microsoft
Windows linker. On Windows, nothing is exported from a DLL unless the
programmer explicitly requests it. The GNU ELF linker, on the other hand,
exports everything by default.
The GNU ELF default undoubtedly makes initial C++ application
development simpler; hands up everyone who has at some point struggled
to export a class from a DLL, because it uses an STL container... There’s
a cost to that initial simplicity though. A C++ shared library will typically
contain a large number of symbols. When an application is linked against
that library, the compiler and linker generate a reference for each of those
symbols. When the library is loaded at run time, each of those references
has to be bound to the corresponding symbol in the shared library.
Let’s take a look at a trivial example (Listing 1).
I f  w e  b u i l d  spaceship.cpp  i n t o  a  sha r ed  l i b r a ry  and
testflight.cpp into an executable linked against that library, we can
examine what happens at runtime, using the LD_DEBUG environment
variable.
> g++ -shared -fPIC spaceship.cpp -o 
libspaceship.so.1 -Wl,-soname=libspaceship.so.1
> ln -s libspaceship.so.1 libspaceship.so
> g++ testflight.cpp -L. -lspaceship -o testflight
> export LD_DEBUG=symbols
> export LD_LIBRARY_PATH=.
> ./testflight

This produces a lot of output. Digging through it, we see some things that
we are expecting to be resolved to our library, like those shown in Figure 1.
But we also see a lot more that we might not have expected, like those in
Figure 2.

In total, there are twenty one symbols that get resolved to our library.
That’s quite a lot of fix-ups for such a small amount of code. It’s worse
than it immediately looks, as well, because each lookup is done by doing
a string compare against each possible function in each library, until a
match is found, so the number of symbols exported from our library affects
not just how many symbols have to be fixed up by the executable, but how
many string matches have to be done for each fix-up. Imagine how that
scales up for a real C++ library.

R

Ian Wakeling Ian first started programming on a ZX81 and 
hasn’t managed to stop yet. He has been paid for indulging the 
compulsion for the last 14 years, mainly in C++, on both Unix 
and Windows. He can be contacted at 
ian.wakeling@ntlworld.com

Listing 1

// spaceship.h
#include <string>
#include <vector>

namespace scifi
{
class Spaceship
{
public:
  Spaceship( std::string const& name );
  ~Spaceship();
  void stabliseIonFluxers();
  void initiateHyperwarp();
private:
  Spaceship( Spaceship const& );
  Spaceship& operator=( Spaceship const& );
private:
  typedef unsigned int            FluxLevel;
  typedef std::vector<FluxLevel>  FluxLevels;
private:
  void doSomethingInternal();
  FluxLevel checkFluxLevel( size_t ionFluxerIdx );
private:
  std::string m_name;
  FluxLevels  m_fluxLevels;
};
}

// spaceship.cpp omitted for brevity

// testflight.cpp
#include "spaceship.h"
int main( int, char** )
{
  scifi::Spaceship*  ship = new scifi::Spaceship(
     "Beagle" );
  ship->stabiliseIonFluxers();
  ship->initiateHyperwarp();
  delete ship;
  return 0;
}

20 | Overload | June 2007



FEATUREIAN WAKELING

all that implementation detail will still be
exported and available for perusal by

anyone who cares to run freely available
tools…over the shared library
Notice how even though we didn’t deliberately export them from our
library, there are quite a lot of symbols from STL instantiations being
looked up there; in fact they swamp the symbols we actually intended to
export.
We can use nm to look at what’s being exported from our library:
> nm -g -D -C --defined-only libspaceship.so.1

As with the output generated by LD_DEBUG, we see some symbols that
relate directly to our class, as shown in Figure 3, and we also see many
other symbols relating to the STL classes we used in the implementation,
like those shown in Figure 4.
In amongst the noise of the weakly defined STL template instantiations
being exported from our library, notice how our private member functions
are also exported. 
Remember that we did not build with debug information. Also don’t be
fooled into thinking that it’s because the header file listed them; remember
that there’s nothing special about header files in C++; the compiler and
linker don’t even know they exist, so even if we use idioms like Cheshire

Cat or abstract base classes, all that implementation detail will still be
exported and available for perusal by anyone who cares to run freely
available tools like nm over the shared library. 
For some projects, this could represent an unacceptable IP leakage.
If those problems don’t concern you, there is another issue you might like
to consider.
Let’s imagine that we have successfully deployed version 1 of our
spaceship library. It’s being used in a few places and is perhaps
referenced by a few other shared libraries. Consider what happens if we
now want to do a version 2, which isn’t compatible. Obviously, we’ll build
it into libspaceship.so.2, with the SONAME set appropriately, so
we’re versioned and everything is OK, right?
Not quite. When the dynamic linker is resolving symbols, it simply
searches the list of modules, in order. There is no information in the symbol
to say which library it ought to be loaded from. So let’s imagine that one
part of our application is linked against libspaceship.so.2, but
another part  hasn’t  been updated yet  and st i l l  l inks against
libspaceship.so.1. If libspaceship.so.1 gets loaded first, then

whenever the Spaceship constructor is searched for, the
one in libspaceship.so.1 will always be found. If we
then  t ry  t o  u se  a  f a c i l i t y  t h a t  we  adde d  to
libspaceship.so.2, disaster will ensue.
Fortunately, there is a mechanism which can solve both
problems. What we need to do is take control over which
symbols are exported from our library. The GNU tool-chain
offers a few ways of doing this. One involves decorating the

Figure 1

5975: symbol=_ZN9SpaceshipC1ERKSs;  lookup in file=./testflight
5975: symbol=_ZN9SpaceshipC1ERKSs;  lookup in file=./libspaceship.so.1
5975: symbol=_ZN9Spaceship19stabiliseIonFluxersEv;  lookup in file=./testflight
5975: symbol=_ZN9Spaceship19stabiliseIonFluxersEv;  lookup in file=./libspaceship.so.1

Figure 2

5975: symbol=_ZNSt6vectorIjSaIjEEC1IiEET_S3_RKS0_;  lookup in file=./testflight
5975: symbol=_ZNSt6vectorIjSaIjEEC1IiEET_S3_RKS0_;  lookup in file=./libspaceship.so.1
5975: symbol=_ZNSt18_Vector_alloc_baseIjSaIjELb1EE11_M_allocateEj;  lookup in file=./testflight
5975: symbol=_ZNSt18_Vector_alloc_baseIjSaIjELb1EE11_M_allocateEj;  lookup in file=./libspaceship.so.1

Figure 4

00001330 W std::allocator<unsigned int>::allocator()
00001336 W std::allocator<unsigned int>::~allocator()
0000154a W std::_Vector_base<unsigned int, std::allocator<unsigned int> 
>::_Vector_base(std::allocator<unsigned int> const&)
0000147c W std::_Vector_base<unsigned int, std::allocator<unsigned int> >::~_Vector_base() 000014e6 W 
std::__simple_alloc<unsigned int, std::__default_alloc_template<true, 0> >::deallocate(unsigned int*, 
unsigned int)

Figure 3

0000132a T scifi::Spaceship::checkFluxLevel(unsigned int)
0000131e T scifi::Spaceship::initiateHyperwarp()
00001324 T scifi::Spaceship::doSomethingInternal()
00001318 T scifi::Spaceship::stabiliseIonFluxers()
00001134 T scifi::Spaceship::Spaceship(std::string const&)
00001270 T scifi::Spaceship::~Spaceship()
June 2007 | Overload | 21



FEATURE IAN WAKELING
code with __attribute__ ((visibility("xxx")) tags; another,
introduced with GCC 4.0, uses #pragma GCC visibility, but I’m
going to focus on GNU Export Maps, sometimes called Version Scripts.
This is partly because I don’t like adding large amounts of tool-chain
specific decoration to my code and partly because, at present, as far as I
know, only export maps can help with versioning symbols.
An export map is simply a text file listing which symbols should be
exported and which should not. A really simple example to export one ‘C’
function called foo from a shared library would look like this:
 {
   global:
     foo;
   local:
     *;
 };

Unfortunately, the situation for C++ is, inevitably, slightly more
complex... you’ve guessed, of course: name mangling! Export maps are
used by the linker, by which time the compiler has mangled the names.
The good news is that the GNU linker understands the GNU compiler’s
C++ name mangling, we just have to tell it that the symbols are C++.
So for our spaceship, we might write:
 {
   global:
     extern "C++" {
       *scifi::Spaceship;
       scifi::Spaceship::Spaceship*;
       scifi::Spaceship::?Spaceship*;
       scifi::Spaceship::stabliseIonFluxers*;
       scifi::Spaceship::initiateHyperwarp*
     };
   local
     *;
 };

A few points need explaining here.
The first entry exports the typeinfo for the class. In this example, it’s not
strictly necessary, but I have included it to show how. See the sidebar
entitled ‘Exporting TypeInfo’ for an explanation of why you might need
to do so.
Tilde (~) is not a valid character in an export map, so in the export line for
the destructor, we replace it with a single character wildcard.
Next, notice how within the extern C++ block, every entry ends with a
semi-colon except the last. This is not a typo! The syntax is defined that
way.
Lastly, the wildcards on the end of the function names are because the full
function name includes its signature and we don’t want to have to write it
out here.

Let’s build our example using the example export map and see what
happens. This is done by passing an extra option to the linker:
> g++ -shared spaceship.cpp -o libspaceship.so.1 -
Wl,-soname=libspaceship.so.1 -Wl,--version-
script=spaceship.expmap
> g++ testflight.cpp -L. -lspaceship -o testflight

First the output of nm, to show that we are now only exporting what we
actually want to (see Figure 5).
All of the implementation details of our class are now safely hidden away
as they should be and only our public interface is visible outside the library.
Obviously, the first thing we must do is run the test harness to check that
we haven’t broken anything by restricting the exports. It runs without any
problems, so we can use LD_DEBUG again to see what difference it has
made to the runtime behaviour. Filtering the output to show only those
symbols that were resolved to the spaceship library, this time we get
Figure 6.
This looks more like we’d want this time: the only things being resolved
to the library are the functions that make up the library’s public interface.
What’s more, if you compare the raw output of the two runs, you’ll notice
that there are fewer lookups being performed in total, because we no longer
have the weak symbols to be resolved when our library is loaded.

Symbol versioning
At its simplest, this requires a simple addition to the export map:
 SPACESHIP_1.0 {
   global:
     extern "C++" {
       *scifi::Spaceship;
       scifi::Spaceship::Spaceship*;
       scifi::Spaceship::~Spaceship*;
       scifi::Spaceship::stabliseIonFluxers*;
       scifi::Spaceship::initiateHyperwarp*
     };
   local
     *;
 };

In order to see the effect this has, we need to use objdump, rather than
nm, because nm does not display symbol versioning information. First, if
we look at the symbols exported from libspaceship.so.1, we can see
that they are all now marked with a version. objdump doesn’t have a
filtering option equivalent to nm’s --defined-only, so I have picked
out just the relevant lines from its output in Figure 7.
Notice how each export is now marked with the version string we gave.
Also, there is a single extra absolute symbol which states that this shared
library provides this version of the ABI.
Now let’s look at the imports in the test executable. Again, I’m going to

pick out just the entries (Figure 8) that relate to
libspaceship. If you do this for yourself, you’ll see a lot
more entries for glibc and libstdc++.
Not only does the executable state, as usual, that it needs
libspaceship, but it now states that it needs a version of
libspaceship that provides the right version of the ABI.
In addition and more importantly, each symbol being
imported from our library is now marked with the required
version.Figure 5

> nm -g -D -C --defined-only libspaceship.so.1
00000b4e T scifi::Spaceship::initiateHyperwarp()
00000b48 T scifi::Spaceship::stabiliseIonFluxers()
00000a02 T scifi::Spaceship::Spaceship(std::string const&)
00000964 T scifi::Spaceship::Spaceship(std::string const&)
00000af4 T scifi::Spaceship::~Spaceship()
00000aa0 T scifi::Spaceship::~Spaceship()

Figure 6

13421: symbol=_ZN5scifi9SpaceshipC1ERKSs;  lookup in file=./testflight
13421: symbol=_ZN5scifi9SpaceshipC1ERKSs;  lookup in file=./libspaceship.so.1
13421: symbol=_ZN5scifi9Spaceship19stabiliseIonFluxersEv;  lookup in file=./testflight
13421: symbol=_ZN5scifi9Spaceship19stabiliseIonFluxersEv;  lookup in file=./libspaceship.so.1      
13421: symbol=_ZN5scifi9Spaceship17initiateHyperwarpEv;  lookup in file=./testflight
13421: symbol=_ZN5scifi9Spaceship17initiateHyperwarpEv;  lookup in file=./libspaceship.so.1 
13421: symbol=_ZN5scifi9SpaceshipD1Ev;  lookup in file=./testflight
13421: symbol=_ZN5scifi9SpaceshipD1Ev;  lookup in file=./libspaceship.so.1 
22 | Overload | June 2007



FEATUREIAN WAKELING
There are some more sophisticated things that can be done with symbol
versioning, such as marking which minor version of an interface symbols
were introduced in, by having more than one section in the export map.
See the reference at the end for more information on this.

Making it easier
There’s only one slight fly in the ointment. For a trivial example, that
export map looks fine, but maintaining it for a real library could quickly
become painful.
One answer, that works for some circumstances, is to think carefully about
how much you actually need to export from your shared library. If you are
programming to interfaces expressed as abstract base classes, then you
probably also have factory functions to create instances of implementation
classes, which return a pointer to the interface. In that case, it often turns
out the the only thing that needs to be exported from the shared library is
that factory function. On one project that I work on, we have a number of
shared libraries that are loaded dynamically at run time that have this
property. Because the libraries are loaded dynamically and the factory
function is found at runtime using dlsym(), the factory function can have
the same name in every such component and so we can generate the export
map at build time and don’t have to maintain them at all.
That is not always a sensible or workable approach though; if you are
writing a C++ class library, then you need to export the classes.
By deciding to write an export map, we have, in effect, created the same
situation that we have on Windows: we are starting with an empty ‘global’
section in our export map, so that nothing is exported and we’re now trying
to get a list of what to export. On Windows, this is often done by decorating

the code with some special directives for the Microsoft tool-chain. (Note
that these directives occur in a different place in the source code to the
GNU __attribute__ directive.) These are often hidden away in a
macro, because different directives are needed when building the library
and when linking against it:
#if defined( _WIN32 )
#  if defined(SPACESHIP_EXPORT_INTERFACE)
#    define SPACESHIP_API __declspec(dllexport)
#  else
#    define SPACESHIP_API __declspec(dllimport)
#  endif
#else
#  define SPACESHIP_API
#endif
class SPACESHIP_API Spaceship
{
  // etc
};
void SPACESHIP_API myGlobalFunction();

If all the classes that are to be exported are marked this way, then it ought
to be possible to write a tool that will generate the export map for us.
An approach that I’ve been experimenting with is to use regular expression
matching to find interesting declarations (namespaces, classes / structures
and functions) in header files. Tracking instances of opening and closing
block braces allows the generation of scoped names in the export map. Of
course, it’s not possible (as far as I’m aware) to write a regular expression
that will correctly identify function declarations in the general case, but
we can spot global functions that are to be exported by the presence of the
SPACESHIP_API tag and if we avoid writing any serious implementation
inside our exportable class declarations, then we can spot function
declarations within the class declaration body. Looking out for public /
protected / private tags allows us to avoid exporting implementation
functions.
Anyone fancy a summer project? 

References
How To Write Shared Libraries: Ulrich Drepper, 2005
Linux man and info pages, nm, objdump, ld: various

Figure 7

> objdump -T -C libspaceship.so.1
libspaceship.so.1:     file format elf32-i386
DYNAMIC SYMBOL TABLE: 
00000a92 g    DF .text  0000009d  SPACESHIP_1.0 scifi::Spaceship::Spaceship(std::string const&) 
00000bde g    DF .text  00000005  SPACESHIP_1.0 scifi::Spaceship::initiateHyperwarp() 
00000b84 g    DF .text  00000054  SPACESHIP_1.0 scifi::Spaceship::~Spaceship() 
00000000 g    DO *ABS*  00000000  SPACESHIP_1.0 SPACESHIP_1.0 
00000b30 g    DF .text  00000054  SPACESHIP_1.0 scifi::Spaceship::~Spaceship() 
000009f4 g    DF .text  0000009d  SPACESHIP_1.0 scifi::Spaceship::Spaceship(std::string const&)

Figure 8

> objdump -x testflight
Dynamic Section:   NEEDED      libspaceship.so.1 
Version References:   
required from libspaceship.so.1:     0x04a15a30 0x00 03 SPACESHIP_1.0 
SYMBOL TABLE: 
00000000       F *UND*  00000005          _ZN5scifi9Spaceship17initiateHyperwarpEv@@SPACESHIP_1.0 
00000000       F *UND*  00000054          _ZN5scifi9SpaceshipD1Ev@@SPACESHIP_1.0 
00000000       F *UND*  0000009d          _ZN5scifi9SpaceshipC1ERKSs@@SPACESHIP_1.0 
00000000       F *UND*  00000005           _ZN5scifi9Spaceship19stabiliseIonFluxersEv@@SPACESHIP_1.0

It is important to export typeinfo for your classes if you want 
any language features that rely on typeinfo, like 
dynamic_cast or exceptions, to work across the shared library 
interface. This is because when the GCC runtime compares 
two typeinfos, it does so by pointer. If a shared library does 
not export the typeinfo for a class it defines, then the 
executable will contain its own copy generated from the 
relevant header file. Thus when when an instance of a class is 
created inside the library, it will have the library’s copy of the 
typeinfo associated with it, but when a client executable 
performs a dynamic_cast or a catch(TheType), it will be 
looking for the executable’s copy of the typeinfo and the two 
will not match, leading to unpleasant surprises and extended 
debugging sessions...

Exporting Typeinfo
June 2007 | Overload | 23



FEATURE RICHARD HARRIS
auto_value: Transfer Semantics 
for Value Types
std::auto_ptr has a reputation for causing problems due to its 
surprising copy/assignment semantics. Richard Harris tries to 
separate the good ideas from the bad.
he problem of eliminating unnecessary copies is one that many
programmers have addressed at one time or another. This article
proposes an alternative to one of the most common techniques, copy-

on-write. We’ll begin with a discussion on smart pointers, and why we
need more than one type of them. We’ll then look at the relationship
between smart pointers and the performance characteristics of some
simple string implementations, including one that supports copy-on-write.
I’ll suggest that a different choice of smart pointer better captures our
intent, and show that what we were trying to do doesn’t achieve half as
much as we thought it would.   
Finally, I hope to show that whilst the problem we set out to solve turns
out to be a bit of a non-issue, this technique has a side effect that can be
exploited to dramatically improve the performance of some complex
operations.
article::article()

I’d like to begin by recalling Jackson’s Rules of Optimization.
Rule 1: Don’t do it.
Rule 2 (for experts only): Don’t do it yet.

This is probably a little presumptuous of me, but I’d like to add something:
Harris’s Addendum: Nyah, nyah. I can’t hear you.

I’ll admit it’s not very mature, but I think it accurately reflects how we all
really feel. No matter how much a programmer preaches, like Knuth, that
premature optimisation is the root of all evil, I firmly believe that deep
down they cannot help but recoil at inefficient code.
Don’t believe me? Well, ask yourself which of the following function
signatures you’d favour:
  void f(std::vector<std::string> strings);
  void f(const std::vector<std::string> &strings);

Thought so.
But you mustn’t feel bad about it, the desire to write optimal code is a good
thing. And I can prove it.
In their seminal 2004 paper, ‘Universal Limits on Computation’, Krauss
and Starkman demonstrated that the universe will only be able to process
another 1.35×10120 bits during its lifetime. Count them. Just 1.35×10120.
If Moore’s Law continues to hold true, we’ll run out of bits in 600 years.
So we can stop feeling guilty about our oft-criticised drive to optimise,
because wasted CPU cycles are accelerating the heat death of the universe.
Will nobody think of the children?
Act responsibly.
Optimise.

OK, that’s a little disingenuous. Knuth actually said that in 97% of cases
we should forget about small efficiencies. I suspect that we’d all agree that
using const references by default for value types generally falls into the
3% that we shouldn’t ignore. There is, after all, a world of difference
between choosing the more efficient of two comparably complex
statements and significantly increasing the complexity of your code in the
name of a relatively small efficiency gain.
There is a grey area though. Sometimes it really is worth increasing the
complexity of your code for relatively small gains. Especially when the
particular source of inefficiency occurs regularly within your code base
and you can hide that complexity behind a nice tightly defined class
interface.
This article is going to take a look at those most profligate of wastrels,
temporaries.
But since the direct route rarely has the most interesting views, we’re going
to set off with a discussion on smart pointers.

auto_ptr
Let’s start by taking a look at the definition of auto_ptr (see Listing 1).
It’s a little bit more complicated than you’d expect isn’t it?

T

Richard Harris Richard has been a professional programmer 
since 1996. He has a background in Artificial Intelligence and 
numerical computing and is currently employed writing 
software for financial regulation. Listing 1

template<typename X>
class auto_ptr
{
public:
typedef X element_type;
  explicit auto_ptr(X *p = 0) throw();
  auto_ptr(auto_ptr &p) throw();
  template<class Y> auto_ptr(auto_ptr<Y> &p)
     throw();
  auto_ptr(auto_ptr_ref<X> p) throw();
  ~auto_ptr() throw();
  auto_ptr & operator=(auto_ptr &p) throw();
  template<class Y> auto_ptr &
     operator=(auto_ptr<Y> &p) throw();
  auto_ptr & operator=(auto_ptr_ref<X> p)
     throw();
  template<class Y> operator auto_ptr_ref<Y>()
     throw();
  template<class Y> operator auto_ptr<Y>()
     throw();
  X & operator*() const throw();
  X * operator->() const throw();
  X * get() const throw();
  X * release() throw();
  void reset(X *p = 0) throw();
private:
  X *x_;
};
24 | Overload | June 2007



FEATURERICHARD HARRIS

like HAL from Clark’s 2001: A Space Odyssey,
it has been driven ever so slightly barking

mad from being given two competing
responsibilities
This is because, like HAL from Clark’s 2001: A Space Odyssey, it has been
driven ever so slightly barking mad from being given two competing
responsibilities. The first of these is to tie the lifetime of an object to the
scope in which it’s used.
For example:
  void
  f()
  {
    const auto_ptr<T> t(new T);
    //...
  } //object is destroyed here

The destructor of the auto_ptr deletes the object it references, ensuring
that it is properly destroyed no matter how we leave the scope.
The second responsibility is to safely transfer objects from one location to
another. 
For example:
  auto_ptr<T>
  f()
  {
    return auto_ptr<T>(new T);
  }

  void
  g(auto_ptr<T> t)
  {
    //...
  } //object is destroyed here
  void
  h()
  {
    auto_ptr<T> t;
    t = f(); //ownership is transferred from f here 
    g(t);    //ownership is transferred to g here
  }

The two roles are distinguished by the constness of the auto_ptr
interface. The const member functions of auto_ptr manage lifetime
control, whereas the non-const member functions manage ownership
transfer.
For example, by making the variable t in the function h in the previous
example const, we can ensure that the compiler will tell us if we
accidentally try to transfer its ownership elsewhere:
  void
  h()
  {
    const auto_ptr<T> t;
    t = f(); //oops
    g(t);    //oops
  }

And herein lies the problem. We want const auto_ptrs to jealously
guard their contents, so we make the arguments to the transfer constructor
and assignment operator non-const references. But, unnamed
temporaries, such as function return values, can only be bound to const
references, making it difficult to transfer ownership of an object out of one
function and into another.
For example:
  void
  h()
  {
    g(f()); //now I’m confused
  }

This is where the mysterious auto_ptr_ref class comes to our rescue.
You’ll  note that auto_ptr  has a non-const  conversion to
auto_ptr_ref and that there’s a conversion constructor that takes an
auto_ptr_ref. So a non-const unnamed temporary can be converted
to an auto_ptr_ref, which will in turn transfer ownership to an
auto_ptr via the conversion constructor.
Neat, huh?
Well, perhaps. But we could almost certainly do better by giving each of
auto_ptr’s personalities its own body. We’ll do this by introducing a
new type, scoped_ptr, to manage object lifetimes and stripping those
responsibilities from auto_ptr.
The definition of scoped_ptr is as shown in Listing 2.

Listing 2

template<typename X>
class scoped_ptr
{
public:
  typedef X element_type;

  explicit scoped_ptr(X *p = 0) throw();
  explicit scoped_ptr(
     const auto_ptr<X> &p) throw();
  ~scoped_ptr() throw();

  X & operator*() const throw();
  X * operator->() const throw();
  X * get() const throw();

  auto_ptr<X> release() throw();

private:
  scoped_ptr(const scoped_ptr &); // not
                                  // implemented
  scoped_ptr & operator=(const scoped_ptr &);
                                 //not implemented
  X * x_;
};
June 2007 | Overload | 25



FEATURE RICHARD HARRIS

So we lie to the compiler. We tell it that “no, 
really, this function is const” and use 
mutability to change the object pointer 
anyway.
Those in the know will see the similarity with the boost scoped_ptr
(www.boost.org).  This is only natural since I pretty much just swiped it
from there.
As with the original auto_ptr, the constructors take ownership of the
objects passed to them and the destructor destroys them. The principal
change is that it is no longer legal to copy or assign to scoped_ptrs (the
unimplemented private copy constructor and assignment operator are
there to suppress the automatically generated ones).
We can continue to use scoped_ptr to tie object lifetime to scope:
  void
  f()
  {
    scoped_ptr<T> t(new T);
    //...
  } //object is destroyed here

But we can no longer use it to transfer ownership:

  scoped_ptr<T> //oops, no copy constructor
  f()
  {
    return scoped_ptr<T>(new T);
  }
  
  void
  g(scoped_ptr<T> t) //oops, no copy constructor
  {
    //...
  }
  
  void
  h()
  {
    scoped_ptr<T> t;
    t = scoped_ptr<T>(new T); //oops, no assignment
                              // operator
  }

Now let’s have a look at how giving up responsibility for lifetime control
changes auto_ptr (Listing 3).
OK, so I lied a little.
We haven’t so much lost the ability to control object lifetimes with
auto_ptr as made it a little less attractive. The constructors still take
ownership of the objects passed to them and the destructor still destroys
them, but holding on to them is difficult.
This is because the object pointer is now mutable, allowing it to be changed
even through const member functions. Usually mutable is reserved for
members that can change whilst the object maintains the appearance of
constness (caches, for example), an idea typically described as logical
constness. Here, to be honest, it’s a bit of a hack. We need to tell the
compiler to abandon all notions of constness for auto_ptrs and

unfortunately we can’t do that (unnamed temporaries rear their
problematic heads again). So we lie to the compiler. We tell it that “no,
really, this function is const” and use mutability to change the object
pointer anyway.
We can still use auto_ptr to transfer object ownership from one place
to another:
  auto_ptr<T>
  f()
  {
    return auto_ptr<T>(new T);
  }
  void
  g(auto_ptr<T> t)
  {
    //...
  } //object is destroyed here
  void
  h()
  {
    auto_ptr<T> t;
    t = f(); //ownership is transferred from f here
    g(t);    //ownership is transferred to g here
  }

Listing 3

template<typename X>
class auto_ptr
{
public:
  typedef X element_type;

  explicit auto_ptr(X *p = 0) throw();
  auto_ptr(const auto_ptr &p) throw();
  template<class Y> auto_ptr(
     const auto_ptr<Y> &p) throw();
  ~auto_ptr() throw();

  const auto_ptr & operator=(
     const auto_ptr &p)    const throw();
  template<class Y>
    const auto_ptr & operator=(
       const auto_ptr<Y> &p) const throw();
  
  X & operator*() const throw();
  X * operator->() const throw();
  
  X * release() const throw();
  
private:
  mutable X *x_;
};
26 | Overload | June 2007



FEATURERICHARD HARRIS

If you would like to bring a little joy into
someone’s life, ask a Java programmer

about garbage collection
But we might run into problems if we try to use it to control object lifetime:
  T
  h()
  {
    const auto_ptr<T> t;
    g(t);      //ownership is transferred to g here
    return *t; //oops
  } 

It’s precisely because this new auto_ptr is so slippery, that I’ve added
a release method to boost’s scoped_ptr. This enables us to use the
scoped_ptr to control the lifetime of the object within a function and
auto_ptr to control its transfer during function return.
For example:
  auto_ptr<T>
  f()
  {
    scoped_ptr<T> t;
    //...
    return t.release();
  }

  void
  g()
  {
    scoped_ptr<T> t(f());
  }

I shall keep the name auto_ptr for this new ownership transfer pointer
despite many reasonable arguments against doing so. Firstly, I believe that
auto_ptr has strong associations with transfer semantice for most of us.
Secondly, and far more importantly, it has led to a much snappier title for
this article than the alternative.
Henceforth, therefore, when we refer to auto_ptr, we will mean this new
version, having the sole responsibility of ownership transfer.
  shared_ptr

Another approach to managing object lifetimes is to allow multiple
references to share ownership of an object. This is achieved by keeping
the object alive for as long as something is referring to it. 
There are two common techniques used to do this, the correct approach
and the easy approach. Guess which one we’re going to look at.
That’s right. Reference counting.
Reference counting works by keeping a count of the number of active
references to an object and deleting it once this count drops to zero. Each
time a new reference is taken, the count is incremented and each time a
reference is dropped, the count is decremented. This is generally achieved
by requiring the referencing entity to explicitly register its interest or
disinterest in the object.
The chief advantage of using reference counting to implement shared
ownership semantics is that it’s relatively simple compared to the
alternative.

The chief disadvantage occurs when an object directly or indirectly holds
a reference to itself, such as when two objects hold references to each other.
In this situation, the reference count will not fall to zero unless one of the
objects explicitly drops the reference to the other. In practice, it can be
extremely difficult to manually remove mutual references since the
ownership relationships can be arbitrarily complex. If you would like to
bring a little joy into someone’s life, ask a Java programmer about garbage
collection.
We can automate much of the book-keeping required for reference
counting by creating a class to manage the process for us. In another
shameless display of plagiarism I’m going to call this class shared_ptr
(see Listing 4).

Listing 4

template<typename X>
class shared_ptr
{
public:
  typedef X element_type;
  
  shared_ptr() throw();
  template<class Y> explicit shared_ptr(Y * p);
  shared_ptr(const shared_ptr &p) throw();
  template<class Y> shared_ptr(
     const shared_ptr<Y> &p) throw();
  template<class Y> explicit shared_ptr(
     const auto_ptr<Y> &p);
  ~shared_ptr() throw();

  shared_ptr & operator=(
     const shared_ptr &p) throw(); 
  template<class Y>
    shared_ptr & operator=(
       const shared_ptr<Y> &p) throw();
  template<class Y>
    shared_ptr & operator=(
       const auto_ptr<Y> &p) throw();

  X & operator*() const throw();
  X * operator->() const throw();
  X * get() const throw();

  void reset(X *p = 0) throw();
  bool unique() const throw();
  long use_count() const throw();

private:
  X *x_;
  size_t *refs_;
};
June 2007 | Overload | 27



FEATURE RICHARD HARRIS
The reference count is pointed to by the member variable refs_ and is
incremented whenever a shared_ptr is copied (either through
assignment or construction) and decremented whenever a shared_ptr
is redirected (either through assignment or reset) or destroyed.
For example:
  void
  f()
  {
    shared_ptr<T> t(new T); //*refs_==1
    
    {
      shared_ptr<T> u(t); //*refs_==2
      //...
    } //*refs_==1

    //...
  } //*refs_==0, object is destroyed here

Reference counting blurs the distinction between object lifetime control
and transfer by allowing many entities to simultaneously “own” an object.
  shared_ptr<T>
  f()
  {
    return shared_ptr<T>(new T);
  }
  
  void
  g(shared_ptr<T> t) //++*refs_
  {
    //...
  } //--*refs_
  
  void
  h()
  {
    shared_ptr<T> t;
    t = f(); //ownership is transferred from f here
    g(t);    //ownership is shared with g here
  }

The sequence of events in the above example runs as shown in Figure 1.
As you can see, at the end of h, the reference count is zero and the object
is consequently destroyed.
Since the object has more than one owner we must exercise caution when
using it or, more specifically, when changing its state.
For example:

  void
  f(shared_ptr<T> t)
  {
    //...
  }

  void
  g()
  {
    shared_ptr<T> t(new T);
    shared_ptr<const T> u(t);
    f(t);    //ownership is shared with f here
             //state of u is uncertain here
    }

Of course, this is just pointer aliasing in a spiffy new suit and as such
shouldn’t come as much of a surprise. I mean, nobody makes that mistake
these days, do they?
Well, almost nobody.
Well, certainly not standard library vendors.

Well, probably not standard library vendors.
Well, probably not very often.

string
The last time I saw this problem was in a vendor supplied std::string.
Well, not this problem exactly, but it was related to incorrect use of
reference counted objects. I shan’t name names, but it was a company you
all know and many of you respect. When I finally tracked down what was
causing my program to crash I was stunned.
Now you may be wondering how these sorts of problems could possibly
relate to string, after all it’s a value type not an object type. The reason
is that this particular string used a common optimisation technique
known as copy-on-write, or COW for short, and this technique relies upon
reference counting.
Next time, we’ll take a look at string and the implications of the COW
optimisation. 

#include
Krauss and Starkman. Universal Limits on Computation (arXiv:astro-ph/
0404510 v2, 2004).
Clark, 2001: A Space Odyssey (Hutchinson, 1968).

Acknowledgements
With thanks to Kevlin Henney for his review of this article and Astrid
Osborn, Keith Garbutt and Niclas Sandstrom for proof reading it.

Figure 1

call h
shared_ptr()

call f
new T
shared_ptr(T *)                     //*refs_=1
shared_ptr(const shared_ptr &)      //++*refs_
~shared_ptr                         //--*refs_
exit f

shared_ptr::operator=(const shared_ptr &)
                                   //++*refs_
~shared_ptr                        //--*refs_

call g
shared_ptr(const shared_ptr &)     //++*refs_
~shared_ptr                        //--*refs_
exit g

exit h
~shared_ptr                        //--*refs_
28 | Overload | June 2007


	Rip It Up and Start Again
	The Policy Bridge Design Pattern
	Live and Learn with Retrospectives
	Continuous Integration with CruiseControl.Net
	Working with GNU Export Maps
	auto_value: Transfer Semantics for Value Types

