

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Over-Generic Use of Abstractions as a Major
Cause of Wasting Resources
Sergey Ignatchenko finds that good intentions can
lead to performance problems.

7 Integrating Testers Into An Agile Team
Allan Kelly considers how to fit testing into your
development process.

10 Thread-Safe Access Guards
Bjørn Reese develops a template to help with
accessing shared data.

13 An Introduction to Test-Driven Development
Paul Grenyer gives a worked example showing the
various types of tests.

21 Why [Insert Alogorithm Here] Won’t Cure Your
Calculus Blues
Richard Harris investigates how to use floating
point calculations properly.

OVERLOAD 104

August 2011

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 105 should be submitted
by 1st September 2011 and for
Overload 106 by 1st November
2011.

EDITORIAL RIC PARKIN
Rise of the Machines
Been having trouble with
technology or simple devices?
Ric Parkin fears for our future
I’ve not been having a good run of luck with machines.
I almost feel like they’re out to get me, but that is
taking anthropomorphisation too far and they’d hate
that.
First the oven broke. Fortunately it was just the heating

element that needed replacing, but it still took the engineer three tries over
a week or so to get the right part as there were several possible ones, all
with subtly different attaching holes and all incompatible.
Then I was awoken at 3:30am by water dripping through the ceiling. Turns
out the water tank was leaking, and after a few goes trying to fix, I was
told that the whole cold water system needed replacing – apparently the
ex-councellor who’d owned the house in the 1970s had used it to showcase
local businesses, and all the piping was made by a local company ... but
only for a year or so. It had never caught on as the acrylic pipes needed
gluing together, which meant you couldn’t test them for 24 hours, and
were pretty much impossible to repair piecemeal. Plus, since then standard
sizes have changed and you can’t get compatible parts. Given the size of
the job I’m getting the bathroom redone at the same time, and so am
looking at options, in particular which shower to have put in.
Then this weekend I came home to find a washing machine full of
undrained dirty water, with a couple of arbitary lights flashing.
What do these have in common? Well, I’ve got around to reading Donald
A. Norman’s classic book The Design Of Everyday Things [Norman] so
have been thinking about how bad much of design is, including physical
objects, electrical devices, and user interfaces. And I realised that my
rebellious machines showed various aspects of his ideas, good and bad,
and that many of them have lessons that can be applied to software.
So let’s look at my examples in more depth.
An oven heating element is remarkably simple. It’s just a heavy spiral of
metal that attaches to the electrics, and which, due to its high resistance,
heats up. It connect to a circuit controlled via a thermostat and the user’s
controls on the face panel, and is held in place with a central screw.
Unfortunately the usual element for that make has two screw holes on
either side, and so couldn’t be attached. A note was made of the model,
and after some searching online a new one was ordered – to find that it
wasn’t quite the right one, which didn’t fit either. Finally the correct one
was found, and installed in minutes.
What can be learnt here? First is to ask why on earth are there different
fittings? It is surely simple to standardise on a single connector, or have

a ‘universal’ bracket that has the right holes for any
oven’s need, perhaps with two outer holes as well

as a central. Having said that, there could be a
safety aspect – you wouldn’t want to install an

element that couldn’t cope with the current the oven would deliver. A good
solution to that is actually to have different connection types for the
different power ratings so that you cannot possibly install the wrong type.
But why did the wrong one get ordered? Well the types only differed in
subtle ways that were missed when searching. So here is another lesson:
make the differences obvious, perhaps via the number of rings, or the
connection orientation, or even colour coding of the insulation. As it was
they all looked the same.
As for the water system, one problem I found was knowing which bits
were what, what each valve did, and where did all these pipes go as they
usually disappeared under insulation or through the floor. What would
have made things easier would be to have put simple labels on the pipes
detailing their purpose, and perhaps even their measurements. When I get
the system replaced I’ll be adding them. Another idea I got from Stewart
Brand’s How Buildings Learn [Brand] is, before you hide the utilities
behind walls, plaster etc, take photos and put them in a book. The book
stays with the house, and forms a record of the hidden anatomy of the
place, and will become invaluable to yourself and any future owners and
maintainers. And of course, as the pipes and shower are going to be boxed
in, I’ll make sure there’s some way of access for maintenence.
In contrast the washing machine is a bit more of a success story, but there
are still lessons to be learnt. In contrast to most models with their
enormous number of controls, dials and displays, which are so
complicated that you tend to learn one or two common settings and never
use the rest, this one has gone for a very simple but useful set. See Figure 1.
It comprises an outer ring of five buttons – one power with embedded red
‘locked’ LED , and four wash types, all of which have simple logos and
temperature, and are back illuminated; an inner ring of LEDs; and a central
logo. To start a wash, press the power button and the LEDs will light up
one by one and a short tune indicates it booting quickly. What next? It
prompts by having the wash buttons’ lights gently fading on and off. Then
press your chosen wash button, and that’s it! Two presses – that’s all that’s
needed to start one of the six wash types. Ooops, yes you spotted it....four
buttons, six types. Why did they spoil the simplicity of the single buttons?
How can I remember how to do the others? They do redeem themselves
partly by having an aide memoire of the types and the button presses
needed on a little panel when you open the door to put the washing in.
And one of the types – rinse only – is detected automatically by sensing
detergent on the clothes at the start. But a mark lost for overloading the
buttons for the last two.
As the cycle progresses, the LEDs light up one by one giving a simple
indicator of how long is left, spoilt only by the possibility of multiple
rinses making the last few significantly longer than the others – thankfully
it’s not as wildly inaccurate as the Windows progress dialog. Completion

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | August 2011

EDITORIALRIC PARKIN
is indicated by a long beep, and in case you miss that the LEDs fade on
and off to show it’s finished, which really stands out in a dark room.
What if you want to cancel it? Just hold the power button till it beeps and
starts to flash. Notice you have to hold it, otherwise you could cancel by
accident. Would have been even better if it gave some feedback while you
held it to show you were doing something correct, perhaps beeping
repeatedly (but not rapidly – that might make you think it was an incorrect
action), but holding a power button to turn off is a pretty common
convention.
The only other thing that’s wrong I spotted when the engineer came to look
at it. If you noticed, the logo of the make is a play on the standard symbol
for a power button, and as it’s also curved to stand out, quite sensibly that
was the first button he pressed to switch it on. An improvement might have
been to actually make that the power button.
So here we have a fairly clean, simple user interface, with obvious options
for the day-to-day things, a reminder of the less obvious, and useful
feedback without information overload. Why can’t more devices be made
this useable?
And not just physical devices – these examples have their counterparts in
the world of software. For example, the popular distributed source control
system, git, seems to cause new users some confusion. The example, as I
understand it, involves some of the defaults – when you do the basic git
pull to get code, it gets only your current branch. But when you git
push, it pushes all your changes, including ones on other branches, to the
repository. Why the unexpected difference? It gets worse – if there is a
conflict on a different branch, it prevents you pushing, in a hard to fathom
way. Sure you can get used to these, but choosing good defaults would be
better. What sort of defaults? Well, ones that do the most obvious thing
given the rest of the context, and causes least damage if invoked
unexpectedly. In this case I’d say the best is to push/pull only the current,
and provide explicit options to provide a list, or all. This is a bit like having

sockets compatible only for safe things – make it obvious to do the right,
safe thing, but hard work (or impossible) to do anything stupid or unsafe.
This principle applies to tools, but also to API design. For example,
consider a function that returns a raw pointer. What is its lifetime? Do you
own it? How do you release it? You could document this, but that’s the
equivalent of those thick appliance manuals that you never read. Instead
(or on top of the harder to use API), encapsulate the ownership rules in a
smart pointer. Perhaps allow a ‘checked’ mode to detect incorrect usage,
so long as performance doesn’t suffer unduly. If there is an order of calls
required, make the orders obvious, perhaps by passing a token or object
back from one that needs to be passed to the next.
Similar ideas also apply to user interface design – make the obvious things
easy, and provide ways to recover from unexpected things, perhaps with
an undo facility. Also avoid mistakes in the first place by providing clear
feedback and indicators of what can be done next.
And, topically, security can learn from some of these principles. For
example, if you provide a voicemail facility, it could be a good idea to have
it disabled by default. If it’s on, by default only allow access from the phone
itself. Or allow only from known authorised numbers. And if from
anywhere, do not have a default password/pin, but
force one, perhaps with checks to discourage obvious
ones such as 1234 or part of the phone’s own number.
If such simple measures were in place, we might be a
rather different world...

References
[Brand] http://en.wikipedia.org/wiki/How_Buildings_Learn
[Norman] http://www.jnd.org/books.html#33

Figure 1
August 2011 | Overload | 3

http://en.wikipedia.org/wiki/How_Buildings_Learn
http://www.jnd.org/books.html#33

FEATURE SERGEY IGNATCHENKO
Over-Generic Use of Abstractons as a
Major Cause of Wasting Resources
We often find ways to hide complexity. Sergey
Ignatchenko looks at how this can be sub-optimal.
Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Bunny, and do not necessarily coincide with opinions of the translator and
Overload editors; please also keep in mind that translation difficulties from
Lapine (like those described in [LoganBerry]) might prevent us from
providing an exact translation. In addition, both the translator and
Overload expressly disclaim all responsibility from any action or inaction
resulting from reading this article.

A story to freeze the blood
Tharn (Lapine) – stupefied by terror

ere is the horror story told to me on a Christmas night by one of my
fellow rabbits (later he agreed to me publishing it on condition that I
will never reveal his name):

I will never forget the night it happened. It was a quiet night and I
was downloading a 2G ZIP file with Internet Explorer. Suddenly
there was a loud beep. I sprang out of sleep and looked at the
monitor. Nothing looked out of the ordinary except there was a
message box saying that it needs 2G of free space on the drive.
‘Whaaaaaat?’ I thought, ‘Last time I saw the progress bar it was at
90% downloaded, what does it need another 2G for?’ Summoning
my courage I copied 2G of files to an external drive and clicked the
button to tell IE about it. All of a sudden IE started to copy the file
(which had already been downloaded) from its cache to the location
that I originally asked for. Positively tharn, I waited while this blood-
curdling process has been completed. When it was over I thought
that the worst was behind me. I couldn’t have been more wrong.
When I clicked ‘Open’ my computer froze: even the mouse cursor
didn’t move. After several long horrifying minutes, when my
trembling hand was already reaching for the power button, I
suddenly noticed a constantly lit HDD light. ‘It is not a virus, the damn
thing is just swapping!’ flashed through my mind. Oh, it was a great
relief. From that point it didn’t take more than ten minutes (swapping
the 1G of RAM I have is a rather long process) and half a dozen of
clicks to unpack the whole ZIP file and reach what I needed.
Interestingly enough, I didn’t need to free any more space for the
unpacked files.

Cold-blooded analysis
After listening to such a chilling story, we’ll have to warm our blood a bit
before we start analyzing this horrifying sequence of events in cold blood
(suitable methods of heating are beyond the scope of this article). Putting
on a deerstalker and using Holmesian deduction [Holmes], we can
establish the following points rather quickly:

1. IE always downloads a file to a cache rather than to the final
destination, even though it removes it from the cache right after the
copying.

2. IE always copies the file from the cache to the final destination and
then deletes the cached one, even if they are on the same partition so
moving the file instead would be equivalent and orders of magnitude
faster.

3. When IE copies file from the cache to the final destination it doesn’t
block Windows from caching in memory the file being copied even
if the file is 2G in size and the total amount of RAM is 1G, which
makes it nothing but cache poisoning. Windows, on the other hand,
went to great lengths to perform this caching in the best possible
way (from its own point of view), swapping out active programs to
cache perfectly useless portions of the file.

None of the things above makes any sense in our case. But now we need
to understand the motives behind this horrible crime against the end-user
(who’s the one we’re all working for [NoBugs11]) and CO2 emissions.
Going further in our deduction exercise, we can easily notice that all three
cases are related to using an abstraction (or abstractions) which is useful
in many cases but fails in our specific case. For item 1, we can safely
assume that it was a concept ‘download everything to the cache’ which has
misfired. For item 2, it was the combination of two separate abstractions
‘after downloading, copy files from the cache to the destination’ and
‘remove file from the cache when it is no longer needed’, which became
deadly inefficient when used together because of the lack of interaction
between them. For item 3, it was an abstraction of ‘cache files in RAM’,
which makes sense in general, but when used for huge files such an
oversimplified approach has caused cache poisoning, and severely hit the
overall process.
The combination of these misused abstractions has caused about 6G of data
to be copied between RAM and the HDD without any real reason behind
it: first, IE has copied the 2G file from its cache to the final destination
(requiring 2G of data to be moved into memory, and then back to file for
a total of 4G); second, Windows swapped out (roughly) 1G of RAM while
the file was copied, and third, it swapped 1G of RAM back in. Still, even
if all this outright unnecessary operations are eliminated, the process will
still lack from end-user point of view: the user would still need to move
2G of data to another HDD to free the space, which is used only
temporarily.
And one more point

4. If we think how the end-user would ideally like to see it, we notice
that (given what is usually done with ZIP files) it is clearly possible
and feasible for IE to ask the user (even before downloading) if they
wants to extract the ZIP file ‘on the fly’; and if user knows that s/he
really only needs the extracted files then no extra copying will be
necessary, saving another 8G of HDD operations (4G for freeing
space, and 4G for unzipping).

We should note that the lack of implementation of item 4 can be attributed
to a ‘download file, then call application which handles it’ abstraction

H

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams [Adams].

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com
4 | Overload | August 2011

FEATURESERGEY IGNATCHENKO

when you repeatedly allocate and
deallocate memory from the common heap

it becomes fragmented with interlaced
used and unused blocks
which is very useful in general, but fails to address specific cases (for us,
downloading large ZIP files).

Generalization about being overly generic
The analysis we’ve done has shown that while there were multiple reasons
for such a deadly inefficient process, all the reasons which we were able
to deduce were related to the single root cause – abstractions and/or
concepts which are useful in general but lead to substantial inefficiencies
in a certain specific case. Let’s name this phenomenon an ‘Over-Generic
Use of Abstractions’, or OGUA. It is important to note that while the
primary responsibility for OGUA lies with developer who uses the
abstraction without proper applicability analysis, the way abstractions are
represented can themselves stimulate their misuse. One common example
is when abstraction is represented with an API which simply lacks the
functions necessary to avoid being over-generic. Still, we need to mention
that the potential of avoiding being over-generic is not an excuse to include
‘each and every function which might be needed by somebody in the
future’ into the API, and that the principle of ‘No Bugs’ Axe’ [NoBugs10]
should still be observed. In practice this means that by default such
functions to avoid being over-generic should not be included into the API,
but that whenever a concrete case is demonstrated which shows real
benefits which cannot be achieved otherwise, then such functions should
be added. Any of items 1–4 above are a very good example of such a
concrete case which calls to be fixed (if necessary – by extending APIs of
involved abstractions).

Clues in a heap
For a long time I was wondering: what are all the modern browsers doing
with memory? If you work with a browser, keeping a few dozens of open
tabs for several days, it tends to consume enormous amounts of RAM (a
browser taking 1G for two dozens of tabs open is not uncommon, and while
I won’t start the speech ‘in our day you could have a full-scale 3D game
within 41K’ again [NoBugs11a], even these days 1G is still an enormous
amount of memory).
Recently I’ve run into an in interesting feature of Internet Explorer (at least
IE8) which helps in researching this phenomenon. When you kill the IE
process (for example, using Task Manager), Internet Explorer
automatically re-launches the process and restores all the tabs you had
open to the very same state as they looked before the kill. So, in a few
seconds after killing the process we have the very same system, displaying
the very same information, as right before killing the process. One should
expect that nothing should have changed, right? Wrong – very often the
total RAM usage of the system drops and often the difference is pretty
large. Let’s take a look at Fig. 1. It shows the total memory usage during
the exercise I’ve described above. Originally memory usage was displayed
as 1.04G, then we killed the first process, memory usage went down
sharply, then was a small rebound (indicating what was really necessary
to show this information). Then we killed another IE8 process (by default,
IE8 opens one process per several tabs) and so on. As a result we’ve got
the system which is showing the very same pages, but using about 200M

(!) less RAM. And this isn’t the most impressive case – I’ve seen
occurrences when RAM usage has dropped from 1.5G to 800M after such
an exercise – still showing the very same pages (note to those who will try
to reproduce this effect – for maximum observable results you need to
spend a while in IE8, ideally several days, browsing lots of media-rich
pages – Yahoo, CNN and similar do just nicely – within the same tabs,
leaving the tabs open on the page which interests you).
Our findings indicate an obvious waste of resources, and in the search for
a culprit our detective instincts tell us that it should be either memory leaks
or a fragmented heap. As the problem of using enormous amounts of RAM
is common for all the modern browsers, which use very different engines,
it doesn’t look likely that every browser has memory leaks. So, using
Holmes’ favorite adage of ‘Once you eliminated the impossible, whatever
remains, however improbable, must be the truth’, we can point towards
heap fragmentation as a most likely suspect.
After faithful Watson takes a look at Holmes’ extensive library of bugs,
we find that heap fragmentation is a nasty and way-too-often overlooked
effect: when you repeatedly allocate and deallocate memory from the
common heap it becomes fragmented with interlaced used and unused
blocks, and often a new allocation cannot be satisfied by the heap even if
the total free memory is enough: some space is available, but it is just
allocated within chunks each of which are not big enough to allocate what
we need. Another related, but separate, effect is that, as allocation of
memory from the OS for the heap is typically based on CPU pages, it
means that to release a page back to OS, all objects on the page must be
freed. A typical page size these days is 4K and a typical object size is
around 100 bytes, so if, for example, we have allocated 10000 objects and
therefore got 256 pages from OS for them, and then we randomly
deallocate 9900 of the objects – statistically we’ll get only 173 pages back
leaving us with 100 100-byte objects taking 83 pages (332K) – a 3220 %
waste!
Now as we’ve identified our suspect, let’s find how he could have do his
scary job right under the very noses of Scotland Yard. Once again, it was

Figure 1
August 2011 | Overload | 5

FEATURE SERGEY IGNATCHENKO

separating processes merely to address heap
fragmentation looks like a huge overkill
inspired by an over-
gene ra l i z ed
abstraction: while the
concept of a ‘default
heap’ with functions like
malloc() and free()
conve n i en t l y f r ee t he
developer f rom thinking
‘where should this memory
go’, it turns out to be a curse in
disguise for long-lasting
applications which tend to
s u f fe r f r om he a p
fragmentation. In most
cases, to mitigate the effects of heap fragmentation it is necessary to have
separate heaps; some modern browsers (notably Chrome and IE) are
achieving this by putting different pages into separate processes. This has
other positive effects but what is obvious is that whenever a process is
killed its heap will be freed with all the accumulated fragmentation. Still,
separating processes merely to address heap fragmentation looks like a
huge overkill (and a waste of other resources too). A much better way
would be to take over control of memory allocation, for example using
Boost pool allocators [Boost], but applications which do this are very few
and far between.

Yet another case against OGUA
Another case which looks bad for the OGUA is the ubiquitous TCP
protocol. It provides a nice and neat abstraction of a reliable network
stream, and it works. Problems start when one needs to implement an
interactive service over TCP, which needs to provide different priorities
for different requests. TCP maintains rather large buffers on both sides of
connection, and doesn’t support priority itself (in theory, there is such thing
as TCP Out-of-band data, but it is well-known to be unreliable in practice,
see, for example, [TCPOOB]). It means that even if you implement your
system with priorities in mind, your users will still be affected by delays
introduced by TCP. These delays (unlike, for example, delays in transit)
exist not because some law of physics or informatics says that delay is
inevitable: this kind of delays is there for only one reason: TCP suffers
from OGUA (and this time it is not the fault of developers who’re using

it – these days there is simply no way around TCP if you need to transfer
data over the Internet, as even if you take big pains to implement your own
protocol over UDP it will be blocked in many practically important cases).
Of course, there are ways to bypass these delays (quite a few people have

managed to write interactive programs over TCP), but each of
these techniques will cause a waste of some other resource.

For example, the flag TCP_NODELAY is commonly
use to mitigate this problem in real-world
interactive systems, but will cause excessive

network traffic; reducing send/receive windows will
reduce throughput; and creating a second TCP connection
with smaller send/receive windows will also cause excessive

network traffic, not to mention the complexity of dual
connections.

Full-scale discussion of TCP and interactivity is very
complicated and can easily take the whole article, or
even a whole book, but what is already clear is that

this is also a case when a nice and neat abstraction
(which works in many practical scenarios) causes
a waste of resources when it faces certain tasks
with specific requirements.

Elementary, my dear Watson!
We have analyzed several significant cases of
criminal waste of resources, and have found

that despite the resources being very different in each case – from HDD
accesses to memory to network traffic – in all of them our main suspect
was the over-generalized use of abstractions, the fiendish OGUA. We will
see during an upcoming trial if the evidence we have gathered is enough
to get a guilty verdict from a jury based on ‘beyond reasonable doubt’, and
put this ‘Napolean of Waste’ behind bars for good.

References
[Adams] http://en.wikipedia.org/wiki/Lapine_language
[Boost] http://www.boost.org/doc/libs/1_46_1/libs/pool/doc/index.html
[Loganberry] David ‘Loganberry’, Frithaes! - an Introduction to

Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/
lapine/overview.html

[Holmes] http://en.wikipedia.org/wiki/
Sherlock_Holmes#Holmesian_deduction

[NoBugs10] ‘From Occam’s Razor to No Bugs’ Axe’, Sergey
Ignatchenko, Overload 100, December 2010

[NoBugs11] ‘The Guy We’re All Working For’, Sergey Ignatchenko,
Overload 103, June 2011

[NoBugs11a] ‘Overused Code Reuse’, Sergey Ignatchenko, Overload
101, February 2011

[TCPOOB] http://en.wikipedia.org/wiki/
Transmission_Control_Protocol#Out_of_band_data
6 | Overload | August 2011

http://www.boost.org/doc/libs/1_46_1/libs/pool/doc/index.html
http://en.wikipedia.org/wiki/Sherlock_Holmes#Holmesian_deduction
http://en.wikipedia.org/wiki/Sherlock_Holmes#Holmesian_deduction
http://en.wikipedia.org/wiki/Transmission_Control_Protocol#Out_of_band_data
http://en.wikipedia.org/wiki/Transmission_Control_Protocol#Out_of_band_data
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html

FEATUREALLAN KELLY
Integrating Testers Into
An Agile Team
Agile has usually concentrated on how to organise
developers. Allan Kelly shows how testers fit in.
hen a Software Tester first looks at Agile process descriptions
they see something missing: Testers, and, for that matter:
Testing.

It is not so much that Agile processes and teams ignore testing, it’s more
that they ignore Testers. This is for two reasons: originally Agile came
from Developers. Hence it is very developer centric and does not pay
enough attention to such roles as Tester, Product Managers and Business
Analysis. Second, Developers – like many others in the software world –
don’t really want to admit the need for Testers. Developers like to think
they can do it right and nobody needs to check on them. Call it arrogance
if you like.
Yet testing itself is taken very, very, seriously. One of the tenets of Agile
software development is a commitment to higher quality. If the thing
Developers produce is of better quality then there is less rework to be done,
so there is less disruption and overall productivity rises. This is the Quality
is Free argument advanced by Philip Crosby in the 1980s [Crosby80].
If proof is required look at Capers Jones’ book Applied Software
Measurement [Jones08]. Jones describes how IBM first discovered in the
early 1970s that the projects with the highest quality (lowest number of
bugs, bugs found and removed earliest) also had the shortest delivery
schedules and as a consequence the lowest costs. Jones’ data collected over
four decades supports this assertion.
Thus the Agile approach to testing is to inject more quality early in the
process. Practices such as automated unit tests – whether we call it Test
Driven or Test First Development, automated acceptance tests, pair-
programming and continuous integration all serve to improve the initial
quality of the software.
If these practices are not adopted teams have little or no chance of making
a successful release at the end of an iteration. If quality is not built into the
code from the start of the iteration it cannot be retrofitted at the end. In
order to make regular scheduled release of software it is necessary to
abolish the indeterminable test-fix-test cycle at the end of development.
See Figure 1 for how we imagine testing fits with development, and Figure
2 for the reality.
Software developers, and in particular the managers of development
teams, seem capable of a specific form of doublethink. When it first
becomes clear that a project is going to be late they get optimistic about
later phases. When something needs to be done the first place the schedule
is changed is in the test phase. Optimism wins and the time allowed for

testing is reduced – ‘this time we’ll be better’ while the final date is held
fixed.
When a project is eventually closed and people look back they inevitably
say ‘We should have allowed more time for testing’, yet a few weeks later
when the next project starts to slip the first place they cut is testing again.
If, through Agile techniques, we manage to fix this problem we are left
with the question: where do Testers fit in?
Furthermore, if we remove traditional requirements documents, then how
do Testers know what to test? Let me answer the second question in the
expectation that an answer to the first question will emerge.

How do I know what to test?
Dialogue over document is the norm for requirements in Agile teams.
Rather than try and write everything down in some kind of binding
contract, ideas are captured but details deferred until development. This
just-in-time approach to requirements elaboration relies on conversations
between the Product Owner and Developers.
Testers need to be involved in the same dialogue as the Developers and
Product Owner. Problems that remain are not so much because there is no
document but rather because there is a problem with the requirements, or
because Testers are cut out of the loop altogether. Either way, there is a
problem that needs to be addressed and documentation is not necessarily
the answer.
(I’m using the term Product Owner here. In most organizations this person
goes by the name of is a Business Analyst or Product Manager. The term
Product Owner originates from Scrum. What ever they are called, this is
the person who decides what should be in, and how it should be.)
Traditionally, team members focused on the document because, despite its
imperfections, it is the only thing that is available. The deeper problem is
often that nobody pro-actively owns the business need. All too often it is

W

Figure 1

Figure 2

Allan Kelly has held just about every job in the software world.
Today he provides training and coaching to teams and companies
in the use of Agile and Lean techniques to develop better software
with better processes. He is the author of Changing Software
Development: Learning to become Agile, numerous journal
articles and is currently working on a book of Business Strategy
Patterns. Contact him at http://www.allankelly.net.
August 2011 | Overload | 7

FEATURE ALLAN KELLY

Testers should have an automated
acceptance test ready in by the time
developers finish their coding
assumed that developers know best. The document was expected to answer
three questions:

1. What needs testing?
2. How should the functionality perform?
3. How should the functionality be tested?

Tests need to be created and run on a just-in-time basis. While tests need
to be created before a task is marked as done – otherwise how do you know
it is done? – they should not be done too far in advance.
When tests are created too far in advance two problems emerge: work may
be removed or postponed. Creating tests for work that is removed is a waste
of time. Secondly, only when the work is about to begin is it clearly
defined. In fact, at any time until the work begins information may arrive
which changes that which is to be done. So any tests there are written in
advance may need changing.
The mechanism which tells Developers what to work on next is the same
mechanism that should tell Testers what needs testing. This could be your
iteration planning meeting, or it could be the visual tracking system used
by the team. Either way, it should be clear that code is about to be cut,
therefore tests need to be created. It should also be clear that the code has
been developed and the tests are ready to run.
Before the code progresses to automated acceptance tests Testers may be
involved in keeping developers honest. They may ask the developer for
evidence that the work has been performed in a quality manner: Were unit
tests written? Was the code developed using pair programming? Or has a
second developer reviewed the code?
Testers should have an automated acceptance test ready by the time
developers finish their coding. This means Testers, like Developers, need
to understand what the Product Owner expects from the software. Again
the dialogue over document principle applies.
Testers need to be part of the dialogue, they need to part of the conversation
when the Product Owner and Developer discuss the work so they can
understand what is required at the end. If the work is contentious, or poorly

understood, they may take notes and confirm these with the Product Owner
later. They can then devise tests to tell when these requirements are met.
In this way Testers can understand what needs testing and how it should
perform, they then use their professional skills to understand how to go
about testing it.
It is worth adding here: automate, automate, automate. Tests which are not
automated are expensive to run and therefore don't get run as often as they
could. Automated tests are cheap to run and so maintain the quality into
the future.

The testers’ role
The testers’ role is to close the loop, following from the Product Owner
role, not the Developers role. They need to understand the problem the
Product Owner has and which the developer is solving so they can check
the problem is solved.
If Testers are having a problem knowing how something should be then it
is probably a question of Product Ownership. When this role is
understaffed or done badly, people take short-cuts and then it becomes
difficult to know how things should be. One of the reasons many people
like a signed-off document is that it ensures this process is done – or at
least, it ensures something is done. But freezing things far too early, and
for too long, reduces flexibility and inhibits change.
As software quality improves there may well be less need for Testers.
However the need will never go away completely. There are some things
that still require human validation – perhaps a GUI design, or a page layout,
or printer alignment.

Three levels
There is a recurring model of testing found in many organizations and
shown in Figure 3.
Many more organizations have a similar model but with one, or even two,
levels missing. Instead they agonize about the level they ‘should’ do.

Figure 3

In a recent e-mail to Paul Grenyer and me, Rachel Davies pointed out
that there is an often overlooked difference between Acceptance Criteria
and Acceptance Tests:
Acceptance criteria are part of what you agree the story should cover.
These can be simply notes about what scenarios are agreed to be in
scope for the iteration. These are what need to be reviewed and agreed
before committing to delivering a story in the next iteration.
Acceptance tests are scripts – manual or automated – that detail
specific steps to test a feature. I suggest write these in the same iteration
as the code, before or in parallel with developing the code. I do not
suggest writing them in a planning meeting. I’m not suggesting that you
write all the acceptance tests for all the stories at the beginning of the
iteration. Just that when work starts on a story, the first thing to do is to
get really clear about what tests should pass by following an Acceptance
Test Driven Development way – this can be by writing one acceptance
test at a time or the whole set for the story.

Acceptance criteria v. acceptance tests
8 | Overload | August 2011

FEATUREALLAN KELLY

Removing the need for testing may well be
an aspirational goal for a team but it is going

to be a while before the goal is met
The innermost ring is Unit Testing. This is the developers’
responsibility, the testers role here is largely to keep developers
honest, and ensure they have written and performed the tests.
Unfortunately this level is the one that is most commonly absent,
which is a shame because it is probably the most important ring of
the three.
The second ring is variously called System Testing, Integration
Testing, System Integration Testing or just SIT. This is the realm of
the professional tester. Like Unit Testing the ideal is that this ring is
completely automated. When this is possible Testers can write their
tests before developers begin work, and the tests then become the
developers completion criteria.
The outermost ring differs depending on the nature of the customers.
When customs are outside the organization, companies conduct
Beta Test Programmes; when they are inside it is usually called User
Acceptance Tests. As the name implies this is where actual users get
involved.
Sometimes, when quality is very low the UAT/Beta cycle becomes
effectively a second SIT loop to catch more of the bugs which
slipped through the first.
Because this ring is about customers it is more difficult to automate.
Testing is only part of the objective: one of the less spoken aims of
this ring is to win over customers acceptance of the product, to make
them feel involved and give them a voice. Unfortunately, this voice
is often heard too late to make any real difference.
Another problem with this loop is that actual users – particularly in
corporations – are either too busy or do not value this loop.
Therefore the loop ends up being run by professional testers again –
in the extreme these are testers attached to the user group not the
development group. When this happens the secondary objective of
the loop is entirely lost because actual users are not involved.

Personally I believe it should be possible to merge the two outer loops.
Firstly, UAT should not be used to catch bugs which slip through SIT:
quality should be high enough to stop them at source or catch them the first
time. Secondly, customer/user voices should be heard earlier, and
repeatedly, in the development process at a time when they can influence
the process.
Capers Jones, by the way, says that on average each round of testing
removes 30% of all defects, which probably explains the three tier model.
If one ring is to be removed then defect detection and removal rates need
to improve in the other layers.

The future
In the short run there is a lot of software out there and quality isn’t going
to improve overnight. Removing the need for testing, and reducing the
number of testers, may well be an aspirational goal for a team but it is going
to be a while before the goal is met in the majority of cases. Even then
someone will still need to write the acceptance tests.

If this weren’t enough, the success of Agile should make more work for
everyone. Agile teams are more productive and add more business value.
Therefore the organization will succeed, therefore there will be more
business, and thus there will be more work to do.
Over time as quality increases Testers’ roles will change. The role will be
less test centric and more quality assurance centric. Instead of bashing a
keyboard to check the software doesn’t crash Testers will increasingly
close the loop with customers and Product Owners to ensure that what is
delivered satisfies their need.

References
[Crosby80] Crosby, P. B. 1980. Quality is free : the art of making quality

certain, New American Library.
[Jones08] Jones, C. 2008. Applied Software Measurement, McGraw Hill.
August 2011 | Overload | 9

FEATURE BJØRN REESE
Thread-Safe Access Guards
Ensuring safe access to shared data can be cumbersome
and error-prone. Bjørn Reese presents a technique to help.
his article describes a C++ template solution for ensuring
synchronized access to variables in multi-threaded applications.
When doing multi-threaded programming in C++, we frequently

come across this pattern seen in Listing 1.
Every time we want to access the member variable, we must make sure
that we lock the mutex. Unfortunately this pattern is error-prone. The
compiler cannot alert us when we have forgotten to lock the variable before
we use it.
We really would like kind of some mechanism that made sure that access
to the member variables always is synchronized, and where we can control
the locking scope.
The basic idea is to have two classes. An accessor that automatically locks
and unlocks the mutex, and a variable wrapper that contains the mutex and
the variable we wish to protect with the mutex. The wrapper prevents any
access to the variable except through the accessor.
We will start with the wrapper (Listing 2).
Here we have a class that can be initialized with a value, but does not allow
anybody to access its value. The templated constructors are used to avoid
temporary objects during intialization if T is a struct.
The accessor is a very simple smart pointer and will then look like
Listing 3.

Let us continue with an example of how this works. We will assume that
we also have defined a const_unique_access class. This can be
implemented using the slicing technique. (Listing 4.)
Compared to the Person class, we cannot access the name member
variable without locking it, so we cannot forget the lock when we are
extending the class with a new member function.

T

Listing 1

class Person
{
public:
 std::string GetName() const
 {
 std::unique_lock<std::mutex> lock(mutex);
 return name;
 }
 void SetName(const std::string& newName)
 {
 std::unique_lock<std::mutex> lock(mutex);
 name = newName;
 }
private:
 std::mutex mutex;
 std::string name;
};

Listing 2

template<typename T>
class unique_access_guard : noncopyable
{
public:
 unique_access_guard()
 : value() {}
 unique_access_guard(const T& value)
 : value(value) {}

 template<typename A1>
 unique_access_guard(const A1& arg1)
 : value(arg1) {}
 template<typename A1, typename A2>
 unique_access_guard(const A1& arg1,
 const A2& arg2)
 : value(arg1, arg2) {}
 // Add constructors with more arguments,
 // or use C++0x variadic templates
private:
 friend class unique_access<T>;
 std::mutex mutex;
 T value;
};

Bjørn Reese is a software engineer at Bang & Olufsen and has
been developing C++ programs for more than a decade. He can
be contacted at breese@users.sourceforge.net.

Listing 3

template<typename T>
class unique_access : noncopyable
{
public:
 unique_access(unique_access_guard& guard)
 : lock(guard.mutex),
 valueRef(guard.value)
 {}

 T& operator* () { return valueRef; }
 T* operator-> () { return &valueRef; }

private:
 std::unique_lock<std::mutex> lock;
 T& valueRef;
};
10 | Overload | August 2011

FEATUREBJØRN REESE

there are several of the less common use
cases for locking that they do not support
What happens if our class has many member variables? That depends on
our needs. If the member variables are independent from each other, then
we can declare more access guards and use separate accessors for them.
A more common scenario is when we want to lock all member variables
when we access one or more of them. In that case we can place them in a
struct. This struct can be nested in the class, as shown in Listing 5.
Another common scenario is the use of private helper member functions.
With the normal mutex and lock method we must make sure that the
member variables are locked before we call the helper function. The usual
way to ensure this is to document the precondition in a comment.
With the access guards we can make this precondition explicit. There are
two solutions. The first, shown in the HelperPerson class, is to pass the
const_unique_access object by reference to the helper function. Now
it is not possible to call the helper function unless we have an accessor and
hence a lock. (See Listing 6.)
The other solution, which is shown in the MemberHelperPerson class,
is to let the helper be a member function of the Member struct. As we only
can deference the Member struct when we have an accessor, we are
guaranteed that any member function in the Member struct only runs when
we have a lock. (Listing 7)
All of the above has been illustrated with unique access to member
variables. The framework can be easily extended to encompass shared
access as well. We need a shared_access_guard that embeds a
std::shared_mutex, and a shared_access accessor to gain shared
access to the member variables. If we want unique access to these sharable
member variables, then we can use the unique_access accessor on the
shared_access_guard.

Const correctness is used to ensure that const_unique_access and
shared_access can only read member variables, and only
unique_access can write them.
The overhead of using accessor guards is minimal. The construction of an
accessor is the same as a std::unique_lock plus the assignment of a
reference. The subsequent use of an accessor is the extra level of
indirection from operator-> and operator*. Some of this will be
removed by the optimizer though.
The advantages of using access guards is:

Guarded member variables can only be accessed when they are
locked. The compiler will alert us if we attempt to do otherwise.
The precondition on helper functions becomes explicit, and the
compiler will alert us if we use it incorrectly.
The mental model is simple – if we have the accessor then we have
the lock – so developers are less likely to make errors with it.
The guards also serves as documentation for which member
variables are protected by what mutex. If a class has more than one
access guard then that could indicate that the class has too many
responsibilities and thus is a good candidate for refactoring.

Listing 5

class SafeMemberPerson
{
public:
 SafeMemberPerson(unsigned int age)
 : memberGuard(age) {}

 std::string GetName() const
 {
 const_unique_access<Member>
 member(memberGuard);
 return member->name;
 }

 void SetName(const std::string& newName)
 {
 unique_access<Member> member(memberGuard);
 member->name = newName;
 }

private:
 struct Member
 {
 Member(unsigned int age) : age(age) {}

 std::string name;
 unsigned int age;
 };
 unique_access_guard<Member> memberGuard;
};

Listing 4

class SafePerson
{
public:
 std::string GetName() const
 {
 const_unique_access<std::string>
 name(nameGuard);
 return *name;
 }

 void SetName(const std::string& newName)
 {
 unique_access<std::string> name(nameGuard);
 *name = newName;
 }

private:
 unique_access_guard<std::string> nameGuard;
};
August 2011 | Overload | 11

FEATURE BJØRN REESE
The access guards have been designed to be simple. This means that there
are several of the less common use cases for locking that they do not
support.
Their limitations are:

A variable can only be protected by at most one guard. It is not
possible to have one guard to directly protect, say, the variables
alpha and bravo, and another guard to protect bravo and charlie.
The accessors are not full smart pointers, and should be made non-
copyable, so we cannot pass them around, except by reference as
shown in the HelperPerson class. This omission is a deliberate
trade-off to avoid the added complexity needed to ensure that the
accessor does not live longer than the guard it is accessing.
There is no support for deferred locking (std::defer_lock_t)
so we cannot use the std::lock() algorithm to avoid potential
deadlocks. Hence if we have two or more access guards in a class,
then we must make sure that they are always locked in the same
order to avoid deadlocks.
There is no support for early unlocking (like
std::unique_lock<T>::unlock()) so we cannot have
partially overlapping locks. For instance, if we have a class that

contains a callback function, then we may want to lock the member
variables with one mutex, and the execution of the callback with
another mutex to allow that the callback can call functions that
accesses the member variables. In this case we need to (1) lock the
member variables, (2) use the member variables, (3) lock the
callback, (4) unlock the member variables, (5) execute the callback,
(6) unlock the callback, and (7) exit from the member function.
There is no support for a couple of more advanced locking
mechanisms, such as timed mutexes, recursive mutexes, tentative
locking (try_lock()), or upgrading ownership.

The technique described here has some commonality with the
SynchronizedValue::Updater [Dobbs].
The main differences are that the guards do not allow access to the
variables, as SynchronizedValue does, and the accessors can used
with different guards, thus separating the type of access (exclusive or
shared) which is a property of the accessor, not the guard.

Reference
[Dobbs] http://www.drdobbs.com/cpp/225200269

Listing 6

class HelperPerson
{
public:
 HelperPerson(unsigned int age)
 : memberGuard(age)
 {}

 std::string GetName() const
 {
 const_unique_access<Member>
 member(memberGuard);
 Invariant(member);
 return member->name;
 }

 void SetName(const std::string& newName)
 {

 unique_access<Member> member(memberGuard);
 Invariant(member);
 member->name = newName;
 }

private:
 void Invariant(
 const_unique_access<Member>& member) const
 {
 if (member->age < 0)
 throw std::runtime_error(
 "Age cannot be negative");
 }

 struct Member
 {
 Member(unsigned int age) : age(age) {}

 std::string name;
 unsigned int age;
 };
 unique_access_guard<Member> memberGuard;
};

Listing 7

class MemberHelperPerson
{
public:
 MemberHelperPerson(unsigned int age)
 : memberGuard(age) {}

 std::string GetName() const
 {
 const_unique_access<std::string>
 member(memberGuard);
 member->Invariant();
 return member->name;
 }

 void SetName(const std::string& newName)
 {
 unique_access<std::string>
 member(memberGuard);
 member->Invariant();
 member->name = newName;
 }

private:
 struct Member
 {
 Member(unsigned int age) : age(age) {}

 void Invariant() const
 {
 // We always have unique access to the member
 // variables here
 if (age < 0)
 throw std::runtime_error(
 "Age cannot be negative");
 }

 std::string name;
 unsigned int age;
 };
 unique_access_guard<Member> memberGuard;
};
12 | Overload | August 2011

http://www.drdobbs.com/cpp/225200269

FEATUREPAUL GRENYER
An Introduction to Test
Driven Development
TDD is too often thought to be all about Unit Tests.
Paul Grenyer works through an example to show
the bigger picture.
here are a lot of introductory articles for Test Driven Development
(TDD). So why, might you ask, am I writing yet another? The simple
answer is because I was asked to by Allan Kelly, who wanted a piece

for a small book he gives to his clients. I was happy to oblige, but writing
about TDD is difficult. In fact if Allan hadn’t wanted an original piece he
could print as part of his book, I would have suggested he just get a copy
of Test Driven Development by Kent Beck. The main difficulty is coming
up with a suitably concise, yet meaningful, example and Beck has already
done this.
Allan was also quite keen for me to publish elsewhere, so I chatted the idea
over with Steve Love, the editor of the ACCU’s C Vu magazine to see if
he thought the readers would be interested in yet another TDD article. He
said they probably would be as long as I thought carefully about how I
wrote it. I thought this over for a long while. The majority of introductory
TDD articles, at least the ones I have read, focus on unit testing. A recently
completed ACCU Mentored Developers project read through Growing
Object Orientated Software Guided by Tests (known as GOOS) by
Freeman & Pryce [Freeman]. They focus on starting a simple application
with acceptance tests and only writing unit and integration tests when the
level of detail requires it or the acceptance tests become too cumbersome.
However, it is a big book, so I decided to try and condense what I saw as
the most important points into an introductory article and this is what you
see before you. I hope you find it as useful and fun to read as I did to write.

What?
Test Driven Development is a way of developing software by writing tests
before you write any production code. Hence it is sometimes referred to
as Test First Development. The first and definitive book on the subject is
Test Driven Development by Kent Beck [Beck02], which focuses on Unit
Testing. However, as Steve Freeman and Nat Pryce tell us in GOOS, TDD
can and should be employed at all levels, including integration and
acceptance tests.

Unit tests
Unit tests are automated tests that test a single unit, such as a class or
method. Usually the class under test is instantiated with any dependent
collaborators mocked out (I’ll describe mock objects later) and then tests
are run against it. In some ways it is easier to describe what a unit test is
not, and Michael Feathers has done this very well:

A test is not a unit test if:

It talks to the database

It communicates across the network

It touches the file system

It can’t run at the same time as any of your other unit tests

You have to do special things to your environment (such as
editing config files) to run it.

Integration tests
Integration tests are automated tests that test the interaction between at
least two different parts of a system. For example a test which checks that
a data access layer correctly loads data from a database is an integration
test.

Acceptance tests
Rachel Davies describes acceptance tests as ‘...scripts – manual or
automated – that detail specific steps to test a feature.’ [Davies] Generally
acceptance tests run against a deployed system to check that it behaves in
a way that will be accepted by as a complete or partially complete feature.

Why?
In Working Effectively With Legacy Code, Michael Feathers [Feathers]
tells us that:

Code without tests is bad code. It doesn’t matter how well written it
is; how pretty or object orientated or well encapsulated it is. With
tests we can change the behaviour of our code quickly and
verifiably. Without them, we really don’t know if our code is getting
better or worse.

There are many reasons why you should develop code with TDD, but this
is the most important. The way I like to describe it is with the analogy of
nailing down a floor in the dark. You’ve done one end of a plank and now
you’re nailing down the other end. As it’s dark you can’t see that the first
end is slowly being prised up as you bang in the nails on the second end.
Code without tests is the same. Without tests you cannot see how a new
change to the code is affecting existing code. As soon as a test passes it
instantly becomes a regression test that guards against breaking changes.
In our analogy it’s like turning the light on or getting a friend to watch the
other end of plank:so you know if the floorboard was being prised up.
Another advantage of test driven development, especially with unit testing,
is that you tend to develop highly decoupled code. When writing unit tests,
you generally want to exercise a very small section of code, often a single
class or single method, to run the tests against. It becomes very difficult if
you have to instantiate a whole slew of other classes or access a file system
or database that your class under test relies on (this is slightly different
when writing integration tests that often do talk to a file system or
database). There are a number of techniques for reducing dependencies on
collaborators, mostly including the use of interfaces and Mock Objects.
Mock objects are implementations of interfaces for testing purposes whose
behaviour is under control of the test, so it can focus solely on the
behaviour of the code under test. Writing against interfaces promotes

decoupled code for just this reason, collaborators can be mocked out when
a class that uses them is tested.

T

Paul Grenyer An active ACCU member since 2000, Paul is the
founder of the Mentored Developers. Having worked in industries as
diverse as direct mail, mobile phones and finance, Paul now works for
a small company in Norwich writing Java. He can be contacted at
paul.grenyer@gmail.com.
August 2011 | Overload | 13

FEATURE PAUL GRENYER

stop developing once the test passes and
then refactor to remove any duplication
In Working Effectively with Legacy Code, Michael Feathers has an
excellent example of mocking a collaborator.
Figure 1 shows a point-of-sale class, called Sale, that has a single method,
scan, which accepts a barcode. Whenever scan is called the item relating
to the barcode must be displayed, along with its price on a cash register
display. If the API for displaying the information is buried deep in the
Sale class, it is going to be very difficult to test, as we’d have to find some
way of hooking into the API at runtime. Luckily the Sale class takes a
Display interface which it uses to display the information. In production
an implementation of the interface that talks to the cash register API is
used. When testing, a Fake object (I’ll talk more about fake objects later)
is used to sense what the Sale object is passing to the display interface.
If you write a test for production code before the production code itself,
stop developing once the test passes and then refactor to remove any
duplication, you end up with just enough code to implement the required
feature and no more. It is very important to take time to refactor, thus
ensuring that complexity and repetition is reduced. Again if you come to
change code in the future and it has been refactored to remove duplication,
the chances are you will only have to change the code in one place, rather
than several. Code that is developed with TDD, including refactoring,
generally yields a better design which stands up well in the face of change.
There have been a number of case studies measuring the benefits of TDD,
including ‘Realizing quality improvement through test driven
development’ by Nagappan et al [Nagappen]. The key point is that
following a study of two teams at Microsoft, one using TDD and one not,
it was shown that the team following TDD achieved 75% fewer defects
for only 15% more effort. It is true that TDD can take a little longer
initially, but generally time is saved by the next release as there are fewer
bugs to fix and those that do creep in are easier to find and resolve. In
Software Engineering Economics [Boehm81] Barry Boehm tells us that
that the cost of fixing a defect increases very quickly the later it is found.
This often leads to the paradoxical observation that going ‘faster’ takes
longer to get to release as there’s a much longer spell of fixing the bugs.
By avoiding them being there in the first place you save that effort with a
very quick payback. Developers who use TDD will also find that they
spend significantly less time in the debugger as their tests highlight where
the bugs are.

The best way to find out why TDD is so good is to try it.

How?
The fundamental steps in test driven development are:
0. Decide what to test
1. Write a test
2. Run all the tests and see the new one fail
3. Write some code
4. Run all the tests and see the new one pass
5. Refactor
6. Run all the tests and see them pass
Repeat.

The first step isn’t strictly a TDD step, but it’s very important to know what
you are going to test before write a test. For acceptance tests this will come
from the user story or specification that you have. For integration tests
you’ll be looking at how two things, such as your data access layer and a
database, interact with each other. For unit tests you want to test that the
interface does what is expected.
The first real step is to write a test for the new feature you want to
implement. Initially the test will not pass. In a lot of cases it wont even
compile as you haven’t written the code it is going to test yet.
The next step is to write the code to make the test compile, run all the tests
and see the new one fail. Then write the code to make the test pass. Write
the simplest and most straight forward code you can to make the test pass.
Write no more code than it takes to make the test pass. If you write more
code than is required you will have code that can change without breaking
a test, so you wouldn’t know when a change, or in a lot of cases a bug, is
introduced, which defeats the goal of TDD. Run the tests again and see
them all pass.
The next step is to examine both the test and the production code for
duplication and remove it. The final step is to make sure all the tests still
pass. Refactoring is about removing duplication and should not change
what the code does. Then go back to step 1 and repeat. This is also known
as the Red/Green/Refactor cycle in reference to the red (tests failed) and
green (tests pass) bar that is a feature of many testing frameworks.
Many people think that TDD is only applicable to greenfield projects. In
his blog post ‘Implications of the Power Law’ [Kelly], Allen Kelly tells
us that this is not the case:

The power law [PowerLaw] explains this: because most changes
happen in a small amount of code, putting tests around that code
now will benefit you very soon. Most of the system is not changing
so it doesn’t need tests. Of the 1 million lines in a project perhaps
only 10,000 changes regularly. As soon as you have 1,000 covered
you see the pay back.

Michael Feathers has written a whole book (the already mentioned
Working Effectively with Legacy Code), and it’s a big book, of techniques

Figure 1
14 | Overload | August 2011

FEATUREPAUL GRENYER

Write the simplest and most straight
forward code you can to make the test pass
for getting existing code under test. Again, try it for yourself and you will
soon see the benefits.

An example
I am going to use a simple program, called DirList, that generates a
formatted directory listing for an example of how to develop a project test
first, using TDD. One of the prime reasons for choosing it is to show how
to deal with programs that rely on external resources and have external
effects and so are traditionally hard to test. Here the external resource is
the filesystem and the external effect is writing to standard out.
Here’s a simple set of stories to describe how the application works:

When DirList is executed with no arguments, the current directory
will be the first message displayed in the output, preceded by
"Directory: ".
When DirList is executed and a path is specified as an argument, it
will be the first message displayed in the output, preceded by
"Directory: ".
When DirList is executed without any arguments it will list all the
files in the current directory.
When DirList is executed and a path is specified as an argument it
will list all the files in the specified directory.
When DirList is executed each file will be listed on a separate line
along with size, date created and time created.

The file name must be left justified and the other details right
justified with a single space in between each detail.
If the file name would push the whole display line to greater than
40 characters, it must be truncated leaving a single space before
the first detail.
The date format is dd/mm/yyyy
The time format is HH:MM

This is a good example project as it is relatively easy to write acceptance
tests that invoke an executable with varying arguments and to examine the

output. There is also scope for unit and integration tests, as well as the use
of mock objects.
Every new project should start with acceptance tests. The easiest way to
start is with a small simple acceptance test that exercises the ‘system’. In
DirList’s case the system is an executable.

Step 1: Write a test
Here is a test for the first story, written in Python1:
class DirListAcceptanceTests(unittest.TestCase):
def
testThatCurrentDirectoryIsFirstMessageInOutputIfNoA
rgumentsSupplied(self):
 output = Execute(DIRLIST_EXE_PATH,'')
 self.assertEquals(0, output.find("Directory: " +
os.getcwd() + "\n"), output)

In this test DIRLIST_EXE_PATH is a variable holding the path to the
DirList executable and Execute is a method that calls the executable with
the command line arguments passed in as the second parameter and returns
the output. The single assert checks that the output begins with
"Directory: " followed by the current working directory and a line
feed. The third parameter, output, is there so that if the test fails the actual
output from the executable is displayed for debugging.

Step 2: Run all the tests and see the new one fail
Execute throws an exception if the executable does not exist, so although
this test compiles, it fails at runtime as the DirList executable hasn’t been
built yet.

Step 3: Write some code
DirList is a normal C# command line application:

namespace DirList
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

Building the code into an executable and setting DIRLIST_EXE_PATH to
its path (e.g. <bin dir>/DirList.exe) will get the test a little further.
It is important to rerun tests after every change, no matter how small.
Execute can now find the executable and execute it, but there is no output
so the assert fails. The simplest way to get the test to pass is to send the

Figure 2

1. If you’re not familiar with unit testing in Python, Dive Into Python by
Mark Pilgrim [Pilgrim] provides an excellent introduction.
August 2011 | Overload | 15

FEATURE PAUL GRENYER
current working directory to standard out with "Directory: "
prepended and a carriage return appended:

static void Main(string[] args)
{
 Console.WriteLine(
 string.Format("Directory: {0}",
 Directory.GetCurrentDirectory()));
}

Step 4: Run all the tests and see the new one pass
Now when the executable is built and the test run, it passes and we have
our first passing acceptance test that tests our little system from end-to-end.

Step 5: Refactor
Normally at this point you would go back and examine the test and the
production code and remove any duplication. However, at this early stage
there isn’t any.

Step 6: Run all the tests and see them pass
As we haven’t had to refactor, there’s no need to run the tests again.
However, it’s always good to get that green bar feeling, so you can run
them again anyway if you want to.

Repeat...

Step 1: Write a test
So we move on to write the next test:

def
testThatSuppliedDirectoryIsFirstMessageInOutputIfPa
thSupplied(self):
 dir = tempfile.mkdtemp()
 try:
 output = Execute(DIRLIST_EXE_PATH,dir)
 self.assertEquals(0,
 output.find("Directory: " + dir + "\n"),
 output)
 finally:
 os.rmdir(dir)

This test is for the second story. It creates a temporary directory, passes
its path as a command line argument to Execute and then asserts that the
directory path is the first message in the output. The temporary directory
must be cleaned up by the test so, as asserts throw when the condition they
test for fails, the statement to remove it goes in a finally block. If the
temporary directory wasn’t cleaned up, running the tests would eventually
start to fill your disk up. Creating and cleaning up a specific directory for
each test, as opposed to using the same directory each time, means that the
tests could be easily run in parallel.

Step 2: Run all the tests and see the new one fail
Of course, this new test fails as DirList sends the current directory to
standard output. So we must look at the DirList Main method again to find
the smallest and simplest change we can make to get the test to pass without
breaking the existing tests.

Step 3: Write some code
static void Main(string[] args)
{
 if (args.Length == 1)
 Console.WriteLine(string.Format(
 "Directory: {0}", args[0]));
 else
 Console.WriteLine(
 string.Format("Directory: {0}",
 Directory.GetCurrentDirectory()));
}

Here the number of arguments passed in is examined and if there is only
one it is assumed to be the path to use, otherwise the current directory is
used. This really is the simplest implementation to get the test to pass.
We’re not taking any error handling into account or allowing for the first
argument not to be the path. How DirList behaves under error conditions
might be included in future stories.

Step 4: Run all the tests and see the new one pass
After DirList is compiled, the tests must be run and they all pass.

Step 5: Refactor
Stop! We’re not finished yet. Is there some duplication we can refactor
away? Yes, there is. The format of the output is repeated in two places.
That’s easily refactored:

private static string getDirToList(string[] args)
{
 if (args.Length == 1)
 return args[0];
 else
 return Directory.GetCurrentDirectory();
}
static void Main(string[] args)
{
 var dirToList = getDirToList(args);
 Console.WriteLine(string.Format("Directory: {0}",
 dirToList));
}

The duplication is refactored by moving the code that determines which
path to use to a new method and formatting the result.

Step 6: Run all the tests and see them pass
The tests will tell us if a mistake has been made during the refactor, that’s
what they are for, and running them again reassures us that nothing has
broken.

This is an example of the complete TDD cycle. We added a test, watched
it fail, wrote some code, watched the test pass, and then refactored to
remove duplication.

Repeat...
The third story is concerned with making sure all the files in the directory
being listed are present in the output from DirList. What we need is another
test.

Step 1: Write a test
def
testThatAllFilesInCurrentDirectoryAreIncludedInOutp
utIfNoArgumentsSupplied(self):
 output = Execute(DIRLIST_EXE_PATH,'')
 dirList = os.listdir(os.getcwd())
 for fname in dirList:
 if os.path.isfile(os.path.join(os.getcwd(),
 fname)):
 self.assertTrue(fname in output,
 "Missing file: " + fname)

Again, DirList is invoked without any command line arguments. Then a
list of all the directories and files in the current directory is iterated through,
the files are identified and and their presence checked for in the output.

Step 2: Run all the tests and see the new one fail
Naturally, the new test fails. To make it pass we need to modify Main
again.

Step 3: Write some code
static void Main(string[] args)
{

16 | Overload | August 2011

FEATUREPAUL GRENYER
 var dirToList = getDirToList(args);
 Console.WriteLine(string.Format("Directory: {0}",
 dirToList));
 var dirInfo = new DirectoryInfo(dirToList);
 foreach (var fileInfo in dirInfo.GetFiles())
 Console.WriteLine(fileInfo.Name);
}

Step 4: Run all the tests and see the new one pass
Run the tests, which pass.

Step 5: Refactor
Is there any duplication that can be refactored away? Yes, there is a little.
There are two calls to Console.WriteLine. The underlying runtime
will probably buffer, but that shouldn’t be relied upon. The code could be
refactored to use a single call with a StringBuilder. However this is
premature optimisation and could cause DirList to use more memory that
it really needs.

Step 6: Run all the tests and see them pass
Following the refactor, rerun the tests to make sure nothing has been
broken. When carrying out a significant change, like changing the way text
is formatted or output, it is easy to make a simple mistake.

Repeat...
The next step is to write a test that lists the files in a directory specified as
a command line argument. To do this, as well as creating a temporary
directory, some temporary files need to be created and checked against the
output from DirList. I’ll leave that as an exercise for the reader. If you do
write the test you should find that you do not need to add any code to make
it pass. This should make you question whether it is really necessary. In
truth it is. The test describes and checks for some behaviour that may get
broken by a change in the future. Without the test you wouldn’t know when
the code broke.
You may be thinking that the next step is to return to the acceptance tests
and start adding tests for the next story, which describes the format of the
output. You could do that, but it would be extremely cumbersome in terms
of keeping the tests in line with the changing files in the current directory
or creating temporary files of the correct size and creation date. You would
end up with quite brittle tests as every time a file was added to the directory,
removed from the directory or its size was modified the test would break.
It’s far easier to write a set of unit tests instead. That way you can fake the
file system and have complete control over the ‘files’.
The formatting story describes one of several possible ways of formatting
the output of the directory listing. It is of course possible that other
formatting styles may be required in the future, so the obvious
implementation is the STRATEGY pattern [Strategy]. At the base of the
strategy pattern is an interface that provides a point of variation that can
be used to customise the format :
public interface Formatter
{
 string Format(IEnumerable<FileInfoMapper> files);
}

Another advantage in using an interface is that it makes the formatting
strategy easy to mock should we need to for future tests (I’ll discuss Mock
Objects shortly). Implementations of Formatter take a collection of
FileInfoMapper objects and return a formatted string. You may have
been expecting it to take collection of FileInfo objects. To write unit
tests for the format strategies you need to be able to create a collection of
FileInfo objects and set the name, size, creation date and creation time.
A quick look at the documentation for FileInfo [FileInfo] tells us that
we can give a FileInfo object a name, but we cannot set the size, creation
date or creation time. These properties are set when a FileInfo object
is populated by examining a real file on the disk. We could write an
integration test (I’ll describe integration tests shortly too) that creates lots
of different files of different sizes and somehow fix the creation date and

time, but this would be cumbersome. A better solution is to create an
interface that provides the properties we want from the FileInfo object
(see Listing 1) and then write an adapter [Adapter] that extracts the
properties from the FileInfo object in production and a fake [Fake]
object, that implements the same interface, which can be used in testing.
Before we look at the formatter strategy implementations, unit tests and
fake, we need to satisfy ourselves that an adapter will work. The best way
to do this is to write one.
At this point I am switching from writing acceptance tests in Python to
writing an integration test in C# with NUnit [NUnit]. Integration tests
usually run in the same process as the code they are testing, so using the
same runtime, even if not the same language, is helpful. NUnit is a testing
framework for .Net, which is usually used for unit testing but is also ideal
for integration testing. An integration test tests the the interaction between
one or more units. Usually a unit is a class, or the interaction between a
unit and an external resource such as a database, file system, network etc.
In the next test we’re testing the interaction between the FileInfo class
and the FileInfoAdapter class. It just so happens that this also requires
interaction with the file system. Integration tests can be developed test first,
just like acceptance tests.
I hope that by now you understand the 6 steps of TDD, so from now on I
will assume you’re following them as the code develops. (See Listing 2.)
This NUnit integration test fixture has a pair of setup and tear down
methods and a test method. A test fixture is a C# class denoted by the

Listing 1

public interface FileInfoMapper
{
 string Name { get; }
 long Length { get; }
 DateTime CreationTime {get;}
}

Listing 2

[TestFixture]
public class FileInfoAdapterTest
{
 private string tempFile;

 [SetUp]
 public void SetUp()
 {
 tempFile = Path.GetTempFileName();
 var file = new StreamWriter(tempFile);
 file.WriteLine("Test Driven Development!");
 file.Close();
 }

 [TearDown]
 public void TearDown()
 {
 File.Delete(tempFile);
 }

 [Test]
 public void testFileInfoMappings()
 {
 var fileInfo = new FileInfo(tempFile);
 var adapter = new FileInfoAdapter(fileInfo);
 Assert.That(adapter.Name,
 Is.EqualTo(fileInfo.Name));
 Assert.That(adapter.Length,
 Is.EqualTo(fileInfo.Length));
 Assert.That(adapter.CreationTime,
 Is.EqualTo(fileInfo.CreationTime));
 }
}

August 2011 | Overload | 17

FEATURE PAUL GRENYER
[TestFixture] attribute. When NUnit sees the [TestFixture]
attribute on a class it knows it contains tests that it can run. Setup methods,
denoted by the [SetUp] attribute, are run before every test method in the
test fixture. Test methods are denoted by the [Test] attribute and contain
tests. Tear down methods, denoted by the [TearDown] attribute are run
after every test method.
FileInfoAdapterTest creates a temporary file, with some content, in
the setup method before each test. It uses the temporary file to create a
FileInfo object and uses it to create a FileInfoAdapter and then
asserts each of the properties against the FileInfo object in the test
method. Finally it deletes the temporary file in the tear down method. I
have said a couple of times now that creating files on disk for the purposes
of testing is cumbersome, and it is. However, in this scenario we only need
a single file that is easily created and destroyed. This test won’t even
compile, let alone pass, so we need to write some code to make it pass.
As it was so simple I went ahead and wrote the final implementation of
FileInfoAdapter straight away, rather than in small steps (Listing 3).
This is perfectly acceptable. You do not have to go through painstakingly
slow steps of implementation. If you can see the solution and you have the
tests written, just implement it.
Now we’re ready to write the unit tests for the formatters. As was hinted
at earlier, a unit test is a test that tests a single unit that does not interact
with other units or resources. It may, however, interact with mocked
dependencies as we’ll see shortly. The first test is in Listing 4.
This test simply checks that all the required details are present in the output.
The only part of the test that is not shown is the BuildFileInfoMapper
method which is defined shown in Listing 5.
It’s just a method that creates a FakeFileInfoMapper from the
arguments supplied (Listing 6).
A fake is a type of mock object that implements a dependency for testing
purposes. A mock object is a test class that replaces a production class for
testing purposes. A mock object is usually a simpler version of the
production class used to help break a dependency of the class under test
or used to sense how the class under test interacts with the production
version of the mock. In this case FakeFileFinfoMapper is a
FileInfoMapper that allows us to specify FileInfo details without
having to create a real FileInfo object or a file on disk. You’ll also notice
that the asserts in the test all have messages (See Listing 7)..

Some people believe that a test method should only have a single assert.
In a lot of cases this is a very good idea as it helps track down exactly where
any failure is more easily. It could easily be argued, for that very reason,
that you should have separate test methods for asserting that name, length,
date and time are all present in the output string. In most cases I feel that

Listing 3

public class FileInfoAdapter : FileInfoMapper
{
 private readonly FileInfo fileInfo;

 public FileInfoAdapter(FileInfo fileInfo)
 {
 this.fileInfo = fileInfo;
 }

 public string Name
 {
 get { return fileInfo.Name; }
 }

 public long Length
 {
 get { return fileInfo.Length; }
 }

 public DateTime CreationTime
 {
 get { return fileInfo.CreationTime; }
 }
}

Listing 4

[Test]
public void
testThatAllDetailsArePresentInFormat()
{
 const string NAME = "file.txt";
 const long LENGTH = 10;
 var NOW = DateTime.Now;
 var NowDate = NOW.ToShortDateString();
 var NowTime = NOW.ToShortTImeString();
 var files = new List<FileInfoMapper> {
 BuildFileInfoMapper(NAME, LENGTH, NOW) };
 var formatter = new DetailsFormatter();
 var output = formatter.Format(files);

 Assert.That(output,
 Is.StringContaining(NAME),
 "Name");
 Assert.That(output,
 Is.StringContaining(LENGTH.ToString()),
 "Length");
 Assert.That(output,
 Is.StringContaining(NowDate),
 "Date");
 Assert.That(output,
 Is.StringContaining(NowTime),
 "Time");
}

Listing 5

private static FileInfoMapper
BuildFileInfoMapper(
 string name, long length,
 DateTime creationTime)
{
 return new FakeFileInfoMapper(name, length,
 creationTime);
}

Listing 6

private class FakeFileInfoMapper : FileInfoMapper
{
 private readonly string name;
 private readonly long length;
 private readonly DateTime creationTime;

 public FakeFileInfoMapper(string name,
 long length, DateTime creationTime)
 {
 this.name = name;
 this.length = length;
 this.creationTime = creationTime;
 }

 public string Name
 { get { return name; } }
 public long Length
 { get { return length; } }
 public DateTime CreationTime
 { get { return creationTime; } }
}

18 | Overload | August 2011

FEATUREPAUL GRENYER
assert messages should not be used either. They’re like comments and we
all know that people write (usually unnecessary) comments describing
code, later the code gets changed, but the comment is not updated making
it invalid and often misleading. That risk is present here, but the advantage
of having a single concise, clear test with multiple asserts that are easily
identified in failure by the short message, outweighs the risk. My general
rule is to have each test method only test one thing, except in circumstances
like this where pinpointing the cause of a failure can be easily identified
with a message. Currently the test won’t build, let alone pass as there is
no DetailsFormatter class, so we need to write it:

public class DetailsFormatter : Formatter
{
 public string Format(
 IEnumerable<FileInfoMapper> files)
 {
 return "";
 }
}

The test will now build, but the test will not pass as the Format method
returns a blank string and the first assert is expecting a string with a file
name in it. The simplest implementation to get it to pass looks like
Listing 8.
Looking at the test you could argue that creating a StringBuilder and
iterating through all the FileInfoMapper objects is not the simplest way
to get the test to pass. The alternative is to just get the first
FileInfoMapper from the enumerable, as we know there is only one,
and return a string built from that. However the code to get the first item
from an enumerable is quite verbose and it’s easier to write the foreach
expression, especially knowing that we’ll need it later. If we return from
the foreach we need a second return at the end of the method to keep
the compiler happy, so it’s just as easy to use a StringBuilder, again
knowing tha t we ’ l l need i t l a t e r when we have mu l t i p l e
FileInfoMapper objects. This thinking ahead and implementing
slightly more functionality than is strictly necessary could be considered
‘gold plating’ and goes against the TDD principle of not implementing any

more functionality than is needed to make the test pass. However, TDD is
not a straight jacket and in a few cases a little more functionality is ok. The
second test asserts that the output is of the correct length (Listing 9).
The test builds, but it does not pass as the string returned from the Format
method is not long enough. Also there is a lot of duplication with the
previous test. Duplication in test code is bad for the same reason it’s bad
in production code. If you have to change the duplicated code, you have
to change it everywhere it’s duplicated. If you’ve refactored the
duplication away, you only have to make the change in one place. We’ll
look at that in a moment once we’ve got the test to pass. The easiest way
to get the test to pass is just to pad the output:

 return output.ToString().PadRight(40);

Of course this doesn’t give the the final format that we want, but it’s
enough to get this test to pass. I don’t like magic numbers. Magic numbers
are numbers or string literals in the code that don’t clearly explain what
they are. Here the number 40 represents the row length. It could be
changed to a static member variable, but it makes more sense to pass it in
through the constructor in case it’s ever changed in the future. It also makes
the test more expressive (Listing 10).
Now that the test is passing we can look at removing duplication by
introducing a setup method (see Listing 11).

Listing 7

Assert.That(output,
 Is.StringContaining(NAME), "Name");
Assert.That(output,
 Is.StringContaining(LENGTH.ToString()),
 "Length");
Assert.That(output,
 Is.StringContaining(NOW.ToShortDateString()),
 "Date");
Assert.That(output,
 Is.StringContaining(NOW.ToShortTimeString()),
 "Time");

Listing 8

public string Format(
 IEnumerable<FileInfoMapper> files)
{
 var output = new StringBuilder();

 foreach(var file in files)
 output.Append(
 string.Format("{0} {1} {2} {3}",
 file.Name,
 file.Length,
 file.CreationTime.ToShortDateString(),
 file.CreationTime.ToShortTimeString()));
 return output.ToString();
}

Listing 9

[Test]
public void testThatFormatIsCorrectLength()
{
 const string NAME = "file.txt";
 const long LENGTH = 10;
 var NOW = DateTime.Now;

 var files = new List<FileInfoMapper> {
 BuildFileInfoMapper(NAME, LENGTH, NOW) };
 var formatter = new DetailsFormatter();
 var output = formatter.Format(files);

 Assert.That(output.Length, Is.EqualTo(40));
}

Listing 10

public class DetailsFormatter : Formatter
{
 private readonly int rowLength;

 public DetailsFormatter(int rowLength)
 {
 this.rowLength = rowLength;
 }
 public string Format(
 IEnumerable<FileInfoMapper> files)
 {
 ...
 return output.ToString().PadRight(rowLength);
 }
}
private const int ROW_LENGTH = 40;
...

[Test]
public void testThatFormatIsCorrectLength()
{
 ...
 Assert.That(output.Length,
 Is.EqualTo(ROW_LENGTH));
}

August 2011 | Overload | 19

FEATURE PAUL GRENYER
Before we go any further the tests must be run again to make sure nothing
has been broken. Then it’s back to the tests, of which there are at least three
more to write.
testThatFileNameAtBeginningAndDetailsAtEnd
testThatLongFileNamesAreTruncatedToFitIntoRowLength
testThatMultipleFilesAreDisplayedOnSeperateLines

They all involve writing a new failing test, writing the code to make it pass
and then refactoring away duplication. These are all steps that we have seen
a number of times already, so I’ll leave them as exercises for the reader.
Therefore all that remains is to integrate the DetailsFormatter into
Main (Listing 12) and rerun the acceptance tests.
They pass! Although they didn’t pass the first time I ran them. One of the
files in the current directory was so long its name got truncated and
appeared to be missing, therefore failing one of the tests. This was easily
fixed by increasing ROW_LENGTH, rebuilding and running the acceptance
tests again. It could be argued that this breaks the original specification and
that the test should be updated instead. However, I prefer to look at this as
the TDD process highlighting a flaw in the original specification and
making a change to it. Agreed by the relevant stakeholder of course.

Finally
In this whirlwind tour of Test Driven Development I have discussed the
what, why and hows. We’ve been through a very simple, yet all
encompassing example of developing an application test first from the
outside in. From acceptance tests that run outside the system to unit and
integration tests that run on the internal units of the system. I hope it has
encouraged you to try TDD for yourself and to read the books I have
mentioned, and others, for an deeper look.

Acknowledgments
My thanks go to Allan Kelly for suggesting that I write a piece on Test
Driven Development. I’ve thoroughly enjoyed it. To Chris O’Dell for
thorough review and not being scared to tell me when she thinks I’m wrong
and to Steve Love, Roger Orr, Matthew Jones and Ric Parkin for review
and encouragement. To Rachel Davies for the description of acceptance
testing and to Caroline Hargreaves for the diagrams.

References and further reading
[Adapter] ‘Adapter Design Pattern’: http://en.wikipedia.org/wiki/

Adapter_pattern
[Beck02] Test Driven Development by Kent Beck. 2002. Addison

Wesley. ISBN: 978-0321146533
[Boehm81] Software Engineering Economics by Barry W. Boehm. 1981

Prentice Hall. ISBN: 978-0138221225
[Davies] ‘When To Write Story Tests’ by Rachel Davies:

http://agilecoach.typepad.com/agile-coaching/2011/07/when-to-
write-story-tests.html

[Facade] ‘The Facade Design Pattern’: http://en.wikipedia.org/wiki/
Facade_pattern

[Fake] ‘Fake Objects’: http://en.wikipedia.org/wiki/Mock_object
[Feathers] Working Effectively with Legacy Code by Michael Feathers.

Prentice Hall. ISBN: 978-0131177055
[FileInfo] FileInfo documentation: http://msdn.microsoft.com/en-us/

library/system.io.fileinfo.aspx
[Freeman] Growing Object Orientated Software Guided by Tests by Steve

Freeman & Nat Pryce. Addison Wesley: ISBN: 978-0321146533
[Kelly] ‘Implications of the Power Law’ by Allan Kelly:

http://allankelly.blogspot.com/2008/03/implications-of-power-
law.html

[Nagappen] ‘Realizing quality improvement through test driven
development: results and experiences of four industrial teams’ by
Nachiappan Nagappan & E. Michael Maximilien & Thirumalesh
Bhat & Laurie Williams: http://research.microsoft.com/en-us/
groups/ese/nagappan_tdd.pdf

[NUnit] ‘NUnit .Net Testing Framework’: http://www.nunit.org/
[Pilgrim] ‘Dive Into Python’: http://diveintopython.org/
[PowerLaw] ‘The Power Law’: http://en.wikipedia.org/wiki/Power_law
[Strategy] ‘Strategy Design Pattern’: http://en.wikipedia.org/wiki/

Strategy_pattern
Source code: http://paulgrenyer.net/dnld/DirList-Abridged-0.0.1.zip

Listing 11

private const int ROW_LENGTH = 40;
private const string NAME = "file.txt";
private const long LENGTH = 10;
private DateTime NOW = DateTime.Now;
private List<FileInfoMapper> files;
private Formatter formatter;
[SetUp]
public void setUp()
{
 files = new List<FileInfoMapper> {
 BuildFileInfoMapper(NAME, LENGTH, NOW) };
 formatter = new DetailsFormatter(ROW_LENGTH);
 }
[Test]
public void
 testThatAllDetailsArePresentInFormat()
{
 var output = formatter.Format(files);
 Assert.That(output, Is.StringContaining(NAME),
 "Name");
 Assert.That(output,
 Is.StringContaining(LENGTH.ToString()),
 "Length");
 Assert.That(output,
 Is.StringContaining(NowDate),
 "Date");
 Assert.That(output,
 Is.StringContaining(NowTime),
 "Time");
}
[Test]
public void testThatFormatIsCorrectLength()
{
 var output = formatter.Format(files);
 Assert.That(output.Length,
 Is.EqualTo(ROW_LENGTH));
}

Listing 12

private const int ROW_LENGTH = 60;

static void Main(string[] args)
{
 var dirToList = getDirToList(args);
 var output = new StringBuilder(string.Format(
 "Directory: {0}\n", dirToList));
 var files = toMappers(dirToList);
 var formatter = new DetailsFormatter(
 ROW_LENGTH);
 output.Append(formatter.Format(files));
 Console.Write(output.ToString());
}

private static
IList<FileInfoMapper> toMappers(string path)
{
 var dirInfo = new DirectoryInfo(path);
 var files = new List<FileInfoMapper>();
 foreach (var fileInfo in dirInfo.GetFiles())
 files.Add(new FileInfoAdapter(fileInfo));
 return files;
}

20 | Overload | August 2011

http://en.wikipedia.org/wiki/Adapter_pattern
http://en.wikipedia.org/wiki/Adapter_pattern
http://agilecoach.typepad.com/agile-coaching/2011/07/when-to-write-story-tests.html
http://en.wikipedia.org/wiki/Facade_pattern
http://en.wikipedia.org/wiki/Facade_pattern
http://en.wikipedia.org/wiki/Mock_object
http://msdn.microsoft.com/en-us/library/system.io.fileinfo.aspx
http://msdn.microsoft.com/en-us/library/system.io.fileinfo.aspx
http://allankelly.blogspot.com/2008/03/implications-of-power-law.html
http://research.microsoft.com/en-us/groups/ese/nagappan_tdd.pdf
http://research.microsoft.com/en-us/groups/ese/nagappan_tdd.pdf
http://www.nunit.org/
http://diveintopython.org/
http://en.wikipedia.org/wiki/Power_law
http://en.wikipedia.org/wiki/Strategy_pattern
http://en.wikipedia.org/wiki/Strategy_pattern
http://paulgrenyer.net/dnld/DirList-Abridged-0.0.1.zip

FEATURERICHARD HARRIS
Why [Insert Algorithm Here]
Won’t Cure Your Calculus Blues
We now know that floating point arithmetic is
the best we can do. Richard Harris goes back
to school ready to show how to use it.

2
e have travelled far and wide in the fair land of computer number
representation and have seen the unmistakable scorch marks that
betray the presence of the dragon of numerical error. No matter

where we travel we are forced to keep our wits about us if we fear his fiery
wrath.
Those who take sport in the forests of IEEE 754 floating point arithmetic
have long since learnt when and how the dragon may be tamed and, if we
seek to perform mathematical computation, we would be wise to take their
counsel.
In this second half of this series of articles we shall take it as read that
floating point arithmetic is our most effective weapon for such
computation and we shall learn that, if we wish to wield it effectively, we
are going to have to think!
To illustrate the development and analysis of algorithms for mathematical
computation we shall continue to use the example of numerical
differentiation with which we seek to approximate as accurately as
possible the derivative of a function, primarily because it is the simplest
non-trivial numerical calculation that I know of.
Before we do so, it will be useful to discuss exactly what we mean by
differentiation and the tools that we shall exploit in the development and
analysis of our algorithms.

On the differential calculus
The aim of the differential calculus is the calculation of the instantaneous
rate of change of functions or, equivalently, the slopes of their graphs at
any given point.
Credit for its discovery is often given to the 17th century mathematicians
Newton and Leibniz, despite the fact that many of the concepts were
discovered centuries before by the Greeks, the Indians and the Persians.
That said, the contributions of Newton and Leibniz were not insignificant
and it is their notations that are still used today: from Newton and dy/dx
from Leibniz.
The central idea of the differential calculus was that of the infinitesimals;
hypothetical entities that have a smaller absolute value than any real
number other than zero.
To see how infinitesimals are used to calculate the slope of a graph, first
consider the slope of a straight line connecting two points on it, say (x0,y0)
and (x1,y1)

To compute its slope at a point x we should ideally want to set both x0 and
x1 equal to x but unfortunately this yields the meaningless quantity 0/0.
Instead we shall set x0 equal to x and x1 equal to x plus some infinitesimal
quantity dx. Since this is closer to x than any real number, it should yield
a result closer to the slope at x than any real number. The actual slope can
therefore be recovered by discarding any infinitesimals in that result.

For example, consider the slope of the function x .

where the wavy equals sign means approximately equal to in the sense that
no real number is closer to the result.
We define a function to be continuous if an infinitesimal change in its
argument yields an infinitesimal change of the same or higher order in its
value. If the same can be said of its derivative, we say that the function is
smooth.
For a smooth function f we therefore have f(x+dx)=f(x)+df(x), where df(x)
is an infinitesimal of at least the same order as dx. Given this we can obtain
Leibniz’ notation

That we require the function to be smooth rather than simply continuous
might come as a bit of a surprise, but stems from the fact that a function
does not have a well defined value at a discontinuity.
Treating d/dx as an operator as above, we recover the notation for repeated
differentiation. We square it if we differentiate twice, cube it if thrice, and
so forth, to obtain

We can recover the various identities of the differential calculus using
infinitesimals. In derivation 1, for example, we prove the product rule for
the derivative of the product of two functions f and g.

Given constant c, the exponential function ex, its inverse ln x and functions
f and g such that y=f(x) and z=g(y) some further useful identities are

W

y·

y y
x x

1 0

1 0

−
−

x dx x
x dx x

x x dx dx x
dx

x dx dx
dx

x dx

+() −
+() −

=
+ × × + −

=
× × +

= + ≈

2 2 2 2 2

2

2

2

2 2xx

f x dx f x
x dx x

f x df x f x
x dx x

df x
dx

d
dx

f x
+() − ()
+() −

=
() + () − ()

+ −
=

()
= ()

2 derivate:

3 derivate:

nd

rd

d
dx

f x
d f x

dx

d
dx

⎛
⎝
⎜

⎞
⎠
⎟ () = ()

⎛

2 2

2

⎝⎝
⎜

⎞
⎠
⎟ () = ()

⎛
⎝
⎜

⎞
⎠
⎟ () = ()

3 3

3f x
d f x

dx

n d
dx

f x
d f x

d

n n
th derivate:

xxn

d f x g x
dx

f x
dg x

dx
df x

dx
g x

()× ()()
= ()× ()

+
()

× ()

Richard Harris has been a professional programmer since 1996.
He has a background in Artificial Intelligence and numerical computing
and is currently employed writing software for financial regulation.
August 2011 | Overload | 21

FEATURE RICHARD HARRIS
Whilst infinitesimals provide a reasonably intuitive framework for the
differential calculus it is not a particularly rigorous one. What exactly does
it mean to say that an infinitesimal is smaller in magnitude than any real
number other than zero? Given any real number, we can halve it to give
us a number that is closer to zero. Halving again yields a number closer
still, as does halving a third time. Repeating this process over and over
again yields a sequence of numbers that shrink arbitrarily close to zero, so
where exactly are the infinitesimals to be found?
This lack of rigour did not escape Newton and Leibniz’ contemporaries;
the philosopher George Berkeley [Berkeley34], for example, criticised the
calculus for its ‘fallacious way of proceeding to a certain Point on the
Supposition of an Increment, and then at once shifting your Supposition to
that of no Increment’ and derided the infinitesimals as the ‘ghosts of
departed quantities’.
Despite these objections, many mathematicians were unwilling to dismiss
the differential calculus due to its incredible usefulness. For example,
consider the equation governing the straight line distance s travelled in a
time t by a frictionless body from a standing start under a constant
acceleration a

If we take the derivative of this with respect to time, we recover the
equation governing the speed of that body after the time t

That equations of motion such as these could be experimentally verified
was rather strong evidence that the differential calculus was valid. It was
not until some 150 years later that this was conclusively demonstrated,
however.

On analysis
It was Cauchy who made the great leap forward in setting the differential
calculus on a secure foundation. He did it not by giving the infinitesimals

a rigorous definition but by doing away
with them entirely.
His idea was to define the derivative as the
limit of a sequence of ever more accurate
approximations to it. Specifically, that

is the limit of

as Δx tends to 0
or in conventional notation

For example, consider again the derivative
of x2

where the final equals sign means equals as Δx tends to zero.
Now this is how we defined the derivative in the first article in this series
but, whilst it’s certainly a step in the right direction, it’s not yet quite
enough. What exactly do we mean when we say Δx tends to zero? Do we
repeatedly halve it? Do we start with a positive value less than 1 and square
it, then cube it, then raise it to the 4th power and so on? Does it actually
matter?
Cauchy’s great achievement was to rigorously define the limit of a
sequence and, in doing so, discover analysis: the mathematics of limits.
We say that the limit of a function f(x) as x tends to c is equal to l if and
only if for any given positive ε, no matter how small, we can find a positive
δ such that the absolute difference between f(x) and l is always less than ε
if the absolute difference between x and c is less than δ. In mathematical
notation we write this as

where the upside down A should be read as for all, the backwards E as
there exists, and the arrow as implies that. The vertical bars represent the
absolute value of the expressions bracketed by them.
With this definition we are not dependant upon the manner in which we
approach a limit, only upon the size of its terms.
We now define the derivative df(x)/dx with

If such a limit exists, we say that the function is differentiable at x.
The derivative of x2 is 2x since for all x

As we did with infinitesimals, we can derive the various identities of the
differential calculus with this rigorous definition of a limit. Derivation 2
provides a proof of the product rule in these terms, for example.
That this proof is so much longer and more difficult than the one using
infinitesimals is something that mathematicians have had to learn to live

dc
dx

dx
dx

nx

de
dx

e d x
dx x

d x
dx

x d x
dx

n
n

x
x

= =

= =

= = −

−0

1

1

ln

sin cos cos sin xx

dz
dx

dz
dy

dy
dx

dx
dy

dy
dx

= × =1

s at= 1
2

2

v ds
dt

at= =

df x
dx
()

f x x f x
x

+() − ()Δ
Δ

df x
dx

f x x f x
xx

()
=

+() − ()
→

lim
Δ

Δ
Δ0

x x x
x x x

x x x x x
x

x x x
x

x x

+() −
+() −

=
+ × × + −

=
× × +

= + =

Δ
Δ

Δ Δ
Δ

Δ Δ
Δ

Δ
Δ

2 2 2 2 2

2

2

2

2
xx

x
→0

2

∀ > ∃ > < − < ⇒ () − <()ε δ δ ε0 0 0 x c f x l

∀ > ∃ > < < ⇒
+() − ()

−
()

<
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ε δ δ ε0 0 0 Δ

Δ
Δ

x
f x x f x

x
df x

dx

Δ
Δ
Δ

Δ Δx
x x
x

x x x x x< ⇒
+() −

− = + − = <ε ε
x 2 2

2 2 2

Derivation 1

Proving the product rule with infinitesimals
Given smooth continuous functions f and g:

d f x g x
dx

f x dx g x dx f x g x
x dx x

f x df x

()× ()()
=

+()× +() − ()× ()
+() −

=
() + ())()× () + ()() − ()× ()

=
()× () + ()× () + ()×

g x dg x f x g x
dx

f x g x f x dg x df x g xx df x dg x f x g x
dx

f x dg x df x g x df x d

() + ()× () − ()× ()

=
()× () + ()× () + ()× gg x

dx

f x
dg x

dx
df x

dx
g x

df x dg x
dx

f x
dg x

()

= ()× ()
+

()
× () + ()× ()

≈ ()× ()
ddx

df x
dx

g x+
()

× ()
22 | Overload | August 2011

FEATURERICHARD HARRIS
with; the price of rigour is generally paid in ink. The rigour that Cauchy
brought to the differential calculus was part of a great revolution in
mathematical thinking that took place during the 19th century. Indeed,

almost all of the techniques of modern mathematics were developed
during this period.

Infinitesimals two point 0
In the latter half of the 20th century the infinitesimals enjoyed something
of a renaissance. Both Robinson, with his non-standard numbers
[Robinson74], and Conway, with his surreal numbers [Knuth74],
developed consistent number systems in which infinitesimals could be
given a rigorous definition.
Their approach was to embed something akin to Cauchy’s limits into the
very idea of a number. Loosely speaking, Robinson defined a non-
standard number as an infinite sequence of real numbers with arithmetic
operations and functions applied on an element by element basis. For
example

Loosely speaking, two non-standard numbers x and y are considered
equal if for all but a finite set of indices i, xi = yi or, in limit notation, that

The remaining comparison operators are similarly defined and the real
numbers are the subset of the non-standard numbers whose elements are
identical for all but a finite set of indices. Now consider the standard
number whose elements are a strictly decreasing sequence of positive
numbers. For example

By the rules of non-standard arithmetic this number is greater than zero
since every element in it is greater than zero. Furthermore, it is smaller
than any positive real number x since there will be some n for which 1/2n

is smaller than x and hence so will be the infinite sequence of elements
of δ after the nth. So here we have a genuine, bona fide infinitesimal with
all of the properties of those in Newton and Leibniz’ differential
calculus!
If a non-standard number z can be represented by a real number plus an
infinitesimal non-standard number, we call that real number the standard
part of z, or st(z). We can thus define the derivative of a function f as

for a standard real x and all infinitesimal non-standard δ, if this value
exists. For example, let’s consider the derivative of x2 a third time.

x x x x x

y y y y y

x y x y x y x y

= ()
= ()

+ = + + +

0 1 2 3

0 1 2 3

0 0 1 1 2

, , , ,...

, , , ,...

, , 22 3 3, ,...x y+()

∃ ∀ > =()n i n x yi i

δ = ()1 1
2

1
4

1
8, , , ,...

st
f x f x+() − ()⎛

⎝
⎜

⎞

⎠
⎟

δ
δ

δ δ δ δ δ

δ δ δ δ δ

δ δ

= ()
+ = + + + +()

+() = +

0 1 2 3

0 1 2 3

2

, , , ,...

, , , ,...x x x x x

x x 00
2

1
2

2
2

3
2() +() +() +()(), , , ,...x x xδ δ δ

x x

x x x x x x x x

+() −

=
+() − +() − +() − +() −

δ
δ

δ δ δ δ

2 2

0
2 2

1
2 2

2
2 2

3
2 2, , , ,...(()

()

=
× × + × × + × × + × ×

δ δ δ δ

δ δ δ δ δ δ
0 1 2 3

0 0
2

1 1
2

2 2
22 2 2 2

, , , ,...

, , ,x x x x δδ δ

δ δ δ δ

δ δ δ δ

3 3
2

0 1 2 3

0 1 2 32 2 2 2

+()
()

= × + × + × + × +

,...
, , , ,...

, , ,x x x x ,,...()

st
x x

x
+() −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

δ
δ

2 2

2

Derivation 2

Proving the product rule with limits
Given a differentiable function f we have

Now, given a second differentiable function g we have

The bounds on the product of f(x+Δx) and g(x+Δx) are the minimum and
maximum of the four possible products of their bounds of which, if we denote
them by L and U, we can be sure that

and hence that

For any given positive ε we can, for example, choose positive δ such that

and thus ι<ε whenever |Δx|< δ, as required.

∀ > ∃ > ∀ < < ⇒
+() − ()

−
()

<
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

< <

ε δ δ ε

δ

f fx x
f x x f x

x
df x

dx

x

0 0 0

0

Δ Δ
Δ
Δ

Δ ⇒⇒ +() − () − ×
()

< ×

< < ⇒ () + ×
()

− ×

f x x f x x
df x

dx
x

x f x x
df x

dx
x

fΔ Δ Δ

Δ Δ Δ

ε

δ ε0 ff

f

f x x

f x x
df x

dx
x

< +()

< () + ×
()

+ ×

Δ

Δ Δ ε

f x x
df x

dx
x g x x

dg x
dx

x

f x

f g() + ×
()

+ ×
⎛

⎝
⎜

⎞

⎠
⎟× () + ×

()
+ ×

⎛

⎝
⎜

⎞

⎠
⎟

=

Δ Δ Δ Δε ε

(()× () + × ()× ()
+ ×

()
× ()

+ ×
()

×
()

g x x f x
dg x

dx
x

df x
dx

g x

x
df x

dx
dg x

Δ Δ

Δ 2

ddx
x g x x

dg x
dx

x

x f x x
df x

d

f g

g

+ × × () + ×
()

+ ×
⎛

⎝
⎜

⎞

⎠
⎟

+ × × () + ×
()

Δ Δ Δ

Δ Δ

ε ε

ε
xx

x f+ ×
⎛

⎝
⎜

⎞

⎠
⎟Δ ε

ι ε ε

ε

= ×
()

×
()

+ × () + ×
()

+ ×

+ × () + ×

Δ Δ Δ

Δ

x
df x

dx
dg x

dx
g x x

dg x
dx

x

f x x
d

f g

g

ff x
dx

x

L f x g x x f x
dg x

dx
x

df x
dx

g x

f
()

+ ×

≥ ()× () + × ()× ()
+ ×

()
× () −

Δ

Δ Δ Δ

ε

xx

U f x g x x f x
dg x

dx
x

df x
dx

g x x

×

≤ ()× () + × ()× ()
+ ×

()
× () + ×

ι

ιΔ Δ Δ

f x x g x x f x g x
x

f x
dg x

dx
df x

dx
g x

+()× +() − ()× ()

− ()× ()
+

()
× ()⎛

⎝
⎜

⎞

⎠

Δ Δ
Δ

⎟⎟

≤ ι

δ
ε

ε
ε

δ δ ε

ε

≤
()

×
()

+

≤

() + ×
()

+ ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

≤

3 1

3 1

df x
dx

dg x
dx

g x
dg x

dx

f

g

g
εε

δ δ ε3 1f x
df x

dx f() + ×
()

+ ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +
August 2011 | Overload | 23

FEATURE RICHARD HARRIS
Note that at no point did we rely upon the value of δ, just that it was an
infinitesimal, and hence the result stands for all infinitesimals.
The problem with this loose definition of the non-standard numbers is that
the vast majority of them are comprised of oscillating or random sequences
which cannot meaningfully be ordered by the less than and greater than
operators. Fortunately, the formal definition addresses this deficiency by
demonstrating that it is possible to define rules by which we can do so,
albeit ones which we cannot ever hope to write down in full.
Very roughly speaking, these rules unambiguously equate oscillating/
random sequences with convergent or divergent sequences. By magic.
Robinson proved that the non-standard numbers do not lead to any logical
contradictions other than those, if any, that are consequences of the
standard reals and that his infinitesimals have exactly the properties of
Newton’s.
We can therefore dispense with the full limit notation and simply go back
to using our original infinitesimals.
Now that we know exactly how the differential calculus is defined we are
nearly ready to begin analysing numerical differentiation algorithms.
Before we can start, however, there is one last piece of mathematics that
we shall need.

Taylor’s theorem
For those who seek to develop numerical algorithms, Taylor’s theorem is
perhaps the single most useful result in mathematics.
It demonstrates how a sufficiently differentiable function can be
approximated within some region to within some error by a polynomial.
Specifically, it shows that

where we are using the notational convention of f'(x) for the derivative of
f evaluated at x, f"(x) for the second derivative and f(n)(x) for the nth

derivative. The exclamation mark is the factorial of, or the product of every
integer from 1 up to and including, the value preceding it. O(δn+1) is an
error term of order δn+1 or, in other words, that for any given f and x is
equal to some constant multiple of δn+1.
By sufficiently differentiable we mean that all of the derivatives of f up to
the n+1th must exist, and that all of the derivatives of f up to the nth must
be continuous, between x and x+δ, inclusive of the bounds in the latter case
but not in the former.
In fact, the error term has exact bounds given by a more accurate statement
of Taylor’s theorem

or, equivalently, that for some y between x and x+dx

If we put no limit upon n we recover the Taylor series of a function f in
the region of x

where the capital sigma stands for the sum of the expression to its right
for every unique value of i that satisfies the inequality beneath it and with

the factorial of 0 being 1 and the 0th derivative of a function being the
function itself. Note that this identity holds if and only if the sum has a
well defined limit under Cauchy’s definition.
We can use Taylor series about 0, also known as Maclaurin series, to prove
the surprising relationship between the value of the exponential function
at 1, e, the ratio of the circumference of a circle to its diameter, π, the square
root of -1, i, and -1

We do this by examining the Maclaurin series of the exponential function,
the sine function and the cosine function

Note that all three of these series converge for any value of x and can be
extended to the complex numbers that are the sums of real numbers and
multiples of i.
So let’s now consider eix

This is known as Euler’s formula and yields that surprising relationship
when we set x=π.
As fascinating and profound as this undoubtedly is, it is not the reason that
Taylor’s theorem is of such utility in numerical computing. Rather, it is
that Taylor’s theorem provides us with an explicit formula for
approximating a function with a polynomial and bounds on the error that
results from doing so.
Such polynomials are very easy to mathematically and numerically
manipulate and thus can dramatically simplify many mathematical
computations; they are used to very great effect in Physics, for example.
Furthermore, it gives us an explicit formula for the error in the value of a
function that results from an error in its argument, such as might occur
through floating point rounding for example

for some y between x and x+δ that maximises the right hand side of the
equation.
So, now we have a thorough grasp of the differential calculus and are
equipped with the numerical power tool of Taylor’s theorem, we are ready
to scrutinise some of the numerical algorithms for approximating the
derivatives of functions.
I’m afraid we shall have to wait until next time before we do so, however.

References and further reading
[Berkeley34] Berkeley, G., The Analyst; Or, A Discourse Addressed to an

Infidel Mathematician, Printed for J. Tonson, 1734.
[Knuth74] Knuth, D., Surreal Numbers; How Two Ex-Students Turned on

to Pure Mathematics and Found Total Happiness, Addison-Wesley,
1974.

[Robinson74] Robinson, A., Non-Standard Analysis, Elsevier, 1974.

f x f x f x f x

f x On
n n n

+() = () + × ′() + × ′′() +
+ × () + ()+

δ δ δ

δ δ

1
2

2

1 1... !
()

f x f x f x f x

f x Rn
n n

n

n

+() = () + × ′() + × ′′() +
+ × () +

+

δ δ δ

δ

1
2

2

1

1

...

min

!
()

11
1 1

1
1

1 1

()
+ +()

+()
+ +()

× +()() ≤
≤ × +()()

!

!max

δ θδ

δ θδ

n n
n

n
n n

f x R

f x for 0 1≤ ≤θ

R f yn n
n n= × ()+()
+ +()1

1
1 1

!δ

f x f x f x f x

f xn
n n

i

+() = () + × ′() + × ′′() +
+ × () +

=

δ δ δ

δ

δ

1
2

2

1

1

...

...!
()

!
ii i

i
f x()

>=
()∑

0

eiπ = −1

e x x x x

x x x x

x
n

n

n

= + + + + + +

= − + + +
−

1

1

1
2

2 1
6

3 1

1
6

3 1
120

5

... ...

sin ... ()
!

22 1

1 1
2

2 1

1
2

2 1
24

4 2

n
x

x x x
n

x

n

n
n

+()
+

= − + + +
−
()

+

+

!
...

cos ... ()
!

...

e ix i x i x i x

ix x ix

ix
n

n n= + + + + + +

= + − − +

1

1

1
2

2 2 1
6

3 3 1

1
2

2 1
6

3

... ...

...

!

++
−
()

+
−
+()

+

= − + +
−
(

+()
!

()
!

...

... ()

1
2

1
2 1

1 1
2

2 2 1

1
2

2

n
n

n
n

n

n
x

n
ix

x
n))

+ + − + +
−
+()

+

= +

+

!
... ... ()

!
...

cos sin

x ix ix
n

ix

x i x

n
n

n2 1
6

3 2 11
2 1

f x f x
f x f x

f xn
n n

n

+() − () ≤
× ′() + × ′′() +

+ × () + +()

δ
δ δ

δ δ

1
2

2

1 1
1

...

!
()

!
nn nf y+ +()× ()1 1
24 | Overload | August 2011

	Rise of the Machines
	Over-Generic Use of Abstractons as a Major Cause of Wasting Resources
	Integrating Testers Into An Agile Team
	Thread-Safe Access Guards
	An Introduction to Test Driven Development
	Why [Insert Algorithm Here] Won’t Cure Your Calculus Blues

