

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Watersheds and Waterfalls
Stuart Golodetz looks at image segmentation
using a landscape analogy.

10 The PfA Papers: Deglobalisation
Kevlin Henney looks at relatives of the singleton
pattern.

13 The Regular Travelling Salesman (Part 2)
Richard Harris takes another trip with the travelling
salesman.

19 Testing Visiting Files and Directories in C#
Paul Grenyer looks at testing code that accesses
the file system.

24 Generics Without Templates
Robert Jones emulates an STL collection in the
absence of templates and exceptions.

28Knowledge Workers (Prototype)
Allan Kelly argues that IT workers are prototype
knowledge workers.

OVERLOAD 83

February 2008

ISSN 1354-3172

Editor

Alan Griffiths
overload@accu.org

Guest Editor

Roger Orr
rogero@howzatt.demon.co.uk

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Alistair McDonald
alistair@inrevo.com

Anthony Williams
anthony.ajw@gmail.com

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Ric Parkin
ric.parkin@ntlworld.com

Simon Farnsworth
simon@farnz.co.uk

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@cthree.org

Copy deadlines
All articles intended for
publication in Overload 84
should be submitted to the
editor by 1st March 2008 and
for Overload 85 by 1st May
2008.

EDITORIAL ROGER ORR
When Things Go Wrong
Can we reduce the pain of
computer problems?
Hello and welcome to Overload 83. I am guest editor for
this issue, giving Alan Griffiths a break from his duties
and me a chance to see what’s involved in the editorial
role. Alan will be back for the next issue.

Computer problems
It has been a trying month for the Orr household computers.
Firstly we installed IE7 on Windows Server 2003 SP2 after a number of
reminders from various web sites, with comments about the benefits over
IE6, made us decide that the time was now right to update. However, this
change has proved a rather mixed blessing; it seems to be so secure that
many web sites won’t work at all... however as it has persuaded my wife
to try out (and switch to) Firefox perhaps it wasn’t altogether a bad thing.
While trying to resolve some of the problems with the sites that weren’t
working I decided to verify that we had installed all the latest Windows
hot fixes by running Microsoft Update interactively. However the check
for available updates failed with an error code.
Unfortunately a quick google for the error code didn’t provide a great deal
of help – a couple of suggestions were provided but neither resolved the
problem. Further investigation in the event log revealed that Windows
Update wasn’t running properly, and in fact hadn’t been working for over
a month.
Fortunately faults in Microsoft Update can be reported for free, so I fired
off a request for help to Microsoft. I was asked for some additional
information including the contents of WindowsUpdate.log, a file that I
hadn’t previously known about. Sadly the log file, while it did contain a
bit more information about the error (‘WARNING: DownloadFileInternal
failed for http://download.windowsupdate.com/v7/windowsupdate/redir/
wuredir.cab’), didn’t immediately help me to solve my problem.
I carried on with the original problem, trying to get IE7 to work. At this
point I was running a packet sniffer (Packetyzer, free from Network
Chemistry) and mixed up with the HTTP traffic I was expecting I noticed
a single request to my ISP’s web proxy. ‘That’s odd’, I thought, ‘I removed
the proxy cache from my configuration back in October as my ISP
announced they were going to decommission the facility. Why is it still being
tried?’

After more googling on Web proxies I discovered a pointer to a tool,
proxycfg, which displays and edits the WinHTTP proxy configuration.
Using this tool I found that WinHTTP was still using the obsolete proxy
cache and so I reconfigured it to use direct access. Having made this

change Microsoft Update started working, so at
least that problem was resolved.
Oh yes, I did get a reply from Microsoft to

my request for help, which did
give me number of additional

things to try to resolve the problem; however this list didn’t include
checking the proxy settings. Perhaps it would have been suggested had I
continued to need assistance.
Then my daughter arrived home from University, complaining that her
new laptop had suddenly stopped displaying DVDs. Sure enough, when
you put one in and pressed ‘play’ the screen simply went black. No error
was shown, and nor could I find a log file that seemed to shed any more
light on the problem.
I checked the obvious things – looking for errors in the event log from
around the time of failure, looking for newly installed software, running
a spyware scan, but to no avail. Data DVDs were readable, it was only
videos that seemed to fail. Once more Google came to the rescue, and I
found a thread reporting the same behaviour, and explaining that the
problem is caused by the CODECs expiring. There was a link to a patch
on the manufacturer’s site containing updated CODECs so I downloaded
and installed this patch, but sadly it made no difference. It seems that the
updated CODECs had also expired. A further search pointed me to a
further set of (free) CODECs, which resolved the problem, and my
daughter was soon happily catching up with her unwatched DVDs into the
small hours.
So why have I told these stories? I’m not trying to get at any company or
operating system in particular – the previous month I tried and failed (on
two different machines) to get successful network connections under
Linux – but there seem to me to be couple of issues that these problems
highlight.

Why are there so many problems?
I am an experienced programmer, although not a trained support engineer,
and even so I can spend hours trying to fix such problems. I expect many
of you have also spent more time than you’d like on fixing systems that
don’t work, or programs that won’t communicate. For the majority of
users, without in-depth technical experience, fixing these problems is even
harder.
A large part of the problem is the ‘execution environment’ of the
programs. No two PCs seem to be exactly alike, and the differences can
include any or all of: the hardware configuration, the type (and version)
of the operating system, the configuration settings, the amount of disk
space, the network topology and the selection of other programs installed
on the machine. I’m sure you, like me, can think of application or
installation failures that each one of these factors can cause. Hence a log
of what software and hardware was installed, when, and what options we
selected can provide valuable help when experiencing software failures.
One of the adages of programming is ‘separate out the things that change
from those that stay the same’. I consider that two of the problems I had

Roger Orr has been programming for over 20 years, most recently in C++, Java
and C# for various investment banks in Canary Wharf and the City. He joined
ACCU in 1999 and runs the Code Critique column in CVu. He can be contacted at
rogero@howzatt.demon.co.uk
2 | Overload | February 2008

EDITORIALROGER ORR
February 2008 | Overload | 3

last month could have been resolved more easily if the software writers
had borne this rule in mind with reference to the execution environment.
Network configurations are not static but are subject to change; this may
be frequently for a laptop but will also occur if you move house or change
ISP. Given this, silently caching the Internet Explorer proxy settings
elsewhere in the machine seems to me to be a poor design choice. The
DVD player problem was also caused by something changing, in this case
the date. The software is checking the expiry date of the CODECs but
insufficient thought seems to have been given to the action taken when
the check failed.
It is easy to make mistakes over which things may change and which are
constant when considering installation versus runtime checks. A program
might, for example, check at installation time that a specific version of
some other component is available. Later on, this component can be
updated causing hard-to-disagnose faults in the application. The sad thing
is that the code to diagnose the incompatability has already been written
– but a decision was implicitly taken that this only executed during
installation. Some programs sensibly have a separate ‘self test’ function
that verifies some of the environmental dependencies, which can be
executed during installation and also re-run automatically on startup or
manually as part of fault diagnosis.

Where do we get help?
The second reflection on the stories is how much the Web has changed
the way I resolve support issues. I typically start by googling to find
information from other people who have experienced and, hopefully,
resolved the same problem. For this to work well three things are needed:
specific error data, good questions and documented solutions.
One trouble with the Web is that it is so big and contains so much
information that a good search query is vital to locate relevant information
easily. The more specific the error data provided by the failing program
is the better the hit rate of a search will be. Numeric error codes can be
useful – in the Windows Update case above adding the Hex error code into
a simple Google query reduces 3,230,000 possible pages to 419. On the
other hand searching for ‘DVD player displays blank screen’ gives
638,000 possible pages but, alas, the DVD player provided no other details
to refine the search.
Some of us are writers of software that we do not support in person; how
much thought do we give to ensuring that our users are not only given
notification of errors but also that any such error messages are easily
identifiable? How specific is the message text, and are there log files
containing further details (and if so is the location of these files known)?
More specific errors are useful anyway (‘File not found’ begs the question:
‘Which file?’), but when searching the Web a generic error message can
make the chance of success vanishingly small.
Often the initial search doesn’t find a solution, but does find a news group
or Web site that has answers to similar queries. The next challenge is how
to make my request. Asking a good question significantly improves the
chance that someone will be willing and able to assist. Eric S Raymond,
probably best known at the author of The Cathedral and the Bazaar,
maintains a Web page entitled ‘How to Ask Questions the Smart Way’

(http://catb.org/~esr/faqs/smart-questions.html) that contains a number of
examples of ways to ask good questions.
Finally when the problem is solved we can make sure the solution is
published to help other people who have the same problem later. If we
posted a question to a support site and got a couple of replies, then post a
final message saying thank you and stating which piece of advice fixed
the problem; if none of the proffered advice helped then post the method
that was finally successful. We may be providing support to users
ourselves, and if so we may be able to make problem resolutions
searchable via the Internet. Again, to help with searching for answers, be
specific in any reply.
It is often remarked that computers are an increasing part of all aspects of
modern life. Ten or fifteen years ago people may have played with a
computer as a hobby, now it is likely to be a tool they rely on for a variety
of tasks. Unfortunately these tools seem to lack reliability; and I think
something is wrong when these types of failures are so common. However,
such users are often very motivated to sort out their problem, and if
sufficient information is provided in the public domain they may well be
able to resolve their own troubles.

Preventing problems
As the proverb puts it: ‘An ounce of prevention is worth
a pound of cure’. I hope that, in line with our
‘professionalism in programming’ motto, the articles in
this issue will help us write programs that are part of the
solution to such computer woes.

Letter to the Editor
In ‘The Essence of Success’ (Overload 82), Alan Griffiths says that,
when enhancing an open source project such as Mozilla, it would
deliver the same value to a business to use the enhanced version
internally as to take the additional cost of getting a submission
approved. While I certainly don’t want to criticise the overall
argument of the article, I’d like to question this particular example,
as it would be nice if businesses were encouraged to continue to
submit their changes, and I can think of some business benefits of
doing so. For one thing, once your code is accepted into the main
branch you won’t have to keep re-integrating it against newer
versions, and if it’s part of the whole project then you may later
benefit from fixes and enhancements to it that are contributed by
others. Also, it results in a tighter quality check on your work, and
you might learn something in the process. Finally, there’s a bit of
publicity to be gained. So I don’t think it’s true that getting a
submission approved will deliver no more value to a business than
just using it internally, but this is not a criticism of the article as a
whole.

Silas S Brown
ssb22@cam.ac.uk

FEATURE STUART GOLODETZ
Watersheds and Waterfalls
An introductory look at segmenting
images into regions using a
landscape analogy.
Introduction
n my last two articles [Golodetz], I talked about template
metaprogramming, something most people would regard as a relatively
‘pure’ programming subject. For that reason, I thought it would make

a nice change to look at something more applied this time: image
segmentation.
Computing is one of those fields that encompasses so many diverse topics
that it’s impossible to know about all of them in depth. As programmers,
we know more or less how to code (although there’s always room for
improvement!), but beyond a certain point, merely knowing how to write
code in a certain language isn’t enough. Before we can sit down and start
hacking, we need to know what to code: we need, in short, domain
knowledge.
Over the course of your programming career, there will inevitably be
moments when you are forced outside your comfort zone, when you are
asked to do things for which you initially lack the technical knowledge to
do a good job. When that happens, you have three choices:

1. Give up. This could involve panicking and trying to get the job
allocated to someone else, quitting, or otherwise finding creative
ways to avoid making a substantive attempt at the problem. Winners
don’t do this. (Well, unless it’s also a really boring and pointless job,
in which case they probably quit before it got to this point, anyway.)

2. Fudge it. This is the ‘it doesn’t really matter if we do an inferior job
as long as we get it out of the way’ approach. It works quite well for
problem sheets, but it’s not the optimal approach to writing life-
support code for the space shuttle. It’s even more unprofessional
than giving up and admitting that you don’t know what you’re
doing.

3. Learn. This involves looking upon your lack of knowledge as an
opportunity. You can’t possibly be expected to know everything
about every possible subject. Being asked to do something
unfamiliar is an excuse to expand what you know, giving you
another tool in your armoury for the future. (Of course, some
subjects are just genuinely hard, and may be beyond your mental
capacity to comprehend them: if so, you may eventually have to
reluctantly go to 1, but it’s worth keeping at it for as long as possible
first. You’d be surprised at what you can understand if you really
try.)

During the course of my doctoral research at Oxford, I’ve found myself
making this very choice numerous times. Whilst learning your way out of
a problem is clearly the right way forward, it’s not always easy: my most
recent stumbling block, image processing, is only the latest in a long line

of things which I’ve initially found it difficult to get to grips with. If you’re
faced with a difficult learning problem, then, the following tips might come
in handy:

Focus in on exactly what it is you’re trying to find out – you can’t
learn about the whole field all at once.
Don’t get bogged down by reading papers which you don’t
understand – there’s a reason you don’t understand them. Either you
don’t have the prerequisite knowledge to understand them (most of
the time) or they’re badly written (some of the time), but either way,
stubbornness will get you nowhere. Spend your time more
productively by finding a different paper which explains things
more clearly.
Try and work out exactly what it is about an algorithm you don’t
understand – it’s rarely the case that you understand ‘absolutely
nothing’ about something. Identify the gaps in your knowledge and
read as many papers (or other sources) as it takes to try and plug
them. (This doesn’t always have to be large numbers of papers – a
few good papers will do just fine.)
Start by trying to understand an algorithm at a high-level, then
gradually focus in on the details. The lowest-level stage generally
involves a pen and paper. (Incidentally, a pen and paper really does
tend to be more effective for this stage than a computer. Don’t make
the mistake of substituting typing for thinking.)
Once you think you’ve got something, try writing it out clearly in
your own words or explaining it to someone who doesn’t know
anything about it. This is a good way to identify the bits you still
don’t quite get.

Ultimately, the efficacy of these methods is best demonstrated by the fact
that until recently, the amount I knew about image processing could have
been written on the back of a postage stamp! There’s rarely a bad time to
learn about something new...

The segmentation problem
Image processing is itself a large field, so we’re going to focus on one
problem in particular, that of segmenting images. The idea is to classify

I

Stuart Golodetz has been programming for 13 years and
is studying for a computing doctorate at Oxford University.
His current work is on the automatic segmentation of
abdominal CT scans. He can be contacted at
stuart.golodetz@comlab.ox.ac.uk Figure 1

Segmentation involves dividing the image up into regions
4 | Overload | February 2008

FEATURESTUART GOLODETZ

Imagine poking holes in the landscape at
each of its regional minima, then lowering

the landscape slowly into a lake
the pixels of the image into different regions (see Figure 1 for a very simple
example). This is important for the medical imaging work I’m doing
because it allows relevant organs to be identified on the images; the results
can then be used for further processing, e.g. for building 3D visualizations
of the organs.
There are numerous different approaches to the problem [Varshney], but
the one I want to look at in particular is a method from the field of
mathematical morphology called the watershed transform.

The landscape analogy
Anyone who’s ever tried writing a terrain renderer will be familiar with
the concept of using a heightmap to represent a landscape. Essentially, you
have a 2D array of values, which can be viewed as an evenly-spaced finite
grid located in the (x,y) plane. Each value represents the z height of the
landscape at that point. (More formally, we could say that we have a
rectangular domain Ω ⊂ Z2 and a function f: Ω → Z which gives the height
of the landscape for every point in Ω.)
The insight behind the watershed transform is that a grey-scale image is
nothing but such a 2D array of values, so it can be viewed as a landscape,
where the heights are given by the grey levels in the image (see Figure 2).

We now define a few terms. A pixel p ∈ Ω has height f(p) and neighbour
set N(p), according to some implementation-specific definition of
neighbourhood (usually pixels are considered to be either 4-connected or
8-connected: see Figure 3).
A singular minimum of the image is a point whose neighbours are all
strictly higher than it. (More formally, p is a singular minimum if for all
p′ ∈ N(p), f(p′) > f(p).) A plateau of the image is a maximal set of (two
or more) connected pixels of equal altitude. A minimal plateau is a plateau
from which it is impossible to descend, and a non-minimal plateau is the
opposite. Together, the singular minima and minimal plateaux of the
image form the regional minima of the image.

Flooding the image landscape
Imagine poking holes in the landscape at each of its regional minima, then
lowering the landscape slowly into a lake. As the water begins to rise, pools
of water will gradually form at each of the minima (see Figure 4). For
reasons which will become obvious later, we’ll call each pool of water the
catchment basin of its associated minimum. If the water keeps rising,
eventually some of the catchment basins will meet (see Figure 5): at this
point, we imagine constructing a dam, or watershed, to keep them apart

Viewing an image
as a landscape

Figure 4

Viewing an image as a landscape

Figure 2

4-connected pixels are only connected to their horizontal and

Figure 3

vertical neighbours, whereas 8-connected ones are
connected to their diagonal neighbours as well

Two catchment

Figure 5

basins meet
February 2008 | Overload | 5

FEATURE STUART GOLODETZ

Water is notorious for taking the path of
least resistance, and in this case that
means running downhill to a regional
minimum via a path of steepest descent
(see Figure 6) and continue the flooding. When the landscape has been
fully flooded, the dams we’ve created will separate the different regional
minima from each other at the points where their catchment basins would
have met, thus segmenting the image into a number of regions, each
associated with a different regional minimum (see Figure 7).
This all sounds fine in theory, but there are a number of problems to be
overcome:

1. There’s no reason to suppose that the things we want to segment
(e.g. organs in a medical image) will have low grey levels and thus
be in a ‘valley’. If they are on top of a ‘hill’, we’re apparently
stuffed.

2. The idea of the algorithm is one thing, but implementing it from this
definition is far from straightforward.

3. Images can have large numbers of regional minima, especially in the
presence of noise. Most of them are irrelevant, but the end result is
that the image will end up being greatly oversegmented.

Using the gradient image
The first problem is definitely image-specific. However, for medical
images, we’re helped greatly by the fact that the organs we’re segmenting

(e.g. the kidneys and liver) tend to be relatively homogeneous, i.e. the grey
levels are relatively similar throughout the organ. This implies that the
image landscape is relatively flat over each organ, or in other words that
the gradient is small there. By contrast, the gradient at the edges of organs
will, we hope, be quite large. By using the gradient of the original image,
then, instead of the image itself, we engineer a situation where the things
we’re trying to segment are (by and large) in the valleys of the image, and
are (more or less) surrounded by hills (see Figure 8).

Rainfall simulation
Implementing the algorithm using a flooding method is only one way of
approaching the problem. It’s certainly possible to implement it that way
(e.g. [Rambabu]), but it’s sometimes helpful to think about things from a
different perspective. Instead of thinking of the watershed process as one
of flooding, we can now imagine rain falling on each point of the landscape
from above.
Water is notorious for taking the path of least resistance, and in this case
that means running downhill to a regional minimum via a path of steepest
descent (i.e. a path where at each stage we choose to move to a lowest
neighbour of the current point). This gives us an idea for an alternative
approach to the watershed transform: we can think of the catchment basin
of a regional minimum as including all points whose unique path of
steepest descent leads to the minimum in question. Where a point has more
than one path of steepest descent, it can be allocated to any of the resulting
minima according to programmer preference (see Figure 9).

Dealing with non-minimal plateaux
A problem occurs when we think about which way water should run off a
non-minimal plateau. There are various different approaches to dealing
with this [e.g. Bieniek; Osma-Ruiz; Stoev]; for the purposes of this article,
we're going to use the approach in [Meijster] and transform the image to
remove all non-minimal plateaux at the outset, thus making it what is called
lower-complete.

Building a dam
at the join point

Figure 8

In the gradient image,
homogeneous features
of interest end up in the
valleys

The final division

Figure 6

Figure 7

into regions
6 | Overload | February 2008

FEATURESTUART GOLODETZ

The flow direction at a point is
ambiguous if it has more than one

path of steepest descent
In essence, the idea is to raise all plateau pixels up by their distance from
the plateau edge (see Figure 10a). Of course, doing this naively doesn’t
work, since we might end up changing the ordering of the plateau pixels
with respect to the other pixels in the image (see Figure 10b). The solution,
then, is to find the maximum amount by which we’re going to raise a
plateau pixel and multiply the base image by that before raising any pixels
on the plateau: this has the effect of ‘spreading the landscape out’ to
accommodate the new altitudes in the middle (see Figure 10c).
Implementing this is relatively straightforward using a queue (see
Listing 1, building a lower-complete function). The basic idea is to add all
pixels with a lower neighbour to the queue at the start, then gradually flood
out from them a level at a time (essentially a breadth-first search),
incrementing the distance counter after each level.

Fletching
Having constructed a lower-complete image (see Figure 11b), the rest is
all downhill (excuse the pun). Our next step is to construct an arrow on
each node (see Figure 11c). In the case of a regional minimum, the arrow
is a self-loop back to the node itself (for a minimal plateau, one of the nodes
is chosen as a canonical element of the plateau and all the other nodes point
to it); for all other nodes, the arrow points to a lowest neighbouring node
(i.e. it points in the direction of a path of steepest descent). We also take
the opportunity to numerically label all the canonical elements during this
phase of the process.
The implementation (see Listing 2, constructing arrows on the nodes) uses
an interesting disjoint-set forest data structure which I’ll talk about in more
detail next time. The idea is to combine all the minimum points into their
respective regional minima using this data structure, and make all the other
non-minimal points point to one of their lowest neighbours.

Labelling the image
The final step of the basic watershed algorithm is to label the pixels (see
Listing 3, labelling all the pixels by following the arrow chains). This
involves following the arrows for each pixel to find which minimum it’s
associated with, and giving it the same label as that minimum. To speed
things up, we use path compression when following a path to a minimum

(i.e. we make all the arrows on the path point to the minimum once we’ve
found it). Interestingly, this bears many similarities to the implementation
of the disjoint-set data structure I just mentioned: we’ll see more of this
next time.
The result (see Figure 11d) is, in general, an oversegmented image on
which further processing is then required.

Pride comes before a ’fall
At this stage, we can be tolerably pleased with our efforts. We’ve managed
to segment the image into a number of regions, each associated with a
regional minimum of the image, but we haven’t yet got what we need. In

Figure 10

a) The ‘intuition’ is to raise
plateau pixels by their
distance from the edge

b) Doing this naively
changes the height ordering
of pixels in the image

c) This can be fixed by
‘spreading the landscape
out’ prior to raising
the pixels Figure 9

The flow direction at a
point is ambiguous if it
has more than one path
of steepest descent

Figure 11

a) The original image b) The lower-complete image

c) The arrows on each node d) The final labelling
February 2008 | Overload | 7

FEATURE STUART GOLODETZ
particular, our image is greatly over-segmented, because most of the
regional minima aren’t ‘relevant’: they’re not associated with the objects
of interest in our image. A general method to solving this problem involves
trying to merge some of the regions together to reduce the overall number
of regions in our image and obtain a better segmentation. One algorithm
which takes this approach is the waterfall algorithm described in
[Marcotegui], which I’ll talk about next time. In and of itself, this still
won’t give us what we need for medical images, but it will take us a little
closer to where we need to be. It also produces reasonable results on some
non-medical images (e.g. the ones used in the paper). To get acceptable
results for medical images, we have to make use of anatomical knowledge
to process the results of application-independent algorithms like the
waterfall, but that’s something that is very much still a work in progress!
Till next time...

References
[Bieniek] ‘An efficient watershed algorithm based on connected

components’, Andreas Bieniek and Alina Moga; Albert-Ludwigs-
Universitt Freiburg; Pattern Recognition 33 (2000) pp. 907-916

[Golodetz] ‘Functional Programming Using C++ Templates (Parts 1
and 2)’; Overload 81 and Overload 82

[Marcotegui] Fast Implementation of Waterfall Based on Graphs,
B. Marcotegui and S. Beucher; Ecole des Mines de Paris

[Meijster] A Disjoint Set Algorithm for the Watershed Transform, Arnold
Meijster and Jos B. T. M. Roerdink, University of Groningen

[Osma-Ruiz] ‘An improved watershed algorithm based on efficient
computation of shortest paths’, Víctor Osma-Ruiz et al., Universidad
Politecnica de Madrid; Pattern Recognition 40 (2007) pp. 1078-1090

[Rambabu] ‘An efficient immersion-based watershed transform method
and its prototype architecture’, C. Rambabu and Indrajit Chakrabarti;
Journal of Systems Architecture 53 (2007) pp. 210-226

[Stoev] RaFSi – A Fast Watershed Algorithm Based on Rainfalling
Simulation, Stanislav L. Stoev, University of Tübingen

[Varshney] Abdominal Organ Segmentation in CT Scan Images: A
Survey, Lav R. Varshney, Cornell University

Listing 1 Listing 1 (cont’d)

Build-Lower-Complete(Function<Ω,Z> image)

Function<Ω,Z> lc;
Queue<PixelCoords> queue;
// A marker indicating when we need to increase
// the distance value.
PixelCoords marker(-1,-1);
// Initialise the queue with pixels that have a
// lower neighbour.
foreach(PixelCoords p ∈ Ω) {
 lc(p) = 0;
 foreach(PixelCoords neighbour ∈ N(p)) {
 if(image(neighbour) < image(p)) {
 queue.push(p);
 // To prevent it being queued twice.
 lc(p) = -1;
 break;
 }
 }
}
// Compute a function which indirectly indicates
// the amount by which we need to raise the
// plateau pixels (see the referenced paper for
// more details).
int dist = 1;
queue.push(marker);
while(!queue.empty()) {
 p = queue.pop();
 if(p == marker) {
 if(!queue.empty()) {
 queue.push(marker);
 ++dist;
 }
 }

 else
 {
 lc(p) = dist;
 foreach(PixelCoords neighbour N(p)) {
 // If the neighbouring pixel is at the
 // same altitude and has not yet been
 // processed.
 if(image(neighbour) == image(p) &&
 lc(neighbour) == 0)
 {
 queue.push(neighbour);
 // To prevent it being queued twice.
 lc(neighbour) = -1;
 }
 }
 }
}
// Compute the final lower-complete function.
// Note that at this point, dist holds the
// amount by which we want to multiply the base
// image.
foreach(PixelCoords p ∈ Ω) {
 if(lc(p) != 0) {
 lc(p) = dist * image(p) + lc(p) - 1;
 }
}
return lc;
8 | Overload | February 2008

FEATURESTUART GOLODETZ
Listing 2

Construct-Arrows(Function<Ω,Z> lc)

Function<Ω,PixelCoords> arrows;
Function<Ω,PixelCoords> labels;

// Add all the minimum points to a disjoint set
// forest.
int labelCount = 0;
DisjointSetForest<PixelCoords> minima;

foreach(PixelCoords p ∈ Ω) {
 if(lc(p) == 0) {
 labels(p) = labelCount++;
 minima.add_node(p);
 }
}

foreach(PixelCoords p ∈ Ω) {
 if(lc(p) == 0) {
 // Union any neighbouring minimum points
 // into the same regional minimum.
 foreach(PixelCoords neighbour ∈ N(p)) {
 if(lc(neighbour) == 0) {
 minima.union_nodes(labels(p),
 labels(neighbour));
 }
 }
 }
 else {
 // Find a lowest neighbour and make this
 // point's arrow point to it.
 PixelCoords lowestNeighbour(-1,-1);
 int lowestNeighbourValue = INT_MAX;

 foreach(PixelCoords neighbour ∈ N(p)) {
 if(lc(neighbour) < lowestNeighbourValue) {
 lowestNeighbour = neighbour;
 lowestNeighbourValue = lc(neighbour);
 }
 }

 // There will always be a lowest neighbour
 // here since the function's lower-complete.
 arrows(p) = lowestNeighbour;
 }
}

Listing 3

Resolve-All(Function<Ω,PixelCoords> arrows,
 Function<Ω,Z> labels)
foreach(PixelCoords p ∈ Ω) {
 Resolve-Pixel(p, arrows, labels);
}

Resolve-Pixel(PixelCoords p,
 Function<Ω,PixelCoords> arrows,
 Function<Ω,Z> labels)

PixelCoords parent = arrows(p);
if(parent != p) {
 parent = Resolve-Pixel(parent);
 labels(p) = labels(parent);
}
return parent;

Listing 2 (cont’d)

// Assign new labels to the canonical points of
// the regional minima and make the arrows of
// the non-canonical points point to them.
labelCount = 1;
foreach(PixelCoords p ∈ Ω) {
 if(lc(p) != 0) continue;
 int root = minima.find_set(labels(p));
 if(root == labels(p)) {
 // This is a canonical point.
 arrows(p) = p;
 labels(p) = labelCount++;
 }
 else {
 arrows(p) = minima.value_of(root);
 }
}

return (arrows, labels);
February 2008 | Overload | 9

FEATURE KEVLIN HENNEY
The PfA Papers: Deglobalisation
More history of Parameterise from Above as
Kevlin Henney looks at Simpletons and the
Borg.
henever it is mentioned, the PARAMETERIZE FROM ABOVE (PFA)
pattern is often discussed in connection with – or rather, as a
counterpoint or antidote to – the SINGLETON pattern. Perhaps the

other most recurrent feature of any PFA discussion is to note its lack of a
proper written description [Deigh2007]:

Much has been written about the pattern identified by Kevlin Henney
as PARAMETERIZE FROM ABOVE. Indeed, much has been written
about it (just search the Web for ‘Parameterize from Above’ and
‘Parameterise from Above’), but as a pattern it has never been
written up. Much has also been written on accu-general about how
Kevlin should get around to writing it up properly!

Well, I can reveal that a short write-up of the pattern, forces and all, was
due to appear in the German magazine JavaSPEKTRUM nearly five years
ago. The ‘Patterns in Java’ column was in essence a continuation of the
identically named column in the defunct Java Report, but in German
thanks to Martina Buschmann’s translating skills. The article containing
the missing link and unwritten pattern was to have followed the article
entitled ‘One or Many?’ [Henney2003]. Indeed, the raison d'être for ‘One
or Many?’ was to set up the follow-on article by focusing on some of
SINGLETON’s problems. The follow-on article would then have presented
two pattern descriptions: PARAMETERIZE FROM ABOVE and then
SINGLETON revisited in the light of PARAMETERIZE FROM ABOVE. 2003,
however, was quite a lean year for JavaSPEKTRUM, which ultimately
survived by slimming down and reducing overheads. Alas one such
overhead was the translation of the ‘Patterns in Java’ column. There were
two notable consequences of the cost-cutting exercise: (1) a short but
nonetheless documented form of PARAMETERIZE FROM ABOVE never saw
the light of day; (2) JavaSPEKTRUM survived, unlike its sister magazine
Java Report two years before it.
This fourth instalment of ‘The PfA Papers’ takes time to explore some of
the SINGLETON-related territory that in part motivates PARAMETERIZE
FROM ABOVE, including revisiting ‘One or Many?’ and some extracts from
its unpublished and unfinished successor.

Simpleton
To set the scene, let’s kick off with the draft opening of the unpublished
article:

For many years I have used SINGLETON as an indicator of pattern
and design maturity. Programmers who rarely use it either do not
know about it by name – and hence are probably unfamiliar with
design patterns – or they understand it fully – and hence understand

the relationship between design and patterns. A few questions and
some conversation usually differentiate one end of the scale from
the other. However, there is a significant group of programmers that
falls between these two extremes, and they are the principal users
of SINGLETON. Without meaning to, many programmers are
creating code that is difficult to evolve, hard to comprehend,
awkward to test and resistant to change in the belief that they are
following good practice. Why is the design assumed to be good?
Because it has been documented in a book, Design Patterns, that
is widely recognised as a purveyor of good practice. Trust in a
design pattern is an important quality, but it should not be
unquestioning. A critical eye is needed when evaluating any design.

Superficially, the SINGLETON pattern comes across as a simple idea
[Gamma+1995]:

Ensure a class only has one instance, and provide a global point of
access to it.

The associated class diagram for the pattern also looks simple enough: a
single class. What could be simpler? Sadly, this apparent simplicity belies
the accidental complexity introduced by the pattern. (It is both interesting
and in some ways cautionary that many etymologies of the word singleton
state that it is derived from single and patterned after simpleton.) The
emphasis of the pattern’s intent is often misread [Henney2003]:

The race to embrace the apparent convenience offered by second
half of the sentence – ‘... global point of access...’ – often eclipses
the necessity of the first half and the classification of the pattern as
a creational rather than a structural pattern.

The notion of providing a global point of access is seen by many as
the main motivation for the pattern, whereas first and foremost
SINGLETON is a factory pattern: it concerns the encapsulated
creation of objects. What is it encapsulating? Instance control. In
this case, to be precise, the existence of no more than a single
instance – an exceedingly rare constraint in practice.

A quick examination of the majority of so-called SINGLETONs in code
reveals that they are global variables and not SINGLETONs: they just
happen to share some of the same solution structure, but not the
same motivating problem, forces and consequences, all of which
are required to correctly characterise a pattern. Most of these
misapplications either do not enforce instance control or the
uniqueness of the instance that they control happens to be a
coincidence rather than a genuine constraint.

Part of the misreading of the pattern is down to the individual reader, and
much is down to the cultural interpretation of the pattern, but some credit
(or, indeed, debit) must also go to the original Gang of Four write-up.
When compared to the other pattern descriptions in Design Patterns, the
entry on SINGLETON seems surprisingly weak. It lacks the much of the
detail and considered discussion that characterises the other patterns in the
catalogue. For example, only benefits and no liabilities are listed for it,
which seems not only surprising to the modern reader but is also out of
step with the more even-handed appraisal of the other patterns in the
catalogue. Similarly, no worked example is presented to motivate the
pattern, only the following [Gamma+1995]:

W

Kevlin Henney is a long-standing member of ACCU, joining
before it actually was ACCU and contributing to Overload
when it was numbered in single digits. He recently co-authored
two volumes in the Pattern-Oriented Software Architecture
series, A Pattern Language for Distributed Computing and On
Patterns and Pattern Languages. Kevlin can be contacted at
kevlin@curbralan.com.
10 | Overload | February 2008

FEATUREKEVLIN HENNEY

beyond the initial sugar rush of apparent
coding convenience and cleverness, its

subsequent inconvenience can manifest
itself in a number of ways
It’s important for some classes to have exactly one instance.
Although there can be many printers in a system, there should be
only one printer spooler. There should be only one file system and
one window manager. A digital filter will have one A/D converter.
An accounting system will be dedicated to serving one company.

No satisfactory explanation is offered for the opening sentence, which is
also not quite right: the pattern constrains the number of instances to at
most one, not exactly one. And no justification is offered for any of the
examples, which are essentially incorrect for one reason or another. Much
of the remaining pattern description is devoted to the mechanics of the
pattern’s solution rather than the understanding of the problem.
With this background – and in spite of its notable and intentional absence
from the Gang of Four’s list of ‘simplest and most common patterns’ – it
is perhaps unsurprising that SINGLETON is most commonly applied as a
souped-up global. The result is typically a design that has all the issues
associated with globals, but without the relative simplicity. This situation
inspired Kent Beck’s full and candid (if somewhat flippant) write-up of
SINGLETON [Beck2003]:

How do you provide global variables in languages without global
variables? Don’t. Your programs will thank you for taking the time
to think about design instead.

The problems that SINGLETON can introduce into a design are not always
immediately apparent, and nor is its misapplication. However, beyond the
initial sugar rush of apparent coding convenience and cleverness, its
subsequent inconvenience can manifest itself in a number of ways: it
complicates testing, safe and simple threading, architectural
configurability and pluggability, adaptation and evolution of code, design
reasoning and code readability, application start-up and shutdown, and so
on. Many applications and implications of SINGLETON’s design lead
programmers to come up with increasingly ‘clever’ solutions – books,
magazines and a multitude of web pages offer a dizzying variety of cure-
alls. These may sometimes reveal coding virtuosity, but they serve mostly
to highlight a missed trick: if these workarounds seem to recur in the
context SINGLETON, why not address the root cause rather than attempt to
repeatedly and ingeniously mollify its effects?

Program to an interface, not an instance
One of the most useful guidelines and enduring sound bites from the
Design Patterns is ‘program to an interface, not an implementation’
[Gamma+1995]. This encourages a style of design that is strongly
encapsulated. Rather than working with glorified C structs dressed as
classes with assembleresque getters and setters, develop classes that have
rich, intentional public interfaces. Rather than working with class
hierarchies rooted in classes that are mostly (or completely) concrete
toolkits of default functionality, favour hierarchies rooted in IDL-style
interfaces – interface in Java and C#, fully abstract classes in C++. In
situations where duck typing is used, as in C++’s template system or the
type systems of dynamic languages such as Ruby and Python, program
according to the concept or protocol in question without mention or
assumption of a particular concrete type. The resulting design style is

loosely coupled, testable and refreshingly clear. But the consequences of
this guideline do not stop there [Henney2003]:

We can extend this with a further principle:

Program to an interface, not an instance.

This second principle can be considered a deeper reading and
consequence of the first.

This second principle was also the working title for the unpublished article,
the draft of which included the following observation:

Knowledge of multiplicity should be encapsulated rather than
shouted from the rooftops, hence PFA rather than SINGLETON,
which litters the code with the assumption. A more complete failure
of encapsulation it would be hard to find.

And also the following:
Which brings us to the question of the multiplicity constraint itself.
One or many. SINGLETON focuses on the particular multiplicity
constraint of 1, but it could in principle be any number N. The idea
is that in a given situation the total number of instances of a
particular class is constrained to a single instance. OK, but who is
doing the constraining? The class itself or the situation that it finds
itself in? In the SINGLETON pattern the constraint is expressed and
enforced in the class. However, what determines the multiplicity of
a given type of object in a particular scenario is just that: the details
of the scenario. The coupling in SINGLETON is often back to front:
the application that uses the class should constrain its instance
count, not the class itself. So the general rule should be that if a
given infrastructure or design situation demands an instance limit
of N, the enforcement should be at that level and not within the
instance type. The property belongs to the application, not the class.

The necessity of the instance constraint is one of the reasons I often refer
to SINGLETON as the HIGHLANDER pattern – ‘There can be only one’. Most
abuses of the pattern fall into the obvious category of being nothing more
than global variables by another name, but a great many abuses relate to
coincidence: only a single object happens to be needed. For an example
of this kind of misuse we need look no further than Design Patterns itself.
The Gang of Four’s description of the STATE pattern suggests that
SINGLETON can be used to implement classes that represent individual state
behaviour, but which are otherwise stateless (a terminology collision that
gives rise to the intriguing concept of stateless states). If an object has no
associated state, and its behaviour but not its identity is all that matters, it
makes little difference to code whether there is one instance or many. Each
instance can be substituted transparently for any other, hence why we
might favour having just a single instance for all uses. However, note that
this is not SINGLETON: there is no requirement on the type that ‘there can
be only one’, and hence no need to restructure the type so that it prevents
public constructability, offers a global point of access, and so on. Instead,
we have a possibility to reduce the number of instances based on ‘there
may be only one’. In other words, the code that wants to share the instance
can simply declare a static variable of the stateless type, leaving the
stateless type untouched and free of all the unnecessary SINGLETON coding
clutter.
February 2008 | Overload | 11

FEATURE KEVLIN HENNEY
In the interests of fairness it is worth saying that I fell into precisely the
same trap a number of years ago. Following a crisp and prescient
description of SINGLETON’s actual applicability, along with a spirited
denouncement of its widespread misapplication, I then wrote the following
[Henney1997]:

Another suitable application of SINGLETON is as an optimisation in
cases where the identity of an object is not an issue, and there is
no variation across instances of a class.

Publish and be damned! Redemption can be found in the draft for the
unpublished article:

The important point here is that SINGLETON is really a creational
pattern, which means that the main characteristic being constrained
and controlled is creation, not access. Most of the few good uses
of SINGLETON should, therefore, be invisible.

Such invisibility is achieved by decoupling usage of the SINGLETON
instance from its access and creation. Instead of using the sole instance
globally via the SINGLETON’s class name, the class should implement an
interface and the instance should be passed around according to that
interface. In other words, not according to its concrete implementation type
or the absolute path to the actual instance. In this sense, the locality and
use of any Singleton becomes just like the locality and use of any other
loosely coupled use of a factory. The incomplete, unpublished description
of PARAMETERIZE FROM ABOVE includes the following paragraph:

Create the object at the highest level it is needed and known and
pass it down from there. This stresses the importance of having a
clear layered structure. On close inspection most global concepts
turn out to be regional rather than global.

In essence what has been described here is little more than a classic
separation of concerns: separate how an object is used from how it is
created. Such advice is both common and unsurprising and, put in such
simple terms, it is also advice that is quite easy to follow. Furthermore,
whether or not an object is actually a SINGLETON pretty much ceases to be
an issue because you are programming to an interface, not an instance.

Resistance is useful
The view that SINGLETON is more of a problem than a solution has become
increasingly widespread to the point that steering clear of it is considered
to be common knowledge by many development communities. Where
once the conspicuous use of SINGLETON was considered a sign of patterns
know how and object-oriented design expertise, nearly a decade and a half
after its publication it is increasingly seen as an obsession of the larval stage
of pattern learning.
However, simply making SINGLETON a pariah without exploring the
problem at hand or showing reasoned alternatives does not constitute
constructive advice. The absence of a reasoned guideline can lead to the
adoption of alternatives that solve superficial rather than deep issues. One
such approach is the MONOSTATE pattern [Henney2005]:

This pattern can be considered a salve for programmers who dislike
the guilt-by-association of employing SINGLETON. It also plays the
role of syntax sugaring for those who want a less cumbersome
usage syntax than SINGLETON’s. A MONOSTATE [Ball+1997] object
looks like an ordinary object but shares its state static-ally with all
other instances of the class, leading to ‘spooky action at a distance’
and aliasing problems when the state changes. If SINGLETON is the
problem, MONOSTATE as a treatment can be worse than the
problem, although some developers mistake it for a cure.
MONOSTATE is also known affectionately and revealingly as the
BORG pattern.

It is true that with SINGLETON ‘the programmer is obliged to use counter-
intuitive syntax to access objects’ [Ball+1997], but that ugliness should be
taken as a hint. It is not the problem to be solved; it is the signpost to a
deeper problem. Likewise, the use of the name BORG [Martelli2001] for

MONOSTATE in the Python community seems more like an early warning
signal rather than an invitation.
A MONOSTATE object is not always a drop-in replacement for a
SINGLETON, but in many of its applications it is seen as comparable or
equivalent (with the added bonus of absolving guilt and syntax). From a
developmental point of view it also has some significant drawbacks
[Ball+1997]:

1. The sharing that is occurring may be overly subtle since all instances
of a MONOSTATE class may appear to be unique.

2. The subtlety of sharing can lead to aliasing problems, e.g., calling
mutators on one instance of a MONOSTATE object will update all
instances. This can cause subtle bugs if programmers don’t
understand that all instances are aliases.

And I would contend that even though this list is briefer than it should be,
it is damning enough, especially when the implications are considered
more deeply – testing, code evolution, threading, etc. It is difficult to
recommend a technique that is subtle and surprising, indiscreetly messing
with the fundamental notion that different objects represent different
objects, when the simpler alternative is to pass objects around as arguments
– in plain sight and without the need for covert semantics.
One of the things about patterns is that they are recurring (and, of course,
not all that recurs is necessarily good). This doesn’t just mean that you read
about patterns in books, hear about them at conferences or see them in other
people’s code. It also means that they are reinvented and rediscovered by
individuals on a regular basis. A long time ago, in the land before GoF, I
ended up solving an instance management issue by creating a design that
I later recognised as MONOSTATE. Without going into details, what I can
say with the benefit of hindsight is that I wish I had known about
SINGLETON: I may not be particularly fond of it, but it would have been a
major improvement. To paraphrase Dorothy Parker, MONOSTATE is not a
pattern to be tossed aside lightly; it should be thrown with great force.

References
[Ball+1997] Steve Ball and John Crawford, ‘Monostate Classes’, C++

Report 9(5), SIGS, May 1997
[Beck2003] Kent Beck, Test-Driven Development: By Example,

Addison-Wesley, 2003
[Deigh2007] Teedy Deigh, ‘A Practical form of OO Layering’, Overload

78, April 2007, http://accu.org/index.php/journals/1327
[Gamma+1995] Erich Gamma, Richard Helm, Ralph Johnson and John

Vlissides, Design Patterns, Addison-Wesley, 1995
[Henney1997] Kevlin Henney, ‘Java Patterns and Implementations’, BCS

OOPS Patterns Day, October 1997,
http://www.two-sdg.demon.co.uk/curbralan/papers/
JavaPatternsAndImplementations.html

[Henney2003] Kevlin Henney, ‘One or Many?’ is the English original
used for translation and publication in German as ‘Eins oder Viele?’,
JavaSpektrum, September 2003, http://www.two-sdg.demon.co.uk/
curbralan/papers/javaspektrum/OneOrMany.pdf

[Henney2005] Kevlin Henney, ‘Context Encapsulation’, EuroPLoP 2005,
July 2005, http://www.two-sdg.demon.co.uk/curbralan/papers/
europlop/ContextEncapsulation.pdf

[Henney2007a] Kevlin Henney, ‘The PfA Papers: From the Top’,
Overload 80, August 2007, http://accu.org/index.php/journals/1411

[Henney2007b] Kevlin Henney, ‘The PfA Papers: The Clean Dozen’,
Overload 81, October 2007, http://accu.org/index.php/journals/1420

[Henney2007c] Kevlin Henney, ‘The PfA Papers: Context Matters’,
Overload 82, December 2007, http://accu.org/index.php/journals/
1432

[Martelli2001] Alex Martelli, ‘Singleton? We don’t need no stinkin’
singleton: the Borg design pattern’, http://aspn.activestate.com/
ASPN/Cookbook/Python/Recipe/66531
12 | Overload | February 2008

FEATURERICHARD HARRIS
The Regular Travelling
Salesman, Part 2
Richard Harris explores more of the mathematics
of modelling problems with computers.
ast time I described the regular travelling salesman problem and we
discovered that whilst the shortest tour was trivial to determine, the
distribution of tour lengths was a little more difficult. Specifically, the

factorial growth of the number of tours as the number of cities increased
limited us to tours of no more than 14 cities.
So how should we go about reducing the computational expense? Well, if
we can spot any more symmetries we might be able to exploit them. Taking
a look at every 5 city tour, fixing the first city as usual, might give a hint
as to whether any more symmetries exist.
Figure 1 shows the complete set of tours for 5-city fixed-start regular TSP.
Clearly there’s a symmetry we’ve not yet taken into account since only 4
of the 24 possible tours are distinct from one another!
So where is it?
Well, perhaps surprisingly, it’s the most obvious of them all. The fixed
starting city and tour direction symmetries that we have already addressed
exist for all TSPs. This final symmetry results from our tour being around
a regular polygon. Specifically, it results from the fact that we can rotate
and reflect the city labels on the polygon.
Trivially, reversing the city labels is equivalent to reversing the direction
of the tour. More interestingly, rotating the city labels is not necessarily
equivalent to rotating the starting city.
This is easily demonstrated by taking a tour that does not have rotational
symmetry, say the second in Figure 1, rotating the labels and then checking
whether rotating the starting point results in the same tour.

Figure 2 clearly shows that rotating the labels results in a tour that cannot
be created by rotating the starting point.
Before we embark on constructing an algorithm to efficiently generate the
minimal set of symmetrically distinct tours, it’s probably worth figuring
out how many of them there are. The analysis is easiest for tours with a
prime number of cities, p.
First of all, we should count the number of tours for which any rotation of
the labels is equivalent to changing the starting city. Trivially, these tours
must move the same number of vertices around the perimeter of the
polygon at each step since if two consecutive steps were of different
lengths, rotating the labels would mean that one of the cities would be
followed by a different step, as illustrated in Figure 3.
For odd, and hence prime, regular tours there are

such tours (the factor of ½ resulting from the reflectional symmetry).
For prime regular TSPs, all remaining distinct tours must have a layout
such that no rotation of the labels is equivalent to a rotation of the starting
city.
To see why, assume that rotating the labels k times, where k is not equal
to either 1 or p, is equivalent to the initial tour with a different starting city.
Rotating it another k times must also be equivalent, as must rotating it any
multiple of k times, since we return to an equivalent of the starting tour
every time. We should also note that rotating the labels more than p times
is equivalent to rotating them that number modulo p.
For each label, l, and any multiple of the k rotations, m, l will be mapped to

Now, it is a property of prime numbers that repeatedly applying this
mapping must result in every number between 0 and p-1. For p equal to 5
and k equal to 2 we can demonstrate this by enumerating every step

L

c1
p 1–

2
------------=

l l mk+() p)mod (→

Rotating labels for a 5-city regular TSP

Initial tour: 0-1-2-4-3

Rotate labels: 1-2-3-0-4

Rotate starting point: 0-4-1-2-3

Figure 2

Figure 1

Figure 3

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and
numerical computing and is currently employed writing
software for financial regulation.
February 2008 | Overload | 13

FEATURE RICHARD HARRIS

if we’re willing to sacrifice a little accuracy,
we can simply generate a random subset of
the tours
Whilst this is a reasonable illustration of this fact, it is not remotely akin
to a proof. To prove it, we first look for a multiple of the k rotations that
maps every label to itself.

We can subtract the label value from both sides of the equation giving

Since p is prime, mk can only be a multiple of p if either m or k are a multiple
of p.
This demonstrates that if k is not equal to a multiple of p, repeatedly
applying k rotations of the labels must generate all other rotations of the
labels before returning to the initial layout. Therefore if k label rotations
lead to a tour which is equivalent to the first, we simply keep repeating
them to find that every possible rotation must also be equivalent.
So the remaining distinct tours must generate 2p2, rather than 2p, tours
since they have the extra rotational symmetry of the labels. The total
number of tours must be equal to the sum of them both, giving

Hence the total number of distinct tours is given by

Whilst this does save us an extra order of magnitude, it’s still factorial
complexity so it doesn’t really help us all that much.
For odd non-prime regular TSPs, the situation is even worse. This is
because there will be some distinct tours for which there is a partial rotation
of the labels that is equivalent to a rotation of the starting city. Since these
will generate fewer tours, there must be more distinct tours.
For even regular TSPs, it is only the tour around the perimeter of the
polygon for which label and starting city rotation are equivalent. This
leads, by a similar argument, to a lower bound for the number of distinct
tours being

The reason that this is only a lower bound is that, as for odd non-prime
regular TSPs, there exist partial label rotations that are equivalent to
starting city rotations which will each generate fewer tours.
I rather suspect that it’s not therefore worth the effort it would require to
develop an efficient algorithm for enumerating the symmetrically distinct
tours.
So how should we proceed?
Well, if we’re willing to sacrifice a little accuracy, we can simply generate
a random subset of the tours. If the subset is large enough the resulting
distribution of tour lengths should be approximately equal to that of the
complete set of tours.
Fortunately for us, the standard library also includes a function for
generating random permutations of sequences that we can use to generate
our random tours; std::random_shuffle. Once again, we will ignore
the reflectional symmetry for the sake of simplicity. We will still, however,
exploit the rotational symmetry, although this time it’s to distribute the
samples as evenly as possible amongst the full set of tours. Listing 1 shows
sampling the tour histogram.
Since we’re no longer bound by the number of cities, but by the number
of samples we might as well take a look at histograms for large numbers
of cities.
Figure 4 and Figure 5 record the results of 1,000 and 10,000 city regular
TSPs with 10,000,000 and 100,000,000 samples respectively. Table 1
shows the approximate average tour lengths for these histograms.
It seems reasonable that the limit of the average tour length is going to be
approximately 1.27n. The question that remains is why? Can we deduce
a formula for the limit of the distribution of tour lengths for very large
numbers of cities?
For extremely large numbers of cities, most steps in a regular TSP tour are
more or less independent to those that have already been taken. It is only

0 0 2+ 2 2→=→
2 2 2+ 4 4→=→
4 4 2+ 6 1→=→
1 1 2+ 3 3→=→
3 3 2+ 5 0→=→

l l mk+() pmod ()=

0 mk pmod ()=

2p2cp 2pc1+ p!=

cp
p! 2pc1–

2p2
----------------------=

p! p p 1–()–

2p2
-------------------------------=

p 1–()! p 1–()–
2p

---=

c cp c1+=

p 1–()! p 1–()–
2p

--- p 1–
2

------------+=

c n 1–()! 2–
2n

--------------------------- 1+=

Listing 1

void
tsp::sample_tour(tour_histogram &histogram,
 size_t samples)
{
 distances dists(histogram.vertices());
 tour t(histogram.vertices());
 generate_tour(t.begin(), t.end());
 while(samples--)
 {
 std::random_shuffle(t.begin()+1, t.end());
 histogram.add(tour_length(t, dists));
 }
}

14 | Overload | February 2008

FEATURERICHARD HARRIS

The central limit theorem states, for a very
wide class of distributions, that the sum of a

set of independently drawn random
numbers is normally distributed
when the majority of cities have been visited that the choice of steps will
be restricted to limited regions on the circumference of the polygon.
There is a statistical theorem called the law of large numbers which states
that as n tends to infinity, the sum of n random numbers independently
drawn from any single given distribution tends to n times the average of
that distribution. If our assertion that the steps are more or less independent
to each other is valid we should be able to approximate the average tour
length with n times the average step length. For very large n, the average
step length will be approximately equal to the average distance between
two randomly selected points on the circumference of a circle of unit
radius. In the same way that we can add up a finite set of step lengths and

divide by the number of them to get the average, we can integrate the
lengths of steps to cities separated by an angle of θ around the
circumference and divide by 2π.

This clearly confirms that our expectation of the average tour length was
correct, but is not enough for us to completely determine how the tour
lengths are distributed.
There is another statistical theorem we can use to help us; the central limit
theorem. The central limit theorem states, for a very wide class of
distributions, that the sum of a set of independently drawn random
numbers is normally distributed. Because of this property, it shows up in
a vast number of places.
The normal distribution is defined in terms of both the average, μ, and the
standard deviation, σ, of the numbers drawn from it. The standard
deviation is a measure of how different on average the numbers in a set
are from their mean and it is calculated as follows

Note that in this context E means the expected, or average, value.
Given these values the normal distribution is defined by its cumulative
density function, or cdf, which is the function in x that gives the probability
that a random number will be less than x.

μ 1
2π
------ 2 θ

2
---sin θd

0

2π

∫=

1
π
--- θ

2
---sin θd

0

2π

∫=

1
π
--- 2 θ

2
---cos–

0

2π
=

1
π
--- 2– 1–×() 2– 1×()–()=

4
π
--- 1.27≈=

E x() μ 1
n
--- xi

i
∑= =

E x μ–()2() σ2=

1
n
--- xi μ–()2

i
∑=

1
n
--- xi

2 2μxi μ2+–()
i

∑=

1
n
--- xi

2

i
∑ 2μ1

n
--- xi

2

i
∑ μ21

n
--- 1

i
∑+–=

1
n
--- xi

2

i
∑ 2μ2 μ2+–=

1
n
--- xi

2

i
∑ μ2–=

Figure 4

Figure 5

Table 1

n mean mean/n

1,000 1,274.5 1.27

10,000 12,725.1 1.27
February 2008 | Overload | 15

FEATURE RICHARD HARRIS

those of you for whom the word
‘trigonometry’ conjures images of sinister
maths teachers intent on ruining your life ...
might want to skip ahead and just trust me
Unfortunately this integral does not have a closed form, meaning a simple
formulaic, solution. The derivative, known as the probability density
function, or pdf, is simple to calculate however and its graph is shown in
Figure 6 (the normal distribution pdf).
So the final piece of the puzzle is to calculate the average squared distance
between two cities in a regular TSP, which we can use to determine which
normal distribution is applicable. We could approximate it
with an integral over the circle again, but there is an
approximate formula for regular TSPs with a number of cities
equal to a multiple of 4, so we may as well use it.

This may not look very easy to solve, but appearances can be
deceptive. The trick is to exploit some trigonometric
identities. It does get a little bit fiddly though, so those of you
for whom the word ‘trigonometry’ conjures images of
sinister maths teachers intent on ruining your life (or at least
that double period after lunch on Thursdays) might want to
skip ahead and just trust me.
Now, the identities in question are

We can use these by splitting the sum into four parts
(Equation 1).
Now since the last three terms are sums over ¼n steps offset
by a constant factor, we can simply shift the constant factor
from the index into the sum itself (Equation 2).
The next point to note is that we can perform the second and
fourth sums backwards by subtracting from the last angle in
each sum (Equation 3).
Now we exploit the identity that equates the sine of the angle
added to or subtracted from ½π to the cosine of the angle
(Equation 4).

F x μ σ,;() 1
σ 2π
-------------- e

t μ–()2
–

2σ2

td
∞–

x

∫=

E x2() 1
n
--- li

i
∑=

1
n 1–
------------ 4 kπ

n

2
sin

i

n 1–

∑=

1
n
--- 4 kπ

n

2
sin

i

n

∑≈

θsin π θ–()sin=

θcos θ π
2
---+⎝ ⎠

⎛ ⎞sin π
2
--- θ–⎝ ⎠

⎛ ⎞sin= =

θ2sin θ2cos+ 1=

Equation 1

E x2() 4
n
--- kπ

n

2
sin

k 1=

n

∑≈

4
n
--- kπ

n

2
sin

k 1=

n
4

∑
4
n
--- kπ

n

2
sin

k n
4
--- 1+=

n
2

∑
4
n
--- kπ

n

2
sin

k n
2
--- 1+=

3n
4

∑
4
n
--- kπ

n

2
sin

k 3n
4

------ 1+=

n

∑+ + +=

Equation 2

E x2() 4
n
--- kπ

n
------2sin

k 1=

n
4

∑
4
n
--- kπ

n
------ π

4
---+⎝ ⎠

⎛ ⎞2sin
k 1=

n
4

∑
4
n
--- kπ

n
------ π

2
---+⎝ ⎠

⎛ ⎞2sin
k 1=

n
4

∑
4
n
--- kπ

n
------ 3π

4
------+⎝ ⎠

⎛ ⎞2sin
k 1=

n
4

∑+ + +≈

Equation 3

E x2() 4
n
--- kπ

n
------2sin

k 1=

n
4

∑
4
n
--- π

2
--- kπ

n
------+⎝ ⎠

⎛ ⎞2sin
k 0=

n
4
--- 1–

∑
4
n
--- kπ

n
------ π

2
---+⎝ ⎠

⎛ ⎞2sin
k 1=

n
4

∑
4
n
--- π kπ

n
------–⎝ ⎠

⎛ ⎞2sin
k 0=

n
4
--- 1–

∑+ + +≈

 4
n
--- kπ

n
------2sin

k 1=

n
4

∑
4
n
--- π

2
--- kπ

n
------+⎝ ⎠

⎛ ⎞2sin
k 1=

n
4

∑
4
n
--- kπ

n
------ π

2
---+⎝ ⎠

⎛ ⎞2sin
k 1=

n
4

∑
4
n
--- π kπ

n
------–⎝ ⎠

⎛ ⎞2sin
k 1=

n
4

∑+ + +≈

Equation 4

E x2() 4
n
--- kπ

n
------2sin

k 1=

n
4

∑
4
n
--- kπ

n
------2cos

k 1=

n
4

∑
4
n
--- kπ

n
------2cos

k 1=

n
4

∑
4
n
--- kπ

n
------2sin

k 1=

n
4

∑+ + +≈

8
n
--- kπ

n
------2sin kπ

n
------2cos+

k 1=

n
4

∑=

Figure 6
16 | Overload | February 2008

FEATURERICHARD HARRIS

picking the location of the next city in a TSP
is equivalent to picking the next city in a tour
Finally, we exploit the identity that equates the sum of the squares of the
sine and cosine of an angle to 1 to yield the result.

Therefore, the standard deviation of the step length is given by

In addition to stating that the sums of random numbers are normally
distributed, the central limit theorem states that the specific normal
distribution will have an average equal to n times that of their distribution
and a standard deviation equal to the square root of n times that of their
distribution.
This means that the distribution of tour length of a regular TSP with n cities
should tend, for large n, towards

Figure 7 compares the histogram we’d expect from the normal distribution
(at the bottom) to that we generated by sampling the 1,000 city tour (at the
top). Under the assumption of normality a bucket with mid point x and
width w should contain the proportion of the samples given by

Well, despite the fact that the assumption that the tour steps are
independent is demonstrably false these look remarkably similar, a fact
borne out by the histogram of the difference between them, plotted on the
same scale in Figure 8.
In fact, there exists a mathematical technique for determining the
likelihood that a sample histogram is consistent with a particular
distribution. I strongly suspect that it would indicate that the sample
histogram is not consistent with the normal distribution, but since we have
already acknowledged that our assumptions are false we shouldn’t find that
surprising. Nevertheless, given that the maximum difference is of the order
of 0.015, or 1½%, it’s not too bad an approximation.
So can we perform a similar analysis on the usual type of TSP?
Well, let’s assume that the cities are evenly randomly distributed on the
unit square. If we’re interested in the average tour length of all possible
tours we should firstly note that we can take a tour of a random TSP by
simply visiting each city in order. Furthermore, every possible tour can be
generated by changing the labels and using the same scheme, since we can
view the labels as instructions as to the order in which we should visit them.
This means that picking the location of the next city in a TSP is equivalent
to picking the next city in a tour. Since the former is independent of the
cities already chosen, the latter must be independent the steps already
taken, satisfying the independence requirement of the law of large
numbers.
However, the distribution of step lengths is dependent on where in the
square we are currently located, and this breaks the requirement that the
step lengths are identically distributed. However, there is another version
of the law of large numbers which states that the sum of independent
random numbers from different distributions will tend to the sum of the

E x2() 8
n
--- 1

k 1=

n
4

∑≈ 8
n
--- n

4
---× 2= =

σ2 2 16
π2
------–=

σ 2 16
π2
------–=

N 4n
n

------ 2n 16n
π2

---------–,⎝ ⎠
⎛ ⎞

F x w
2
----+ 4n

π
------; 2n 16n

π2
---------–,⎝ ⎠

⎛ ⎞ F x w
2
----–⎝ ⎠

⎛ ⎞ 4n
π

------; 2n 16n
π2

---------–,⎝ ⎠
⎛ ⎞–

Figure 8

Figure 7
February 2008 | Overload | 17

FEATURE RICHARD HARRIS
averages of those distributions. Known as the strong law of large numbers,
it requires that the standard deviations of those distributions have a
particular property which happens to be satisfied if they do not grow
without limit, or in other words are all less than some finite number. For
cities in the unit square, this will be true for any reasonable definition of
distance and so this approximation is actually more reasonable for normal
TSPs than it is for regular TSPs.
Unfortunately, the expression for the average step length is a little bit more
complicated this time. If we represent a pair of points by their coordinates
on the unit square, (x, y) and (a, b), we have

Once again, this is because the integral is the continuous limit of a sum.
The fraction is the limit of the sum of the distances between all pairs of
points in the unit square divided by the number of such pairs.
For the usual definition of distance, the integral becomes

Whilst I’m not willing to assert that this does not have a closed form
solution, it’s too complicated for me to attempt. If we change the cost of
travelling between cities to the square of the distance it becomes a little
easier however.

Continuing in the same vein leads to the result

The average cost of a tour should therefore be approximately equal to 1/3n.

If you are interested, I invite you to investigate the accuracy of this
approximation for different numbers of cities. You may be surprised as to
just how accurate it actually is.
So is there anything more that can be said about the statistical properties
of tours through TSPs? Well certainly, but not by me as I am afraid I have
exhausted my mathematical toolbox. But this is an active area of research
and a great many results have been found, of which just a few are described
below.

Beardwood, Halton and Hammersley [Beardwood59] proved that the
expected length of the shortest path through a random TSP tends to a value
proportional to the square root of the number of cities.
Jaillet [Jaillet93] examined the probabilistic TSP in which each city has a
probability that it may be skipped during the tour and provided bounds on
the expected length of the shortest tour.
Agnihothri [Agnihothri98] examined the travelling repairman problem in
which a repairman must travel to fix machines when they break down and
developed a mathematical model with which expected travelling time,
amongst other things, can be calculated.
And you, dear reader, may be able to shed further light on the properties
of either the regular or normal TSP, and if you do please let me know.

Acknowledgements
With thanks to Larisa Khodarinova for a lively discussion on group theory
that led to the correct count of distinct tours and to Astrid Osborn and John
Paul Barjaktarevic for proof reading this article.

References and further reading
[Agnihothri98]Agnihothri, ‘A Mean Value Analysis of the Travelling

Repairman Problem’, IEE Transactions, vol. 20, pp. 223-229, 1998.
[Beardwood59]Beardwood, Halton and Hammersley, ‘The Shortest Path

Through Many Points’, Proceedings of the Cambridge Philosophical
Society, vol. 55, pp. 299-327, 1959.

[Jaillet93] Jaillet, ‘Analysis of Probabalistic Combinatorial Optimization
Problems in Euclidean Spaces’, Mathematics of Operations
Research, vol. 18, pp. 51-71, 1993.

Archimedes, On the Measurement of the Circle, c. 250-212BC.
Basel and Willemain, ‘Random Tours in the Travelling Salesman

Problem: Analysis and Application’, Computational Optimization
and Applications, vol. 20, pp. 211-217, 2001.

Clay Mathematics Institute ‘Millennium Problems’,
http://www.claymath.org/millennium.

Hoffman and Padberg, ‘Travelling Salesman Problem’, Encyclopedia of
Operations Research and Management Science, Gass and Harris
(Eds.), Kluwer Academic, Norwell, MA, 1996.

E l()

dist x y,() a b,(),() xd y d ad bd
0

1

∫
0

1

∫
0

1

∫
0

1

∫

1 x d y d a d b d
0

1

∫
0

1

∫
0

1

∫
0

1

∫

--=

dist x y,() a b,(),() xd y d ad bd
0

1

∫
0

1

∫
0

1

∫
0

1

∫=

E l() x a–()2 y b–()2+()
1
2

 xd y d ad bd

0

1

∫
0

1

∫
0

1

∫
0

1

∫=

E l() x a–()2 y b–()2+ xd y d ad bd
0

1

∫
0

1

∫
0

1

∫
0

1

∫=

x2 2ax– a2 y2 2by b2+–+ + xd y d ad bd
0

1

∫
0

1

∫
0

1

∫
0

1

∫=

bx2 2abx a2b by2 b2y 1
3
---b3+–+ +–

0

1
 xd y d ad

0

1

∫
0

1

∫
0

1

∫=

x2 2ax a2 y2 y 1
3
---+–+ +– xd y d ad

0

1

∫
0

1

∫
0

1

∫=

E l() 1
3
--- 1

2
--- 1

3
--- 1

3
--- 1

2
--- 1

3
---+–+ +–=

4
3
--- 1–=

1
3
---=

A number of errors crept into the first of this series of articles. The
first of which was the title – while trying to clean up the layout of the
article header, I forgot that the second article (the one in this issue)
also covered the travelling salesman problem (and that ‘part one’
referred to this, not to the series as a whole).

We also managed to confuse 2θ with 2π on page 8 and to replace
the Greek character μ with a question mark in Table 2 (page 12).

Apologies to our readers and to Richard Harris for these errors.

Alan (ed).

Apology
18 | Overload | February 2008

FEATUREPAUL GRENYER
Testing Visiting Files and
Directories in C#
Testing code that accesses the file system is
not straightforward. Paul Grenyer looks at what
is involved.
n my previous article, ‘Visiting Files and Directories in C#’ [VFDC#],
I looked at how to use C# to remove a source tree and developed the
code into an enumeration method [EnumMethod] and visitor [Visitor]

compound that can be used for general purpose file and directory traversal
(Listing 1).
The article did not discuss any form of automated testing. This not only
makes me very uncomfortable, it also means the classes cannot be
modified or refactored safely. In this article I am going to look at how to
write automated tests for DirectoryTraverser and discuss the
differences between unit and integration testing and when to use them.

Unit and integration testing
The message about automated testing is finally getting through. However,
many organisations are still not doing it. The majority of those that are
using automated tests cannot see past unit testing or their unit tests are a
mixture of unit tests and integration tests. I’m going to use an example to

demonstrate the difference between a unit test and an integration test and
explain when each should be used and more importantly when unit tests
should not. Despite what some fanatics may refuse to concede, it is not
always appropriate or sensible to use a unit test and can often introduce
unnecessary complexity or volume code for little or no gain, especially in
noticeable performance.
Imagine you have a class, called HistoricPrices, that is used to
retrieve historic stock prices from a database. The class constructor takes
an IDBConnection interface that is used to make direct calls to a
database to retrieve the prices. A test is run every time the project
containing HistoricPrices is compiled by the developer on their local
machine. The developer needs the test to run quickly and give accurate
repeatable results, so instead of passing in a real DBConnection (the
class that implements IDBConnection in production) object they pass
in a fake [Fake]. The fake object has a number of hard-coded recordsets
that are mapped to a set of predetermined SQL strings. This means that
every time a particular SQL string is executed via the IDBConnection
interface to the fake object, the same recordset is always returned. As the
fake object does not actually talk to the database the recordset is returned
in (almost) zero time. This makes the tests very fast and easy to run. This
is a unit test.
The unit test only tests a very small part of the system, in this case just one
class. Every system should be tested as fully as possible. In the case of
HistoricPrices the interaction with a real database is vital and should
also be tested. The developer still requires the tests to give accurate
repeatable results, so instead of using a live database a test database is
constructed, tested against using the production DBConnection object
and torn down every time the test is run. The test takes some time to run
and tests the interaction between a HistoricPrices object and a real
database. This is an integration test.
In my experience, creating and dropping a SQL Server database on a
developer spec machine can take anything up to 20 seconds. That is a long
time to wait, so the developer is likely to be less keen to run the test every
time they compile. Therefore the integration test should be run, at the very
least, prior to a release and ideally prior to checkin, as part of a nightly build
of the entire system and/or as part of continuous integration [CI].
So, to recap, unit testing is about removing dependencies and writing tests
that run in (almost) zero time, so that they can be run every time the
compiler is invoked. Integration tests test the interaction between at least
two things. For example between two objects or between an object and a
database or an object and a file. This means that integration tests potentially

I

Paul Grenyer has been a member of ACCU since 2000. He
founded the ACCU Mentored Developers and serves on the
committee. Paul now contracts at an investment bank in
Canary Wharf. He can be contacted at
paul.grenyer@gmail.com

public interface IDirectoryVisitor
{
 void EnterDirectory(DirectoryInfo dirInfo);
 void VisitFile(FileInfo fileInfo);
 void LeaveDirectory(DirectoryInfo dirInfo);
}
public class DirectoryTraverser
{
 private IDirectoryVisitor visitor;
 public DirectoryTraverser(
 IDirectoryVisitor visitor)
 {
 this.visitor = visitor;
 }
 public void Traverse(string path)
 {
 Traverse(new DirectoryInfo(path));
 }
 private void Traverse(DirectoryInfo dirInfo)
 {
 visitor.EnterDirectory(dirInfo);
 foreach (
 DirectoryInfo subDir in
 dirInfo.GetDirectories())
 {
 Traverse(subDir);
 }
 foreach (FileInfo file in dirInfo.GetFiles())
 {
 visitor.VisitFile(file);
 }
 visitor.LeaveDirectory(dirInfo);
 }
}

Listing 1
February 2008 | Overload | 19

FEATURE PAUL GRENYER

all that needs to be done to write a unit test
is to mock these out and create a suitable
factory to create the mocks
take a while to run and traditionally this puts developers off running them
every time they invoke the compiler.

Unit testing DirectoryTraverser
The on l y pa r t s o f t he .Ne t l i b r a ry t ha t i n t rude i n t o
DirectoryTraverser are DirectoryInfo and FileInfo. So all
that needs to be done to write a unit test is to mock these out and create a
suitable factory to create the mocks when testing and the real objects when
in production. The problem is that DirectoryInfo and FileInfo do
not already have suitable interfaces, so new interfaces must be written and
the original classes wrapped. That in itself is not too much trouble.
Unfortunately GetDirectories and GetFiles methods return a
DirectoryInfo[] and FileInfo[] respectively and therefore their
return values must be mapped onto arrays of the new interface types.
Suddenly you have much more test code than code being tested and it is
far more complex, so a unit test is not appropriate or worthwhile in this
case.

Integration testing DirectoryTraverser
As previously stated, integration testing is the testing of how one or more
units or modules work together. In the case of DirectoryTraverser
we need to test how it integrates with the file system. This involves creating
a known set of directories and files, traversing them, checking the results
and, of course, cleaning up afterwards.

Creating directories and files
Before we consider how to create directories and files we must consider
where to create them. It needs to be a place where the following test code
can find them and where they won't interfere with anything else in the file
system. We could just pick a path, such as c:\temp, but that would only
work on Windows machines. .Net has the ideal solution:
 Path.GetTempPath()

The GetTempPath method returns the path to a directory that can be used
to store temporary files and directories. The path is specific to the operating
system in use. So on Windows it’s something along the lines of:
 C:\Documents and Settings\user\Local Settings\Temp

And on Linux it’s along the lines of:
 /home/user/tmp

Now we’re ready to create the directories and files. .Net makes this very
easy as both the Directory and File classes have create methods that
take a string:
 // Creating a directory.
 Directory.CreateDirectory("…");
 // Creating a file
 FileStream str = File.Create("…");
 str.Close();

The only thing to remember is that the File.Create method returns an
open FileStream and must be closed so the file can be accessed in the
test, as you cannot rely on Dispose being called in time.
As well as using different temporary paths, different operating systems
also use different directory separators. The Path.Combine method will
concatenate two strings together with the correct separator for the
operating system. So, for the path
 test\dir1\dir2

you would need to write:
 string fullPath = "test";
 fullPath = Path.Combine(fullPath, "dir1");
 fullPath = Path.Combine(fullPath, "dir2");

This is more than a little tedious, especially for long or multiple paths, and
is not especially clear. It would be much nicer to be able to write:
 string fullPath = MakePath("test", "dir1",
 "dir2");

The C# params keyword allows methods to take a varying number of
arguments and access them as an array, which in turn allows us to write:
 static private string MakePath(
 params string[] tokens)
 {
 string fullpath = "";
 foreach (string token in tokens)
 {
 fullpath = Path.Combine(fullpath, token);
 }
 return fullpath;
 }

All that’s left is to define the directories and file we want to create. This
is easily and clearly done using arrays (Listing 2).

string testFolderPath = Path.GetTempPath();
string[] testDirs = {
 MakePath(testFolderPath, "Test"),
 MakePath(testFolderPath, "Test","dir1"),
 MakePath(testFolderPath, "Test","dir1", "dir2"
),
 MakePath(testFolderPath, "Test","dir1", "dir2",
 "dir3") };
string[] testFiles = {
 MakePath(testFolderPath, "Test", "dir1",
 "file1.txt"),
 MakePath(testFolderPath, "Test", "dir1",
 "file2.txt"),
 MakePath(testFolderPath, "Test", "dir1", "dir2",
 "file3.txt"),
 MakePath(testFolderPath, "Test", "dir1", "dir2",
 "file4.txt") };

Listing 2

20 | Overload | February 2008

FEATUREPAUL GRENYER
I have chosen a very simple directory structure: A root directory called
Test with two nested subdirectories, dir1 and dir2, each containing
two text files file1.txt, file2.txt, file3.txt and file4.txt
and a further empty subdirectory, dir3. This allows us to test that
DirectoryTraverser:

1. Enters and leaves directories in sequence.
2. Visits all files.
3. Visits all subdirectories.
4. Empty directories are handled correctly.

Creating the files and directories is easily accomplished using a couple of
foreach’s:
 // Create directories
 foreach (string dir in testDirs)
 {
 Directory.CreateDirectory(dir);
 }
 // Create files
 foreach (string file in testFiles)
 {
 FileStream str = File.Create(file);
 str.Close();
 }

The directories and files should be removed after the test. This can be
achieved using the Directory.Delete method and setting the
recursive flag (see Visiting Files and Directories in C#):
 Directory.Delete(testFolderPath + "Test", true);

Finally the create and delete code needs to be put into the SetUp and
TearDown methods of an NUnit [NUnit] test fixture (Listing 3).
This is the best of many options I considered for creating the directories
and files. Other options included:

Traversing XML to get the structure.
Storing the structure in a zip file that would be extracted each time
the test was run.
Writing the structure to an output file and using an external tool for
test verification.

 The advantage of the final solution is that it is simple and all in the code
with no need for an external XML file, zip file or external tool.

Test Visitor
DirectoryTraverser won’t do anything without a visitor. Of the four
tests listed in the previous section, 1 is the easiest to implement. All that
is needed is a stack. When EnterDirectory is called the directory path
is pushed onto the stack. When LeaveDirectory is called, a path is
popped from the stack and compared to the path of the directory just left.
As long as they are the same the test passes (Listing 4).

[TestFixture]
public class DirectoryTraverserTest
{
 private readonly string testFolderPath =
 Path.GetTempPath();
 static private string MakePath(
 params string[] tokens)
 {
 string fullpath = "";
 foreach (string token in tokens)
 {
 fullpath = Path.Combine(fullpath, token);
 }
 return fullpath;
 }
 [SetUp]
 public void Setup()
 {
 Directory.CreateDirectory(testFolderPath);
 string[] testDirs = {
 MakePath(testFolderPath, "Test"),
 MakePath(testFolderPath, "Test","dir1"),
 MakePath(testFolderPath, "Test","dir1",
 "dir2",
 MakePath(testFolderPath, "Test","dir1",
 "dir2", "dir3")) };
 foreach (string dir in testDirs)
 {
 Directory.CreateDirectory(dir);
 }
 string[] testFiles = {
 MakePath(testFolderPath, "Test", "dir1",
 "file1.txt"),
 MakePath(testFolderPath, "Test", "dir1",
 "file2.txt"),
 MakePath(testFolderPath, "Test", "dir1",
 "dir2", "file3.txt"),
 MakePath(testFolderPath, "Test", "dir1",
 "dir2", "file4.txt") };
 foreach (string file in testFiles)
 {
 FileStream str = File.Create(file);
 str.Close();
 }
 }
 [TearDown]
 public void TearDown()
 {
 Directory.Delete(testFolderPath,true);
 }
}

Listing 3
February 2008 | Overload | 21

FEATURE PAUL GRENYER
To run the test, an instance of the visitor must be created and passed to an
instance of DirectoryTraverser. Then the DirectoryTraverser
instance must be passed the path to traverse:
 [Test]
 public void TraverseDirectory()
 {
 string testPath = Path.Combine(
 testFolderPath, "Test");
 DirRecorder dirRecorder = new DirRecorder();
 DirectoryTraverser trav =
 new DirectoryTraverser(dirRecorder);
 trav.Traverse(testPath);
 }

The easiest way to ensure that all file and directories are entered and all
files are visited is to create a list of both and compare them to lists of
expected directories and files. The order in which directories are entered
and files are visited is not guaranteed, so all lists must be sorted. The

expected lists can be generated at the same time as the physical directories
and files are created (the highlighted code in Listing 5 shows the
modifications).
The visitor can be modified to keep a list of entered directories and visited
files, and accessors provided to retrieve the lists. Again, highlighted code
in Listing 6 shows the modifications.
Then the TraverseDirectory test can be modified to compare the lists
of visited directories and files with the expected lists (Listing 7).
This completes the implementation of the integration test for
DirectoryTraverser. Running the test with the NUnit console gives the
output shown in Figure 1.
The NUnit GUI gives the satisfying green bar. I successfully ran this test
on both Windows XP and SuSE [SuSE] Linux under Mono [Mono].

Acknowledgments
Thank you to Kevlin Henney for guidance and sanity checking and the
members of accu-general for healthy discussion on testing techniques.
Thank you to Caroline Hargreaves, Roger Orr and Adrian Fagg for review.

class DirRecorder : IDirectoryVisitor
{
 private Stack<string> lastDir =
 new Stack<string>();
 public void EnterDirectory(
 DirectoryInfo dirInfo)
 {
 lastDir.Push(dirInfo.FullName);
 }
 public void VisitFile(FileInfo fileInfo)
 {
 }
 public void LeaveDirectory(
 DirectoryInfo dirInfo)
 {
 Assert.AreEqual(
 lastDir.Pop(), dirInfo.FullName);
 }
};

Listing 4

[TestFixture]
public class DirectoryTraverserTest
{
 private List<string> expectedDirs =
 new List<string>();
 private List<string> expectedFiles =
 new List<string>();
 ...
 [SetUp]
 public void Setup()
 {
 ...
 foreach (string dir in testDirs)
 {
 expectedDirs.Add(dir);
 Directory.CreateDirectory(dir);
 }
 expectedDirs.Sort();
 ...
 foreach (string file in testFiles)
 {
 expectedFiles.Add(file);
 FileStream str = File.Create(file);
 str.Close();
 }
 expectedFiles.Sort();
 }
 ...
}

Listing 5

class DirRecorder : IDirectoryVisitor
{
 private List<string> dirs = new List<string>();
 private List<string> files = new List<string>();
 private Stack<string> lastDir =
 new Stack<string>();
 public List<string> Dirs
 {
 get
 {
 dirs.Sort();
 return dirs;
 }
 }
 public List<string> Files
 {
 get
 {
 files.Sort();
 return files;
 }
 }
 public void EnterDirectory(
 DirectoryInfo dirInfo)
 {
 dirs.Add(dirInfo.FullName);
 lastDir.Push(dirInfo.FullName);
 }
 public void VisitFile(FileInfo fileInfo)
 {
 files.Add(fileInfo.FullName);
 }
 public void LeaveDirectory(
 DirectoryInfo dirInfo)
 {
 Assert.AreEqual(
 lastDir.Pop(), dirInfo.FullName);
 }
};

Listing 6
22 | Overload | February 2008

FEATUREPAUL GRENYER
References
[CI] Continuous Integration: http://en.wikipedia.org/wiki/

Continuous_Integration
[EnumMethod] http://www.two-sdg.demon.co.uk/curbralan/papers/

ATaleOfThreePatterns.pdf
[Fake] http://martinfowler.com/articles/

mocksArentStubs.html#TheDifferenceBetweenMocksAndStubs
[Mono] http://www.mono-project.com/
[NUnit] http://www.nunit.org/
[SuSE] http://www.novell.com/linux/
[Visitor] Design patterns: elements of reusable object-oriented software

by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.
ISBN-10: 0201633612 ISBN-13: 978-0201633610

[VFDC#] Visiting Files and Directories in C#.
http://www.marauder-consulting.co.uk/articles.php

[TestFixture]
public class DirectoryTraverserTest
{
 private readonly string testFolderPath =
 Path.GetTempPath();
 private List<string> expectedDirs =
 new List<string>();
 private List<string> expectedFiles =
 new List<string>();

 static private string MakePath(
 params string[] tokens)
 {
 string fullpath = "";
 foreach (string token in tokens)
 {
 fullpath = Path.Combine(fullpath, token);
 }
 return fullpath;
 }

 [SetUp]
 public void Setup()
 {
 Directory.CreateDirectory(testFolderPath);

 string[] testDirs = {
 MakePath(testFolderPath, "Test"),
 MakePath(testFolderPath, "Test","dir1"),
 MakePath(testFolderPath, "Test","dir1",
 "dir2"),
 MakePath(testFolderPath, "Test","dir1",
 "dir2", "dir3") };

 foreach (string dir in testDirs)
 {
 expectedDirs.Add(dir);
 Directory.CreateDirectory(dir);
 }
 expectedDirs.Sort();

 string[] testFiles = {
 MakePath(testFolderPath, "Test", "dir1",
 "file1.txt"),
 MakePath(testFolderPath, "Test", "dir1",
 "file2.txt"),
 MakePath(testFolderPath, "Test", "dir1",
 "dir2", "file3.txt"),
 MakePath(testFolderPath, "Test", "dir1",
 "dir2", "file4.txt") };

Listing 7

 foreach (string file in testFiles)
 {
 expectedFiles.Add(file);
 FileStream str = File.Create(file);
 str.Close();
 }
 expectedFiles.Sort();
 }
 [Test]
 public void TraverseDirectory()
 {
 string testPath = Path.Combine(
 testFolderPath, "Test");

 DirRecorder dirRecorder = new DirRecorder();
 DirectoryTraverser trav =
 new DirectoryTraverser(dirRecorder);
 trav.Traverse(testPath);

 Assert.AreEqual(
 expectedDirs, dirRecorder.Dirs);
 Assert.AreEqual(
 expectedFiles, dirRecorder.Files);
 }
 [TearDown]
 public void TearDown()
 {
 Directory.Delete(
 testFolderPath + "Test",true);
 }
}

Listing 7 (cont’d)

NUnit version 2.4.3
Copyright (C) 2002-2007 Charlie Poole.
Copyright (C) 2002-2004 James W. Newkirk, Michael C. Two, Alexei A. Vorontsov.
Copyright (C) 2000-2002 Philip Craig.
All Rights Reserved.

Runtime Environment -
 OS Version: Microsoft Windows NT 5.1.2600 Service Pack 2
 CLR Version: 2.0.50727.832 (Net 2.0.50727.832)

.
Tests run: 1, Failures: 0, Not run: 0, Time: 0.188 seconds

Figure 1

February 2008 | Overload | 23

FEATURE ROBERT JONES
Generics Without Templates
Robert Jones presents an alternative
implementation of C++’s std::vector that can be
used the absence of templates and exceptions.
Introduction
Templates and the STL are aspects of modern C++ that I’d imagine few
of us would want to be without. However that was exactly the environment
I encountered in a recent role at an embedded software house.
The company I worked for produced a re-useable software platform, which
was required to compile under numerous compilers (some known and
some not yet known), and so the company had taken the route of writing
their software in a subset of C++ that was known by experience to be
supported reliably by all the compilers under consideration. This subset,
broadly modeled on Embedded C++, did not include templates, and by
implication the STL, nor did it include exceptions.
Lack of access to the STL was a source of frustration to some of the more
progressive programmers in the company, most notably the lack of
comprehensive and predictable generic containers.
This article looks at providing a substitute for the STL’s vector container,
which behaves as much like the STL version as possible. Some the
techniques used could equally be applied to other containers and other
template classes.

Syntax
The syntax of declaring and using the vector should be as close to the STL
syntax as possible, and in particular not impose unexpected requirements
and dependencies on the build system (e.g., not demanding that scripts
generate code). Vectors should be declarable in any scope, for any type
(including built-ins) without special syntax or conditions. This is rather
harder than it first appears, since to mimic the STL containers the vector

must exhibit copy-in/copy-out and copy-internally semantics, but the
built-in types do not have copy constructors. Listing 1 shows examples of
vector usage.

Design choices
Back in the old days (which I can’t recall, of course), the standard way to
handle anything generically was void* pointers, and this is the approach
used here. A core implementation is written using void* pointers, which
is then wrapped in a presentation layer to respect type. To faithfully
implement STL vector semantics, the void* implementation must be
provided with the means to create and destroy instances of the client type,
and this is provided by the presentation layer through callback functions.
As an implementation detail, the void* implementation is written to use
the Pimpl idiom, both to more fully hide implementation details and to
facilitate an efficient no-throw swap() method. The presentation layer is
finally implemented by a large macro of single line inline methods which
cast type and then call the corresponding method in the core
implementation.

Robert Jones has been programming in C++ for many
years, since the early days when C++ was only available as
a cross-compiler. His experience has been primarily in
embedded environments, especially telecoms. Last year he
attended his first ACCU conference and found the
experience utterly engaging. He can be contacted at
robertgbjones@gmail.com

Listing 1

#include "vector.hpp"

vector(int) myIntVec;
typedef vector(int) IntVec;
vector(IntVec) myIntVecVec;

namespace MySpace {
 typedef vector(char) myCharVec; }

class X { /* ... */ };
vector(X) myXVec;
class Y { vector(X) myNestedXVec; };

Listing 2

class VectorCore
{
public:
 typedef void * value_type;
 typedef const void * const_value_type;

 typedef void * iterator;
 typedef const void * const_iterator;
 // ...
 VectorCore(Traits const &);
 VectorCore(VectorCore const &);
 ~VectorCore();
 VectorCore & operator = (
 VectorCore const &);

 unsigned size() const; // ... and empty
 // capacity, etc
 value_type operator[](unsigned) const;
 value_type front() const; // ... and back.
 iterator begin(); // ... and end (const
 // and non-const)
 iterator insert(iterator, const_value_type);
 // ...various other function signatures.
 void swap(VectorCore &);

private:
 struct Impl;
 Impl * pimpl;
};
24 | Overload | February 2008

FEATUREROBERT JONES

the only information needed by the generic
code is the copy constructor, destructor and

client type size
Implementation
The core implementation is mainly predicable and straight-forward
(Listing 2: VectorCore interface).
All the methods and method signatures in this implementation are easily
deducible from an examination of any STL reference, such as Josuttis, with
the exception of the constructor signature:
 VectorCore::VectorCore(Traits const &)
This is where the characteristics of the client type are made available to
the generic implementation, and it turns out that the only information
needed by the generic code is the copy constructor, destructor and client

type size. To implement the STL’s resize(unsigned) method
signature would also require that a default constructor be provided, which
seems too onerous a requirement to demand of all types when only some
types will require the resize(). Using templates, the default constructor
and resize signature can be provided or not on a per type basis, but using
this implementation technique it is for all types or none. It is of course only
that specific signature which is affected, the full resize(unsigned,
const_value_type) signature is supported.
The Traits type packages the necessary functions and presents them
with void* interfaces for the implementation (Listing 3: Declaration of
type traits).
The method signatures of the Impl pimpl implementation class closely
mirror signatures of the VectorCore class, including respecting
constness down to the lowest possible level. The final implementation is
done with no knowledge of the ultimate client type beyond that passed in
generically through the Traits structure. Any copying or deletion of
vector elements must manually invoke the appropriate functions to
maintain correct copy semantics. In accordance with the requirements of
STL vector implementations, this implementation ultimately uses a C-
style array, although since the implementation is unaware of type it is an
array of char appropriately sized using the size parameter passed in the
type traits. It is unnecessary to present the full implementation here,
but most of the interesting characteristics of the implementation are
illustrated by the reserve() method (Listing 4: Example of a
VectorCore method implementation).

C++ compilers for embedded environments often lack support for some
of the relatively recent additions to the C++ language, most notably
templates and exceptions. There can be a number of reasons for this.

Some embedded environments are now very mature, and may now have
only a small active tool development community. As a result it may not
be commercially viable to update their compilers to support these
features. Supporting templates and exceptions adds significantly to the
complexity of the compiler, so the commercial case to make the
investment may not be attractive.

However, probably the most common reason for not supporting these
features is the obscurity they introduce to the runtime performance. Even
with a basic C++ implementation, the apparently simple act of exiting a
scope can cause a great deal of activity as a result of stack unwinding
and all the destructor calls that may be made. By including exceptions
and templates this unseen activity penalty is exacerbated. In the kind of
environments where the system must respond within a handful of
microseconds this kind of ‘under-the-hood’ activity can be problematic.

Embedded development and compiler features

Listing 3

class VectorCore
{
public:
 // ...
 struct Traits
 {
 typedef void (* Ctor)
 (value_type, const_value_type);
 typedef void (* Dtor)
 (value_type);

 Traits(Ctor ctor, Dtor dtor, unsigned size);
 Ctor ctor;
 Dtor dtor;
 unsigned size;
 };
 // ...
};

Listing 4

bool VectorCore :: Impl :: reserve(
 unsigned capacity)
{
 if (capacity > m_capacity)
 {
 void * data = :: operator new (
 capacity * m_traits.size);
 for (unsigned i = 0; i < m_size; ++ i)
 {
 value_type to = addressOf(data, i);
 value_type from = addressOf(m_data, i);
 m_traits.ctor(to, from);
 m_traits.dtor(from);
 }
 delete reinterpret_cast<char *>(m_data);
 m_data = data;
 m_capacity = capacity;
 }
 return true;
}

February 2008 | Overload | 25

FEATURE ROBERT JONES

taking in to account human factors, such as
willingness of uptake, this seemed the
better alternative
Wrapping the implementation
With the implementation in place, attention now turns to how to present
the functionality to the user in a useful and useable way. In the absence of
templates, it is the old and much derided mechanism of the trusty macro
to which we now turn (Listing 5: Presenting the container using a macro).
The core implementation is the only data member of the macro generated
class, and made private. An obvious alternative wrapping is to inherit
privately from the implementation class, and this was in fact the first
approach considered. However, the number of identifiers that it was
convenient to reuse from the base class produced lots of name clashes,
which could easily be resolved, but which made the macro textually longer
and rather more intimidating. On balance, and taking in to account human
factors, such as willingness of uptake, this seemed the better alternative.
(Listing 6: Introducing the embedded VectorCore.)
This macro generated class must also capture the type’s traits and pass
them to the implementation. There is a subtlety here in that the built in
types do not have a named constructor. To overcome this difficulty, a
nested type is declared which has only one data member, which is of the
client type. The underlying vector thus becomes a vector of this nested
Element type, which always has a named constructor and destructor.
(Listing 7: Fulfilling the traits requirements.)
The interesting parts of this structure are the parts we can’t see! The default
generated copy constructor and destructor provide access to the
corresponding methods of the client type, but allow the compiler to handle

the special cases of the built-in types. Using this wrapping technique does
not impose any penalty of additional copy operations on the client type.
The named methods provided by this wrapping can then be packaged into
static methods, with generic (void*) signatures. This repackaging makes
implicit assumptions, which will also be made by the iterator type, that a
pointer to void, client type or Element type can be freely cast between
the three types with no corruption introduced. This is broadly equivalent
to assuming the wrapping and typing do not impose additional padding or
alignment restrictions.

Listing 5

#define vector(TYPE) \
class VectorOf##TYPE \
{ \
 . \
 . \
 . \
}

Listing 6

#include "VectorCore.hpp"

#define vector (TYPE) \
Class VectorOf##TYPE \
{ \
Public: \
 typedef VectorCore core_type; \
 . \
 . \
 . \
Private: \
 core_type core; \
}

Listing 8

#define vector (TYPE) \
class VectorOf##TYPE \
{ \
public: \
 // ... \
 VectorOf##TYPE () : core(core_type :: Traits(\
 Element :: ctor, \
 Element :: dtor, \
 Element :: assign, \
 sizeof(Element) \
)) { } \
 // ... \
}

Listing 7

#define vector (TYPE) \
class VectorOf##TYPE \
{ \
 // ... \
private: \
 struct Element \
 { \
 static void ctor(\
 core_type :: value_type to, \
 core_type :: const_value_type from \
) \
 { new (to) Element(\
 * static_cast<Element const *>(from) \
); \
 } \
 static void dtor(core_type :: value_type p)\
 { static_cast<Element *>(p) -> \
 Element :: ~Element(); } \
 \
 value_type client; \
 }; \
 // ... \
}

26 | Overload | February 2008

FEATUREROBERT JONES

we should not be misled into believing
it is more than it is
We now have all the basic mechanisms necessary to complete the vector
class. To construct a default vector, the constructor must package the
necessary traits and pass them down to the core implementation. (Listing
8: Passing traits to the implementation.)
And provide a full complement of method signatures consistent with the
STL vector implementation (Listing 9: Populating the macro class).

Limitations
So what have we achieved, and is it fit for purpose? Well, we have a
‘template’ for a generic vector, that looks and feels much like the STL’s
vector, however we should not be misled into believing it is more than
it is. This is only a generic container, not a poor man’s version of templates.
There are many specific limitations.

The vector may only be instantiated with a type represented by a
single identifier. This is only true because the type is used to form
the name of the vector type, and if an alternative naming strategy
were used, it would possible to instantiate the vector with derived
types.

The vector may only be instantiated once for a given type in a given
scope. Again this is because of the vector naming strategy. If
multiple instances of an instantiated vector type are required, a
typedef may be employed.
Each instantiation of the vector is a distinct type, unrelated to any
other instantiation.

Conclusion
In this article a techniques has been presented to fabricate a template-like
generic container in circumstances where templates are not available.
Although being far from a perfect solution, the resulting container permits
code to be written in a more familiar and contemporary style, and is an
advance on the previous home-grown container that it superseded.

Listing 9

#define vector (TYPE) \
class VectorOf##TYPE \
{ \
public: \
 // ... \
 typedef value_type * iterator; \
 typedef value_type const * const_iterator; \
 // ... \
 size_type size() const { return core.size();} // etc,... \
 \
 value_type & operator[](unsigned idx) \
 { return * static_cast<value_type *>(\
 core[idx]); } \
 value_type const & operator[](unsigned idx) const \
 { return * static_cast<value_type const *>(\
 core[idx]); } \
 value_type front() const \
 { return * static_cast<value_type *>(core.front()); } \
 value_type back() const \
 { return * static_cast<value_type *>(core.back()); } \
 \
 iterator begin() // ... + end, const & non-const \
 { return static_cast<iterator>(core.begin()); } \
 void insert(iterator pos, \
 const_iterator begin, const_iterator end) \
 { core.insert(pos, begin, end); } \
 // ...various other function signatures. \
 void swap(VectorOf##TYPE & other) \
 { core.swap(other.core); } \
 // ... \
}

February 2008 | Overload | 27

FEATURE ALLAN KELLY
Future Workers (Prototype)
What does it mean for IT workers to be
prototype knowledge workers?
Knowledge workers have high degrees of expertise, education,
or experience, and the primary purpose of their jobs involves

the creation, distribution, or application of knowledge.
Davenport, Thinking for a Living, 1995

riters and experts on the knowledge economy and knowledge
workers frequently cite software developers as examples of
knowledge workers. Yet it is rare for those in IT, or writers about

IT, to discuss the software developers as knowledge workers. But then:
why would they? What difference does it make?
When we view software developers as knowledge workers and consider
development activities as knowledge creation, we gain many useful
insights into the process by which software is developed and deployed. By
recognizing IT staff as knowledge workers a rich field of literature and
experience opens up that we may learn from to help improve our own
practice.
From the same book quoted above we can distil a list of knowledge work
characteristics:

Knowledge workers like autonomy; they don’t like being told what
to do.
Specifying detailed steps to follow is less valuable than in other
types of work.
Knowledge workers find it difficult to describe what they do in
detail; if you want to know you are better off watching.
Not only do knowledge workers find it difficult to describe what
they do but they are aware of the value of knowledge and don’t share
it without a motivation.
Even though they may not be able to describe what they do these
workers often have good reason for doing what they do and have
often thought about the way they work in advance.
Commitment matters and makes a huge difference in productivity.

Two things stand out from this list: it is a list of developer characteristics;
any doubt that developers are knowledge workers should be dispelled.
Secondly, an individual with these characteristics is unlikely to relish
routine, factory-like, work. The traditional view of management is not
applicable to these workers.
Recognizing IT workers are knowledge workers also recognizes that they
are not unique. They share the same characteristics as other knowledge
workers. Neither are the problems they encounter unique. The
opportunities and problems faced by IT staff and their managers are quite
legitimate and are shared by other modern knowledge workers.
Consequently it is wrong to think of the ‘IT-geek’ as a class apart.
Development activities – specifying, designing, coding and testing new
software – are knowledge activities. Such activities are completely
different from traditional factory lines processes where a worker’s
individual knowledge makes little immediate difference to the end
product. Having recognized this critical difference it becomes meaningless
to characterize software development as a factory process.

Many previous attempts to change the way IT staff worked were misplaced
because they failed to recognize the roles of knowledge and the
characteristics of knowledge workers.
Recognising IT workers as knowledge workers allows us to learn from the
existing body of knowledge on the subject. IT workers are not alone, they
are knowledge workers and there is much to learn from other knowledge
workers and from research and literature about knowledge work in general.
There is no need for IT managers (and writers) to reinvent the wheel.
Yet, in another way the existing literature, research and experience cannot
help IT workers and their managers. This is because software developers,
in particular, are at the cutting edge of knowledge work. They are in many
ways the prototype of the future knowledge worker; they are pushing the
boundaries of twenty first century knowledge work.
This occurs because, to paraphrase Karl Marx, software developers control
the means of production. Modern knowledge work is enabled by and
dependent on information technology: e-mail for communication, web-
sites for distribution, databases for storage, word processors for writing
reports, spreadsheets for analysis – the list is endless! These technologies
are created by software developers and used by legions of knowledge
workers worldwide. The key difference between software knowledge
workers and the others is that other knowledge workers can only use the
tools that exist. If a tool does not exist they cannot use it. Conversely,
software developers have the means to create any tool they can imagine.
Consequently it was a programmer, Ward Cunningham who invented the
Wiki. Programmers Dan Bricklin and Bob Frankston invented the
electronic spreadsheet. Even earlier another programmer, Ray Tomlinson,
invented inter-machine e-mail. This does not mean that non-programmers
cannot invent electronic tools. Others can invent tools but for programmers
the barriers between imagining a tool and creating the tool are far lower.
Consequently programmers create many more tools than other types of
worker. Some tools fail, others are very specific to a specific problem,
organisation or task in hand but when tools do work it is programmers who
get to use them first. In addition because programmers have had internet
access for far longer than any other group the propensity to use it to find
tools and share new tools is far greater. Tools like Cunningham’s Wiki
were in common use by software developers years before they were used
by other knowledge workers.
Early internet access has had other effects too: IT workers were early
adopters of remote working, either as individual home workers or as
remote development teams; IT people are far more likely to turn to the web
for assistance with problems and more likely to find it because IT
information has been stored on the web since the very beginning.
The net effect of these factors and others means that software developers
are often the first to adopt new tools and techniques in their knowledge
work. They are also the first to find problems with such tools and
techniques. Consequently, these workers are at the cutting edge of twenty-
first century knowledge work; they are the prototype for other knowledge
workers. Other knowledge workers, and their managers, can learn from the
way IT people work today provided we recognize these workers as
knowledge workers.

W

Allan Kelly served his apprenticeship developing software for
financial, communication and utility systems. He is now a
consultant and interim manager who specialises in advising
and helping the most challenged development teams deliver
and improve. Allan can be reached at allan@allankelly.net.

This piece is an excerpt from Allan’s new book Changing Software
Development (John Wiley and Sons, 2008) available from all good
bookshops – and a few less good ones too.
28 | Overload | February 2008

	When Things Go Wrong
	Watersheds and Waterfalls
	The PfA Papers: Deglobalisation
	The Regular Travelling Salesman, Part 2
	Testing Visiting Files and Directories in C#
	Generics Without Templates
	Future Workers (Prototype)

