

August 2013 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Hard Upper LImit on Memory Latency
Sergey Ignatchenko asks how low latency can
really get.

6 Simple Instrumentation
Chris Oldwood demonstrates instrumentation
considering which measurements are useful.

11 Portable String Literals in C++
Alf Steinbach reveals how to write a file in C++
called π.recipe.

16 Dynamic C++ (Part 2)
Alex Fabijanic and Richard Saunders continue to
explore dynamic solutions in C++.

21 Auto – a necessary evil? (Part 2)
Roger Orr considers when the use of auto is good
and when it’s evil.

OVERLOAD 116

August 2013

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simonsebright@hotmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 117 should be submitted
by 1st September 2013 and those
for Overload 118 by 1st November
2013.

EDITORIAL FRANCES BUONTEMPO
Learning Fantasy Languages
The last Overload editorial described a Fantasy Language.
Now, how do you learn one?
I would like to thank Ric Parkin for stepping in and
writing an editorial for the previous Overload. His
presentation of a fantasy language (FL) got me
thinking, thereby stopping me from getting round to
writing an editorial yet again. How would I learn FL?
I would not be able to search stack overflow [SO] for

answers. Perhaps this is a good thing. I would not be able to buy any books
on the subject. This may or may not be a good thing. Books are frequently
time consuming and, as previously discussed, heavy [Overload 111]. I
have not bought any books so far this year, provided that comics, a book
for completing a survey, my Dad buying the 4th edition of The C++
Programming Language [C++PL] for the latest ACCU study group and
somehow ending up with a book after going near the charity book stool
at this year’s ACCU conference do not count. Similarly, any books in the
form of PDFs that have ended up on my Kindle do not count. So, how
would I learn FL? In this extreme example, I would have to implement it
myself in order to learn it. I did start learning C++ by writing a parser for
C++, which appears to be unconventional. To be fair, it just parsed C with
classes to expose constructors and public functions to a rapid application
development tool. Nonetheless, this was a good way to start learning a
language. It certainly made using it seem a doddle by comparison. Before
progressing on to using the Standard Template Library, I was encouraged
to write several container classes myself to get a solid grounding in how
they might work and what sort of interface they should provide. Though
it may have been quicker to just use the tools that already existed, rather
than re-invent the wheel, I appreciated the chance to think deeply about
what is going on under the hood.

Since my book ban, I have been trying to read some of the un-read books
I own. My dream is to buy more when I have caught up. I am making some
progress. I have eleven books on the go at the moment, and have just
finished The Structure and Interpretation of Computer Programs [SICP].
The latter part of the book considers various approaches to implementing
lisp, which makes the reader think deeply about how a programming
language works. It poses a variety of problems ranging from considering
the effect of trying various orders of evaluation of expressions, through
to lazy evaluation with streams, non-deterministic programming, creating
register machines, writing a debugger, implementing garbage collection
and considering what tail recursion means. Many of these are complicated
ideas that someone who just programs for a day job would never really
have to know about. Again we have an example of a deep – dive into a
topic to learn it, which while not being strictly needed, can help with a
rigorous understanding of the subject. Richard Feynman apparently once

said “What I cannot create I do not understand.”
There is clearly merit in learning how to

write a lisp evaluator in lisp. Or working on a C++ compiler. Or joining
the standards committee.

If the final step in learning FL, or indeed any language, is to implement
it, what are the first steps? There may be some overlap with how humans
learn anything. I was introduced to Piaget’s theory of cognitive
development [Piaget] at teacher training college. At the time, I failed to
realise that his ideas are about how small children learn while they grow
up, rather than how adults learn. Nonetheless, some of the stages and
processes still possibly happen in adults. He talks about assimilating or
taking on board new information and how this gets accommodated into
our current world view. The accommodation step may shift our
perspective slightly. If a person is learning a programming language from
scratch the problems encountered will differ from those of another who
is learning a second language. I keep writing

 for (auto & item in stuff) { …}

in C++11, since I know python. A person who is new to programming is
likely to get the ":" instead of "in".1

Aside from the syntax differences, idioms differ between languages. Can
you tell if someone knows functional programming and tries to use it in
another language? Quite probably. Piaget describes other stages, such as
a sensorimotor stage, from birth until the age of two, which may not be
relevant to learning programming, apart from the discussions about hand-
eye coordination which may relate to typing, which we touched on in a
previous Overload [Overload 114]. In conjunction with the various stages
through life, he identifies various processes that occur. These include
conversation, decentering (shifting your perspective to view something
from various angles), reversibility (breaking something to piece it back
together), serriation (sorting by characteristics), transitivity,
classification, elimination of egocentrism (seeing things from another’s
perspective), inductive logic, testing for concrete operations (talking to
others about ideas) and finally at the formal operational stage ideas are
abstracted and deductive reasoning can happen. Sketching over the
details, the high level view I was given at college was that pupils learn by
reading, writing, talking then doing or possibly being able to explain to a
peer. A similar path may happen as you learn a programming language.

You will almost certainly read code in a language you are trying to learn
before trying to write any, FL excepted since it doesn’t exist yet. This
provides a unique problem for language innovators. Having read some
code you will eventually start trying to write some code. If you wish to
continue learning the language you will need to start talking about it to
others, maybe describing what you have done, perhaps via some tests,
possibly getting a code review, or possibly even writing an article about
it. The next step would be mentoring someone, thereby forcing you to

1. Many thanks to Jon Wakely for helpfully suggesting I #define in :,
though I suspect that could cause other problems.
2 | Overload | August 2013

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer for over 12 years professionally, and learnt to program by reading the manual for her Dad’s
BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

EDITORIALFRANCES BUONTEMPO
clearly communicate what you have understood. This will probably
require an ‘elimination of egocentrism’ touched on earlier. It is frequently
never enough to just state how something is and expect another to repeat
it back parrot fashion – there needs to be engagement and you need to
understand the mentee’s perspective. Just repeating the same words over
and over when trying to teach someone a new idea will almost never help.
Understanding someone else’s confusion makes you understand more
deeply yourself. When teaching someone it is all too easy to just give rules
to follow, maybe by giving hard and fast coding standard to adhere to, or
by insisting on a ‘rigid agile’ processes. As we know, Captain Hector
Barbossa said, “The code is more what you’d call guidelines than actual
rules.” Scott Meyers frequently gives his advice in the form of guidelines,
for example “Prefer const and inline to #define.” [EC++]

I find this way of presenting wisdom and understanding beautiful. Most
people are rebels at heart and will follow the letter of the law rather than
its spirit. If you can give guidelines that encourage people to code with their
brains engaged you are doing well.

The last step which Piaget omitted is to explain all this to a computer. Even
when you think you understand an algorithm, or what your customers
want, coding it up frequently throws up issues you did not initially spot.
Like writing a recipe, you need to be precise and explicit in all the steps.

Science is knowledge which we understand so well that we can
teach it to a computer; and if we don’t fully understand

something, it is an art to deal with it. ~ [Knuth]

Clearly, if I can write a C++ compiler, debugger, refactoring tool, and
present proposals to the standards committee, I probably have a deep
knowledge and understanding of C++. Knowledge covers rattling off edge
cases, or shouting out “20.3.2” to someone speaking at the ACCU
conference (you know who you are). Understanding is a different matter.
‘Understand’ is a strange word. The internet suggests its etymology is
related to ‘stand’ together with ‘under’ though more with a sense of ‘inter’,
‘between’ or ‘among’, giving a hint of Greek ‘entera’ or intestines
[etymonline]. If I understand something, I am right in its guts. I stand
within it. I can see the world from a new perspective. The word
‘understand’ also carries flavours of investigations and beginnings.
Understanding is the beginning. What is it the beginning of? It can be a
step towards wisdom. Though wisdom is about knowing, it does not mean
being able to rattle of a list of facts parrot fashion. Though wisdom might
involve understanding, it digs deeper. “A wise man has no extensive
knowledge; He who has extensive knowledge is not a wise man.” [Lao-tzu]
In words reminiscent of Fight Club, the Bible tells us, “The beginning of
wisdom is this: Get wisdom. Though it cost all you have, get understanding.”
[Proverbs 4: 7]

Having said all this, is understanding really important? When people
started a quest for artificial intelligence their aim was to create computers
that mimic the way humans did things, hoping to make machines that could
think. Leaving aside the question of what think actually means, this has
raised several further points. Most of us are aware of the Turing test, where
a human tries to decide if they are communicating with a human or a
machine [Turing]. This was introduced as a way of deciding if machines
can think, without having to define ‘think’. It has also spawned excellent

science fiction stories. John Searle suggested if a machine could not be
disambiguated from a human in this test, it could not really be seen as
thinking. He introduced a thought experiment called the Chinese Room
argument [Chinese room].He imagines being locked in a room and given
paper with Chinese symbols on. Since he doesn’t understand these, they
just looks like meaningless squiggles. Helpfully, he is also given precise
instructions in English of how to respond to the Chinese, which can be
regarded as a program. People outside the room pass him questions in
Chinese, and by following the instructions he manages to answer the
questions by writing appropriate squiggles. This may well give the
appearance of understanding Chinese to those outside the room who
receive his written answers, though it is clear to us he does not. If I do not
understand Ric’s FL, but can program in it, does this matter? I would like
to suggest it does. I will miss opportunities to improve the language and
design my own. I will probably never be able to develop wisdom while
using the language, guiding me to a stage of unconscious competence,
where I can seemingly use the language with no thought, or at least effort,
at all [Stages of competence] and I suspect I will not be able to explain it
well to others.

Thanks again to Ric for stepping in last time. I am sorry this has distracted
me from writing an editorial yet again. I did consider
implementing FL, but have been so busy avoiding
writing an editorial I didn’t have time to do that either.
It remains to be seen what excuses I can come out with
for next time.

References
[C++PL] The C++ Programming Language, Bjarne Stroustrup, Addison

Wesley 2013

[Chinese room] Searle, John. R. (1980) ‘Minds, brains, and programs’,
Behavioral and Brain Sciences 3 (3): 417-457 http://cogprints.org/
7150/1/10.1.1.83.5248.pdf

[EC++] Scott Meyers Effective C++: 50 Specific Ways to Improve Your
Programs and Designs (Addison-Wesley Professional Computing
Series) 2nd Edition 1997

[etymonline] http://etymonline.com/?term=understand

[Knuth] http://en.wikiquote.org/wiki/Donald_Knuth

[Lao-tzu] Tao te Ching, c.550 B.C.E.

[Overload 111] Overload 111, October 2012

[Overload 114] Overload 114, April 2013

[Piaget] https://en.wikipedia.org/wiki/
Piaget's_theory_of_cognitive_development

[Proverbs 4: 7] New International Version

[SO] http://stackoverflow.com/

[SICP] http://mitpress.mit.edu/sicp/full-text/book/book.html

[Stages of competence]
http://en.wikipedia.org/wiki/Four_stages_of_competence

[Turing] http://en.wikipedia.org/wiki/Turing_test
August 2013 | Overload | 3

http://cogprints.org/7150/1/10.1.1.83.5248.pdf
http://cogprints.org/7150/1/10.1.1.83.5248.pdf
http://etymonline.com/?term=understand
http://en.wikiquote.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Piaget’s_theory_of_cognitive_development
https://en.wikipedia.org/wiki/Piaget’s_theory_of_cognitive_development
http://stackoverflow.com/
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://en.wikipedia.org/wiki/Four_stages_of_competence
http://en.wikipedia.org/wiki/Turing_test

FEATURE SERGEY IGNATCHENKO
Hard Upper Limit on
Memory Latency
Achieving very low latency is important.
Sergey Ignatchenko asks how low can we go.
Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Bunny, and do not necessarily coincide with the opinions of
the translator or the Overload editor. Please also keep in mind that
translation difficulties from Lapine (like those described in
[Loganberry04]) might have prevented providing an exact
translation. In addition, both the translators and Overload expressly
disclaim all responsibility from any action or inaction resulting from
reading this article.

n [Bunny12], we discussed upper limits on the feasible possible memory
size. It was found that even if every single atom of silicon implements
one bit of memory, then implementing 2128 bytes will take 54 cubic

kilometers of silicon, and to implement 2256 bytes there won’t be enough
atoms in the observable universe. Now, we will proceed to analyse the
upper limit of speed for huge amounts of memory (which are lower than
the absolute limits mentioned above, but are still much higher than
anything in use now). In other words, we’ll try to provide an answer to
questions like, “Is it realistic to expect 2100-byte RAM to have access times
which are typical for modern DDR3 SDRAM?”

Assumptions
We need to agree on the assumptions on which we will rely during our
analysis. First, let’s assume that RAM is still made out of silicon, and that
each bit of RAM requires at least one atom of silicon to implement it. This
is an extremely generous assumption (current implementations use several
orders of magnitude more atoms than that). Second, let’s rely on the
assumption that nothing (including information) can possibly travel faster
than speed of light in vacuum. This is a well-known consequence from
invariance of speed of light and causality (many will name it a scientific
fact rather than assumption or hypothesis, but we won’t argue about the
terms here).

Analysis
Let’s consider memory which has B bytes. Let’s assume that each bit is
implemented by one single atom of silicon. Then, this memory will take
minimum a possible volume of

where NA is Avogadro’s number (6.021023 mol-1), and VmSi is molar
volume of silicon (1210-6 m3/mol). Therefore, for our 2100-byte (which
is approximately equal to 1.271030 bytes) RAM it will take at least 200

cubic meters of silicon. Now let’s assume that whatever device which
needs access to our RAM has dimensions which are negligible compared
to the size of RAM silicon, so we can consider access to our RAM coming
from a point (let’s name this point an ‘access point’). Now let’s arrange
our RAM around the access point in a sphere (a sphere being the most
optimal shape for our purposes). Such a sphere will have radius of

Therefore, for our 2100-byte RAM, a silicon sphere implementing it will
have radius of at least 3.7 meters. Now, let’s find out how long it will take
an electromagnetic wave to go through Rmin (back and forth, to account
for the time it takes a request to go to the location where the data is stored,
and data to come back):

where c is a speed of light (strictly speaking, we should take speed of
electromagnetic waves in silicon, but as we're speaking about lower
bounds, and the difference is relatively small for our purposes, we can
safely use the speed of light in vacuum, or 3108 m/s). Substituting, we
find that for our example 2100-byte RAM, equals approximately 25
nanoseconds.

It means that (given our assumptions above) there is a hard limit of 25
nanoseconds on the minimum possible guaranteed latency of 2100-byte
RAM. While the number may look low, we need to realize that modern
typical RAM latencies are more than an order of magnitude lower than
that: for example, typical latency for DDR3 SDRAM is 1–1.5 ns
(approximately 20 times less than our theoretical limit for 2100-byte
RAM).

Now we can ask another question – “What is the maximum memory size
for which we can realistically expect latencies typical to modern DDR3
SDRAM?” Using formula (*), we can calculate it as approximately 290

bytes. That is, even if each bit is implemented by single atom of silicon,
290-byte RAM is the largest RAM which can possibly have latencies
comparable to modern DDR3 SDRAM.

Generalization
If (as is currently the case) each bit is implemented with N atoms of silicon,
our formula (*) will become

allowing the calculation of latency limits depending on the technology in
use. For example, if for our 2100-byte RAM every bit is represented with
1000 atoms of silicon (which is comparable – by the order of magnitude
– to technologies used in modern RAM), the best possible latency will

I

V
V

N
BmSi

A
min 8

R
V V

N
BmSi

A
min

4
3

6
3

3

T
R

c c

V

N
BmSi

A
min

min (*)

2 2 6

3

T
c

V

N
B NmSi

A
min

2 6
3

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience,
including architecture of a system which handles hundreds of millions
of user transactions per day. He is currently holding the position of
Security Researcher. Sergey can be contacted at
sergey@ignatchenko.com
4 | Overload | August 2013

FEATURESERGEY IGNATCHENKO
become 250 ns. As for the largest memory which can have latencies
comparable to modern DDR3 SDRAM (given 1000 atoms per bit
implementation), it is approximately 280 bits.

Further considerations
It should be mentioned that latency is not the only parameter which
determines memory performance; another very important parameter is
memory bandwidth (and memory bandwidth is not affected by our
analysis). Also it should be mentioned that Tmin is in fact the minimum
latency we can guarantee for all the bits stored (bits stored closer to the
access point will have lower latencies than Tmin). Another practical
consideration is caching – our analysis did not take caching into account,
and for most common access patterns caching will improve average
latencies greatly.

Conclusions
One interesting consequence which comes out of our analysis is that
currently silicon technology has already got very close to the hard physical
limits (as opposed to technological limits which dominated electronics for
decades), and that even relativistic effects may come into play when trying
to improve things further along the lines of Moore’s law. While this is a
known thing for those dealing with bleeding-edge electronics, it is usually
ignored by people in the software industry, where it is quite common to
extrapolate Moore’s law to last for centuries. On the other hand,
approaching such hard physical limits may signal a close of the usual
every-year expansion of number of cores/RAM/HDD size/..., and such an
end may have very significant effects on the future of the software industry.
While it is unclear if it will be a Good Thing or Bad Thing for people in
the industry, what is clear is that such an end would be quite a drastic
change for the software development industry as a whole.

References
[Bunny12] “No Bugs” Bunny, ‘640K 2256 Bytes of Memory is More than

Anyone Would Ever Need Get’, Overload #112, December 2012

[Loganberry04] David ‘Loganberry’, ‘Frithaes! – an Introduction to
Colloquial Lapine!’, http://bitsnbobstones.watershipdown.org/
lapine/overview.html

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.
August 2013 | Overload | 5

http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html

FEATURE CHRIS OLDWOOD
Simple Instrumentation
Programs often run out of memory or grind to a halt.
Chris Oldwood demonstrates how to add
instrumentation to your code to track its performance.
he days when an application was a simple process that ran entirely
locally are long gone. Most systems these days are complex beasts
that reach out to a variety of services which can be hosted both locally

and remotely. As the number of links in the chain grows, so does the
potential for a performance problem to surface. And as we delegate more
and more work to 3rd party services instead of owning them, sometimes
the best we can hope for is to keep a very close eye on how they’re
behaving.

The internal components we also rely on will continually get upgraded
with new features and bug fixes so we need to make sure that any change
in their performance characteristics are still within our expected
tolerances. Even during day-to-day operation there will be spikes in
volumes and anomalous behaviour in both our own code and those of our
upstream and downstream dependencies that will need to be investigated.

If you’ve ever had a support query from a user that just says “the system
is running like a dog” and you have no performance data captured from
within the bowels of your application then you’ve got an uphill battle. This
article explores what it takes to add some basic instrumentation to your
code so that you can get a good idea of what is happening in and around
your system at any time.

System-scale monitoring
Your operations team will no doubt already be monitoring the
infrastructure, so why isn’t that enough? Well, for starters they are almost
certainly only monitoring your production real estate – your development
and test environments are likely to be of little importance to them. And yet
those are the environments where you want to start seeing any performance
impact from your changes so that they can be dealt with swiftly before
reaching production.

The second reason is that they only have a 1,000 foot view of the system.
They can tell you about the peaks and troughs of any server, but when an
anomaly occurs they can’t tell you about which service calls might have
invoked that behaviour. Databases in particular have a habit of behaving
weirdly as the load spikes and so knowing which query is being blocked
can give you clues about what’s causing the spike.

What to measure
Sir Tony Hoare tells us that “premature optimisation is the root of all evil”
[Hoare] and therefore the first rule of thumb is to measure everything we
can afford to. In a modern system where there are umpteen network calls
and file I/O there is very little for which the act of measuring will in any
way significantly degrade the performance of the operation being
measured.

Of course if you write an instrumentation message to a log file for every
disk I/O request you’ll probably spend more time measuring than doing
useful work and so the level of measurement needs to be granular enough
to capture something useful without being too intrusive or verbose. This
may itself depend on how and where you are capturing your data as you
probably don’t want to be contending with the resource that you’re trying
to measure.

As a starting point I would expect to measure every call out to a remote
service, whether that is a web service, database query, etc. Every remote
call has so many other moving parts in play that it’s almost certainly going
to act up at some point. Reading and writing files to disk, especially when
that disk is based remotely on a NAS/SAN/DFS is also a must, although
the granularity would be to read/write the entire file. On top of those any
intensive memory or CPU hogs should also get instrumented as a matter
of course.

There is one scenario when I would consider discarding the measurements
for a task and that’s when an exception has been thrown. If an error has
occurred you cannot tell how much of the operation was performed, which
for a lost connection could be none, and so having lots of dubious tiny
points in your data will only succeed in distorting it.

Types of instrument
You only need a few basic instruments to help you capture most of the key
metrics. Some of those instruments are ‘real’, whereas others may need to
be synthesized by using API’s from the OS or language runtime.

Wall clock
By far the simplest instrument is the good old fashioned clock. The term
‘wall clock’ is often used to distinguish it from other internal clocks as it
measures elapsed time as perceived by the user (or operator). These are
probably the easiest to implement as virtually every runtime has the ability
to report the current date and time, and so therefore you can calculate the
difference.

The main thing you need to watch out for is the difference between the
precision and the accuracy of the clock. Although you may be able to
format the date and time down to 1 nanosecond that doesn’t mean it’s
captured at that resolution. For example the .Net System.DateTime
type has a precision measured in nanoseconds but is only accurate to
around 16 ms [Lippert]. As things stand today I have found this good
enough to capture the vast majority of ‘big picture’ measurements.

There are often other platform specific alternatives to the classic wall
clock, some are old fashioned like the original GetTickCount() API in
Windows which also only has a resolution of 10–16 ms on the NT lineage
(i t w a s a w ho p p i ng 5 0 m s u nd e r 3 . x / 95) . T h e W i nd o w s
QueryPerformanceCounter() API in contrast has a much, much
higher resolution, due to the hardware used to derive it, and it’s from this
that the .Net StopWatch type gains its sub-microsecond precision and
accuracy [Lippert]. However, be warned that this impressive feat is heavily
dependent on the hardware and is therefore more usable server-side than
client-side.

T

Chris Oldwood is a freelance developer who started out as a
bedroom coder in the 80s, writing assembler on 8-bit micros. These
days it’s C++ and C# on Windows in big plush corporate offices. He
is the commentator for the Godmanchester Gala Day Duck Race
and can be contacted via gort@cix.co.uk or @chrisoldwood
6 | Overload | August 2013

FEATURECHRIS OLDWOOD

One of the problems with any
measurement taken in isolation is that you

often need a little more knowledge about
what the ‘size’ of the task actually was
Specialised clocks
Internally operating systems often track metrics around process and thread
scheduling. One such bit of data Windows provides is the amount of time
spent in the OS kernel as opposed to user space. Coupled with the elapsed
time you can discover some useful facts about your process.

If it’s a high-performance computing (HPC) style engine that is expecting
to be CPU bound, you might expect all its time to be spent in user space,
but if it’s in neither you’re probably doing more I/O than you expect. I have
observed a high amount of time in the kernel when there are a large number
of exceptions bouncing around (and being ignored) or when the process is
doing an excessive amount of logging. The converse can also be true about
an I/O bound task that seems to be consuming too much CPU, such as
during marshalling.

Network latency
Prior to Windows 2000 the clocks on Windows servers were notoriously
bad, but with the addition of support for Kerberos the situation got much
better (it had to) as servers now synchronised their clocks with a domain
controller. With servers having a much better idea of what the current time
is, you can begin to capture the network latency incurred by a request –
this is the time it takes for the request to be sent and for the response to
the received.

You can measure the latency by timing the operation from the client’s
perspective (the remote end, server-wise) and also within the service
handling the request (the local end, server-wise) and then calculating the
difference. For example, if the client sees the request taking 10 seconds
and the service knows it only spent 8 seconds processing it, the other 2
seconds must be spent in and around the infrastructure used to transport
the request and response. Although you might not be able to correctly
apportion the time to the request or response sides (as that relies on the
absolute times) you can at least calculate the total latency which only relies
on the relative differences.

This kind of metric is particularly useful anywhere you have a queue (or
non-trivial buffering) in place as it will tell you how long a message has
been stuck in the pending state. For example in a grid computing scenario
there is usually a lot of infrastructure between your client code and your
service code (which is executed by a remote engine process) that will
queue your work and marshal any data to and from the client. However,
if the queue has the ability to retry operations you will have to allow for
the fact that the latency might also include numerous attempts. This is one
reason why handling failures and retries client-side can be beneficial.

Memory footprint
Aside from the use or idleness of your CPUs, you’ll also want to keep track
of the memory consumed by your processes. Sadly this is probably not
tracked at a thread level like CPU times because a global heap is in use.
However, single-threaded processes are often used for simplicity and
resilience and so you might be in a position to track this accurately in some
parts of the system.

On Windows you generally have to worry about two factors – virtual
address consumption and committed pages. Due to the architecture of
Windows’ heaps you can end up in the mysterious position of appearing
to have oodles of free memory and yet still receive an out-of-memory
condition. See my previous Overload article on breaking the 4 GB limit
with 32-bit Windows processes for more details [Memory]. Suffice to say
that process recycling is a common technique used with both managed and
native code to work around a variety of heap problems.

For services with some form of caching built-in memory footprint metrics
will help you discover if your cache eviction policy is working efficiently
or not.

Custom measurements
One of the problems with any measurement taken in isolation is that you
often need a little more knowledge about what the ‘size’ of the task actually
was. If your workload varies greatly then you’ll not know if 1 second is
fast, acceptable or excessive unless you also know that it had thousands
of items to process. Then when you’re analysing your data you can scale
it appropriately to account for the workload.

To help provide some context to the instrument measurements it’s worth
accumulating some custom measurements about the task. These might
include the number of items in the collection you’re reading/writing or the
number of bytes you’re sending/receiving.

Causality
Every similar set of measurements you capture need to be related in some
way to an operation and so you also need to capture something about what
that is and also, if possible, some additional context about the instance of
that operation. Once you start slicing and dicing your data you’ll want to
group together the measurements for the same operation so that you can
see how it’s behaving over time.

Additionally when you start to detect anomalies in your systems’
behaviour you’ll likely want to investigate them further to see what led to
the scenario. Whilst the date and time the data was captured is a good start,
it helps if have some kind of ‘transaction identifier’ that you can use to
correlate events across the whole system. I described one such approach
myself in a previous edition of Overload [Causality].

Output sinks
Once you’ve started accumulating all this data you’ll want to persist it so
that you can chew over it later. There are various options, none of which
are mutually exclusive, and so it might make sense to publish to multiple
targets for different reasons – usually based around active monitoring or
passive offline investigation.

One thing you’ll definitely want to bear in mind is how you handle errors
when writing to an output sink fails. You almost certainly don’t want the
failure to cause the underlying operation to also fail. If the sink is remote
you could try buffering the data for a short while, but then you run the risk
August 2013 | Overload | 7

FEATURE CHRIS OLDWOOD
of destabilising the process, and eventually the machine [Memory], if you
buffer too much for too long.

Log file
The humble (text based) log file is still with us, and for good reason. Many
of us have honed our skills at manipulating these kinds of files and as long
as you keep the format simple, they can provide a very effective medium.

The single biggest benefit I see in storing your instrumentation data in your
log files is the locality of reference – the data about the operation’s
performance is right there alongside the diagnostic data about what it was
doing. When it comes to support queries you’ve already got lots of useful
information in one place.

One method to help with singling out the data is to use a custom severity
level, such as ‘PRF’ (for performance), as this will use one of the key fields
to reduce the need for any complex pattern matching in the initial filtering.
The operation itself will need a unique name, which could be derived from
the calling method’s name, so that you can aggregate values. And then
you’ll need to the data encoded in a simple way, such as key value pairs.
Here is an example log message using that format:

 2013-06-26 17:54:05.345 PRF [Fetch Customers]
 Customer:Count=1000;WallClock:DurationInMs=123;

Here we have the operation name – Fetch Customers – and two
measurements – the number of items returned followed by the elapsed time
in milliseconds. Although the simpler key names Count and Duration
may appear to suffice at first, it’s wise to qualify them with a namespace
as you may have more than one value captured with the same name.
Including the units also helps if you capture the same value in two different
formats (e.g. milliseconds and TimeSpan). This might seem redundant,
but when reading a log for support reasons it helps if you don’t have to
keep doing arithmetic to work out whether the values are significant or not.

Classic database
Where better to store data than a database? Your system may already
capture some significant timings in your main database about the work it’s
doing, such as when a job was submitted, processed and completed. And
so you might also want your instrumentation data captured alongside it to
be in one place. Some people are more comfortable analysing data using
SQL or by pulling portions of data into a spreadsheet as not everyone is
blessed with elite command line skills and intricate knowledge of the Gnu
toolset.

Of course when I say ‘classic’ database I don’t just mean your classic
Enterprise-y RDBMS – the vast array of NOSQL options available today
are equally valid and quite possibly a better fit.

Round Robin Database
For analysis of long term trends the previous two options probably provide
the best storage, but when it comes to the system’s dashboard you’ll only
be interested in a much shorter time window, the last 10 minutes for
example. Here you’ll want something akin to a fixed-size circular buffer
where older data, which is of less interest, is either overwritten or pruned
to make room for newer values.

There are a few variations on this idea; one in particular is the Round Robin
Database (or RRDtool [RRDtool]). This prunes data by using a
consolidation function to produce aggregate values that lower the
resolution of older data whilst still maintaining some useful data points.

Performance counters
Another variation of the circular buffer idea is to expose counters from the
process itself. Here the process is responsible for capturing and
aggregating data on a variety of topics and remote processes collect them
directly instead. This has the advantage of not requiring storage when you
don’t need it as you then log only what you need via a remote collector.
However, back at the beginning I suggested you probably want to capture
everything you can afford to, so this benefit seems marginal.

One word of caution about the Windows performance counter API – it’s
not for the faint of heart. It is possible that it’s got better with recent editions
(or via a 3rd party framework) but there are some interesting ‘issues’ that
lie in wait for the unwary. That said the concept still remains valid, even
if it’s implemented another way, such as using a message bus to broadcast
a status packet.

A simple instrumentation framework
Anyway, enough about the theory what does this look like in code. You
shouldn’t be surprised to learn it’s not rocket science. Basically you just
want to start one or more instruments before a piece of functionality is
invoked, and stop them afterwards. Then write the results to one or more
sinks.

If you’re working with C++ then RAII will no doubt have already featured
in your thoughts, and for C# developers the DISPOSE pattern can give a
similar low noise solution. The effect we want to achieve looks something
like Listing 1 (I’m going to use C# for my examples).

This code, which is largely boilerplate, adds a lot of noise to the
proceedings that obscures the business logic and so we should be able to
introduce some sort of façade to hide it. What I’d be looking for is
something a little more like Listing 2.

Hopefully this looks far less invasive. Through the use of reflection in C#
(or pre-processor macros in C++) we should be able to determine a suitable
name for the operation using the method name.

By switching to flags for the instrument types, we’ve factored out some
noise but made customising the instruments harder. Luckily customisation
is pretty rare and so it’s unlikely to be a problem in practice. The façade
could also provide some common helper methods to simplify things further
by wrapping up the common use cases, for example:

 using (MeasureScope.WithWallClock())

or

 using (Measure.CpuBoundTask())

The one other minor detail that I have so far glossed over is how the output
sink is determined. For cases where it needs to be customised it can be
passed in from above, but I’ve yet to ever need to do that in practice.
Consequently I tend to configure it in main() and store it globally, then
reach out to get it from behind the façade.

Listing 1

public Customers FetchCustomers()
{
 const string operation = "Fetch Customers";
 var stopwatch = new Stopwatch();
 var cpuMonitor = new CpuMonitor();
 // Do the thing that fetches the customers.
 cpuMonitor.Stop();
 stopwatch.Stop();
 var measurements = new Measurements
 {
 stopwatch.Measurements,
 cpuMonitor.Measurements
 };
 sink.Write(operation, measurements);
 return customers;
}

Listing 2

public Customers FetchCustomers()
{
 using (MeasureScope.With(Instruments.WallClock |
 Instruments.CpuMonitor))
 {
 // Do the thing that fetches the customers.
 }
}

8 | Overload | August 2013

FEATURECHRIS OLDWOOD
The facade
The façade used by the client code can be implemented like Listing 3.

Retrieving the calling method name in C# (prior to C# 4.0) relies on
walking the stack back one frame. Of course if you write any wrapper
methods you’ll need to put the stack walking in there as well or you’ll
report the wrapper method name instead of the business logic method name
(see Listing 4).

The same rule applies if you’ve used closures to pass your invocation along
to some internal mechanism that hides grungy infrastructure code, such as
your Big Outer Try Block [Errors]. See Listing 5.

Bitwise flags seem to be a bit ‘old school’ these days, but for a short simple
set like this they seem about right, plus you have the ability to create aliases
for common permutations (see Listing 6).

 The instrument controller
The behind-the-scenes controller class that starts/stops the instruments and
invokes the outputting is only a tiny bit more complicated than the façade
(Listing 7).

The sink
The measurements that are returned from the instruments are just string
key/value pairs. Given their different nature – datetime, timespan, scalar,
etc. – it seems the most flexible storage format. I’ve implemented the sink
in Listing 8 as a simple wrapper that writes to a log file through some
unspecified logging framework.

Here I’ve assumed that the Log façade will not allow an exception to
propagate outside itself. That just leaves an out-of-memory condition as

Listing 3

public static class MeasureScope
{
 public static Controller With
 (Instruments instruments)
 {
 string operation =
 new StackFrame(1).GetMethod().Name;
 return With(operation, instruments);
 }

 public static Controller With(string operation,
 Instruments instruments)
 {
 return new Controller(operation, instruments);
 }
}

Listing 4

public static class MeasureScope
{
 . . .
 public static Controller WithWallClock()
 {
 string operation =
 new StackFrame(1).GetMethod().Name;
 return With(operation, Instruments.WallClock);
 }
}

Listing 5

public Customers FetchCustomers()
{
 return Invoke(() =>
 {
 // Do the thing that fetches the customers.
 });
}
public T Invoke<T>(Func<T> operation)
{
 string operationName =
 new StackFrame(1).GetMethod().Name;
 using (MeasureScope.With(operationName,
 Instruments.WallClock))
 {
 return operation();
 }
}

Listing 6

[Flags]
public enum Instruments
{
 WallClock = 0x01,
 CpuMonitor = 0x02,
 MemoryMonitor = 0x04,

 CpuBoundTaskMonitor = WallClock | CpuMonitor,
}

Listing 7

public class Controller : IDisposable
{
 public static ISink DefaultSink { get; set; }

 public Controller(string operation,
 Instruments instrumentFlags)
 {
 var instruments = new List<IInstrument>();
 if ((instrumentFlags & Instruments.WallClock)
 != 0)
 instruments.Add(new WallClock());
 . . .
 _operation = operation;
 _instruments = instruments;
 _sink = DefaultSink;

 _instruments.ForEach((instrument) =>
 {
 instrument.Start();
 });
 }

 public void Dispose()
 {
 _instruments.ForEach((instrument) =>
 {
 instrument.Stop();
 });
 var measurements =
 new List<KeyValuePair<string, string>>();
 foreach (var instrument in _instruments)
 measurements.AddRange
 (instrument.Measurements);
 _sink.Write(_operation, measurements);
 }

 private readonly string _operation;
 private List<IInstrument> _instruments;
 private ISink _sink;
}

August 2013 | Overload | 9

FEATURE CHRIS OLDWOOD
the only other sort of failure that might be generated and I’d let that
propagate normally as it means the process will likely be unstable.

The instruments are equally simple – a pair of methods to control it and a
property to retrieve the resulting metric(s). Like all ‘good’ authors I’ve
chosen to elide some error handling in the Start() and Stop() methods
to keep the code simple (Listing 9), but suffice to say you probably want
to be considering what happens should they be called out of sequence.

Earlier I mentioned that I would avoid writing measurements taken whilst
an exception was being handled; that can be achieved in C# with the
following check [Exception]. See Listing 10.

Summary
This article has shown that it’s relatively simple to add some
instrumentation calls within your own code to allow you to track how it’s
performing on a continual basis. It explained what sort of measurements
you might like to take to gain some useful insights into how your service
calls and computations are behaving. It then followed up by showing how
a simple framework can be written in C# that requires only out-of-the box
techniques and yet still remains fairly unobtrusive.

Once in place (I recommend doing this as early as possible, as in right from
the very start) you’ll be much better prepared for when the inevitable
happens and the dashboard lights up like a Christmas tree and the phones
start buzzing.

Acknowledgements
Thanks to Tim Barrass for introducing me to the Round Robin Database
as a technique for persisting a sliding window of measurements and
generally helping me refine this idea. Additional thanks as always to the
Overload advisors for sparing my blushes by casting their critical eye and
spotting my mistakes.

References
[Causality] Chris Oldwood, ‘Causality – relating distributed diagnostic

contexts’, Overload 114

[Errors] Andy Longshaw and Eoin Woods, ‘The Generation,
Management and Handling of Errors (Part 2)’, Overload 93

[Exception] Ricci Gian Maria, ‘detecting if finally block is executing for
an manhandled exception’, http://www.codewrecks.com/blog/
index.php/2008/07/25/detecting-if-finally-block-is-executing-for-
an-manhandled-exception

[Hoare] http://en.wikipedia.org/wiki/Program_optimization

[Lippert] Eric Lippert, ‘Precision and accuracy of DateTime’,
http://blogs.msdn.com/b/ericlippert/archive/2010/04/08/precision-
and-accuracy-of-datetime.aspx

[Memory] Chris Oldwood, ‘Utilising more than 4GB of memory in 32-bit
Windows process’, Overload 113

[RRDtool] http://oss.oetiker.ch/rrdtool

Listing 8

public class LogFileSink : ISink
{
 public void Write(string operation,
 IEnumerable<KeyValuePair<string,
 string>> measurements)
 {
 var buffer = new StringBuilder();

 foreach (var measurement in measurements)
 buffer.AppendFormat("{0}={1};",
 measurement.Key, measurement.Value);
 Log.Performance("[{0}] {1}", operation,
 buffer);
 }
}

Listing 9

public interface IInstrument
{
 void Start();
 void Stop();
 Measurements Measurements { get; }
}

public class WallClock : IInstrument
{
 public Measurements Measurements {
 get { return _measurements; } }

 public void Start()
 {
 _measurements.Clear();
 _startTime = DateTime.Now;
 }

 public void Stop()
 {
 var stopTime = DateTime.Now;
 var difference = stopTime - _startTime;

 _measurements.Add
 (new KeyValuePair<string, string>
 ("WallClock:Duration",
 difference.ToString()));
 }

 private DateTime _startTime;
 private Measurements _measurements =
 new Measurements();
}

Listing 10

public static bool IsHandlingException()
{
 return
 (Marshal.GetExceptionPointers() !=
 IntPtr.Zero
 || Marshal.GetExceptionCode() != 0);
}

. . .

if (!IsHandlingException())
{
 var measurements =
 new List<KeyValuePair<string, string>>();
 foreach (var instrument in _instruments)
 measurements.AddRange
 (instrument.Measurements);
 _sink.Write(_operation, measurements);
}

10 | Overload | August 2013

http://www.codewrecks.com/blog/index.php/2008/07/25/detecting-if-finally-block-is-executing-for-an-manhandled-exception
http://www.codewrecks.com/blog/index.php/2008/07/25/detecting-if-finally-block-is-executing-for-an-manhandled-exception
http://en.wikipedia.org/wiki/Program_optimization
http://blogs.msdn.com/b/ericlippert/archive/2010/04/08/precision-and-accuracy-of-datetime.aspx
http://oss.oetiker.ch/rrdtool

FEATUREALF STEINBACH
Portable String Literals in C++
How hard can it be to make a file in C++
with international text literals in its name?
Alf Steinbach shows us.
lacks a built-in or library-provided character encoding
value type that reflects the main conventions for the
encoding of international text literals, API arguments and,

for *nix, external text, namely UTF-8 for *nix1 and UTF-16 for Windows2.
As a consequence, standard C++ code that works fine in *nix fails outright
or produces erroneous results in Windows, as exemplified below. Portable
code deals with this by converting strings at run time (efficiency/
complexity cost), and by employing brittle conventions (programmer’s
time cost), and in teaching the problem is largely just ignored, letting
students produce programs that, for example, are unable to deal with their
Norwegian names (cost of negative perception of the language – a
language so primitive that it can’t even handle text).

The C++11 standard added the literal prefixes u8, u and U that specify
known sizes and encodings, respectively UTF-8, UTF-16 and UTF-32. But
no matter whether one chooses3 u8, u or U, the code needs added runtime
conversions on one or the other platform. Exacerbating the situation, the
C++ standard library supports only char-based narrow strings in filenames
and exception messages, which, for example, means that the current Boost
filesystem library4 can’t access many Windows files – the main desktop
platform’s files – when it’s used with the g++ compiler.

Happily the limited issue of suitable original string data for portable code,
with UTF-8 for *nix and UTF-16 for Windows, can be dealt with ‘simply’
by using macros that adjust the form of literals. Proper core language
support would be better still, but a suitable macro + supporting
functionality addresses the problem at compile time, most efficiently, with
a single common portable notation. And happily, when the macro always
produces a Unicode literal then there is no problem with different character
sets (only the encoding differs across systems), and when the macro
produces a distinctly typed result5 then there is no problem with
inadvertent mixing of incompatible encodings such as Windows ANSI and
UTF-8.6

Relevant character encodings and terminology
In the middle 1960s, US government computers employed a large number
of incompatible character encodings, which reduced interoperability and
added needless costs and hassle. The American National Standards
Institute, ANSI6, therefore created a more general single-byte character
encoding which became known as ASCII, the American Standard Code
for Information Interchange. And on March 11 1960, President Lyndon
B. Johnson approved ASCII as a US federal standard.

The ASCII code was English only. So, while ASCII largely solved the
Tower of Babel problem within the English-speaking world, the same
problem now resurfaced in the rest of the Western world. From this arose
a single-byte ASCII extension intended to serve the needs of Western
countries, called ISO Latin 1.

The first Windows versions were based on a Microsoft extension of Latin
1 called Windows ANSI. Today that term has taken on a more general
meaning (discussed below), and the original Windows ANSI encoding is
now known more precisely as Windows ANSI Western, or codepage
1252. A Windows codepage is a number that designates a character
encoding in Windows; reportedly it originally referred to a tabular display
of a single-byte encoding, literally a ‘code page’, like Figure 1.

1. I haven’t found any authoritative statements or data about *nix
character encodings other than Markus Kuhn’s Unix Unicode FAQ
maintaining that “UTF-8 is the way in which Unicode is used under
Unix, Linux, and similar systems”. In Nov. 2011 I asked about it on
Stack Exchange, but alas without a definitive answer. If you’re
interested in various opinions and details then check out that question
at: http://unix.stackexchange.com/questions/24529/most-common-
encoding-for-strings-in-c-in-linux-and-unix.

2. The main Windows C++ compiler, Visual C++, supports only Windows
ANSI as a narrow C++ execution character set, and UTF-16 for wide
string literals. Windows ANSI cannot portably encode international text
and incurs conversion costs. UTF-16, in Windows called ‘Unicode’, is
therefore used by the vast majority of projects, and is the default in
Visual Studio projects.

3. At the time of writing, Visual C++ in version 11.0 does not yet support
the C++11 u8, u and U prefixes.

4. As of Boost version 1.54, released during the writing of this article.
5. For standard C++ the u8 prefix does produces a char based literal.
6. At the time known as the United States of America Standards Institute,

USASI; the name was changed to the American National Standards
Institute, ANSI, in 1969.

C++

Figure 1

 0 1 2 3 4 5 6 7 8 9 A B C D E F

00 - - - - - - - - - - - - - - - -
10 - - - - - - - - - - - - - - - -
20 ! " # $ % & ' () * + , - . /
30 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
40 @ A B C D E F G H I J K L M N O
50 P Q R S T U V W X Y Z [\] ^ _
60 ` a b c d e f g h i j k l m n o
70 p q r s t u v w x y z { | } ~ ?
80 € ? ‚ ƒ " … † ‡ ˆ ‰ Š ‹ Œ ? Ž ?
90 ? ' ' " " o - - ˜ ™ š › œ ? ž Ÿ
A0 ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª " - ® ¯
B0 ° ± ² ³ ´ µ · ¸ ¹ º " ¼ ½ ¾ ¿
C0 À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
D0 Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
E0 à á â ã ä å æ ç è é ê ë ì í î ï
F0 ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

CP 1252 (Windows ANSI Western ext. of Latin 1)

Alf Steinbach learned Basic on a Tandberg EC-10 in 1980. He’s
worked as a senior consultant with Kantega and Accenture, as a
lecturer (Norw. ‘amanuensis’) at Nordland University, and as a
vocational school teacher at Bodin VGS. He’s a moderator of Usenet
group comp.lang.c++.moderated and was awarded Microsoft’s Most
Valued Professional in Visual C++ in 2012. He can be contacted at
alf.p.steinbach@gmail.com
August 2013 | Overload | 11

http://unix.stackexchange.com/questions/24529/most-common-encoding-for-strings-in-c-in-linux-and-unix
http://unix.stackexchange.com/questions/24529/most-common-encoding-for-strings-in-c-in-linux-and-unix

FEATURE ALF STEINBACH
In Figure 1, table rows 00H through 70H constitute original ASCII. Rows
80H through F0H were added in ISO Latin 1, except that in ISO Latin 1
rows 80H and 90H are undefined characters. The characters shown in rows
80H and 90H in Figure 1, including the Euro sign €, are the Windows ANSI
Western extension of Latin 1 (in original Windows ANSI there was, of
course, no Euro sign, since there was no Euro).

At some point7 Windows started supporting local variants of Windows
ANSI Western, e.g. with Cyrillic or Greek characters. Whatever narrow
encoding used in the GUI, reported by GetACP(), is known as Windows
ANSI, as opposed to the OEM character encoding which is the local
chosen variant of the original IBM PC encoding, used in text consoles. The
different variants of Windows ANSI ensures a global Tower of Babel
problem, while the use of two incompatible narrow character encodings
on the same machine, namely OEM and Windows ANSI, ensures that
there's also a local Tower of Babel problem – at least for Windows users.

To address the general Tower of Babel problem a number of leading
computer industry firms cooperated on developing a ‘universal’ character
encoding, an extension of ISO Latin-1 which became known as Unicode.
Original Unicode was a fixed size 16-bit per character encoding, and 32-
bit Windows NT, introduced in 1992, was based on this 16-bit encoding.
However, 16 bits didn’t suffice for e.g. Chinese ideograms, so Unicode
was extended to 21 bits per character, and for the existing software the
added characters were to be represented as pairs of 16-bit values, called
surrogate pairs. Today this encoding is known as UTF-16, and the
original 16-bit per character representation is known as UCS-2 (two bytes
per character). Windows’ console subsystem API supports copying of
rectangular areas of console windows, but only with 16 bits per character,
so console windows are effectively limited to UCS-2, while the rest of
Windows is now generally UTF-16.

32-bit Windows includes many wrapper functions that automatically
convert from legacy code’s Windows ANSI to the basic API's UTF-16, and
back. Typically there is an UTF-16 based function called FooW, and a
Windows ANSI wrapper called FooA. This legacy code support extends
to the graphical user interface. However, with respect to window messages
(small fixed format data packets used to control windows) Microsoft
duplicated its file access API blunder, by using configurable encoding
expectations. Pointers in window messages are untyped, and when a given
message contains a pointer to a string, then that untyped string is encoded
as Windows ANSI or UTF-16 depending on the particular window’s
configuration… Thus the terms ANSI window and Unicode window.
‘Windows ANSI’ refers to the narrow character encoding used in the
graphical user interface and reported by the GetACP API function, while
‘ANSI window’8 refers to a window configured to expect and produce
Windows ANSI encoded strings in its window messages.

UTF-8, very popular in *nix and for web pages, is an ASCII extension that
encodes all of Unicode by using a variable number of bytes per character.

The inefficiency, complexity and current real world
non-portability of standard C++ string literals
Let’s check how some basic, completely standard and therefore
presumably automagically9 portable C++ source code fares in Windows
(see Listing 1).

Compiling with the MinGW g++ 4.7.2 compiler (a Windows build of the
GNU toolchain’s C++ compiler), running the program and checking the
result (see Figure 2).

This produced an erroneous result, a filename different from the specified
one, namely Ï€.recipe instead of the specified π.recipe.

In some cases, but mostly with Microsoft’s Visual C++, this happens
because an UTF-8-encoded source is misinterpreted as a Windows ANSI-
encoded source (so it’s worth checking that the source encoding is
correct!), but the reason above is that the MinGW g++ compiler and its
standard library implementation have different opinions about what the
C++ execution character set is or should be.

The g++ compiler defaults to UTF-8, which is the de facto standard narrow
string encoding in *nix, while its standard library implementation,
presumably delegating to Microsoft’s runtime library, defaults to
Windows ANSI, which is the de facto standard narrow string encoding in
Windows programming.

Adjusting the g++ compiler’s execution character set to match its standard
library’s expectations will in general not help in obtaining a correct result,
since most variants of Windows ANSI lack the lowercase Greek π
character. But it does convert the silent erroneous result behaviour to a
work-saving up-front compilation error. So, when using g++ in Windows,
t o a vo i d po s s i b l e s i l e n t e r r on e o u s r e s u l t s d o a d d t he
-fexec-charset=cpYourANSICodepageNumber option, e.g. as
shown in Figure 3.

So, how about using Windows’ own main compiler, Microsoft’s Visual
C++, for this code? (See Figure 4.)

7. According to Wikipedia’s codepage article, at http://en.wikipedia.org/
wiki/Code_page, DOS gained codepage support in version 3.3, in
1987, while the first version of Windows was released in 1985.

8. The term ‘ANSI Windows’ was used by one reviewer, who conflated it
with ‘Windows ANSI’ (encoding) and ‘ANSI window’ (configuration).
This term can appear to be used when ‘ANSI’ is used as a qualification.
E.g. ‘ANSI Windows codepages’, meaning ‘ANSI (Windows
codepages)’, the codepages that can be used as Windows ANSI, i.e.,
that can be returned by GetACP.

9. … to compilers that support UTF-8 source code, which all the relevant
compilers do. More in general portable for C++ means portable within
the limits of the language implementation that one ports to. E.g., putting
this to the point, the C++ standard does not specify the size of bool so
that frivolous use of bool type local variables conceivably could
exceed the available memory, yet such code is portable. One reviewer
has however argued that C++ only supports source code with the
characters formally guaranteed to be supported, i.e. only pure ASCII
source code with no “$” signs, portably.

Listing 1

// Source encoding: UTF 8 with BOM (necessary for
// Visual C++).
#include <assert.h> // assert
#include <fstream> // std::ofstream
auto main() -> int
{
 auto const filename = "π.recipe";
 // A pie recipe. :-)
 std::ofstream f(filename);
 assert("File creation" && !!f);
}

Figure 2

> del a.exe *.recipe 2>nul &^
More? g++ cplusplus_stdlib_version.cpp &&^
More? a.exe && dir /b *.recipe
Ï€.recipe

Figure 3

> del a.exe *.recipe 2>nul &^
More? g++ cplusplus_stdlib_version.cpp -fexec-
charset=cp1252 &&^
More? a.exe && dir /b *.recipe
cplusplus_stdlib_version.cpp: In function 'int
main()':
cplusplus_stdlib_version.cpp:7:27: error:
converting to execution character set: Illegal
byte sequence? Nice up-front compilation error.
cplusplus_stdlib_version.cpp:7:27: error: unable
to deduce 'const auto' from '<expression error>'
12 | Overload | August 2013

FEATUREALF STEINBACH
Here Visual C++ unfortunately accepted the source code, but happily the
program then produced a runtime error. This is far better than g++’s
default silent erroneous result, but it’s rather ungood news for the
portability of pure standard C++ source code as of 2013. Currently, the two
main free C++ compilers for Windows are Visual C++ (Microsoft) and
g++ (GNU), and as exemplified above neither of them support UTF-8
string constants for e.g. filenames.

It’s not that Windows can’t handle the π.recipe filename. Unicode
filenames are supported by the Windows API, they’re supported by
Windows-specific library extensions such as _wfopen, and there’s no
problem creating or accessing such a file in e.g. Java or C# or Python 3.
The problem is that such files can’t be accessed using only portable, pure
standard C++ source code, and also that even if C++ had the wide string
support that is de facto standard in Windows, using it directly for portable
code would be needlessly inefficient in *nix; and the part of that problem
that I address here is the support for string literals.

How Boost filesystem doesn’t help
After the C++ standard library the next place to look for general
functionality is usually the Boost library. For our example code the
relevant sub-library is the Boost filesystem library. The Boost filesystem
library, but apparently sans the boost::filesystem::ofstream
class10 that’s used below, is slated for inclusion in C++ Technical Report
2 (TR2)11, which effectively means also in the next C++ standard.

However, the Boost filesystem library does not offer or visibly use12

portable system dependent strings, and so for portable code, with the Boost
filesystem library a filename such as "π.recipe" has to be specified as
a wide string, like L"π.recipe".

Since it’s impractical to deal with two or more different string formats, one
would then presumably standardize on using wchar_t based strings for
all portable strings. This then incurs a string conversion cost in *nix, in
the worst case for most every API call involving strings, which is counter
to the general C++ principle of not paying for what you don’t use. This
cost (and others) is meant to buy a correct result, so let’s check whether
the Boost filesystem library actually does produce a correct result?
(Listing 2)

Compiling the program with the Visual C++ 11.0 compiler, using boost
1_54 filesystem and system libraries, and running gives the result shown
in Figure 5.

Well, that worked nicely! At an encoding conversion cost for *nix, and at
the general cost of using Boost. But how about building with MinGW
g++ 4.7.2? (See Figure 6.)

The Boost filesystem library takes advantage of a Visual C++ extension
to the standard library, namely a wchar_t based ofstream constructor,
when the library is built with Visual C++. The g++ compiler’s standard
library implementation has a more clean extension, a std::streambuf
subclass that can be initialized from a C FILE*. And a possibly more
efficient workaround for the standard library’s lack of Unicode filename
support, which works with any compiler, is Windows’ so called ‘short’ or
‘DOS’ or ‘8+3’ filenames, which were used in Boost filesystem
version 2.13 But the current Boost filesystem library simply doesn’t
support Windows C++ compilers in general. For Windows it now only
provides full functionality, the ability to portably access files with names
such as π.recipe, when it’s used with Visual C++ or a compiler with
the same standard library extensions…

If the Boost filesystem library is just made part of the C++ standard we’ll
then have an absurdity: a part of the standard library making essential use
of wide string based constructors, and thus effectively requiring them14 of
all Windows standard library implementations, without having them
standardized and available to all.

10. Judging by the N3693 draft Technical Specification at http://isocpp.org/
files/papers/N3693.html

11. Wikipedia lists the TR2 proposals at http://en.wikipedia.org/wiki/
C++_Technical_Report_1#Technical_Report_2

12. Internally the boost::filesystem::path class uses a
representation of international text where the public definition
value_type corresponds to the ‘raw’ encoding value type discussed
in this article, with UTF-8 for *nix and UTF-16 for Windows. Presumably
with C++14 (if that should be the next C++ standard), this article’s
Raw_syschar could be defined as std::filesystem::path::
value_type.

Figure 4

> del b.exe *.recipe 2>nul &^
More? cl cplusplus_stdlib_version.cpp /Fe"b.exe"
&&^
More? b.exe && dir /b *.recipe
cplusplus_stdlib_version.cpp
cplusplus_stdlib_version.cpp(7) : warning C4566:
character represented by universal character name
'\u03C0' cannot be represented in the current
code page (1252)
Assertion failed: "File creation" && !!f, file
cplusplus_stdlib_version.cpp, line 10

13. I filed a ticket about its disappearance in 2011, #6065 available at
https://svn.boost.org/trac/boost/ticket/6065

14. The N3693 draft Technical Specification contains this wording in its
§8.4.6: “Implementations of the standard library for systems where
string_type is wstring, such as Windows, are encouraged to
provide an extension to existing standard library file stream
constructors and open functions that adds overloads that accept
wstrings for file names. Microsoft and Dinkumware already provide
such an extension.”

Listing 2

// Source encoding: UTF 8 with BOM
// (necessary for Visual C++).
#include <assert.h> // assert
#include <boost/filesystem/fstream.hpp
 // boost::filesystem::ofstream
namespace bfs = boost::filesystem;
auto main()
 -> int
{
 auto const filename = L"π.recipe";
 // A pie recipe. :-)
 bfs::ofstream f(filename);
 assert("File creation" && !!f);
}

Figure 5

> del b.exe *.recipe 2>nul &^
More? cl cplusplus_boost_version.cpp /MD /
Fe"b.exe" /I"%boost_pincludes%" /link
%msvc_link_bfs% &&^
More? b.exe && dir /b *.recipe
cplusplus_boost_version.cpp
π.recipe

Figure 6

> del a.exe *.recipe 2>nul &^
More? g++ cplusplus_boost_version.cpp -fexec-
charset=cp1252 %gnuc_using_bfs% &&^
More? a.exe && dir /b *.recipe
Assertion failed: "File creation" && !!f, file
cplusplus_boost_version.cpp, line 12

This application has requested the Runtime to
terminate it in an unusual way.
Please contact the application's support team for
more information.
August 2013 | Overload | 13

FEATURE ALF STEINBACH
Summing up, since using Boost filesystem as a portability layer requires
using wide strings it incurs an efficiency/complexity cost on *nix, a cost
that in a great many cases buys you nothing. And worse, the current version
doesn’t even produce correct results with g++ in Windows, thus not
providing the goods that the cost was meant to cover. Thus, as of this
writing (July 2013) Boost filesystem is not a solution.

Strongly typed system dependent literals
In the same way that C++ integer types such as int are portable because
their sizes depend on the system, one can define a character encoding value
type15 that’s portable because its size and assumed encoding depends
usefully on the system. I.e., a system dependent character encoding value
type, which is portable precisely because it’s system dependent – just as
with the int type etc. It can look like Listing 3.

The _WIN32 macro, a de facto standard in Windows C and C++
programming, is defined for both 32-bit and 64-bit Windows
programming. There is one problem with the Raw_syschar type, though,
namely that it’s just a synonym for another type that it isn’t distinct. For
example, one cannot define a distinct std::basic_string
specialization for it. It’s practically possible16 to define a distinct
Raw_syschar type as a class, but in order to be able to put that inside a
constructor-free union – as can happen with the short string
op t im iza t i on 1 7 , whe re t he union t h en occ ur s i n t he
std::basic_string implementation – it would need to be without any
user defined constructor. That means that it would need to expose a public
data member, which is somewhat unclean, and different from use of basic
types like char and wchar_t.

Happily with C++11, and with Visual C++ for a some time before that as
a language extension, one can define an enum type with a specified
underlying representation (this and all the following definitional code is
in namespace cppx):

 enum Syschar : Raw_syschar {};

This produces a type with very much the desired properties18 of a character
encoding value type, namely, it’s a distinct type that supports all the built-
in comparison operators, and it provides an implicit conversion to integer.

And just by defining a std::char_traits specialization this type
supports a distinct specialization of std::basic_string, if you should
want that. Such a std::char_traits specialization is just a collection
of static member functions that forward to the corresponding functions for
the raw character type. However, such forwarding functions require
general conversion between raw and typed characters and character strings
- e.g. the following three typed functions for converting to strongly typed
form, and corresponding raw functions the other way (Listing 4).19

This looks trivial, yes?

Unfortunately, in order to later be able to construct a class type string very
efficiently from a literal, it’s very desirable to also have a function template
like Listing 5, but this function template can then never be implicitly
selected. The reason is that for an array type actual argument of any given
size the corresponding specialization would not offer a better argument
conversion than the pointer argument function. With the specialization the
call would therefore be ambiguous. And then the C++11 standard decrees
in its §13.3.3/1 fifth dash that F1 is a better function than F2 if “F1 is a
non-template function and F2 is a function template specialization”, which
for the above functions means that the pointer argument function will
always win.

My chosen fix is to route all calls to functions in a given set (e.g. typed()
calls) via a single function template. The template just checks the actual
argument type and dispatches the real work. To enable the dispatch call’s
function selection each of the typed overloads, and also each of the raw
overloads, is outfitted with a defaulted nameless dummy argument that
identifies the general kind of actual argument (see Listing 6).

15. The wchar_t type can be argued to be such a type, but it’s impractical
for the purpose of portability.

16. While it’s not guaranteed by the C++ standard, as far as I know there’s
no compiler that by default will yield sizeof(T) > 1 when T is a POD
class with just a single char data member.

17. The last time I checked, two or three years ago, it did happen with
Visual C++’s std::string.

18. If names of e.g. control characters are desired then one can use an
enum class in order to support easy name qualification, but for this
article’s exposition enum class would not have a purpose.

Listing 3

#ifdef _WIN32
 namespace cppx{ typedef wchar_t Raw_syschar; }
 // Implies UTF-16 encoding.
define CPPX_WITH_SYSCHAR_PREFIX(lit) L##lit
#else
 namespace cppx{ typedef char Raw_syschar; }
 // Implies UTF-8 encoding.
define CPPX_WITH_SYSCHAR_PREFIX(lit) lit
#endif

19. Here CPP_NOEXCEPT is a macro that depending on the compiler is
defined as C++11 noexcept (e.g. for g++ and clang) or C++03
throw() (for Visual C++ 11.0 and earlier).

Listing 4

auto typed(Raw_syschar const c)
 CPPX_NOEXCEPT
 -> Syschar
{return static_cast< Syschar const >(c);}
auto typed(Raw_syschar* const s)
 CPPX_NOEXCEPT
 -> Syschar*
{return reinterpret_cast< Syschar*>(s);}
auto typed(Raw_syschar const* const s)
 CPPX_NOEXCEPT
 -> Syschar const*
{return reinterpret_cast< Syschar const* >(s);}

Listing 5

template< Size n >
auto typed(Raw_syschar const (&a)[n])
 CPPX_NOEXCEPT
 -> Syschar const (&)[n]
{return reinterpret_cast< Syschar
 const (&)[n] >(a); }

Listing 6

namespace detail {
 ...
 inline
 auto typed(Raw_syschar const* const& s,
 Pointer_kind = Pointer_kind())
 CPPX_NOEXCEPT
 -> Syschar const* const&
 { return
 reinterpret_cast< Syschar const* const& >
 (s); }
 template< Size n >
 auto typed(Raw_syschar const (&a)[n],
 Array_kind = Array_kind())
 CPPX_NOEXCEPT
 -> Syschar const (&)[n]
 { return reinterpret_cast
 < Syschar const (&)[n] >(a); }
} // namespace detail
14 | Overload | August 2013

FEATUREALF STEINBACH
The function template for this set of functions, through which all typed
calls go (Listing 8), where Type_kind_ is part of the small machinery
that checks the argument type (see Listing 9).

Listing 10 is the file creation program again, but now using Syschar
directly (only the machinery shown so far), producing a correct result. The
just-for-this-example ad hoc header x/ofstream.h defines a subclass of
std::ofstream called x::ofstream that provides a Syschar-based
constructor by employing compiler-specific functionality. The necessity
of compiler-specific or at least system-specific code for such basic
functionality indicates to me that this area of functionality belongs in the
standard.

But as the declaration of filename in Listing 10 shows, direct use of the
conversion functionality defined so far yields rather verbose
specifications of literal strings…

To support more concise usage expressions I therefore define two further
macros, CPPX_U to express a typed literal and CPPX_RAW_U to express
an untyped one (Listing 11).

And with CPPX_U the file creation program looks, to my eyes, acceptable
(Listing 12).

When it’s compiled for Windows this program uses UTF-16 encoded
wchar_t based strings, and when it’s compiled for *nix it uses UTF-8
encoded char based strings. Unlike the C++ standard library and unlike
Boost filesystem this ensures maximum efficiency for API calls, i.e. no
runtime encoding conversion. And also unlike the C++ standard library
and unlike Boost filesystem, with the necessary higher level functional
support such as exemplified by x::ofstream, it provides access to all
valid filenames on each system, lets students almost effortlessly write
portable basic C++ programs that can handle Norwegian student names,
etc.

Summary and final considerations
Standard C++11 does not provide the means to access Windows files in
general, because the filenames can’t be expressed as Windows ANSI
encoded char based strings. The Boost filesystem library, slated for
inclusion in TR2, imposes an efficiency cost for portable code used in *nix
by requiring portable strings to be wchar_t based. And in Windows the
Boost filesystem library only supports general Unicode filenames when
it’s used with the Visual C++ compiler.

The main idea for the library solution presented here is to use only the
portable CPPX_U string notation in the portable code, and to have such
strings reinterpreted as system specific char or wchar_t based strings
for the system dependent implementation code, if any, and as necessary.
By using a character encoding value type that’s defined differently
depending on the system, plus a macro that adds strong typing and an L
literal prefix as required for each system, the exact same source code can
specify strongly typed string literals with UTF-8 encoding for *nix, and
with UTF-16 encoding for Windows. This is maximally efficient for each
system’s API function calls and favoured external text encoding, and
makes it technically possible to access all valid filenames on each system,
as shown.

To make this work most seamlessly the C++ source code should then be
UTF-8 encoded with BOM, because that encoding is accepted and
understood by default by both Visual C++20 and g++, and because support
for this source encoding is a reasonable requirement for any C++ compiler
that one might consider using.

Listing 8

template< class Arg >
auto typed(Arg const& arg)
 CPPX_NOEXCEPT
 -> decltype(detail::typed(arg,
 typename Type_kind_<Arg>::T()))
{ return detail::typed(arg,
 typename Type_kind_<Arg>::T()); }

Listing 9

#pragma once
// Copyright (c) 2013 Alf P. Steinbach
// Mostly this is to enable a workaround for
// ordinary overload resolution.
#include <rfc/cppx/core/Size.h> // cppx::Size
namespace cppx {
 enum Value_kind {};
 enum Pointer_kind {};
 enum Array_kind {};
 template< class Type >
 struct Type_kind_ { typedef Value_kind T; };
 template< class Type >
 struct Type_kind_<Type*> {
 typedef Pointer_kind T; };
 template< class Type >
 struct Type_kind_<Type* const> {
 typedef Pointer_kind T; };
 template< class Type, Size n >
 struct Type_kind_< Type[n] > {
 typedef Array_kind T; };
} // namespace cppx

Listing 10

// Source encoding: UTF 8 with BOM (necessary
// for Visual C++).
#include "x/ofstream.h" // x::ofstream
#include <assert.h> // assert

auto main() -> int
{
 using cppx::typed;
 // A pie recipe. :-)
 auto const filename = typed
 (CPPX_WITH_SYSCHAR_PREFIX("π.recipe"));
 x::ofstream f(filename);
 assert("File creation" && !!f);
}

20. As a practical matter, for UTF-8 encoded source code the Visual C++
compiler requires a Byte Order Mark (BOM) in order to correctly
deduce the encoding. Some earlier versions of the g++ compiler didn’t
support a BOM for UTF-8, but now it does so that it’s not even
necessary to do that minimal source code encoding conversion. The
same source can be used exactly as-is for both systems.

Listing 11

#define CPPX_AS_SYSCHAR(lit) \
 ::cppx::typed(CPPX_WITH_SYSCHAR_PREFIX(lit))

#define CPPX_U CPPX_AS_SYSCHAR
#define CPPX_RAW_U CPPX_WITH_SYSCHAR_PREFIX

Listing 12

// Source encoding: UTF 8 with BOM
// (necessary for Visual C++).
#include "x/ofstream.h" // x::ofstream
#include <assert.h> // assert
auto main() -> int
{
 auto const filename = CPPX_U("π.recipe");
 // A pie recipe. :-)
 x::ofstream f(filename);
 assert("File creation" && !!f);
}

August 2013 | Overload | 15

FEATURE ALEX FABIJANIC AND RICHARD SAUNDERS
Dynamic C++ (Part 2)
Previously we saw how to use some simple dynamic
features in C++. Alex Fabijanic and Richard
Saunders explore more powerful dynamic tools.
[Y]ou can’t build a system that is completely statically typed.
~ Bjarne Stroustrup [Venners04]

n this installment of the ‘Dynamic C++’ series of articles, we continue
to explore the dynamic solutions in C++ language. We start with Boost
type_erasure [Boost.TypeErasure], a combination of Boost.Any

[Boost.Any] and Boost.Function [Boost.Function], addressing the
C++ runtime polymorphism shortcomings. Next, we look into Val, a class
at the heart of the PicklingTools library [PicklingTools] aimed at
interaction with Python environments. We conclude with Facebook’s
folly library solution for interfacing the world of web and JSON from C++
– the dynamic class.

Boost.TypeErasure
According to the author, type_erasure is a generalization of
Boost.Any and Boost.Function classes, allowing easy composition
of arbitrary type erased operations; it addresses the shortcomings of C++
runtime polymorphism, in particular:

 intrusiveness

 dynamic memory management

 inability to apply multiple independent concepts to a single object.

Library uses some advanced constructs such as concepts and template
metaprogramming constructs from boost::mpl. In a similar fashion to
boost::variant specifying a set of types at construction time that can
be contained at runtime, the type_erasure library specifies at
construction time a set of operations that can be performed on it at runtime.
This is achieved through a vector of concepts provided at object
declaration site as shown in Listing 1 for an incrementable and
ostreamable object.

In the example, copy_constructible allows copying and destruction
of the object, while typeid_ provides run-time type information so that
any_cast can be used; these effectively make type_erasure any
equivalent to any [Boost.Any]. Additionally, incrementable and
ostreamable concepts are specified, allowing incrementing and
streaming of the value x. Operations can have arguments, so replacing

incrementable concept with addable allows adding of two any’s.
The functionality is brittle in a subtle way, though – while adding two
values of different types will compile, unfortunately it results in undefined
behaviour at runtime. This problem can be alleviated by specifying
relaxed_match concept (according to author, recently renamed to a
more appropriate relaxed name), which causes exception to be thrown.
The proper way of dealing with this problem is using placeholders, as
shown in Listing 2.

Placeholders are used extensively throughout the library. A placeholder is
a substitute for a template parameter in a concept. The library
automatically replaces all placeholders with the actual wrapped types.

Furthermore, type_erasure supports references (both const and non-
const), as well as user-defined concepts. Listing 3 demonstrates adding
stringable concept to type_erasure, allowing a to_string()
member function call syntax directly on an integer value wrapped in any.
Things can be simplified when implementation and interface are the same
(i.e. a member of type_erasure::any called to_string calls a
to_string m e m be r o f t h e c on t a i n e d t y p e) ,
BOOST_TYPE_ERASURE_MEMBER ‘shortcut’ macro can be used.

Internally, a void* pointer points to the held heap-allocated value and a
static equivalent of virtual table serves as a binding for attached operations
as shown in Listing 4.

I

Listing 2

int array[5];

typedef mpl::vector<
 copy_constructible<_a>,
 copy_constructible<_b>,
 typeid_<_a>,
 addable<_a, _b, _a>
> requirements;

tuple<requirements, _a, _b> t(&array[0], 2);
any<requirements, _a> x(get< 0 > (t) +
 get< 1 >(t));
// x now holds array + 2

Listing 1

any<
 mpl::vector<
 copy_constructible<>,
 typeid_<>,
 incrementable<>,
 ostreamable<>
 >
> x(10);
++x; // incrementable
std::cout << x << std::endl; // ostreamable

Alex Fabijanic has been a professional programmer since 1992,
specializing in industrial automation and process control software
using C and C++ since 1998. He leads the POCO (C++ POrtable
COmponents, http://pocoproject.org) project and occasionally
writes Javascript and Python code. He can be contacted at
alex@pocoproject.org.

Richard T. Saunders has worked with C++ for 20+ years at Rincon
Research Corporation doing soft real-time Digital Signal
Processing. He has built and fielded many real systems using both
C++ and Python. He also occasionally teaches Computer
Organization, Software Engineering, Python and C at the University
of Arizona in Tucson for the Computer Science and SISTA
departments. Contact him at richismyname2001@yahoo.com
16 | Overload | August 2013

http://pocoproject.org

FEATUREALEX FABIJANIC AND RICHARD SAUNDERS

Dictionaries, supported in some form
by most dynamic languages, became

the currency of many systems
Boost.Type erasure is an interesting and valuable ‘merger’ of any and
function features, providing dynamic-language like features within the
confines of standard C++. Implementation is rather complex and use has
some non-intuitive weak spots that can quickly get an inexperienced user

in serious trouble. A more robust interface (even if only with _typedef_s
provided for most frequently used types) would greatly improve the
usability and safety for less experienced users.

PicklingTools Val
The next reviewed solution to the dynamic typing problem is the
PicklingTools [PicklingTools] Val [Saunders1], [Saunders2],
[Saunders3]. The PicklingTools library is an open-source library made up
of Python, C++ and Java code allowing cross language communication.
The PicklingTools evolved from a need to allow Python and C++ to share
Python dictionaries across language boundaries. Many modern
applications are built using multiple languages: Python, C++, Java,
JavaScript, Lua, Icon/Unicon. The front-end languages (JavaScript,
Python, Lua) tend to be dynamic languages for handling scripting and basic
data flow. The back-end languages (C++, C, Java, FORTRAN) handle the
heavy-lifting of fast communications, data I/O and CPU intensive work.
In these hybrid systems, front-end languages need to communicate with
the back-end languages intensively. Dictionaries, supported in some form
by most dynamic languages, became the currency of many systems. The
PicklingTools library solution focuses on the Python dictionary and C++.

While making Python dictionaries easy to express in C++ was not a
primary goal, given how much users enjoyed the ease of use, the C++
PicklingTools embraced them wholeheartedly. The goal, then, became to
make Python dictionaries as easy to express in C++ as they are in Python.

Consider the ease of a dynamic dictionary manipulation in Python shown
in Listing 5.

Because C++ is a statically-typed language, it requires a compile-time type
for all variables. PicklingTools use Val to indicate a dynamic value.

Listing 3

template<class F, class T>
struct to_string
{
 // conversion function
 static T apply(const F& from, T& to)
 {
 return to = NumberFormatter::format(from);
 }
};
namespace boost {
namespace type_erasure {
 template<class F, class T, class Base>
 // binding
 struct concept_interface
 <::to_string<F, T>, Base, F> : Base
 {
 typedef
 typename rebind_any<Base, T>::type IntType;
 T to_string(IntType arg = IntType())
 {
 return call(::to_string<C, T>(),
 *this, arg);
 }
}; }
typedef any<to_string<_self, std::string>,
 _self&> stringable;
int i = 123;
stringable s(i);
std::string str = s.to_string(); // s == "123"

Listing 4

// storage
struct storage
{
 storage() {}
 template<class T>
 storage(const T& arg) : data(new T(arg)) {}
 void* data;
};
// binding of concept to actual type
typedef ::boost::type_erasure::binding<Concept>
table_type;
// actual storage
::boost::type_erasure::detail::storage data;
 table_type table;

Listing 5

Create a Python literal
>>> d = { 'a': 1, 'b':2.2, 'c':
...{ 'X':1, 'Y':[1,2,3] }}

>>> print d['a'] # lookup a single key: 'a' -> 1
>>> d['b'] = 3.3 # insert into dict

Also easy to lookup/insert nested entities
>>> print d['c']['X'] # lookup nested key
>>> d['c']['Y'] = 0 # insert nested
}

Why Val and not something like dynamic or any? Three reasons:

 Everything is, in general, passed by value

 PicklingTools encourage use of valgrind to help ensure quality

 Val is only three letters, which is closer to a dynamic language with no
letters for the type.

The Val Name Rationale
August 2013 | Overload | 17

FEATURE ALEX FABIJANIC AND RICHARD SAUNDERS

The goal, then, became to make
Python dictionaries as easy to
express in C++ as they are in Python
A side-by-side comparison of basic dynamic typing in Python and C++
using Val is shown in Listing 6.

The PicklingTools Val is implemented as a union and a type-tag, where
the value is constructed using placement new inside the union. The
destructor has to manually notice which type to destruct (for non-POD
types) and explicitly call the correct constructor. The Val is really just a

dynamic container, with storage as shown in Listing 7. C++11 standard
introduces alignof/alignas to address alignment concerns; in pre-
C++11, although standard does not explicitly guarantee it and some
experts discourage it [GotW28], a union with a double member is
practically close enough guarantee of the alignment to the largest member
of the union.

As can be concluded from Listing 7, by design Val can only contain
certain types, shown in Listing 8.

There are no-user defined types by design. This allows library writers to
concentrate on making the interface for C++ Python dictionaries as close
to Python as possible without worrying about the problems generality
brings.

Listing 9 shows how easy it is to construct a Val from basic types and get
values out by means of user-defined conversion.

The user-defined conversions and overloading are syntactic sugar. Of
course, overloaded cast operators direct calls are really just taking
advantage of ‘syntactic sugar’ for function calls as shown below:

 Val v = 1;
 int_u4 i = v.operator int_u4();

The Val supports user-defined conversions for all basic types. If the
conversion isn’t direct, then the user-defined conversions follow the
Principle of Least Surprise: convert as C++ would (example below).

 Val v = 3.14159265;
 int_u4 i4 = v; // Which conversion? As C++ would:
 // int_u4 i4 = static_cast<int_u4>(3.14159265);

If the conversion doesn’t make sense, behaviour is identical to that in
Python – an exception is thrown, see Listing 10.

Listing 6

Python
>>> a = 1
>>> a = 2.2
>>> a = 'three' # a takes three different types

// C++
Val a = 1; // overload constructor
a = 2.2; // overload op=
a = "three";

Listing 8

// POD types
int_1, int_u1, int_2, int_u2,
int_4, int_u4, int_8, int_u8,
real_4, real_8,
complex_8, complex_16, size_t

// Non-POD types
string, None, Tab (like Python dictionary),
Arr (like Python list)

Listing 9

// overload Val constructor on all supported types
Val a = 1;
Val b = 2.2;
Val c = "three";
// Get a value out via user-defined conversions
int_u4 i = a;

Listing 7

struct Val
{
 // Flags: the ascii typetag, subtype for arrays,
 char tag;
 char subtype;
 char isproxy;
 char pad;

 Allocator *a; // if using shared memory or
 // special allocator

 union
 {
 int_1 s; // type tag 's'
 int_u1 S; // type tag 'S'
 int_2 i; // type tag 'i'
 int_u2 I; // type tag 'I'
 int_4 l; // type tag 'l'
 int_u4 L; // type tag 'L'
 int_8 x; // type tag 'x'
 int_u8 X; // type tag 'X'
 real_4 f; // type tag 'f'
 real_8 d; // type tag 'd'
 complex_8 F; // type tag 'F'
 complex_16 D; // type tag 'D'
 char t[sizeof(Tab)];
 // type tag 't', usually 32
 char n[sizeof(Arr)];
 // type tag 'n', usually 32
 } u;
};
18 | Overload | August 2013

FEATUREALEX FABIJANIC AND RICHARD SAUNDERS
The Val provides the basic container to support dynamic dictionaries. The
C++ Tab is equivalent to the Python dict (think Tab == Table). The
keys of the C++ Tab, as well as the values of the dictionary are Val’s,
allowing us to construct dynamic dictionaries:

 # Python
 d = {'a':1, 'b':2.2, 'c':'three'}

 // C++
 Tab d = "{'a':1, 'b':2.2, 'c':'three'}";

Note that the C++ literal is inside a string: the library overloads the
constructor of the Tab to take a string which contains the literal. While
C++11 has some great new literal constructs, it can’t quite mimic Python’s
syntax.

Literal construction of a Python dictionary is supported using exactly the
Python syntax: you can cut-and-paste the Python dictionary literal and
paste it into the C++ quotes. There is a little Python dictionary parser
embedded in the Tab class so that it recognizes the same syntax. Rather
than invent a new syntax for literal construction, library leverages the well-
known Python syntax.

Facebook folly::dynamic
The Facebook folly::dynamic [Folly.Dynamic] class is another one
in the spectrum of dynamic-typing classes. The class aims to relax the static
typing constraints, especially in the JSON format data manipulation
scenarios; it provides a runtime dynamically typed value for C++, similar
to the way languages with runtime type systems work (e.g. Python). It can
hold types from a predetermined set (ints, bools, arrays of other dynamics,

etc), similar to boost::variant and PicklingTools Val, but the syntax
is intended to be more akin to using the native type directly.

An example of creating a dynamic holding most common types is shown
below. Strings are stored internally as fbstring, the Facebook drop-in
replacement for std::string.

 dynamic twelve = 12;
 dynamic str = "string"; // fbstring
 dynamic nul = nullptr;
 dynamic boolean = false;

The library extensively uses C++11 features for both speed and syntactic
advantages. For example, as shown in Listing 11, arrays can be initialized
with initializer lists. This particular feature, however, also imposes a
limitation – dynamic has no default constructor. The rationale for this
design decision is due to the standard requirement for the expression
dynamic d = {} to call default constructor. The conflict arises in the
default construction either having to result in d.isArray() (a) being
false for the expression dynamic d = {} or (b) being true for
dynamic d. The solution the authors of folly::dynamic deemed most
appropriate is to entirely disallow the default construction.

Maps from dynamics to dynamics are called objects. As shown in
Listing 12, the dynamic::object constant is how an empty map from
dynamics to dynamics is created. The same listing also shows how
dynamic objects can be created by using object::operator().

Listing 10

Python
>>> a = 3.14159265
>>> i4 = int(a) # converts to 3
>>> d = dict(a) # Exception! doesn't make
 # sense to convert to dict

// C++
Val a = 3.14159265;
int_u4 i4 = a; // converts to 3
Tab d = i4; // Compile-time error, can't
 // construct Tab from float

Listing 11

dynamic array = {
 "array ", "of ", 4, " elements" };
assert(array.size() == 4);
dynamic emptyArray = {};
assert(array.empty());

Listing 12

dynamic map = dynamic::object;
map["something"] = 12;
map["another_something"] = map["something"] * 2;
dynamic map2 = dynamic::object
 ("something", 12)("another_something", 24);

Facebook folly::fbstring is a drop-in replacement for
std::string, providing the benefit of significantly increased
performance on virtually all important primitives. This is achieved by
using a three-tiered storage strategy and cooperating with the memory
allocator; fbstring is designed to detect use of jemalloc [jemalloc] and
cooperate with it to significantly improve speed and memory usage.

Storage strategies

 Small strings (<=23 chars) are stored in-situ without memory
allocation.

 Medium strings (24-255 chars) are stored in malloc-allocated
memory and copied eagerly.

 Large strings (>255 chars) are stored in malloc-ated memory and
copied lazily.

Implementation highlights

 Compatible with std::string.

 Thread-safe, reference-counted copy-on-write for large (>255 chars)
strings.

 Uses malloc instead of allocators.

 Jemalloc-friendly

 The find() is implemented using Boyer-Moore [Wikipedia].

 Offers conversions to and from std::string.

Supported architectures are x86 and x64; porting fbstring to big-
endian architectures would require changes.

Facebook String Flavour

Listing 13

enum Type
{
 NULLT,
 ARRAY,
 BOOL,
 DOUBLE,
 INT64,
 OBJECT,
 STRING,
};
// ...
Type type_;
union Data
{
 explicit Data() : nul(nullptr) {}
 void* nul; // void* used instead of
 // std::nullptr_t due to gcc bug
 Array array;
 bool boolean;
 double doubl;
 int64_t integer;
 fbstring string;
 typename std::aligned_storage<
 sizeof(std::unordered_map<int,int>),
 alignof(std::unordered_map<int,int>)
 >::type objectBuffer;
} u_;
August 2013 | Overload | 19

FEATURE ALEX FABIJANIC AND RICHARD SAUNDERS
The internal dynamic storage is shown in Listing 13. Types that can be
held are: null, Array, bool, double, integer (64-bit), Object and
String.

Examples of object and string construction are shown in Listing 14. Most
notably, ObjectImpl is not a mere typedef but inherits from hash map;
the reason for this to avoid undefined behavior of parameterizing
std::unordered_map with an incomplete type.

The gist of the folly’s conversion facilities is shown in the Listing 15.
The listing shows the code involved in conversion of dynamic to
fbstring. The actual code of converting ‘anything to anything’, as the
documentation states, is in a separate header and too large for inclusion
here. For binary/decimal and vice-versa conversion of IEEE doubles, the
class uses V8 double-conversion [Double.Conversion].

As will be shown in one of the next installments, dynamic provides a very
nice user interface, yet also provides a lot in terms of performance. It is a
class designed with definite business goal in mind and it succeeds in that
endeavor. The only downside for the whole folly library is a patchy build
system which requires a significant effort to build the library. The library
is also not portable, at least not in the out-of-the-box fashion.

Conclusion
In this installment, we reviewed three C++ dynamic typing solutions:
Boost type_erasure , Pickl ingTools Val and Facebook
folly::dynamic. While dynamic and Val provide dynamically-
typed storage within the confines of the standard C++, type_erasure
also ventures in a new direction by adding operations to C++ types. In the
next installment, we’ll look into more similar solutions, so stay tuned …

Credits
S t e v e n W a t a n a b e p ro v i d e d v a l ua b l e a d v i c e o n
boost::type_erasure. The list is, of course, not inclusive - many
other people, discussions, libraries and code samples were an
indispensable source of help in gathering and systematizing this writing.

References and further information
[Boost.Any] http://www.boost.org/doc/libs/1_53_0/doc/html/any.html

[Boost.Function] http://www.boost.org/doc/libs/1_53_0/doc/html/
function.html

[Boost.TypeErasure] http://www.boost.org/doc/libs/1_54_0/doc/html/
boost_typeerasure.html

[Double.Conversion] ‘Double-conversion library’
https://code.google.com/p/double-conversion/

[Folly.Dynamic] Facebook folly library, dynamic class – https://
github.com/facebook/folly/blob/master/folly/docs/Dynamic.md

[GotW28] The Fast Pimpl Idiom http://www.gotw.ca/gotw/028.htm

[jemalloc] A general-purpose scalable concurrent malloc(3)
implementation http://www.canonware.com/jemalloc/

[PicklingTools] The PicklingTools Library www.picklingtools.com

[Saunders1] ‘Dynamic, Recursive, Heterogeneous Types in Statically-
Typed Languages’, Clinton Jeffery, Richard Saunders, C++ Now
2013 Presentation, http://cppnow.org/session/dynamic-recursive-
heterogeneous-types-in-statically-typed-languages/

[Saunders2] ‘Dynamic, Recursive, Heterogeneous Types in Statically-
Typed Languages’ Clinton Jeffery, Richard Saunders
http://cppnow.org/files/2013/03/saunders-jeffery.pdf

[Saunders3] C++ Now 2013 Presentation, Richard Saunders
http://www.youtube.com/watch?v=W3TsQtnMtqg

[Venners04] ‘Abstraction and Efficiency: A Conversation with Bjarne
Stroustrup’ by Bill Venners, February 16, 2004
http://www.artima.com/intv/abstreffi.html

[Wikipedia] Boyer–Moore string search algorithm
http://en.wikipedia.org/wiki/
Boyer%E2%80%93Moore_string_search_algorithm

Further information
‘Dynamic C++’, ACCU 2013 Conference

http://www.slideshare.net/aleks-f/dynamic-caccu2013

Facebook folly library, fbstring class – https://github.com/facebook/folly/
blob/master/folly/docs/FBString.md

Listing 14

struct dynamic::ObjectImpl :
std::unordered_map<dynamic, dynamic> {};

// ...

inline dynamic::dynamic(ObjectMaker (*)())
 : type_(OBJECT)
{
 new (getAddress<ObjectImpl>()) ObjectImpl();
}

inline dynamic::dynamic(char const* s)
 : type_(STRING)
{
 new (&u_.string) fbstring(s);
}

Listing 15

template<> struct dynamic::GetAddrImpl<bool> {
 static bool* get(Data& d) {
 return &d.boolean; }
};
template<> struct dynamic::GetAddrImpl<int64_t> {
 static int64_t* get(Data& d) {
 return &d.integer; }
};
template<class T>
T* dynamic::getAddress() {
 return GetAddrImpl<T>::get(u_);
}
template<class T>
T* dynamic::get_nothrow() {
 if (type_ != TypeInfo<T>::type) {
 return nullptr;
 }
 return getAddress<T>();
}
template<class T>
T dynamic::asImpl() const
{
 switch (type())
 {
 case INT64:
 return to<T>(*get_nothrow<int64_t>());
 case DOUBLE:
 return to<T>(*get_nothrow<double>());
 case BOOL:
 return to<T>(*get_nothrow<bool>());
 case STRING:
 return to<T>(*get_nothrow<fbstring>());
 default:
 throw TypeError("int/double/bool/string",
 type());
 }
}
inline fbstring dynamic::asString() const
{
 return asImpl<fbstring>();
}

20 | Overload | August 2013

www.picklingtools.com
http://www.boost.org/doc/libs/1_53_0/doc/html/any.html
http://www.artima.com/intv/abstreffi.html
http://www.slideshare.net/aleks-f/dynamic-caccu2013
http://www.boost.org/doc/libs/1_53_0/doc/html/function.html
http://www.boost.org/doc/libs/1_53_0/doc/html/function.html
https://github.com/facebook/folly/blob/master/folly/docs/FBString.md
https://github.com/facebook/folly/blob/master/folly/docs/FBString.md
http://www.gotw.ca/gotw/028.htm
http://www.canonware.com/jemalloc/
http://cppnow.org/session/dynamic-recursive-heterogeneous-types-in-statically-typed-languages/
http://cppnow.org/session/dynamic-recursive-heterogeneous-types-in-statically-typed-languages/
http://cppnow.org/files/2013/03/saunders-jeffery.pdf
http://www.youtube.com/watch?v=W3TsQtnMtqg
https://code.google.com/p/double-conversion/
http://www.boost.org/doc/libs/1_54_0/doc/html/boost_typeerasure.html
http://www.boost.org/doc/libs/1_54_0/doc/html/boost_typeerasure.html
https://github.com/facebook/folly/blob/master/folly/docs/Dynamic.md
https://github.com/facebook/folly/blob/master/folly/docs/Dynamic.md

FEATUREROGER ORR
Auto – a necessary evil? (Part 2)
Should you declare (almost) everything auto?
Roger Orr considers when auto is appropriate.
To have a right to do a thing is not at
all the same as to be right in doing it.

~ G.K.Chesterton

n the first article we covered the rules governing the auto keyword that
was added to the language in C++11 (or added back, if your memory
of C++ goes back far enough!)

It is important with a feature like auto not only to know the rules about
what is permitted by the language – and the meaning of the consequent
code – but also to be able to decide when the use of the feature is appropriate
and what design forces need to be considered when taking such decisions.

In this article we look in more detail at some uses of auto with the intent
of identifying some of these issues.

A ‘complex type’ example
One of the main motivations for auto was to simplify the declaration of
variables with ‘complicated’ types. One such example is in the use of
iterators over standard library containers in cases such as:

 std::vector<std::set<int>> setcoll;
 std::vector<std::set<int>>::const_iterator it =
 setcoll.cbegin();1

Many programmers were put off using the STL because of the verbosity
of the variable declarations. With C++03 one recommendation was to use
a typedef – and this approach remains valid in C++11:

 typedef std::vector<std::set<int> > collType;
 // C++03 code still works fine
 collType setcoll;
 collType::const_iterator it = setcoll.begin();

With the addition of auto to the language the code can be shortened
considerably:

 std::vector<std::set<int>> setcoll;
 auto it = setcoll.cbegin();

But is it better?

To help answer that question let us consider the alternatives in more detail.

The original code is often seen as hard to read because the length of the
variable declaration dwarfs the name itself. Many programmers dislike the
way that the meaning of the code is masked by the scaffolding required to
get the variable type correct.

Additionally, the code is fragile in the face of change. The type of the
iterator is heavily dependent on the type of the underlying container so the
two declarations (for setcoll and it) must remain in step if the type of
one changes.

The second code, using a typedef, improves both the readability of the
code and also the maintainability as, should the type of the container
change, the nested type const_iterator governed by the typedef

will change too. However, having to pick a type name adds to the cognitive
overhead; additionally good names are notoriously hard to pin down.

In the final code the use of auto further helps readability by focussing the
attention on the expression used to initialise it as this defines the type that
auto will resolve to. Given this, code maintainability is improved as the
type of it will track the type required by the initialising expression.

We retain the type safety of the language – the variable is still strongly
typed – but implicitly not explicitly. The main downside of the final
version of the code is that if you do need to know the precise type of the
variable then you have to deduce it from the expression, to do which also
means knowing the type of the container. On the other hand, it can be
argued that to understand the semantics of the line of code you already have
to know this information, so the new style has not in practice made
understanding the code any more difficult.

In this case I am inclined to agree with this view and I can see little
downside to the use of auto to declare variables for iterators and other
such entities. So:

 the code is quicker and easier to write and, arguably, to read

 the purpose is not lost in the syntax

 code generated is identical to the explicit type

 the variable automatically changes type if the collection type
changes

However, the last point can be reworded as the variable automatically
silently changes type if the collection type changes. In particular this can
be an issue with the difference between a const and non-const
container. Note that the C++11 code uses cbegin():

 auto it = setcoll.cbegin();

If we’d retained the used of begin() we would have got a modifiable
iterator from a non-const collection. The C++03 code makes it explicit
by using the actual type name:

 std::vector<std::set<int>>::const_iterator it;

The stress is slightly different and may mean making some small changes
to some class interfaces, as with the addition of cbegin().

DRY example
auto allows you to specify the type name once. Consider this code:

 std::shared_ptr<std::string> str =
 std::make_shared<std::string>("Test");

1. We’ve repeated the std::string
2. make_shared exists solely to create std::shared_ptr objects

1. cbegin is another C++11 addition: it explicitly returns a const
iterator even from a mutable container.

I

Roger Orr has been programming for over 20 years, most recently
in C++ and Java for various investment banks in Canary Wharf and
the City. He joined ACCU in 1999 and the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk
August 2013 | Overload | 21

FEATURE ROGER ORR

until use of C++11 is sufficiently
widespread trying to use the style may
simply result in a mix of the old and new
We can write it more simply as:

 auto str = std::make_shared<std::string>("Test");

The resulting code is just over half as long to write (and read) and I don’t
think we’ve lost any information. Additionally the code is easier to change.

Using auto rather than repeating the type is indicated most strongly when:

 the type names are long or complex

 the types are identical or closely related

auto is less useful when:

 the type name is simple – or important

 the cognitive overhead on the reader of the code is higher

So I think auto may be less useful in an example like that in Listing 1.

YMMV (Your mileage may vary) – opinions differ here. The ease of
answering the question about the type of val may also depend on whether
you are using an IDE with type info.

For example, with Microsoft Visual Studio you get the type for the
example in Listing 1 displayed in the mouse-over as shown in Figure 1.

Dependent return type example
auto can simplify member function definitions. Consider the class and
member function definition in Listing 2.

We have to use the prefix of Example:: for the return type Result as
at this point in the definition the scope does not include Example. auto
allows the removal of the class name from the return type.

The syntax is to place the auto where the return type would otherwise go,
then follow the function prototype with -> and the actual return type:

 auto Example::getResult() -> Result
 { return ...; }

Whether or not this makes the code clearer depends on factors including:

 familiarity

 consistent use of this style.

Personally, I still can’t decide on this one. I think the new style is an
improvement over the old one, but until use of C++11 is sufficiently
widespread trying to use the style may simply result in a mix of the old
and new styles being used. I do not think this would be a great step forward
for existing code bases, but might be worth trying out for new ones.

Polymorphism?
One problem with auto is the temptation to code to the implementation
rather than to the interface. If we imagine a class hierarchy with an abstract
base class Shape and various concrete implementations such as Circle
and Ellipse. We might write code like this:

 auto shape = make_shared<Ellipse>(2, 5);
 ...
 shape->minor_axis(3);

The use of auto has made the generic variable shape to be of the explicit
type shared pointer to Ellipse. This makes it too easy to call methods –
such as minor_axis above – that are not part of the interface but of the
implementation.

When the type of shape is ‘shared pointer to the abstract base class’, you
can’t make this mistake. (Aside: I think this is a bigger problem with var
in C# than with auto in C++ but your experience may be different.) The
trouble is that auto is too ‘plastic’ – it fits the exact type that matches
whereas without auto the author needs to make a decision about the most
appropriate type to use. This doesn’t only affect polymorphism: const,

Listing 1

// in some header
struct X {
 int *mem_var;
 void aMethod();
};

// in a cpp file
void X::aMethod() {
 auto val = *mem_var; // what type is val?
 ...

Figure 1

Listing 2

class Example
{
public:
 typedef int Result;

 Result getResult();
};

Example::Result Example::getResult()
{ return ...; }
22 | Overload | August 2013

FEATUREROGER ORR
signed/unsigned integer types and sizes are other possible pinch points
where the deduction of the type done by auto is not the best choice.

What type is it?
It is possible to go to the extreme of making everything in the program use
auto, but I’m not convinced this is a good idea. For example, what does
the program in Listing 3 do?

It is all too easy to assume the auto types are all the same – miss the
promotion, the 'l' or the '.'. Opinions also vary on whether writing
main using auto aids readability – I am not at all sure it does, especially
given the large amount of existing code predating this use of auto.

You can use the auto rules (on some compilers) to tell you the type. For
example, if we want to find out the actual type of j we could write this
code:

 auto main() -> int {
 auto i = '1';
 auto j = i * 'd', x = "x";
 ...

When compiled this will error as the type deduction for auto for the
variables j and x produces inconsistent types. A possible error message is:

 error: inconsistent deduction for 'auto':
 'int' and then 'const char*'

You may also be able to get the compiler to tell you the type by using
template argument deduction, for example:

 template <typename T>
 void test() { T::dummy(); }

 auto val = '1';
 test<decltype(val)>();

This generates an error and the error text (depending on the compiler) is
likely to include text such as:

see reference to funct ion template instant ia t ion 'vo id
test<char>(void)' being compiled

What are the actual rules?
The meaning of an auto variable declaration follows the rules for template
argument deduction.

We can consider the invented function template

 template <typename T>
 void f(T t) {}

and then in the expression auto val = '1'; the type of val is the
same as that deduced for T in the call f('1').

This meaning was picked for good reason – type deduction can be rather
hard to understand and it was felt that having a subtly different set of rules
for auto from existing places where types are deduced would be a bad
mistake. However, this does mean that the type deduced when using auto
differs from a (naïve) use of decltype:

 const int ci;
 auto val1 = ci;
 decltype(ci) val2 = ci;

val1 is of type int as the rules for template argument deduction will drop
the top-level const; but the type of val2 will be const int as that is
the declared type of ci.

Adding modifiers to auto
Variables declared using auto can be declared with various combinations
of const and various sorts of references. So what’s the difference?

 auto i = <expr>;
 auto const ci = <expr>;
 auto & ri = <expr>;
 auto const & cri = <expr>;
 auto && rri = <expr>;

As above, auto uses the same rules as template argument deduction so
we can ask the equivalent question about what type is deduced for the
following uses of a function template:

 template <typename T>;
 void f(T i);
 void f(T const ci);
 void f(T & ri);
 void f(T const & cri);
 void f(T && rri);

The answer to the question is, of course, ‘it depends’ ... especially for the
&& case (which is an example of what Scott Meyers has named the
‘Universal Reference’).

const inference (values)
Let us start by looking at a few examples of using auto together with
const for simple value declarations.

 int i(0); int const ci(0);

 auto v0 = 0;
 auto const v1 = 0;
 auto v2 = i;
 auto const v3 = i;
 auto v4 = ci;
 auto const v5 = ci;

This is the easiest case and, as in the earlier discussion of the difference
between auto and decltype, v0 is of type int and v1 is of type int
const (you may be more used to calling it const int). Similarly v2
and v4 are of type int and v3 and v5 are of type int const.

In general, with simple variable declarations, I prefer using auto const
by default as the reader knows the value will remain fixed. This means if
they see a use of the variable later in the block they do not have to scan
the intervening code to check whether or not the value has been modified.

const inference (references)
Let’s take the previous example but make each variable an l-value
reference:

 int i(0); int const ci(0);

 auto & v0 = 0; // Error
 auto const & v1 = 0;
 auto & v2 = i;
 auto const & v3 = i;
 auto & v4 = ci;
 auto const & v5 = ci;

The first one fails as you may not form an l-value reference to a temporary
value. However, you are allowed to form a const reference to a
temporary and so v1 is valid (and of type int const &).

v2 is valid and is of type int & and the three remaining variables are all
of type int const &. Notice that the const for v4 is not removed, unlike
in the previous example, as it is not a top-level use of const.

Reference collapsing and auto
Things get slightly more complicated again when we use the (new) r-value
reference in conjunction with auto.

Listing 3

auto main() -> int {
 auto i = '1';
 auto j = i * 'd';
 auto k = j * 100l;
 auto l = k * 100.;
 return l;
}

August 2013 | Overload | 23

FEATURE ROGER ORR
 int i(0); int const ci(0);

 auto && v0 = 0;
 auto const && v1 = 0;
 auto && v2 = i;
 auto const && v3 = i; // Error
 auto && v4 = ci;
 auto const && v5 = ci; // Error

The first variable, v0, becomes an r-value reference to the temporary 0
(type int &&) and the second, v1, is the const equivalent (int const
&&). When it comes to v2, however, the reference type ‘collapses’ to an
l-value reference and so the type of v2 is simply int &. v3 is invalid as
the presence of the const suppresses the reference collapsing and you are
not allowed to bind an r-value reference to an l-value. v4 reference-
collapses to int const & and the declaration of v5 is an error for the
same reason as for v3.

So this is the complicated one: auto && var = <expr>; as, depending
on the expression, var could be

 T &
 T &&
 T const &
 T const &&

Deducing the last case is a little more obscure – you need to bind to a
const temporary that is of class type. Here’s an example of deducing
const &&:

 class T{};
 const T x() { return T(); }
 auto && var = x(); // var is of type T const &&

Note that non-class types, like int, decay to &&. This changed during the
development of C++11 and at one point Microsoft’s compiler and the
Intellisense disagreed over the right answer (see Figure 2)!

(The compiler in the Visual Studio 2013 preview edition does now get this
right.)

More dubious cases
auto does not work well with initializer lists as the somewhat complicated
rules for parsing these results in behaviour, when used with auto, that may
not be what you expect:

 int main() {
 int var1{1};
 auto var2{1};

You might expect var1 and var2 to have the same type. Sadly the C++
rules have introduced a new ‘vexing parse’ into the language. The type of
var2 is std::initializer_list<int>. There is a proposal to make
this invalid as almost everyone who stumbles over this behaviour finds it
unexpected.

A mix of signed and unsigned integers – or integers of different sizes –
can cause problems with auto. In many cases the compiler generates a
warning, if you set the appropriate flag(s), and if you heed the warning you
can resolve possible problems. But not in all cases

 std::vector<int> v;
 ...
 for (int i = v.size() - 1; i > 0; i -= 2)
 {
 process(v[i], v[i-1]);
 }

If you change int to auto then the code breaks. The trouble here is that
v.size() returns std::vector::size_type which is an unsigned
integer value. The rules for integer promotions means that i is also an
unsigned integer value. If it starts out odd it will decrease by 2 round the
loop as far as 1, then the next subtraction will wrap around – to a large
positive value. Of course, care must be taken to ensure that an int will
be large enough for all possible values of size() that the program might
encounter.

I’m less convinced by the use of auto for variables defined by the results
of arithmetic expressions as the correct choice of variable type may be
necessary to ensure the desired behaviour of the program.

Conclusion
auto is a very useful tool in the programmer’s armoury as it allows you
to retain type safety without needing to write out the explicit types of the
variables. I expect that use of auto will become fairly widespread once
use of pre-C++11 compilers becomes less common.

However, I do have a concern that thoughtless use of auto may result in
code that does not behave as expected, especially when the data type
chosen implicitly is not the one the reader of the code anticipates.

Please don’t use auto without thought simply to save typing, but make
sure you use it by conscious choice and being aware of the potential issues
and possible alternatives.

Acknowledgements
Many thanks to Rai Sarich and the Overload reviewers for their
suggestions and corrections which have helped to improve this article.

This article is based on the presentation of that title at ACCU 2013.

Figure 2
24 | Overload | August 2013

	Overload116.pdf
	Learning Fantasy Languages
	Hard Upper Limit on Memory Latency
	Simple Instrumentation
	Portable String Literals in C++
	Dynamic C++ (Part 2)
	Auto – a necessary evil? (Part 2)

