

June 2016 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 Dogen: The Package Management
Saga
Marco Craveiro discovers Conan for C++
package management.

7 QM Bites – Order Your Includes
(Twice Over)
Matthew Wilson suggests a sensible
ordering for includes.

8 A Lifetime in Python
Steve Love demonstrates how to use context
managers in Python.

12 Deterministic Components for
Distributed Systems
Sergey Ignatchenko considers what can
make programs non-deterministic.

17 Programming Your Own Language in C++
Vassili Kaplan writes a scripting language in C++.

24 Concepts Lite in Practice
Roger Orr gives a practical example of the use of
concepts.

31 Afterwood
Chris Oldwood hijacks the last page for an
‘Afterwood’.

OVERLOAD 133

June 2016

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.
uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication
in Overload 134 should be
submitted by 1st July 2016 and
those for Overload 135 by
1st September 2016.

EDITORIALFRANCES BUONTEMPO
estimate or guess. Larger stories will tend to be less clear, so many teams
and resources strive towards smaller stories, for example ‘Small Items’
[ScrumPlop2]. I have worked on a couple of teams now where we seem
to manage seven stories each sprint, regardless of the capacity, tinkered
with for holidays and meetings, or even the perceived effort for each item
of work. Just counting stories done, sometimes in the midst of many
hours playing planning poker or the like never ceases to amuse me. I
recommend having two counts at least – the official way, and any other
team metric that works for you. How many items does your team manage
each day, or week or sprint? If you don’t work on an agile team, or even
a team, do you know what you can achieve? Do you know what’s holding
you up? Are you happy? Are you productive? If not, what can you do to
change things?

Having considered some areas where a unitless approach can be
appropriate, such as counts of completed work or story points, most
metrics have units. The United Kingdom uses the so-called metric system
now, though informally many older people still measure their height in
feet or weight in stones. Prior to this we had the ‘imperial’ system. This
appears to date back to the 1824 Weights and Measures act [Weights],
which the internet assures me wasn’t implemented until a couple of years
later. What’s in a name? This was an attempt to provide uniform weight
and measures, so that throughout the Empire you knew what you would
get if you asked for a gallon, or a slug. Many of the original measures
were based on quite natural ideas – a foot is the length of a foot, and so
on. If you need to be accurate this could be problematic, hence the attempt
to standardise, however older measures would give a ball-park figure that
might be good enough for many situations. The drive to standardisation
spread over several centuries [Britannica], meaning that American
measures forked off from the 1824 act, leaving us with differences
between various units: a US gallon is smaller than a British imperial
gallon. Pints differ. The list goes on. Standards change over time. C++
has had many reformulations. This is a good thing. An interesting point
to note is that the precise definitions of various measures usually involve
another measure. A weight might be given at a specific temperature. The
benchmarks and references used vary over time. Indeed, how we
accurately measure time has changed. How to measure time could fill an
article or even a book. Instead consider the history of the ‘metre’, or
‘meter’ if you will. The French Academy of Sciences chose a definition
for the metre based on one ten-millionth of the earth’s meridian along a
quadrant [NIST]. This allowed more precision than another suggestion to
use the length of a pendulum with a half period of one second. Since
gravity varies you would have to be precise about where the pendulum
was, which may have required precise coordinates or distance in metres
from somewhere, which could prove awkward, being slightly recursive in
definition. Having spent time conducting a lot of pendulum experiments
in ‘A’ Level physics at school I suspect it’s easy to miss the exact moment
it reaches the extrema of the swings. Since the 18th century the definition
of a metre has been refined several times. By 1983 it became “the length
of a path travelled by light in a vacuum during a time interval of 1/
299,792,458 of a second” [NIST]. I would be even more likely to blink at
the wrong moment using this, than for my pendulum experiments. Where
imperial measurements had been based on some natural ideas, like a foot,
and tended to be in multiples of 12 or 16 allowing easy division into
various ratios, the French Revolution pushed towards multiples of ten. In
fact, it seems the French Revolution experimented with a ten day week,
admittedly in a twelve month year [Calendar]. Apart from the drive to
decimalise everything, the renaming of days and months was part of a
drive to remove religious names from the days and months. For whatever
reason, this didn’t stick. People seem to prefer a seven day week, and long
weekends. The attempt to impose a new system of measures doesn’t seem
to work. An imperious imposition of the metric system over an imperial
system isn’t always successful. Some British people cling to the old
imperial measures out of a sense of patriotism. If you trace the units’
origins though, you quickly find that they were imposed by invaders, such
as a Roman ‘mile’, or ‘millia’ being a thousand paces. Yard is from
Anglo-Saxon ‘gyrd’ for a stick [Metrics]. The list is long.

As I finish writing, on May 4th, my musings on the imperial death march
[Imperial March] conjures a picture of intimidation and fear. Metrics are
a way to communicate. They need to be incredibly accurate in order to be
scientific. History shows us that as our knowledge increases so our
measures change. As we discover new things we will need to continually
improve our ‘yardsticks’. Sometimes we don’t need accurate numbers. If
you measure code coverage by your tests you can get bogged down in
whether you include empty lines, comments, deciding if each part of a
logical disjunction (or) is evaluated before a branch is taken or just one
by lazy evaluation and so on. It might be sufficient to just look at the
names of the tests with a customer or product owner to get a sense of
coverage of the requirements, rather than the code. Just because you can
measure something doesn’t mean you should. Steve Elliot spoke at the
Pipeline conference in London this year. He shared many metrics that can
be useful from a DevOps perspective; measure ALL the things (starting
in a development environment) but encouraged us to make sure they
weren’t used to be Orwellian [Buontempo16b]. Rewarding people who
write the most lines of code is asking for trouble. Catching a process that
is failing before it hits QA or the customers, however, is better.
Constantly reassessing the way you measure is important. The numbers,
graphs and dashboards are a way to communicate between the whole
team, rather than enable a witch-hunt. Simply talking can solve problems,
but it should be based on a mixture of feelings and
science.

Change is good. Change is constant. Embrace it, but
watch and measure where things are heading. Ask
yourself if you are happy. Ask yourself how you can
improve. Ask yourself if I will ever write an editorial.

References
[ACCU channel] See Day 4 for the closing keynote.

https://www.youtube.com/channel/UCJhay24LTpO1s4bIZxuIqKw/
featured

[Adams79] The Hitch Hikers Guide to the Galaxy, Douglas Adams,
1979.

[Britannica] http://www.britannica.com/science/British-Imperial-
System

[BSUG] Bath Scrum User Group http://www.meetup.com/Bath-Scrum-
User-Group/events/228943766/

[Buontempo15] ‘How to write an article’ Overload 125, Feb 2015
http://accu.org/index.php/journals/2061

[Buontempo16a] ‘Where does all the time go?’ Overload 132, April
2016 http://accu.org/var/uploads/journals/Overload132.pdf

[Buontempo16b] http://buontempoconsulting.blogspot.co.uk/2016/03/
pipeline-2016.html

[Calendar] https://en.wikipedia.org/wiki/French_Republican_Calendar

[Imperial March] https://www.youtube.com/watch?v=-bzWSJG93P8
See what I did there?

[King16] Guy Bolton King, ACCU Conference, 2016
http://accu.org/index.php/conferences/accu_conference_2016/
accu2016_sessions#Without_Warning:_Keeping_the_Noise_Down
_in_Legacy_Code_Builds

[McCabe76] McCabe, ‘A Complexity Measure’ IEEE Transactions of
Software Engineering 2(4), 1976

[Metrics] http://www.metric.org.uk/myths/imperial#imperial-was-
invented-in-britain

[NIST] http://physics.nist.gov/cuu/Units/meter.html

[Red Dwarf] http://reddwarf.wikia.com/wiki/RD:_Backwards

[ScrumPlop1] https://sites.google.com/a/scrumplop.org/published-
patterns/value-stream/estimation-points

[ScrumPlop2] https://sites.google.com/a/scrumplop.org/published-
patterns/value-stream/small-items

[Weights] https://en.wikipedia.org/wiki/Imperial_units
June 2016 | Overload | 3

http://www.britannica.com/science/British-Imperial-System
http://www.britannica.com/science/British-Imperial-System
https://www.youtube.com/channel/UCJhay24LTpO1s4bIZxuIqKw/featured
https://www.youtube.com/channel/UCJhay24LTpO1s4bIZxuIqKw/featured
http://www.meetup.com/Bath-Scrum-User-Group/events/228943766/
http://www.meetup.com/Bath-Scrum-User-Group/events/228943766/
https://en.wikipedia.org/wiki/French_Republican_Calendar
http://accu.org/var/uploads/journals/Overload132.pdf
http://accu.org/index.php/journals/2061
https://www.youtube.com/watch?v=-bzWSJG93P8
http://physics.nist.gov/cuu/Units/meter.html
http://www.metric.org.uk/myths/imperial#imperial-was-invented-in-britain
http://www.metric.org.uk/myths/imperial#imperial-was-invented-in-britain
http://buontempoconsulting.blogspot.co.uk/2016/03/pipeline-2016.html
http://buontempoconsulting.blogspot.co.uk/2016/03/pipeline-2016.html
http://reddwarf.wikia.com/wiki/RD:_Backwards
https://sites.google.com/a/scrumplop.org/published-patterns/value-stream/estimation-points
https://sites.google.com/a/scrumplop.org/published-patterns/value-stream/estimation-points
https://sites.google.com/a/scrumplop.org/published-patterns/value-stream/small-items
https://sites.google.com/a/scrumplop.org/published-patterns/value-stream/small-items
https://en.wikipedia.org/wiki/Imperial_units
http://accu.org/index.php/conferences/accu_conference_2016/accu2016_sessions#Without_Warning:_Keeping_the_Noise_Down_in_Legacy_Code_Builds

FEATURE MARCO CRAVEIRO
Dogen: The Package
Management Saga
How do you manage packages in C++? Marco
Craveiro eventually discovered Conan after some
frustrating experiences.
ver the last few years I’ve had a little project on the side called
Dogen. Dogen is a code generator designed to target domain models,
with the lofty ambition of automating the modelling process as much

as possible: users create domain models using a supported UML tool and
respecting a set of predefined restrictions; Dogen uses the tool’s diagram
files to generate the source code representation. The generated code
contains most of the services required from a typical domain object such
as serialisation, hashing, streaming and so on. Dogen is written in C++ 14
and generates C++ 14 too, but other languages will eventually be
supported as well. You can find our repo at https://github.com/
DomainDrivenConsulting/dogen.

Now, for a four-year-old project, I guess it’s fair to say that Dogen hasn’t
exactly set the Open Source world on fire. Nevertheless, it has proven to
be a personal fountain of lessons and experiences on software
development; one such lesson was package management and that’s what
I shall reminisce about in this article.

The conundrum
Like any other part-time C++ developer whose professional mainstay is
C# and Java, I have keenly felt the need for a package manager when in
C++-land. The problem is less visible when you are working with mature
libraries and dealing with just Linux, due to the huge size of the package
repositories and the great tooling built around them. However, things get
messier when you start to go cross-platform, and messier still when you
are coding on the bleeding edge of C++: either the package you need is
not available in the distro’s repos or even PPA’s; or, when it is, its rarely
at the version you require. Alas, for all our sins, that’s exactly where we
were when Dogen got started.

A spoonful of Dogen history
Dogen sprung to life just a tad after C++-0x became C++-11, so we
experienced first hand the highs of a quasi-new-language followed by the
lows of feeling the brunt of the bleeding edge pain. For starters, nothing
we ever wanted was available out of the box, on any of the platforms we
were interested in. Even Debian Testing was a fair bit behind the curve –
probably stalled due to a compiler transition or other. In those days, Real
Programmers were Real Programmers and mice were mice: we had to
build and install the C++ compilers ourselves and, even then, C++-11
support was new, a bit flaky and limited. We then had to use those
compilers to compile all of the dependencies in C++-11 mode.

The PFH days
After doing this manually once or twice, it soon stopped being fun. And
so we solved this problem by creating the PFH – the Private Filesystem
Hierarchy – a gloriously over-ambitious name to describe a set of wrapper
scripts that helped with the process of downloading tarballs, unpacking,
building and finally installing them into well-defined locations. It worked
well enough in the confines of its remit, but we were often outside those,
having to apply out-of-tree patches, adding new dependencies and so on.
We also didn’t use Travis then; not even sure it existed, but if it did, the
rigmarole of the bleeding edge experience would certainly put a stop to
any ideas of using it. So we used a local install of CDash with a number
of build agents on OSX, Windows (MinGW) and Linux (32-bit and 64-
bit). Things worked beautifully when nothing changed and the setup was
stable; but every time a new version of a library – or God forbid, of a
compiler – was released, one had that sense of dread: do I really need to
upgrade? And yet we often did, because we needed the features.

Since one of the main objectives of Dogen was to learn about C++-11, one
has to say that the pain was worth it. But all of the moving parts described
above were not ideal and they were not the thing you want to be wasting
your precious time on when it is very scarce. They were certainly not
scalable.

The good days and the bad days
Things improved slightly for a year or two when distros started shipping
C++-11 compliant compilers and recent boost versions. This led to an
attack of pragmatism, during which we ditched all platforms except for
Linux, got rid of almost all our private infrastructure and moved over to
Travis. For a while things looked really good. However, due to Travis’
Ubuntu LTS policy, we were stuck with a rapidly ageing Boost version.
At first PPAs were a good solution, but over time these became stale too.

Soon we were stuck, unable to afford to revert back to the bad old days of
the PFH but also unable to freeze all dependencies in time, as it would
provide a worse development experience. So it was that the only route left
was to break the build on Travis and hope that a solution would manifest
itself. The red build painfully lingered on, commit after commit, whilst
alternatives such as Drone.io and GitLab were unsuccessfully tried.

Finally, there was nothing else for it. We simply needed a package
manager to manage the development dependencies.

Nuget hopes dashed
Having used Nuget in anger for both C# and C++ projects – and given
Microsoft’s recent change of heart with regards to open source – I was
secretly hoping that Nuget would get some traction in the wider C++
world. Nuget works well enough in Mono, and C++ support for Windows
was added fairly early on. It was somewhat limited and a bit quirky at the
start but it kept on getting better, to the point of being actually usable; we
now use Nuget to manage our C++ dependencies at work – a Windows
shop in the main – and it has improved our quality of life dramatically.

O

Marco Craveiro has been programming professionally for the best
part of twenty years and carefully following the trials and tribulations of
his favourite technologies: Linux and C++. Recently, he became
interested in the field of Computational Neuroscience and is now
attempting to use Linux and C++ to model exceedingly small parts of
the brain. In his copious spare time, he writes a haphazard blog with a
haphazard programming column called Nerd Food.
4 | Overload | June 2016

https://github.com/DomainDrivenConsulting/dogen
https://github.com/DomainDrivenConsulting/dogen

FEATUREMARCO CRAVEIRO

Some crazy-cool Spaniards had decided to
create a stand alone package manager.

Being from the same peninsula, I felt
compelled to use their wares
Unfortunately, the troubles begun on closer inspection. The truth is that
Microsoft’s current Nuget focus is C# and Visual Studio, not Linux and
C++. Also, it seems that outside Microsoft and Xamarin, there just isn’t
enough traction for this tool at present.

However, there have been a couple of recent announcements from
Microsoft that give me hope things may change in the future:

 Clang with Microsoft CodeGen in VS 2015 Update 1

 Support for Android CMake projects in Visual Studio

Surely the logical consequence is to be able to manage packages in a
consistent way across platforms? We can but hope.

Biicode comes to the rescue?
Nuget did not pan out but what did happen was even more unlikely: some
crazy-cool Spaniards had decided to create a stand alone package
manager. Being from the same peninsula, I felt compelled to use their
wares, and was joyful as they went from strength to strength – including
the success of their open source campaign. And I loved the fact that it
integrated really well with CMake, and that CLion provided Biicode
integration very early on.

However, my biggest problem with Biicode was that it was just too
complicated. I don’t mean to say the creators of the product didn’t have
very good reasons for their technical choices – Lord knows creating a
product is hard enough, so I have nothing but praise to anyone who tries.
However, for me personally, I never had the time to understand why
Biicode needed its own version of CMake, nor did I want to modify my
CMake files too much in order to fit properly with Biicode and so on.
Basically, I needed a solution that worked well and required minimal
changes at my end. Having been brought up with Maven and Nuget, I just
could not understand why there wasn’t a simple packages.xml file that
specified the dependencies and then some non-intrusive CMake support
to expose those into the CMake files. As you can see from some of my
posts, it just seemed it required ‘getting’ Biicode in order to make use of
it, which for me was not an option.

Another thing that annoyed me was the difficulty on knowing what the
‘real’ version of a library was. I wrote, at the time:

One slightly confusing thing about the process of adding
dependencies is that there may be more than one page for a given
dependency and it is not clear which one is the ‘best’ one. For
RapidJson there are three options, presumably from three different
Biicode users:

 fenix: authored on 2015-Apr-28, v1.0.1.

 hithwen: authored 2014-Jul-30

 denis: authored 2014-Oct-09

The ‘fenix’ option appeared to be the most up-to-date so I went with
that one. However, this illustrates a deeper issue: how do you know
you can trust a package? In the ideal setup, the project owners
would add Biicode support and that would then be the one true
version. However, like any other project, Biicode faces the initial
adoption conundrum: people are not going to be willing to spend

time adding support for Biicode if there aren’t a lot of users of Biicode
out there already, but without a large library of dependencies there
is nothing to draw users in. In this light, one can understand that it
makes sense for Biicode to allow anyone to add new packages as
a way to bootstrap their user base; but sooner or later they will face
the same issues as all distributions face.

A few features would be helpful in the mean time:

 popularity/number of downloads

 user ratings

These metrics would help in deciding which package to depend on.

For all these reasons, I never found the time to get Biicode setup and these
stories lingered in Dogen’s backlog. And the build continued to be red.

Sadly Biicode the company didn’t make it either. I feel very sad for the
guys behind it, because their heart was on the right place.

Which brings us right up to date.

Enter Conan
When I was a kid, we were all big fans of Conan. No, not the barbarian,
the Japanese Manga Future Boy Conan. For me the name Conan will
always bring back great memories of this show, which we watched in the
original Japanese with Portuguese subtitles. So I was secretly pleased
when I found conan.io, a new package management system for C++. The
guy behind it seems to be one of the original Biicode developers, so a lot
of lessons from Biicode were learned.

To cut a short story short, the great news is I managed to add Conan
support to Dogen in roughly 3 hours and with very minimal knowledge
about Conan. This to me was a litmus test of sorts, because I have very
little interest in package management – creating my own product has
proven to be challenging enough, so the last thing I need is to divert my
energy further. The other interesting thing is that roughly half of that time
was taken by trying to get Travis to behave, so its not quite fair to impute
it to Conan.

Setting up Dogen for Conan
So, what changes did I do to get it all working? It was a very simple 3-step
process. First I installed Conan using a Debian package from their site.

I then created a conanfile.txt on my top-level directory:

 [requires]
 Boost/1.60.0@lasote/stable
 [generators]
 cmake

Finally I modified my top-level CMakeLists.txt:

 # conan support
 if(EXISTS
 "${CMAKE_BINARY_DIR}/ conanbuildinfo.cmake")
 message(STATUS "Setting up Conan support.")
 include
 ("${CMAKE_BINARY_DIR}/conanbuildinfo.cmake")
 CONAN_BASIC_SETUP()
June 2016 | Overload | 5

FEATURE MARCO CRAVEIRO
 else()
 message(STATUS "Conan build file not found,
 skipping include")
 endif()

This means that it is entirely possible to build Dogen without Conan, but
if it is present, it will be used. With these two changes, all that was left to
do was to build:

 $ cd dogen/build/output
 $ mkdir gcc-5-conan
 $ cd gcc-5-conan
 $ conan install ../../..
 $ make -j5 run_all_specs

Et voilà, I had a brand spanking new build of Dogen using Conan. Well,
actually, not quite. I’ve omitted a couple of problems that are a bit of a
distraction on the Conan success story. Let’s look at them now.

Problems and their solutions
The first problem was that Boost 1.59 does not appear to have an
overridden FindBoost, which means that I was not able to link. I moved to
Boost 1.60 – which I wanted to do anyway – and it worked out of the box.

The second problem was that Conan seems to get confused with Ninja, my
build system of choice. For whatever reason, when I use the Ninja
generator, it fails like so:

 $ cmake ../../../ -G Ninja
 $ ninja -j5
 $ ninja: error: '~/.conan/data/Boost/1.60.0/
 lasote/stable/package/
 ebdc9c0c0164b54c29125127c75297f6607946c5/lib/
 libboost_system.so', needed by 'stage/bin/
 dogen_utility_spec', missing and no known rule to
 make it

This is very strange because Boost System is clearly available in the
Conan download folder. Going back to make solved this problem. I’ve
opened an issue in Conan (#56) and its currently under investigation.

The third problem is more Boost related than anything else. Boost Graph
has not been as well maintained as it should, really. Thus users now find
themselves carrying patches, and all because no one seems to be able to
apply them upstream. Dogen is in this situation as we’ve hit the issue
described at Stack Overflow: ‘Compile error with boost.graph 1.56.0 and
g++ 4.6.4’. Sadly this is still present on Boost 1.60; the patch exists in
Trac but remains unapplied (#10382). This is a tad worrying as we make
a lot of use of Boost Graph and intend to increase the usage in the future.

At any rate, as you can see, none of the problems were showstoppers, nor
can they all be attributed to Conan.

Getting Travis to behave
Once I got Dogen building locally, I then went on a mission to convince
Travis to use it. It was painful, but mainly because of the lag between
commits and hitting an error. The core of the changes to my YML file
were as in Listing 1.

I probably should have a bash script by now, given the size of the YML,
but hey – if it works. The changes above deal with installation of the
package, applying the boost patch and using Make instead of Ninja. Quite
trivial in the end, even though it required a lot of iterations to get there.

Conclusions
Having a red build is a very distressful event for a developer, so you can
imagine how painful it has been to have red builds for several months. So
it is with unmitigated pleasure that I got to see build #628 in a shiny
emerald green. As far as that goes, it has been an unmitigated success.

In a broader sense though, what can we say about Conan? There are many
positives to take home, even at this early stage of Dogen usage:

 it is a lot less intrusive than Biicode and easier to setup. Biicode was
very well documented, but it was easy to stray from the beaten track
and that then required reading a lot of different wiki pages. It seems
easier to stay on the beaten track with Conan.

 as with Biicode, it seems to provide solutions to Debug/Release,
multi-platforms and multiple compilers. We shall be testing it on
Windows soon and reporting back.

 hopefully, since it started Open Source from the beginning, it will
form a community of developers around the source with the know-
how required to maintain it. It would also be great to see if a business
forms around it, since someone will have to pay the cloud bill. It
certainly is gaining popularity, as the recent CppCast attests.

In terms of negatives:

 I still believe the most scalable approach would have been to extend
Nuget for the C++ Linux use case, since Microsoft is willing to take
patches and since they foot the bill for the public repo. However, I
can understand why one would prefer to have total control over the
solution rather than depend on the whims of some middle-manager
in order to commit.

 it seems publishing packages requires getting down into Python.
Haven’t tried it yet, but I’m hoping it will be made as easy as
importing packages with a simple text file. The more complexity
around these flows the tool adds, the less likely they are to be used.

 there still are no ‘official builds’ from projects. As explained above,
this is a chicken and egg problem, because people are only willing
to dedicate time to it once there are enough users complaining.

Having said that, since Conan is easy
to setup, one hopes to see some
adoption in the near future.

 even when using a GitHub profile,
one still has to define a Conan
specific password. This was not
required with Biicode. Minor pain,
but still, if they want to increase
traction, this is probably an
unnecessary stumbling block. It was
sufficient to make me think twice
about setting up a login, for one.

In truth, these are all very minor negative
points, but still worth making them. All
and all, I am quite pleased with Conan
thus far.

Listing 1

install:
<snip>
 # conan
 - wget https://s3-eu-west-1.amazonaws.com/conanio-production/downloads/
conan-ubuntu-64_0_5_0.deb -O conan.deb
 - sudo dpkg -i conan.deb
 - rm conan.deb
<snip>
script:
 - export GIT_REPO="`pwd`"
 - cd ${GIT_REPO}/build
 - mkdir output
 - cd output
 - conan install ${GIT_REPO}
 - hash=`ls ~/.conan/data/Boost/1.60.0/lasote/stable/package/`
 - cd ~/.conan/data/Boost/1.60.0/lasote/stable/package/${hash}/include/
 - sudo patch -p0 < ${GIT_REPO}/patches/boost_1_59_graph.patch
 - cmake ${GIT_REPO} -DWITH_MINIMAL_PACKAGING=on
 - make -j2 run_all_specs
<snip>
6 | Overload | June 2016

FEATUREMATTHEW WILSON
QM Bites – Order Your Includes
(Twice Over)
Header includes can be a shambles. Matthew Wilson
encourages us to bring some order to the chaos.
TL;DR
Order includes in groups of descending specificity and lexicographically
within groups

Bite
Consider the following example of #includes in source file
Cutter.cpp, containing the implementation of a class Cutter for a
fictional organisation AcmeSoftware with a product Blade. In this case,
the class’s implementation and header files are located in the same source
directory; this need not always be so, but the discussion to follow still
applies.

 #include "stdafx.h"
 #include <vector>
 #include <string>
 #include <acmecmn/string_util2.h>
 #include <acmecmn/string_util1.h>
 #include <Blade/Sharpener.hpp>
 #include <Blade/Protector.hpp>
 #include "Cutter.hpp"
 #include <stdlib.h>
 #include <map>

This is quite wrong. Here’s the right way to do it:

 #include "stdafx.h"

 #include "Cutter.hpp"

 #include <Blade/Protector.hpp>
 #include <Blade/Sharpener.hpp>

 #include <acmecmn/string_util1.h>
 #include <acmecmn/string_util2.h>

 #include <map>
 #include <string>
 #include <vector>

 #include <stdlib.h>

This has been ordered according to descending order of specificity of
groups, and then lexicographically within groups. The drivers are,
respectively, modularity and transparency.

The reason for descending order of specificity of groups is to expose
hidden dependencies – coupling! – in any of the header files. Unlike
languages such as Java and C#, the order of ‘imports’, in the form of
#includes, has significance in C and C++. For example, if
Cutter.hpp makes use of std::vector but does not itself include
that file then compilation units that include it are at risk of compile error;
the original order masks that. The same rationale applies to the files in
other groups: if Blade/Sharpener.hpp requires a definition in
acmecmn/string_util1.h then this would also be exposed.

The reason for lexicographical ordering with groups is to make it easier to
comprehend each group’s contents. In the real world there can be many

tens of included files, and if not in some readily comprehensible order
then duplicates can more easily occur, which is then obviously a problem
when trying to remove unnecessary includes. (Admittedly, by having a
strict lexicographical ordering within groups there is a slightly increased
possibility of hiding interheader coupling between files in a group, but
unless you want to go to some extreme such as reverse lexicographical
ordering for headers and forward for implementation files – which I do
not advise – you’ll have to wear this slight risk. The grouping will take
care of the vast majority.)

The reason for a blank line between groups is obvious: to delineate one
group from another to further aid transparency.

Usually, the most specific group – the Level-1 group in an implementation
file – would be its declaring header(s), containing declarations of its API
functions and/or defining its class: in this case Cutter.hpp. Note that it
makes no difference whether the declaring header is in the same directory,
i.e. #include "Cutter.hpp", or in another directory, e.g. #include
<AcmeSoft/Blade/Cutter.hpp>: its pre-eminence is unchanged.

Sometimes, for implementation reasons, we have to have a Level-0 group
– in this case this is the precompiled header include file stdafx.h. (In a
soontobecooked Bite I will discuss why and how you should get rid of the
presence of these things from your source.)

Similarly, for very rare implementation reasons, we have to have a Level-
N group. I have not shown such in this case, but if you’ve chomped on
enough C++ in your time you’ll have experienced such things, perhaps to
conduct some shameful but necessary preprocessor surgery after all
includes but before any implementation code is translated.

Hence, the rule is to order includes:

1. Order all files in groups of descending order of specificity, with each
group separated by a blank line, including:
a. Explicit Level-0 includes (if required);
b. Level-1 include(s): the declaring header(s) file (for

implementation files only);
c. Other include groups for the given application component;
d. Other include groups for the organisation;
e. Other include groups for 3rdpartysoftware;
f. Standard C++ headers;
g. Standard C headers;
h. Explicit Level-N includes (if required).

2. Lexicographically order all includes within groups;

Further Reading
C++ Coding Standards, Herb Sutter & Andrei Alexandrescu,

AddisonWesley, 2004

Large Scale C++ Software Design, John Lakos, AddisonWesley, 1996

Matthew Wilson Matthew is a software development consultant
and trainer for Synesis Software who helps clients to build high-
performance software that does not break, and an author of articles
and books that attempt to do the same. He can be contacted at
matthew@synesis.com.au.
June 2016 | Overload | 7

FEATURE STEVE LOVE
A Lifetime In Python
Resource management is important in any
language. Steve Love demonstrates how to
use context managers in Python.
ariables in Python generally have a lifetime of their own. Or rather,
the Python runtime interpreter handles object lifetime with
automated garbage collection, leaving you to concentrate on more

important things. Like Resource lifetime, which is much more
interesting.

Python provides some facilities for handling the deterministic clean-up of
certain objects, because sometimes it’s necessary to know that it has
happened at a specific point in a program. Things like closing file handles,
releasing sockets, committing database changes – the usual suspects.

In this article I will explore Python’s tools for managing resources in a
deterministic way, and demonstrate why it’s easier and better to use them
than to roll your own.

Why you need it
Python, like many other languages, indicates runtime errors with
exceptions, which introduces interesting requirements on state.
Exceptions are not necessarily visible directly in your code, either. You
just have to know they might occur. Listing 1 shows a very basic
(didactic) example.

If an exception occurs between lines (1) and (3), the data won’t get
committed to the database, the connection to the database will not be
closed, and will therefore ‘leak’. This could be a big problem if this
function or other functions like it get called frequently, say as the backend
to a large web application. This wouldn’t be the best way to implement
this in any case, but the point is that the db.execute() statement can
throw all kinds of exceptions.

You might then try to explicitly handle the exceptions, as shown in
Listing 2, which ensures the database connection is closed even in the
event of an exception. Closing a connection without explicitly committing
changes will cause them to be rolled back.

It is a bit messy, and introduces some other questions such as: what
happens if the sqlite3.connect method throws an exception? Do we
need another outer-try block for that? Or expect clients of this function to
wrap it in an exception handler?

Fortunately, Python has already asked, and answered some of these
questions, with the Context Manager. This allows you to write the code
shown in Listing 3.

The connection object from the sqlite3 module implements the
Context Manager protocol, which is invoked using the with statement.
This introduces a block scope, and the Context Manager protocol gives
objects that implement it a way of defining what happens when that scope
is exited.

In the case of the connection object, that behaviour is to commit the
(implicit, in this case) transaction if no errors occurred, or roll it back if
an exception was raised in the block.

Note the explicit call to db.close() outside of the with statement’s
scope. The only behaviour defined for the connection object as Context
Manager is to commit or roll back the transaction when the scope is
exited. This construct doesn’t say anything at all about the lifetime of the
db object itself. It will (probably) be garbage collected at some
indeterminate point in the future.

You can do it too
This customer database library might have several functions associated
with it, perhaps including facilities to retrieve or update customer details,
report orders and so on. Perhaps it’s better represented as a type, exposing
an interface that captures those needs. See Listing 4 for an example.

V

Listing 1

def addCustomerOrder(dbname, customer, order):
 db = sqlite3.connect(dbname) (1)
 db.execute('INSERT OR REPLACE INTO customers \
 (id, name) VAlUES (?, ?)', customer) (2)
 db.execute('INSERT INTO orders (date, custid,\
 itemid, qty) VALUES (?, ?, ?, ?)', order) (3)
 db.commit() (4)
 db.close() (5)

Listing 2

def addCustomerOrder(dbname, customer, order):
 db = sqlite3.connect(dbname)
 try:
 db.execute('INSERT OR REPLACE \
 INTO customers \
 (id, name) VAlUES (?, ?)', customer)
 db.execute('INSERT INTO orders \
 (date, custid, itemid, qty) \
 VALUES (?, ?, ?, ?)', order)
 db.commit()
 finally:
 db.close()

Listing 3

def addCustomerOrder(dbname, customer, order):
 with sqlite3.connect(dbname) as db:
 db.execute('INSERT OR REPLACE \
 INTO customers \
 (id, name) VAlUES (?, ?)', customer)
 db.execute('INSERT INTO orders \
 (date, custid, itemid, qty) \
 VALUES (?, ?, ?, ?)', order)
 db.close()

Steve Love is an independent developer constantly searching for new
ways to be more productive without endangering his inherent laziness.
He can be contacted at steve@arventech.com
8 | Overload | June 2016

FEATURESTEVE LOVE

The only behaviour defined for the
connection object as Context Manager is

to commit or roll back the transaction
when the scope is exited
Unfortunately, the line containing the with statement provokes an error
similar to this:

 File "customerdb.py", line 21, in <module>
 with Customers(dbname) as db:
 AttributeError: __exit__

You can’t use with on just any type you create. It’s not a magic wand,
either: the changes won’t get committed to the database if commit() is
not called! However, the Context Manager facility isn’t limited to just
those types in the Python Standard Library. It’s implemented quite
simply, as seen in Listing 5.

The __init__() method is still there, but just saves the name away for
later use. When the with statement is executed, it calls the object’s
__enter__() method, and binds the return to the as clause if there is
one: in this case, the db variable. The main content of the original
construction method has been moved to the __enter__() method.
Lastly, when the with statement block scope is exited, the __exit__()
method of the managed object is called. If no exceptions occurred in the
block, then the three arguments to __exit__() will be None. If an
exception did occur, then they are populated with the type, value and stack
trace object associated with the exception. This implementation
essentially mimics the behaviour of the sqlite3 connection object, and
rolls back if an exception occurred.

Returning a false-value indicates to the calling code that any exception
that occurred inside the with block should be re-raised. Returning None
counts – and is only explicitly specified here for the purposes of
explaining it. A Python function with no return statement is implicitly
None. Returning a true-value indicates that any such exception should be
suppressed.

Consistent convenience
Having to explicitly close the connection after the block has exited is a bit
of a wart. We could decide that our own implementation of the
__exit__() method invokes close() on the connection object having
either committed or rolled back the changes, but there is a better way.

The contextlib module in the Python Standard Library provides some
convenient utilities to help with exactly this, including the closing
function, used like this:

 from contextlib import closing
 with closing(Customers(dbname)) as db:
 db.addCustomerOrder(customer, order)

It will automatically call close() on the object to which it’s bound when
the block scope is exited.

Python File objects also have a Context Manager interface, and can be
used in a with statement too. However, their behaviour on exit is to close
the file, so you don’t need to use the closing utility for file objects in
Python.

Listing 4

class Customers(object):
 def __init__(self, dbname):
 self.db = sqlite3.connect(dbname)

 def close(self):
 self.db.close()

 def addCustomerOrder(self, customer, order):
 self.db.execute('INSERT OR REPLACE \
 INTO customers (id, name) \
 VAlUES (?, ?)', customer)
 self.db.execute('INSERT INTO orders \
 (date, custid, itemid, qty) \
 VALUES (?, ?, ?, ?)', order)

 # Other methods...

with Customers(dbname) as db:
 db.addCustomerOrder(customer, order)
db.close()

Listing 5

class Customers(object):
 def __init__(self, dbname):
 self.dbname = dbname

 def __enter__(self):
 self.db = sqlite3.connect(self.dbname)
 return self

 def __exit__(self, exc, val, trace):
 if exc:
 self.db.rollback()
 else:
 self.db.commit()
 return None

 def close(self):
 self.db.close()

 def addCustomerOrder(self, customer, order):
 self.db.execute('INSERT OR REPLACE \
 INTO customers (id, name) \
 VAlUES (?, ?)', customer)
 self.db.execute('INSERT INTO \
 orders (date, custid, itemid, qty) \
 VALUES (?, ?, ?, ?)', order)

 # Other methods...

with Customers(dbname) as db:
 db.addCustomerOrder(customer, order)
db.close()
June 2016 | Overload | 9

FEATURE STEVE LOVE

It’s a little odd having to know the internal
behaviour of a given type’s Context Manager
implementation, but sometimes the price of
convenience is a little loss of consistency
These two concepts are f requent ly , and mistakenly, used
interchangeably. The lifetime of an object is the time between its creation
and its destruction, which is usually the point at which its memory is freed.
The lifetime of the resource is tied to neither of those things, although it’s
very often sensible to associate the object with its resource when the
object is created (i.e. in its __init__() method). You cannot know, for
all intents and purposes, when the object lifetime ends, but you can know
– and can control – when the resource lifetime ends. Python’s Context
Manager types and the associated with statement give you that control.

You may have heard that Python objects can have a destructor – the
__del__() method. This special method is called when the object is
garbage collected, and it allows you to perform a limited amount of last-
chance cleanup. A common misapprehension is that invoking del thing
will call the __del__() method on thing if it’s defined. It won’t.

Object vs. Resource Lifetime

 with open(filename) as f:
 contents = f.read()

So much for consistency! It’s a little odd having to know the internal
behaviour of a given type’s Context Manager implementation (and the
documentation isn’t always clear on which types in the Standard Library
are Context Managers), but sometimes the price of convenience is a little
loss of consistency.

To reiterate the point about lifetime, even though the connection and file
objects in the previous two examples have been closed, the lifetimes of the
objects has not been affected.

When one isn’t enough
Sometimes it’s useful to associate several resources with a single Context
Manager block. Suppose we want to be able to import a load of customer
order data from a file into the database using the facility we’ve already
made.

In Python 3.1 and later, this can be achieved like this:

 with closing(Customers(dbname)) as db, \
 open('orders.csv') as data:
 for line in data:
 db.addCustomerOrder(parseOrderData(line))

If you’re stuck using a version of Python earlier than that, you have to nest
the blocks like this:

with closing(Customers(dbname)) as db:
 with open('orders.csv') as data:
 for line in data:
 db.addCustomerOrder(parseOrderData(line))

Either syntax gets unwieldy very quickly with more than two or three
managed objects. One approach to this is to create a new type that
implements the Context Manager protocol, and wraps up multiple
resources, leaving the calling code with a single with statement on the
wrapping type, as shown in Listing 6.

That really is a little clunky, however you look at it, since it’s fairly
obvious that the class has multiple responsibilities, and exposes the
managed objects publicly, amongst other things. There are better ways to
achieve this, and we will return to this shortly.

Common cause
Having implemented a (basic) facility to import data from a file to our
database, we might like to extend the idea and optionally read from the
standard input stream. A simple protocol for this might be to read
sys.stdin if no filename is given, leading to code like this:

 with options.filename and \
 open(options.filename) or sys.stdin as input:
 # do something with the data

That’s all very well, but is a little arcane, and closing the standard input
handle when it completes might be considered bad manners. You could
go to all the bother of reinstating the standard input handle, or redirecting
it some other way, but that too seems more complicated than what is
required.

Python’s contextlib module has another handy utility to allow you to
use a generator function as a Context Manager, without going to the
trouble of creating a custom class to implement the protocol. It is used to
decorate a function, which must yield exactly one value to be bound to
the as clause of a with statement. Actions to perform when the block is
entered are put before the yield, actions to perform when the block is

Listing 6

class WrappedResources(object):
 def __init__(self, dbname, filename):
 self.dbname = dbname
 self.filename = filename

 def __enter__(self):
 self.db = sqlite3.connect(self.dbname)
 self.data = open(self.filename)

 def __exit__(self, *exceptions):
 if not any(exceptions): self.db.commit()

 def close(self):
 self.data.close()
 self.db.close()

 def addCustomerOrder(customer, order):
 pass # do the right thing here

with closing(WrappedResource(dbname, fname)) \
 as res:
 for line in res.data:
 res.addCustomerOrder(parseOrderData(line))
10 | Overload | June 2016

FEATURESTEVE LOVE

Exception safety facilities like the Python
Context Manager are common to many

languages that feature the use of
exceptions to indicate errors
exited are put after the yield. It follows the basic pattern shown in
Listing 7:

(1) will be called when the with statement is entered. It’s the
equivalent of the __enter__() method

(2) will be called when the block is exited. It’s the equivalent of the
__exit__() method

This allows us to define a couple of factory functions for our inputs, as
shown in Listing 8.

Since opening a ‘real’ file returns an object that is already a Context
Manager, the function for that isn’t decorated. Likewise, since we do not
want to perform any action on the sys.stdin object on exit, that
function has no behaviour after the yield.

It should be clear that the Context Manager protocol is more general
purpose than just for performing some clean-up action when leaving a
scope. Exception safety is the primary purpose of the Context Managers,
but the __enter__() and __exit__() methods can contain any
arbitrary behaviour, just as the decorated function can perform any actions
before and after the yield statement. Examples include tracking function
entry and exit, and logging contexts such as those Chris Oldwood shows
in C# [Oldwood].

Many and varied
As previously mentioned, it’s sometimes necessary to manage multiple
resources within a single block. Python 3.1 and later support this by

allowing multiple Context Manager objects to be declared in a single
with statement, but this becomes cluttered and unmanageable quickly.
You can, as we demonstrated, create your own Context Manager type, but
that too can be less than ideal. Once again, Python 3.3 answers the
question with another contextlib utility, the ExitStack.

It manages multiple Context Manager objects, and allows you to declare
them in a tidy (and indentation-saving) manner. See Listing 9.

Objects have their __exit__() method called, in the reverse order to
which they were added, when the block is exited.

The ExitStack can manage a runtime-defined collection of context
managers, such as this example taken directly from the Python 3.4
documentation [Python]:

 with ExitStack() as stack:
 files = [stack.enter_context(open(fname)) \
 for fname in filenames]
 # All opened files will automatically be closed
 # at the end of the with statement, even if
 # attempts to open files later in the list raise
 # an exception

Conclusion
Python’s Context Managers are a convenient and easy-to-use way of
managing Resource Lifetimes, but their utility goes beyond that, due to
the flexible way they are provided. The basic idea is not a new one – even
in Python, where it was first introduced in version 2.5 – but some of these
facilities are only available in later versions of the language. The
examples given here were tested using Python 3.4.

Exception safety facilities like the Python Context Manager are common
to many languages that feature the use of exceptions to indicate errors,
because this introduces the need for some local clean-up in the presence
of what is (in effect) a non-local jump in the code. They are, however,
useful for things beyond this need, and Python provides several useful
utilities to help manage the complexity this brings.

References
[Python] Python 3.4 Documentation. https://docs.python.org/3.4/library/

contextlib.html

[Oldwood] Oldwood, Chris. Causality, http://chrisoldwood.com/articles/
causality.html

Listing 7

import contextlib

@contextlib.contextmanager
def simpleContext():
 doPreActionsHere() (1)
 yield managed_object
 doPostActionsHere() (2)

Listing 8

import contextlib

def openFilename():
 return open(options.filename)

@contextlib.contextmanager
def openStdIn():
 yield sys.stdin

opener = options.filename and openFilename \
 or openStdIn
with opener() as f:
 pass # Use f

Listing 9

with contextlib.ExitStack() as stack:
 f = stack.enter_context(open(\
 options.filename))
 db = stack.enter_context(sqlite3.connect(\
 options.dbname))
June 2016 | Overload | 11

https://docs.python.org/3.4/library/contextlib.html
https://docs.python.org/3.4/library/contextlib.html
http://chrisoldwood.com/articles/causality.html
http://chrisoldwood.com/articles/causality.html

FEATURE SERGEY IGNATCHENKO
Deterministic Components for
Distributed Systems
Non-deterministic data leads to unstable tests.
Sergey Ignatchenko considers when this
happens and how to avoid it.

ver the last 10 years, significant improvements have been made in Let’s see this on an example of our program X. We certainly can have a

program testing. I don’t want to go into a lengthy argument whether
TDD is good or bad here – this is not the point of this article.

However, one thing I want to note is a rather obvious (so obvious that it
is often taken as granted) point that

For test results to have any meaning, the test needs to be
reproducible

In theory, we can speak of ‘statistical testing’ when the program is run for
1000 times (and if it fails not more than x times out of these 1000 runs, it
is considered fine), but for most of the programs out there it would be a
Really Bad Way to test them.

So far so obvious, but what does this really mean in practice? Let’s
consider the relationship between two subtly different properties: the ‘test
being reproducible’ and the ‘program being deterministic’ (defined as
‘the program has all its outputs completely defined by its inputs’). For the
time being, we’ll refrain from answering the question ‘what qualifies as
an input’; we’ll come to discussing it a bit later.

First, let’s note that for a 100% deterministic program, all the tests are
always reproducible. In other words, a program being deterministic is
sufficient to make all the tests against this program reproducible. On the
other hand, if all the possible tests for our program are always
reproducible, it means that our program is deterministic.

However, there are tests out there which are reproducible even when the
program is not entirely deterministic. For example, if our program X
prints the current time when we specify the -t option, and it emits
concatenation of the input string with ‘beyond any repair’ otherwise, we
can say (assuming that we don’t consider current time as one of the
program inputs) that:

 The program is not entirely deterministic

 the test with the -t option is not reproducible

 all the other tests are reproducible

Let’s see what we have observed up to now:

 for deterministic programs, all the tests are reproducible

 for non-deterministic programs, there can be both reproducible tests
and non-reproducible ones

The second statement can be seen as an indication that all is not lost – we
can have meaningful tests for non-deterministic programs. And this does
stand; on the other hand, a much more unpleasant statement stands too:

For a real-world non-deterministic program, we are bound to leave
some functionality untested

set of reproducible tests over our program – the ones which don’t use the
-t option. However, this will leave us with a significant part of our
functionality untested.

To avoid this, we can try to test our program with the -t option to emit
the right format, but wait – without meddling with the system time we
won’t even be able to test it on Feb 29th etc. Ok, we can add manipulating
system time to our test, but even then we’ll be testing only the time format
(and not correctness of the time which was printed). We may try to
measure current time before calling our program, and to compare this
value with that printed by our program X; it might seem a good solution,
but apparently, even if the program prints time with minute precision and
runs for only 0.1 second, from time to time the test will fail. More
specifically, such a test will fail whenever this 0.1 second (between the
moment when we’ve measured current time and the moment our program
has made its own measurement) happens to occur exactly across the
boundary between two different minutes. Ok, we could add tolerance
(which BTW already makes our test imprecise) and consider the program
valid if the printed output printed_time satisfies an equation
measured_time < printed_time < measured_time + 0.1s, but even this is
not sufficient, as we haven’t accounted for potential system time
adjustments (including automated ones).

As we can see, even for an absolutely trivial non-deterministic program,
accurate testing becomes a very non-trivial task. In practice, for a non-
trivial program writing a set of tests which cover a significant part of the
functionality quickly becomes a daunting task (or, more often, leads to
significant functionality left untested). And if our program is traditionally
multithreaded (defined as ‘multithreaded with explicit thread sync using
mutexes or equivalent’) testing very quickly becomes pretty much
pointless exactly because of the lack of determinism: the program which
works perfectly on your test rig can easily fail on some other computer (or
fail on the same computer from time to time) – just because whoever runs
it was unlucky. Bummer.

Distributed programs and unit-tests: false sense of
security
Let’s come back from our so-far-theoretical clouds to the earth of
programming. Let me tell you one real-world story in this regard (let’s call
it ‘Unit Test Horror Story’ for future reference).

Once upon a time, there was a company which successfully ran a multi-
million-dollar online business. Moreover, they enjoyed very little
unplanned downtime by their industry standards (1 hour per year or so).
Then, on a nice sunny day (or a dark cloudy one – it won’t change
anything), a new developer came to the company. It just so happened that
he was a strong proponent of TDD, so he started writing a unit-test for a
new feature, and the test failed; he implemented the feature, and the test
succeeded. And then the new developer read a lecture to all those non-
TDD developers, saying ‘Now you see how easy it is to write error-free
programs!’ Next day, his changes went to production and caused one of
those once-per-year downtimes.

O

Sergey Ignatchenko has 15+ years of industry experience, including
architecture of a system which handles hundreds of millions of user
transactions per day. He currently holds the position of Security
Researcher and writes for a software blog (http://ithare.com). Sergey
can be contacted at sergey@ignatchenko.com
12 | Overload | June 2016

FEATURESERGEY IGNATCHENKO

deterministic components can provide a
Holy Grail of production post-mortem: an
ability to reproduce the bug exactly as it

has happened in production
The moral of this story is certainly not along the lines of ‘see, TDD is
useless’ (IMHO, TDD, when taken in moderation, is quite useful, though
it is far from being a silver bullet). The point here is to understand what
has caused the downtime; and apparently, it was an unusual sequence of
otherwise perfectly valid messages (sometimes such unusual sequences
are referred to as ‘races’).

Moreover, from my experience, these

unusual sequences of otherwise perfectly valid messages are by far
The Most Difficult To Find Bugs in pretty much any real-world
distributed system.

As a consequence (and combined with an observation that such unusual
sequences tend to be among the most unexpected for the developer), it
means that

Unit tests, while important, are insufficient to ensure the validity of
a distributed system

This happens because even if every component of your program is
deterministic, when you make a distributed system out of these
components, your distributed system (taken as a whole) is very unlikely
to be deterministic. However, as we’ll see below, even per-component
determinism helps a lot for debugging such distributed systems. This
includes things such as automated replay-based regression testing, low-
latency fault-tolerance and relocation for components, and the holy grail
of production post-mortem analysis.

Benefits of deterministic components
Let’s discuss the major benefits of deterministic components in a
distributed system.

Replay-based regression testing
As we’ve seen in the ‘Unit Test Horror Story’ above, unit tests are not
sufficient to test components of the distributed system. On the other hand,
if our component is entirely deterministic, we can do the following:

 while a previous version of the component is running in production,
we can write down all the inputs for this specific component as an
input log. Ideally, we should be able to do this for all the components
in the system, but it can be done on per-component basis too.

 then, we can run the same input log against the new version of the
component

 if our new version of the component doesn’t have any changes to the
logic (and has only extensions which are not activated until new
inputs are used) – then the output should be exactly the same as for
the previous version of the component

 while there is no strict guarantee that this kind of testing would help
with the ‘Unit Test Horror Story’, the chances are that it would.
Moreover, for heavily loaded systems, experience shows that the
vast majority of those unusual sequences of otherwise valid inputs
do happen every few hours (YMMV, batteries not included). In any
case, this kind of testing, while not being a guarantee against bugs

(nothing is), is a very valuable addition to the arsenal of regression
tests which can and should be run.

Of course, you’ve already noticed the weak point of this kind of testing:
as noted above, it will work only as long as you have made no changes to
existing functionality. This indeed is one of the reasons why this kind of
testing is not a silver bullet. However, two things help in this regard:

 most of the time, for a real-world system, functionality is added
rather than modified

 provided that you make rather small and functionally oriented git-
style independent commits (as opposed to one commit for
everything which happened this week), it is often still possible to
separate those changes which are not supposed to change any
existing behavior, to re-apply these changes on top of the previous
version, and to run replay-based regression tests against these
changes. While it is admittedly an imperfect way of testing, it still
does help quite a bit in practice.

Deterministic production post-mortem
However thoroughly we test our systems, from time to time they do fail
. In such cases, it is of utmost importance to identify the problem ASAP,
and to fix it, so it doesn’t happen again.

In this regard, deterministic components can provide a Holy Grail of
production post-mortem: an ability to reproduce the bug exactly as it has
happened in production. If our component is deterministic, then:

 we’re able to write all the inputs of the component into an input log

 after the program fails in production, we can get the input log and
run it in the comfort of a developer’s machine, under a debugger, as
many times as we want, and get exactly the same variables at exactly
the same points as happened in production. Note that, strictly
speaking, to get exactly the same variable values, we’ll need each
line of our component to be deterministic, which is a stronger
property than the component being deterministic as a whole.
However, in practice the latter is normally achieved via the former,
so we can ignore the difference between the two for most practical
purposes.

In reality, of course, it is not that simple. If our system runs for months,
storing and replaying all the inputs which have happened during those
months is rarely feasible. However, we can avoid this problem by running
our input log in a circular manner.

As mentioned above, running input log for the entire history of our
component rarely qualifies as a viable option. On the other hand, if our
component is deterministic, and we can get current state of our
component in some kind of serialized form, then we can build our input
log as follows:

 input log is written in a circular manner, so that it stores only the last
t seconds of the component inputs

 on each wrap-around of our circular storage, we store the current
state of our component in the same input log
June 2016 | Overload | 13

FEATURE SERGEY IGNATCHENKO

if all our Reactor does is calculate a pure
function, it stays deterministic just by its
very nature
 if we need to perform a post-mortem, we use a deserialized current
state to initialize our deterministic component and then reapply the
remaining inputs from the input log to get a complete picture of the
last t seconds of the component’s life before the crash

Such circular input logs are highly practical at least in some deployment
scenarios, and provide an ability to see the last t seconds of life of a
component before it failed. While it might be that the problem occurred
before these last t seconds, and was only manifested later, this technique
still happens to be quite useful in practice.

Low-latency fault tolerance and component relocation
Yet another major benefit of having your components both deterministic
and serializable is that it is possible to gain some fault tolerance from them
(without any help from application level code). In particular, the
following schema will work:

 circular input log runs on a physical server X, and our deterministic
component runs on a physical server Y

 all the outputs from our deterministic component are sequentially
numbered, and go through physical server X, where the last number
of the output is kept as a variable LastOutputNumber

Then you can recover from any single server failure in a perfectly
transparent manner:

 if server X has failed, then server Y has all the information we need,
and replacement server X' can start writing input log from scratch
(starting from storing serialized current state)

 if server Y has failed, then we can follow the following procedure:

 start replacement server Y' with a replacement instance of our
deterministic component (initialized with serialized current
state from input log)

 variable LastSkipNumber is set to LastOutputNumber

 all the records in input log after serialized current state are
replayed

 during replay, all the outputs of our deterministic component are
skipped until we reach LastSkipNumber. This is possible
because all the outputs are deterministic, and they exactly repeat
those outputs which have already been sent back to the other
components/clients/whoever-else

This kind of determinism-based fault tolerance provides fault-tolerance
with very little additional latency. In fact, it is ideologically similar to the
virtual lockstep way of achieving fault tolerance (and provides
significantly better latency than so-called fast checkpoints).

In a somewhat similar manner, it is possible to achieve low-latency
relocation of the components from one physical server to another one. The
idea revolves around running two instances of the component for some
time to reduce latency during serialization/deserialization/state-transfer.
The second instance of the component would have its outputs skipped
until it has caught up with the first one, and then the first one can be
dropped.

Making components deterministic
Ok, I hope that by now I’ve managed to convince you that determinism is
a Good Thing™. Now, let’s discuss how to write those deterministic
components.

Obvious stuff
First of all, let’s note that there are obvious things to keep in mind when
aiming for determinism. In particular:

 don’t use any uninitialized memory in your program

 more generally, don’t use anything which causes the dreaded
‘undefined behavior’ in C/C++

 don’t use pointers for any operations except for dereferencing.

 In particular, using pointer values (as opposed to data pointed to
by pointers) as a key for sorting is especially dreadful (as usually
allocators are not required to be deterministic, especially in a
multithreaded environment, so such sorting can easily lead to
non-deterministic results)

NB: for the purposes of this article, we won’t aim for cross-platform
determinism; while cross-platform determinism is an interesting beast and
has its additional benefits, for now we will set it aside to avoid
complications. This will save us from quite a few problems, such as
iterations over unordered collections and even more nasty different-order-
of-floating-point-operations stuff.

Relation to Reactors
Now, let’s note that deterministic components tend to go very well
alongside with the Reactor event-driven pattern (as described in
[Wikipedia]). This more or less includes such things as Erlang message
passing, Node.js, and to certain extent – Akka Actors.

In summary, the Reactor pattern takes incoming inputs (a.k.a. ‘service
requests’ or ‘events’) and processes them synchronously, one by one. It
also serves as a very convenient point to write all these incoming events
into our input log.

So far so good, and if all our Reactor does is calculate a pure function, it
stays deterministic just by its very nature. However, as soon as you do as
little as call get_current_time() within your component, it ceases to
be deterministic . Therefore, we need to discuss ways how to deal with
non-determinism.

While the determinism-assuring techniques described below are, strictly
speaking, not limited to Reactor and Reactor-like patterns, it is easier to
describe some of them in terms of Reactors (and they’re likely to be used
in the context of Reactors too).

Considering call output as a program input
As we’ve seen above, even a very simple program which prints current
time is not deterministic. However, there is a trick which allows to make
it deterministic. More specifically,
14 | Overload | June 2016

FEATURESERGEY IGNATCHENKO

all we need to do to make our program deterministic,
is to replace a call to a system-level function with a

call to our own function
If we make current time an input of our program, related non-
determinism will go away

In other words, all we need to do to make our program deterministic, is to
replace a call to a system-level function get_current_time() with a
call to our own function get_our_own_current_time(), where
get_our_own_current_time() goes along the following lines:

time_t get_our_own_current_time() {
 switch(deterministic_mode) {
 case DETERMINISTIC_REPLAY:
 return read_time_t_from_input_log();
 case DETERMINISTIC_RECORDING:
 time_t ret = get_current_time();
 //NON-DETERMINISTIC!
 write_time_t_to_input_log(ret);
 //wrote to input-log
 //to ensure determinism
 return ret;
 case DETERMINISTIC_OFF:
 return get_current_time();
 //NON-DETERMINISTIC!
 }
}

Bingo! We can have our determinism and eat it too!

This trick of declaring something non-deterministic as an input and
writing it into input log is pretty much universal in the sense that in theory
it can be applied to pretty much any non-deterministic function call
including, but not limited to, reading of real random data from /dev/
urandom. Even mutexes can be handled this way (though in this case all
the data protected by mutex needs to be written to the input log, ouch). On
the other hand, in practice there are two significant caveats:

 when large data chunks are read, it is often infeasible to handle them
this way (if you read 1Gbyte from your file/DB, throwing it into
input log is rarely a good idea); however, there are many practical
cases when it can be avoided:

 if the data is expected to be constant (like ‘read from a constant
file’) – then there is no need to record it to the input log (as it can
be reproduced); in extreme cases, if you suspect that data
potentially can be corrupted, you can write some kind of hash
into input log instead of the data itself

 if the data is some kind of cache (which can be re-obtained from
the authoritative source instead) – it doesn’t need to be logged
either.

 If we can say that data on disk is a part of our current state, then
there is no need to log such accesses either. Note though that this
option would usually make serializing your current state
significantly more expensive

 For frequently called functions such as obtaining current time, using
this trick makes replay more fragile than it is necessary. For
example, if you use this trick and then add another call to

get_current_time() somewhere within your implementation,
it makes your input logs incompatible (and usually this is not
intended)

This trick doesn’t go well with fault-tolerant implementations (which
need to write all the inputs to a separate physical box)

Guessing game
A different technique to ensure determinism can be described as follows.
If we know in advance what will be necessary for the processing of our
input event, then we can supply it to our component (logging it to input
log in advance, so that it is no longer a problem for fault-tolerant
implementations). In particular, as lots of input events need current time,
we can say that we’ll provide it to all of them. In this case:

 Code outside of the Reactor will call the system level
get_current_time() before processing each input event.

 Code outside of the Reactor will store the time read (say, to TLS
variable event_time)

Note that global/per-process singleton won’t be able to ensure
determinism if you have more than one thread running your
deterministic objects within your process.

 It will call Reactor’s process_event() or equivalent

Reactor app-level code still needs to call:
 get_our_own_current_time()
instead of:
 get_current_time()
but implementation of get_our_own_current_time() becomes
much simpler in this case:

 thread_local time_t event_time;
 //event_time is pre-populated by caller
 time_t get_our_own_current_time() {
 return event_time;
 }

Note that with this implementation, it is not possible to measure execution
times within the event handler (as all the calls to get_current_time()
for the same event will return the same value). On the other hand, as any
kind of execution times measurements would make our program
inherently non-deterministic (at the very least when we’re running it on a
modern CPU), it is not that big deal. And if you need to make some
performance analysis, you still can use something along the lines of
Node.js-style console.time()/console.timeEnd(); as these
functions do not return the measured time interval value to the program,
but rather print it to a log file – then, as long as we do not consider log file
as one of program outputs (and the program itself doesn’t read these
values from the log file), we’re fine from determinism point of view.

Unfortunately, not all the required inputs can be pre-guessed successfully.
However, in quite a few cases, the following technique does help:

 We’re starting to process_event() with or without the data that
may be needed
June 2016 | Overload | 15

FEATURE SERGEY IGNATCHENKO

If we know in advance what will be
necessary for the processing of our input
event, then we can supply it to our
component
 If the data is needed but is not provided, we throw a special
exception requesting the data from the caller

 This exception must be thrown before any changes to Reactor’s
state are made. This fits very well into a typical Validate-
Calculate-Modify Reactor pattern described in [ITHare16].

 It is also important to discard all the outputs coming from the
processing of this process_event() (or to avoid emitting
them in the first place)

 If a caller receives this ThisKindOfDataRequested exception,
it simply provides the requested data and repeats the same call

This exception-as-a-request-for-non-deterministic-data does help in quite
a few scenarios. However, as with anything else, it is not a silver bullet ,
and chances are that you will need to look for your own ways to ensure
determinism.

Conclusions
We’ve discussed the impact of per-component determinism on
programming. In particular, we’ve found several major benefits of
making your components deterministic (from replay-based regression
testing to determinism-based fault tolerance). Also, we’ve discussed
some ways of achieving this holy grail of determinism; while
techniques discussed here won’t ensure determinism for all programs,
they have been seen to allow determinism for quite a few real-world
systems (ranging from stock exchanges to online games).

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.

References
[ITHare16] ‘No Bugs’ Hare, ‘Asynchronous Processing for Finite State

Machines/Actors: from plain event processing to Futures (with OO
and Lambda Call Pyramids in between)’,
http://ithare.com/asynchronous-processing-for-finite-state-
machines-actors-from-plain-events-to-futures-with-oo-and-lambda-
call-pyramids-in-between/

[Wikipedia] Reactor pattern
https://en.wikipedia.org/wiki/Reactor_pattern
16 | Overload | June 2016

http://ithare.com/asynchronous-processing-for-finite-state-machines-actors-from-plain-events-to-futures-with-oo-and-lambda-call-pyramids-in-between/
https://en.wikipedia.org/wiki/Reactor_pattern

FEATUREVASSILI KAPLAN
Programming Your Own
Language in C++
Scripting languages allow dynamic features
easily. Vassili Kaplan writes his own in C++
allowing keywords in any human language.
To iterate is human, to recurse divine.
~ L. Peter Deutsch

hy is yet another scripting language needed? Not only are there
already quite a few scripting languages present but there are also
a few frameworks to build new languages and parsers, notably

ANTLR Framework [ANTLR] and the Boost Spirit library [Spirit].
Nevertheless, I see two main advantages in writing a language like the one
presented in this article: the possibility of adding a new function, a control
flow statement or a new data structure on the fly and to have keywords
translated to any language with just a few configuration changes (or to add
synonyms to existing keywords, so that, for instance, ls and dir could
be used interchangeably). Also, as you will see from this article, the
learning curve is much shorter to get started adding your own code in
C++.

In C Vu [Kaplan15a, Kaplan15b] I published the split-and-merge
algorithm to parse a string containing a mathematical expression. Later,
in MSDN Magazine [Kaplan15c, Kaplan16] I implemented this algorithm
in C# and showed how one can implement a scripting language in C#
based on the split-and-merge algorithm.

In this article, I am going to extend the split-and-merge algorithm
presented earlier and show how one can use it to write a scripting
language in C++. In MSDN Magazine [Kaplan16] the scripting language
was called CSCS (Customized Scripting in C#). For simplicity, I will
continue calling the language I discuss here CSCS (Customized Scripting
in C++ using the split-and-merge algorithm) as well.

The CSCS language, as described in MSDN Magazine [Kaplan16], was
still not very mature. In particular, there is a section towards the end of the
article mentioning some of the important features usually present in a
programming language that CSCS was still missing. In this article I’ll
generalize the CSCS language and show how to implement most of those
missing features and a few others in C++.

All the code discussed here is available for download [Downloads].

The split-and-merge algorithm to parse a language
statement
Here we’ll generalize the split-and-merge algorithm to parse not only a
mathematical expression but any CSCS language statement. A separation
character must separate all CSCS statements. It is defined in the
Constants.h file as const char END_STATEMENT = ';'.

The algorithm consists of two steps.

In the first step, we split a given string into a list of objects, called
‘Variables’. Each Variable consists of an intermediate result (a
number, a string, or an array of other Variables) and an ‘action’ that
must be applied to this Variable. Previously we called this Variable
a ‘Cell’ and it could hold only a numerical value.

The last element of the created list of Variables has so called ‘null
action’, which, for convenience, we denote by the character ")". It has
the lowest priority of 0.

For numbers, an action can be any of +, -, *, /, %, &&, ||, and so on. For
strings, only + (concatenation), and logical operators <, <=, >, >=, ==, !=
are defined.

Listing 1 contains an excerpt from the Variable class definition.

The separation criteria for splitting a string into a list of Variables are:
an action, an expression in parentheses, or a function (including a
variable, which is also treated as a function), previously registered with
the parser. We are going to talk how to register a function with the parser
in the next section. In Listing 2 you can see all of the actions defined for
numbers and their priorities.

In the case of an expression in parentheses or a function, we apply
recursively the whole split-and-merge algorithm to that expression in
parentheses or the function argument in order to get a Variable object
as a result. At the end of the first step we are going to have a list of
Variables, each one having an action to be applied to the next
Variable in the list. Thanks to the recursion there will be no functions
left after step 1, just numbers, strings or lists of numbers, strings or lists
of numbers, strings, … and so on recursively. We call these lists ‘tuples’.
Internally they are implemented as vectors (see Listing 1).

W

Listing 1

class Variable {
public:
 Variable(): type(Constants::NONE) {}
 Variable(double val): numValue(val),
 type(Constants::NUMBER) {}
 Variable(string str): strValue(str),
 type(Constants::STRING) {}

 string toString() const;
 bool canMergeWith(const Variable& right);
 void merge(const Variable& right);
 void mergeNumbers(const Variable& right);
 void mergeStrings(const Variable& right);

private:
 double numValue;
 string strValue;
 vector<Variable> tuple;
 string action;
 string varname;
 Constants::Type type;
};

Vassili Kaplan has been a Software Developer for over 15 years,
working in different countries and with different languages (including
C++, C#, Python, and lately Objective-C. His latest baby is iLanguage
app for iPhone). He has a Masters in Math from Purdue University. He
currently resides in Switzerland and can be contacted at
vassilik@gmail.com
June 2016 | Overload | 17

FEATURE VASSILI KAPLAN

have keywords translated to any language
with just a few configuration changes
The data structure holding the string with the expression to parse and a
pointer to the character currently being parsed is ParsingScript. An
excerpt from its definition is shown in Listing 3.

The main parsing cycle of the first part of the algorithm is shown in
Listing 4.

The second step consists in merging the list of Variables created in the
first step according to their priorities. Two Variable objects can be
merged together only if the priority of the action of the Variable on the
left is greater or equal than the priority of the action of the Variable on
the right. If not, we jump to the Variable on the right and merge it with
the Variable on its right first, and so on, recursively. As soon as the
Variable on the right has been merged with the Variable next to it,
we return back to the original Variable, the one we weren’t able to
merge before, and try to remerge it with the newly created Variable on
its right. Note that eventually we will be able to merge the list since the
last Variable in this list has a null action with zero priority.

Check out the implementation of the second step of the algorithm in
Listing 5. The function merge() is called from outside with the
mergeOneOnly parameter set to false. That parameter is set to true
when the function calls itself recursively, because we need to merge the
Variable on the right with the Variable on its right just once, and
return back in order to remerge the current Variable.

Let’s see an example of applying the split-and-merge algorithm to the
following CSCS language statements:

 a = "blah"; b = 10; c = a == "blue" || b == 1;
 print(c);

We have four statements above, separated by the ; character.

The parsing of the first two statements is analogous – as soon as the parser
gets the = token, it will register the parameters on the left (a and b),
mapping them to their corresponding values ("blah" and 10). We will
see how to register variables and functions with the parser in the next
section (actually for the parser it doesn’t matter whether it is a variable or
a function – they are all treated the same). Note that there is no need to
declare any variables – they are all deduced from the context.

More interesting is the third statement:

 c = a == "blue" || b == 1;

When parsing the right part of this statement (after the assignment), as
soon as the parser gets a function or a variable (this can be anything that
is not in quotes and is not a number) it will try to find if there is already a
corresponding variable or a function registered with the parser. If not, a
ParsingException will be thrown, but in our case we have already
defined a and b in the previous two statements, so their values will be
substituted, transforming the right side of the statement above to:

 "blah" == "blue" || 10 == 1;

Listing 2

unordered_map<string, int> prio;
prio["++"] = 10;
prio["--"] = 10;
prio["^"] = 9;
prio["%"] = 8;
prio["*"] = 8;
prio["/"] = 8;
prio["+"] = 7;
prio["-"] = 7;
prio["<"] = 6;
prio[">"] = 6;
prio["<="] = 6;
prio[">="] = 6;
prio["=="] = 5;
prio["!="] = 5;
prio["&&"] = 4;
prio["||"] = 3;
prio["+="] = 2;
prio["-="] = 2;
prio["*="] = 2;
prio["/="] = 2;
prio["%="] = 2;
prio["="] = 2;

Listing 3

class ParsingScript
{
public:
 ParsingScript(const string& d): data(d),
 from(0) {}
 inline char operator()(size_t i) const {
 return data[i]; }
 inline size_t size() const {
 return data.size(); }
 inline bool stillValid() const {
 return from < data.size(); }
 inline size_t getPointer() const {
 return from; }
 inline char current() const {
 return data[from]; }
 inline char currentAndForward() {
 return data[from++]; }
 inline char tryNext() const {
 return from+1 < data.size() ?
 data[from+1] : Constants::NULL_CHAR; }
 inline void forward(size_t delta = 1) {
 from += delta; }
private:
 string data; // contains the whole script
 size_t from; // a pointer to the
 // script data above
};
18 | Overload | June 2016

FEATUREVASSILI KAPLAN

there will be no need to remember that one
must use dir, copy, move, findstr on

Windows, but ls, cp, mv, and grep on Unix
The first step of the split-and-merge algorithm produces the following list
of Variables from the above statements:

Split("blah" == "blue" || 10 == 1) →
1. Variable(strValue = "blah", action = "==")
2. Variable(strValue = "blue", action = "||")
3. Variable(numValue = 10, action = "==")
4. Variable(numValue = 1, action = ")")

In the second part of the algorithm we merge the list of Variables
above. The Variables 1 and 2 can be merged on the first pass since the
priority of the "==" action is higher than the priority of the "||" action
according to the Listing 2. The merging of Variables 1 and 2 consists
in applying the action "==" of the first variable to the values of both
variables, leading to a new Variable having the action of the
Variable on its right:

 Merge(Variable(strValue = "blah", action = "=="),
 Variable(strValue = "blue", action = "||")) =
 Variable("blah" == "blue",
 action = "||") = Variable(numValue = 0,
 action = "||")

Next, we merge Variable(numValue = 0, action = "||") with
the next Variable in the list, Variable(numValue = 10, action
= "=="). But now the action = "||" has a lower priority than the action
= "==", therefore we need to merge first the Variable(numValue =
10, action = "==") with the next Variable(numValue = 1,
action = ")"). Since the null action ")" has the lowest priority, the
merge can be done, producing a new Variable:

 Merge(Variable(numValue = 10,
 action = "=="),Variable(numValue = 1,
 action = ")")) =
 Variable(10 == 1,
 action = ")") = Variable(numValue = 0,
 action = ")")

Listing 4

do // Main processing cycle of the first part.
{
 char ch = script.currentAndForward ();
 // get the next character and move one forward

 bool keepCollecting = stillCollecting(script,
 parsingItem, to, action);
 if (keepCollecting)
 { // The char still belongs to the
 // previous operand.
 parsingItem += ch;
 // Parse until the next extracted character is
 // in the "to" string.
 bool goForMore = script.stillValid() &&
 !Utils::contains(to, script.current()));
 if (goForMore) {
 continue;
 }
 }
 // Done getting the next token. The getValue()
 // call below may recursively call this method if
 // extracted item is a function or is starting
 // with a '('.
 ParserFunction func(script, parsingItem, ch,
 action);
 Variable current = func.getValue(script);

 if (action.empty()) { // find the next "action"
 // token or a null action '('
 action = updateAction(script, to);
 }

 char next = script.current(); // we've already
 // moved forward
 bool done = listToMerge.empty() &&
 (next == END_STATEMENT ||
 (action == Constants::NULL_ACTION &&
 current.getType() != NUMBER);
 if (done) {
 // If there is no numerical result, we are not
 // in a math expression.
 listToMerge.push_back(current);
 return listToMerge;
 }
 current.action = action;
 listToMerge.push_back(current);
 parsingItem.clear();
} while (script.stillValid() &&
 !Utils::contains(to, script.current());

Listing 5

Variable Parser::merge(Variable& current,
 size_t& index, vector<Variable>& listToMerge,
 bool mergeOneOnly)
{
 while (index < listToMerge.size()) {
 Variable& next = listToMerge[index++];
 while (!current.canMergeWith(next)) {
 merge(next, index, listToMerge,
 true/*mergeOneOnly*/);
 }
 current.merge(next);
 if (mergeOneOnly) {
 break;
 }
 }
 return current;
}

June 2016 | Overload | 19

FEATURE VASSILI KAPLAN
Since this merge was successful we must now get back to the
Variable(numValue = 0, action = "||") and remerge it with
the newly created Variable(numValue = 0, action = ")"),
producing:

 Merge(Variable(numValue = 0,
 action = "||"),Variable(numValue = 0,
 action = ")")) =
 Variable(0 || 0,
 action = ")") = Variable(numValue = 0,
 action = ")")

Since there are no more Variables left in the list, the result of merging
is 0. This value will be assigned to the variable "c" and registered with
the parser.

The last statement is "print(c);". After extracting the token print
the parser will look if there is a function named print already registered
with the parser. Since there is one, the parser will recursively call the
whole split-and-merge algorithm on the argument of the print()
function, "c". Since "c" was registered with the parser in the previous
step, the parser will return back its value, 0, to the print function. Let’s see
more closely how variables and functions can be implemented and
registered with the parser taking as an example the print() function.

Registering functions and variables with the parser
All the functions that can be added to the parser must derive from the
ParserFunction class.

The Identity is a special function which is called when we have an
argument in parentheses. It just calls the main entry method of the split-
and-merge algorithm to load the whole expression in parentheses:

 class IdentityFunction : public ParserFunction
 {
 public:
 virtual Variable evaluate(ParsingScript& script)
 {
 return Parser::loadAndCalculate(script);
 }
 };

All split-and-merge functions and variables are implemented similarly.

There are three basic steps to register a function with the parser:

 Define a function keyword token, i.e. the name of the function in the
scripting language, CSCS, e.g.:

 static const string PRINT; // in Constants.h
 const string Constants::PRINT = "print";
 // in Constants.cpp

 Implement the class to be mapped to the keyword from the previous
step. Basically just the evaluate() method must be overridden.
E.g. for the print() function:

 Variable
 PrintFunction::evaluate(ParsingScript&
 script)
 {
 vector<Variable> args =
 Utils::getArgs(script, Constants::START_ARG,
 Constants::END_ARG);
 for (size_t i = 0; i < args.size(); i++) {
 cout << args[i].toString();
 }
 cout << endl;
 return Variable::emptyInstance;
 }

 Map an object of the class implemented in the previous step with the
previously defined keyword as follows:

 ParserFunction::addGlobalFunction
 (Constants::PRINT, new PrintFunction());

Utils::getArgs() auxiliary function parses the arguments of the
print function and first gets a list of strings, separated by commas from

print(string1, string2, ..., stringN). Then it recursively
applies the split-and-merge algorithm to each of these string1,
string2, ..., stringN. Finally, it prints them out to the terminal.

The addGlobalFunction() method (see Listing 6) just adds a new
entry to the global dictionary s_functions (implemented as an
unordered_map) used by the parser to map keywords to functions.

 void ParserFunction::addGlobalFunction
 (const string& name, ParserFunction* function)
 {
 auto tryInsert =
 s_functions.insert({name, function});
 if (!tryInsert.second) {
 // The variable or function already exists.
 // Delete it and replace with the new one.
 delete tryInsert.first->second;
 tryInsert.first->second = function;
 }
 }

As we’ve mentioned before, we treat a variable as a function: as soon as
the parser gets an expression like "a = something", it will register a
function with the keyword "a" and map it to the Variable

Listing 6

Variable IfStatement::evaluate(ParsingScript&
script)
{
 size_t startIfCondition = script.getPointer();

 Variable result = Parser::loadAndCalculate
 (script, Constants::END_ARG_STR);
 bool isTrue = result.numValue != 0;

 if (isTrue) {
 result = processBlock(script);

 if (result.type ==
 Constants::BREAK_STATEMENT ||
 result.type ==
 Constants::CONTINUE_STATEMENT) {
 // Got here from the middle of the if-block.
 // Skip it.
 script.setPointer(startIfCondition);
 skipBlock(script);
 }
 skipRestBlocks(script);
 return result;
 }

 // We are in Else. Skip everything in the
 // If statement.
 skipBlock(script);

 ParsingScript nextData(script.getData(),
 script.getPointer());
 string nextToken =
 Utils::getNextToken(nextData);

 if (Constants::ELSE_IF_LIST.find(nextToken) !=
 Constants::ELSE_IF_LIST.end()) {
 script.setPointer(nextData.getPointer() + 1);
 result = processIf(script);
 }
 if (Constants::ELSE_LIST.find(nextToken) !=
 Constants::ELSE_LIST.end()) {
 script.setPointer(nextData.getPointer() + 1);
 result = processBlock(script);
 }
 return Variable::emptyInstance;
}

20 | Overload | June 2016

FEATUREVASSILI KAPLAN
"something" (which will be calculated applying recursively the split-
and-merge algorithm). In C++ the code for this is:

 ParserFunction::addGlobalFunction("a",
 something /*Variable*/);

Implementing the if – else if – else control flow
statements
Let’s see how to implement the if() – else if() – else()
functionality in CSCS.

The first and the third steps are clear: define the if constant and register
a class implementing the if control flow statement with the parser, the
same way we registered the print() function above.

The second step, the implementation of the if statement, is shown in
Listing 6.

First we evaluate the condition inside of if() by recursively calling the
split-and-merge algorithm on that condition. If the condition is true we
process the whole if() block, recursively calling the split-and-merge
algorithm on each statement inside of the processBlock() method. If
the condition is false we first skip the whole if() block in the
skipBlock() method. Then we evaluate the else() and else if()
statements. The evaluation of else if() is basically same as the
evaluation of the if() statement itself, so for else if() we recursively
call the if() statement evaluation.

Note that we enhanced the execution of the if-statement here – as soon
as there is a break or a continue statement, we get out of the if ()
block – same way we get out from the while() block. This can be useful
in case of nested ifs.

Similarly, we can register any function with the parser, e.g. while(),
for(), try(), throw(), include(), etc. We can also define local or
global variables in the same way. In the next section we are going to see
how to define functions in CSCS and add passed arguments as local
variables to CSCS.

Implementing custom functions in CSCS
To write a custom function in the scripting language, let’s introduce two
functions in C++, FunctionCreator and CustomFunction, both
deriving from the ParserFunction base class. A FunctionCreator
object is registered with the parser in the same way we registered if()
and print() functions above.

As soon as the parser gets a token with the "function" keyword, an
instance of the FunctionCreator will be executed, namely, its
evaluate() method, see Listing 7.

Basica l ly , i t jus t creates a new objec t , an ins tance of the
CustomFunction, and initializes it with the extracted function body
and the list of parameters. It also registers the name of the custom function
with the parser, so the parser maps that name with the new
CustomFunction object which will be called as soon as the parser
encounters the function name keyword.

So all of the functions that we implement in the CSCS code correspond to
different instances of the CustomFunction class. The custom function
does primarily two things, see Listing 8. First, it extracts the function
arguments and adds them as local variables to the parser (they will be
removed from the parser as soon as the function execution is finished or
an exception is thrown). It also checks that the number of actual
parameters is equal to the number of the registered ones (this part is
skipped for brevity).

Second, the body of the function is evaluated, using the main parser entry
point, the loadAndCalculate() method.

If the function body contains calls to other functions, or to itself, the calls
to the CustomFunction can be recursive.

Let’s see this with an example in CSCS. It calculates recursively the
Fibonacci numbers, see Listing 9.

Listing 7

Variable FunctionCreator::evaluate(ParsingScript&
 script) {
 string funcName = Utils::getToken(script,
 TOKEN_SEPARATION);
 vector<string> args =
 Utils::getFunctionSignature(script);
 string body = Utils::getBody(script, '{', '}');

 CustomFunction* custFunc =
 new CustomFunction(funcName, body, args);
 ParserFunction::addGlobalFunction(funcName,
 custFunc);

 return Variable(funcName);
}

Listing 8

Variable CustomFunction::evaluate(ParsingScript&
script)
{
 // 0. Extract function arguments.
 vector<Variable> args = Utils::getArgs(script);
 // 1. Add passed arguments as local variables.
 StackLevel stackLevel(m_name);
 for (size_t i = 0; i < m_args.size(); i++) {
 stackLevel.variables[m_args[i]] = args[i];
 }
 ParserFunction::addLocalVariables(stackLevel);
 // 2. Execute the body of the function.
 Variable result;
 ParsingScript funcScript(m_body);
 while (funcScript.getPointer() <
 funcScript.size()-1 && !result.isReturn) {
 result =
 Parser::loadAndCalculate(funcScript);
 Utils::goToNextStatement(funcScript);
 }
 // 3. Return the last result of the execution.
 ParserFunction::popLocalVariables();
 return result;
}

Listing 9

cache["fib"] = 0;
function fibonacci(n) {
 if (!isInteger(n)) {
 exc = "Fibonacci is for integers only"
 "(n="+ n +")";
 throw (exc);
 }
 if (n < 0) {
 exc = "Negative number (n="+ n +") supplied";
 throw (exc);
 }
 if (n <= 1) {
 return n;
 }
 if (contains(cache["fib"], n)) {
 result = cache["fib"][n];
 print(" found in cache fib(", n, ")=",
 result);
 return result;
 }
 result = fibonacci(n - 2) + fibonacci(n - 1);
 cache["fib"][n] = result;
 return result;
}

June 2016 | Overload | 21

FEATURE VASSILI KAPLAN
The Fibonacci function above uses an auxiliary isInteger() function,
also implemented in CSCS:

 function isInteger(candidate) {
 return candidate == round(candidate);
 }

The isInteger() function calls yet another, round() function. The
implementation of the round() function is already in the C++ code and
is analogous to the implementation of the print() function that we saw
in the previous section.

To execute the Fibonacci function with different arguments we can use
the following CSCS code:

 n = ...;
 print("Calculating Fibonacci(", n, ")...");
 try {
 f = fibonacci(n);
 print("fibonacci(", n, ")=", f);
 } catch(exc) {
 print("Caught: " + exc);
 }

We get the output in Figure 1 for different values of n.

Since the exceptions happened at the global level, the exception stacks
printed consisted only of the fibonacci() function itself. To keep track
of the execution stack, i.e. CSCS functions being called, internally we use
a C++ stack data s tructure, where we add every executing
CustomFunction object as soon as we start function execution and
remove it as soon as the execution is over. In case of an exception we just
print out the contents of this stack. Then we clear the execution stack up
to the level where the exception was caught. The implementation of the
execution stack and of the try() and throw() functions can be
consulted in [Downloads].

The implementation of the Fibonacci function in Listing 9 uses caching of
already calculated Fibonacci numbers by using dictionaries – we will see
how one can implement dictionaries next.

Arrays and other data structures
To declare an array and initialize it with some data we use the same CSCS
language statement. The array elements for the initialization are declared
between the curly braces. Here is an example in CSCS:

 a = 10;
 arr = {++a-a--, ++a*exp(0)/a--, -2*(--a - ++a)};
 i = 0;
 while(i < size(arr)) {
 print("a[", i, "]=", arr[i], ", expecting ",
 i);
 i++;
 }

The number of elements in the array is not explicitly declared since it can
be deduced from the assignment.

The function size() is implemented in C++. It returns the number of
elements in an array. In case the passed argument is not an array, it will
return the number of characters in it.

Internally an array is implemented as a vector, so you can add elements to
it on the fly. In CSCS we access elements of an array, or modify them, by
using the squared brackets. As soon as the parser gets a token containing
an opening squared bracket, it knows that it is for an array index, so it
applies recursively the whole split-and-merge algorithm to the string
between the squared brackets to extract the index value. There can be
unlimited number of dimensions of an array (well, limited by the system
resources) because the array is implemented as a vector<Variable>:
the Variable class has a member called "tuple" and declared as
vector<Variable>. For instance, accessing a[i][j][k] in the
CSCS code means a.tuple[i].tuple[j].tuple[k] in the C++
underlying code ("a" is a Variable, see Listing 1 for Variable
definition).

In other words, for each consequent index in squared brackets the parser
will create a new Variable of type array or use an existing "tuple"
member.

If we access an element of an array and that element has not been
initialized yet, an exception will be thrown by the parser. However, it’s
possible to assign a value to just one element of an array, even if the index
used is greater than the number of elements in the array and even if the
array has not been initialized yet. In this case the non-existing elements of
the array will be initialized with the empty values. The CSCS code below
is legal, even if the array has not been initialized before:

 i = 10;
 while(--i > 0) {
 array[i] = 2*i;
 }
 print("array[9]=", array[9]); // prints 18
 print("size(array)=", size(array)); // prints 10

We can also add other data structures to the CSCS language. Let’s see an
example of adding a dictionary, implemented internally as an
unordered_map. We add the following member to the Variable
class:

 unordered_map<string, size_t> dictionary;

This is the mapping between a dictionary key and an index of already
existing member vector<Variable> tuple, where the actual
dictionary value will be stored. So every time a new key-value pair is
added to the dictionary the following code is executed:

 tuple.emplace_back(var);
 dictionary[key] = tuple.size() - 1;

Every time an existing key is accessed the following code is executed (a
check for existence is skipped):

 auto it = dictionary.find(key);
 size_t ptr = it->second;
 return tuple[ptr];

With a few changes one can use not only strings, but anything else as a
dictionary key. Similarly, we can add other data structures to CSCS – as
long as a data structure exists, or can be implemented in C++, it can be
added to CSCS as well.

In Listing 6 we saw the implementation of the if() - else if() - else
control flow statements. Towards the end of the listing you might have
scratched your head, asking why we didn’t compare the extracted token
with the "else" string, but we did a comparison with the ELSE_LIST?
The reason is that the ELSE_LIST contains all possible synonyms and
translations of the "else" keyword to any of the languages that the user
might have supplied in the configuration file. How is a keyword
translation added to the parser?

Figure 1

Calculating Fibonacci(10)...
 found in cache fib(2)=1
 found in cache fib(3)=2
 found in cache fib(4)=3
 found in cache fib(5)=5
 found in cache fib(6)=8
 found in cache fib(7)=13
 found in cache fib(8)=21
Fibonacci(10)=55

Calculating Fibonacci(-10)...
Caught: Negative number (n=-10) supplied at
 fibonacci()

Calculating Fibonacci(1.500000)...
Caught: Fibonacci is for integers only
(n=1.500000) at
 fibonacci()
22 | Overload | June 2016

FEATUREVASSILI KAPLAN
How to add keyword synonyms and language
translations
One of the advantages of writing a custom programming language is a
possibility to have the keywords in any language (besides the ‘base’
language, understandably chosen to be English). Also we can create our
language in such a way, that there will be no need to remember that one
must use dir, copy, move, findstr on Windows, but ls, cp, mv, and
grep on Unix; and that a very nice shortcut cd.. works only on
Windows: in our language we can have both! And with just a few
configuration changes.

Here is how we can add keyword synonyms and translations to the CSCS
language.

First, we define them in a configuration file; Figure 2 is an incomplete
example of a configuration file with Spanish translations. The same
configuration file may contain an arbitrary number of languages. For
example, we can also include the keyword synonyms in the same file (see
Figure 3).

After reading the keyword translations we add them to the parser one by
one (see Listing 10).

First, we try to add a translation to one of the registered functions (like
print(), sin(), cos(), round(), if(), while(), try(),
throw() , etc.) . Basically, we map the new keyword to the
ParserFunction, corresponding to the original keyword. Therefore, as
soon as the parser extracts either the original keyword (say "cp"), or the
one added from the configuration file (e.g. "copy"), the same C++
function CopyFunction, deriving from the ParserFunction class,
will be called.

Then we try to add new keywords to the sets of additional keywords, that
are not functions (e.g. a "catch" is processed only together with the try-
block, "else" and "else if" are processed together with the if-

block, etc.) The tryAddToSet() is an auxiliary template function that
adds a translation to a set, in case the original keyword name belongs to
that set (e.g. CATCH = "catch" belongs to the CATCH_LIST).

Listing 11 is an example of the CSCS code using Spanish keywords and
functions.

Conclusions
Using the techniques presented in this article and consulting the source
code in [Downloads] you can develop your own fully customized
language using your own keywords and functions. The resulting language
will be interpreted at runtime directly, statement by statement.

We saw that implementing a printing function and a control flow
statement is basically the same: one needs to write a new class, deriving
from the ParserFunction class and override its evaluate()
method. Then one needs to register that function with the parser, mapping
it to a keyword. The evaluate() method will be called by the parser as
soon as the parser extracts the keyword corresponding to this function.
For the lack of space we didn’t show how to implement the while(),
try, throw, break, continue, and return control flow statements
but they are all implemented analogously. The same applies to the prefix
and postfix ++ and -- operators that we did not have space to show but
you can consult in [Downloads].

Using the above approach of adding a new function to the parser, anything
can be added to the CSCS language as long as it can be implemented in
C++.

You can also use this custom language as a shell language (like bash on
Unix or PowerShell on Windows) to perform different file or operating
system commands (find files, list directories or running processes, kill or
start a new process from the command line, and so on). Stay tuned to see
how to do that in our next article.

References
[ANTLR] ANTLR Framework, http://www.antlr.org

[Downloads] Implementation of the CSCS language in C++,
http://www.ilanguage.ch/p/downloads.html

[Kaplan15a] V. Kaplan, ‘Split and Merge Algorithm for Parsing
Mathematical Expressions’, ACCU CVu, 27-2, May 2015,
http://accu.org/var/uploads/journals/CVu272.pdf

[Kaplan15b] V. Kaplan, ‘Split and Merge Revisited’, ACCU CVu, 27-3,
July 2015, http://accu.org/var/uploads/journals/CVu273.pdf

[Kaplan15c] V. Kaplan, ‘A Split-and-Merge Expression Parser in C#’,
MSDN Magazine, October 2015, https://msdn.microsoft.com/en-us/
magazine/mt573716.aspx

[Kaplan16] V. Kaplan, ‘Customizable Scripting in C#’, MSDN
Magazine, February 2016, https://msdn.microsoft.com/en-us/
magazine/mt632273.aspx

[Spirit] Boost Spirit Library, http://boost-spirit.com

Acknowledgements
I’d like to thank Frances Buontempo and the Overload review team for
providing their feedback which enabled me to elevate the content
presented in this article.

Figure 2

 function = función
 include = incluir
 if = si
 else = sino
 elif = sino_si
 return = regresar
 print = imprimir
 size = tamaño
 while = mientras

Figure 3

 ls = dir
 cp = copy
 mv = move
 rm = rmdir
 grep = findstr

Listing 10

void addTranslation(const string& origName,
 const string& translation)
{
 ParserFunction* origFunction =
 ParserFunction::getFunction(origName);
 if (origFunction != 0) {
 ParserFunction::addGlobalFunction
 (translation, origFunction);
 }
 tryAddToSet(originalName, translation, CATCH,
 CATCH_LIST);
 tryAddToSet(originalName, translation, ELSE,
 ELSE_LIST);
 //… other sets
}

Listing 11

palabras = {"Este", "sentido", "es", "en",
 "Español"};
tam = tamaño(palabras);
i = 0;
mientras(i < tam) {
 si (i % 2 == 0) {
 imprimir(palabras[i]);
 }
 i++;
}

June 2016 | Overload | 23

http://www.antlr.org
http://accu.org/var/uploads/journals/CVu272.pdf
http://accu.org/var/uploads/journals/CVu273.pdf
https://msdn.microsoft.com/en-us/magazine/mt573716.aspx
https://msdn.microsoft.com/en-us/magazine/mt573716.aspx
https://msdn.microsoft.com/en-us/magazine/mt632273.aspx
https://msdn.microsoft.com/en-us/magazine/mt632273.aspx
http://boost-spirit.com
http://www.ilanguage.ch/p/downloads.html

FEATURE ROGER ORR
Concepts Lite in Practice
Concepts should make templates easier
to use and write. Roger Orr gives a
practical example to show this.
he Concepts TS has been published and it has been implemented in
gcc 6.1, released April 2016. Using concepts with gcc is as simple as
adding the -fconcepts flag.

What does using concepts look like in practice: do we get what we hoped
for? To answer that question properly we need to ask how, and why, we
got here.

C++ is a rich language and supports polymorphic behaviour both at run-
time and at compile-time. At run-time C++ uses a class hierarchy and
virtual function calls to support object oriented practices where the
function called depends on the run-time type of the target; at compile time
templates support generic programming where the function called
depends on the compile-time static type of the template arguments.

One major difference between these two is that the first one is tightly
constrained by the inheritance hierarchy of the objects involved but the
second one can be applied to unrelated types.

Run-time polymorphism is a key component in object oriented design.
The function signature to use is decided at compile time based on the
static type of the target object; the implementation used is based on the
run-time type of the object. The rules of C++ guarantee that any object
satisfying the static type will provide an implementation for the target
function. This has been a fundamental part of C++ for a very long time
(about as long as it has been called C++) and has been very stable – it has
been essentially unchanged for over 30 years

Compile time polymorphism has also been in the language for a very long
time. The principle is to provide a ‘template’ which enables the compiler
to generate code at compile time. One of the main motivations for this was
for type-safe containers; but when coupled with non-type template
arguments, overloading, and tag-dispatching the result in modern C++ is
very expressive. There is, I know, a range of opinions over the utility of
template meta-programming and a lot of this is because it can be very hard
to debug.

The reason for this is that templated code is fragile – whether the code is
valid depends on the template arguments provided by the user when the
template is instantiated. While the writer of a template has (usually) tested
at least one instantiation of their code, they may have made, possibly
unconscious, assumptions about the template arguments that can be used
with their template.

(Note that if there is no valid instantiation the program is ill-formed, but
a diagnostic is not required – it is a ‘hard problem’ to solve in general so
compilers are not required to identify this in every case.)

Library writers currently rely on documenting their assumptions about
template parameters but it is hard to get this right. Additionally, compilers
don't read documentation and so the diagnosis of a compilation failure can
be painful (for the user).

For example, consider this simple piece of code:

 class X{};
 std::set<X> x;
 x.insert(X{});

I get 50–100 lines of error text from this, depending on which compiler I
use.

The fundamental problem is that I’m missing the < operator for X so it
does not satisfy the LessThanComparable requirement documented in the
C++ standard:

Tab le 18 – LessThanComparab le requ i rements
[lessthancomparable]

(In a future version of C++ this simple example may become valid –
generation of default comparison operators may make it into the
language.)

Enter concepts
One of the early papers on Concepts was Bjarne’s paper ‘Concept
Checking – A more abstract complement to type checking’ from Oct 2003
[N1510]. He points out that the fundamental problem that makes it hard
to provide good checking for templates in C++ is that templates are not
constrained, so by default any possible type may be used to instantiate a
template.

As a later paper puts it ([N2081], Sep 2006) “Concepts introduce a type
system for templates that makes templates easier to use and easier to
write.”

Currently type checking occurs when some part of the instantiation fails,
rather than when checking against the signature of the function being
called. Concepts allow the programmer to provide constraints against the
types of template arguments which become part of the function signature
and hence should be easier to check and provide clearer diagnostics to the
user.

The proposals went through a number of changes and enhancements
during the development of C++11 (then known as C++0x) but it
eventually became clear that the system being proposed was too complex
and could not be nailed down in time for a delivery of C++11 in a realistic
timeframe. The proposal at that time included, among other things,
concept checking which ensured the implementation complied with the
concepts.

After much discussion and a number of meetings agreement was reached
to provide a simplified form of concepts, so-called ‘Concepts Lite’, and
to deliver this as a free-standing Technical Specification rather than
initially putting it into the C++ standard itself.

This would give a common standard for those implementing concepts and
allow time for experimentation with the feature and feedback from this

T

Expression Return type Requirement

a < b convertible to bool < is a strict weak ordering relation

Roger Orr Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in Canary Wharf
and the City. He joined ACCU in 1999 and the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk
24 | Overload | June 2016

FEATUREROGER ORR

the calling code does not need access to
the implementation at compile time and

the implementation can be changed
without invalidating the call site
would allow refinement of the proposal before it was adopted into the
C++ standard itself.

Building up an example
Let’s build up a simple example to see what can be done with the current
language rules and then show what can be done with Concepts Lite.

Consider this simple function declaration:

 bool check(int lhs, int rhs);

The function takes two int values and the validity of calling code is
decided without any need to see the implementation of the function.

 int main()
 {
 int i = 1;
 int j = 2;
 return check(i, j); // Valid!
 }

A possible function definition could be:

 bool check(int lhs, int rhs)
 { return lhs == rhs; }

but the calling code does not need access to the implementation at compile
time and the implementation can be changed without invalidating the call
site.

Unfortunately using a single function means the following code compiles
(possibly with a warning, but the code is valid C++) but is probably not
doing what is expected:

 int main()
 {
 double root10 = sqrt(10.0);// approx 3.162278
 double pi = 3.14159; // near enough
 return check(root10, pi); // implicit
 } // conversion to int

If we want to check the original double values rather than the (truncated)
int values, we need to generalise the code. One way is to add an
overload:

 bool check(int lhs, int rhs);
 bool check(double lhs, double rhs);
 {
 bool b1 = check(1, 2); // works with int
 bool b2 = check(e, pi); // works with double
 }

We have generalised our function to a predefined set of types – but we
need to duplicate the implementation.

Another approach is to use a template:

 template <typename T>
 bool check(T lhs, T rhs);

We now have only one function definition:

 template <typename T>
 bool check(T lhs, T rhs) { return lhs == rhs; }

and we have produced a template for a set of functions for an unbounded
number of types.

 {
 bool b1 = check(1, 2); // works with int
 bool b2 = check(root10, pi); // works with
 } // double

We can easily generalise further to take two different types:

 template <typename T, typename U>
 bool check(T lhs, U rhs);

Now, without any further changes to the implementation, the function can
deal with any two types for which equality is defined.

As we mentioned earlier though, compilation errors are reported during
the instantiation of the function template; for example, if we pass an int
and the address of an int we see Listing 1.

We could do better ...

‘SFINAE’
When substituting possible values for template arguments the result can
be invalid – in this case the program itself is not invalid, but the
troublesome substitution is simply removed from the overload set. This is
known as ‘substitution failure is not an error’ which abbreviates to
SFINAE.

Use of this rule can be used for enable_if and other similar techniques.
Listing 2 is a simple example.

Listing 1

Basic_Template_Failure.cpp: In instantiation of
 'bool check(T&&, U&&) [with T = int&; U = int*]':
... comparison between pointer and integer [-
fpermissive]
 bool check(T && lhs, U && rhs) { return lhs ==
rhs; } ~~~~^~~~~

Listing 2

template <typename T>
void f(T t, typename T::value_type u);

template <typename T>
void f(T t, T u);

int main()
{
 f(1, 2); // first f() non-viable when
 // substituting int
 std::vector<int> v;
 f(v, 2); // second f() not a match as
 //types differ
}

June 2016 | Overload | 25

FEATURE ROGER ORR

it can be rather challenging to find an
equivalent SFINAE check, and sometimes
there can be subtle differences
In the first call to f() the compiler tries to substitute int into the first
template, which involves trying to form the type int::value_type.
This is not valid, so the first template is skipped and the second one is
used.

We can use SFINAE in our check() function to ensure that the equality
check will be valid:

 template <typename T, typename U,
 typename = std::enable_if_t<
 is_equality_comparable<T, U>::value>>
 bool check(T && lhs, U && rhs);

This has the desired effect of removing the function from the overload set
if the two types are not equality comparable (see Listing 3).

Notice what we do here, which is very common with this sort of
technique. We have added a third template argument to the template,
which doesn’t have a name as it is not used anywhere, and given it a
default value specified in terms of the arguments that we wish to
constrain.

We do of course need to provide is_equality_comparable;
Listing 4 is one possible implementation.

While writing this is not for the faint hearted – and nor is reading it – this
is the sort of construct that can be written once and provided in a common
header. It can therefore be used without needing to investigate the
implementation. Note however that, even apart from the complexity, there
is a problem with the disjoint between the check and the expression being
checked

 decltype(std::declval<T&>() == std::declval<U&>())

The expression we want to detect is lhs == rhs but we have to write a
more complicated expression, subject to the various rules for SFINAE,
which acts as a proxy for the check we actually wanted.

For some expressions it can be rather challenging to find an equivalent
SFINAE check, and sometimes there can be subtle differences.

Concepts to the rescue
There are several ways we can constrain our check function with
concepts. The first, and most basic way, is by adding a requires clause:

 template <typename T, typename U>
 requires requires(T t, U u) { t == u; }
 bool check(T && lhs, U && rhs);

The function declaration shows the constraint using normal C++ syntax
(that matches the code used in the definition.) Calling check() with
int and char* gives this error:

 Basic_Requires.cpp:19:6: note: constraints not
 satisfied
 bool check(T && lhs, U && rhs) { return lhs ==
 rhs; }

(I’m using the gcc 6.1 release for these examples; there are some
additional changes from Andrew Sutton still to come in gcc that should
further improve the error messages.)

Alternatively, we could define a named concept and use that:

 template<typename T, typename U>
 concept bool Equality_comparable() {
 return requires(T t, U u) {
 { t == u } -> bool;
 };
 }

Naming a concept has two main benefits.

 The concept can be shared by multiple template declarations

 Naming allows us to express some of the semantic constraints on the
type.

We use it like this by supplying it with appropriate arguments in the
declaration:

 template <typename T, typename U>
 requires Equality_comparable<T, U>()
 bool check(T && lhs, U && rhs);

Listing 3

Basic_Enable_Failure.cpp:40:21: error: no
matching function for call to 'check(int&, int*)'
 return check(i, &j);
 ^
Basic_Enable_Failure.cpp:34:6: note: candidate:
template<class T, class U, class> bool check(T&&,
U&&)
 bool check(T && lhs, U && rhs) { return lhs ==
rhs; }^~~~~
Basic_Enable_Failure.cpp:34:6: note: template
argument deduction/substitution failed:

Listing 4

#include <type_traits>

template<typename T, typename U, typename = void>
struct is_equality_comparable : std::false_type
{ };

template<typename T, typename U>
struct is_equality_comparable<T,U,
 typename std::enable_if<
 true,
 decltype(std::declval<T&>() ==
 std::declval<U&>(), (void)0)
 >::type
 > : std::true_type
{
};
26 | Overload | June 2016

FEATUREROGER ORR

we now have the reverse problem:
you can argue our template is now

over-constrained
Calling check() with int and char* now gives us Listing 5.

As another alternative the concepts TS allows us to write a concept using
a variable-like syntax instead of the function-like syntax used above:

 template<typename T, typename U>
 concept bool Equality_comparable =
 requires(T t, U u) {
 { t == u } -> bool;
 };

 template <typename T, typename U>
 requires Equality_comparable<T, U>
 bool check(T && lhs, U && rhs);

The syntax is quite similar to the function template form, except for the
reduction in the number of brackets. One restriction though is that you
cannot overload variable concepts. The error handling is pretty much the
same:

Basic_Variable_Concept.cpp:29:6: note: concept
 'Equality_comparable<int&, char*&>' was not
satisfied

Making consistent concepts
The Equality_comparable concept I introduced above is asymmetric
as it only checks that the expression t == u is valid. This matches our
(only!) use case, but is not suitable for use as a general equality concept.

The ranges TS defines something like this:

 template<typename T, typename U>
 concept bool EqualityComparable() {
 return requires(T t, U u) {
 { t == u } -> bool;
 { u == t } -> bool;
 { t != u } -> bool;
 { u != t } -> bool;
 };
 }

However, if we use this concept in our example we now have the reverse
problem: you can argue our template is now over-constrained. Consider
this simple example of trying to use check() with a simple user-defined
class (Listing 6).

In order to call our check() function we have to declare, but not
necessarily define, an extra operator.

 struct Test{
 bool operator==(Test);
 bool operator!=(Test);
 };

or

 bool operator!=(Test, Test);

 bool foo(Test v, Test v2)
 {
 return check(v, v2); // Now Ok
 }

This was a simple example as we were instantiating the template with the
same type for both T and U. If the arguments to check() differ in type
we have a little more work to do (Listing 7).

Listing 5

Basic_Concept.cpp:33:29: error: cannot call
function
'bool check(T&&, U&&) [with T = int&; U = char*&]'
 return check(argc, argv[0]);

Basic_Concept.cpp:29:6: note: concept
 'Equality_comparable<int&, char*&>()' was not
satisfied

Listing 6

struct Test{
 bool operator==(Test);
};

bool foo(Test v, Test v2)
{
 return check(v, v2);
}

Basic_Concept_Failure.cpp: In function 'int
main()'
Basic_Concept_Failure.cpp:39:20: error: cannot
call function 'bool check(T&&, U&&)'
 return check(v, v2);
... concept 'Equality_comparable<Test&, Test&>()'

Listing 7

struct Test{
 bool operator==(int);
};

bool foo(Test v)
{
 return check(v, 0);
}

Basic_Concept_Failure2.cpp: In function 'int
main()'
Basic_Concept_Failure2.cpp:39:20: error:
cannot call function 'bool check(T&&, U&&)'
 return check(v, 0);
... concept 'Equality_comparable<Test&, int>()'
June 2016 | Overload | 27

FEATURE ROGER ORR

When the constraints for a function
change, the type provided may now
silently fail to satisfy the constraints
In order to call our check() function we now have to declare three extra
functions (see Listing 8).

Is this good or bad? It’s both, unfortunately.

Defining a smallish set of well-defined and ‘complete’ concepts is
arguably a good idea as it encourages/enforces more consistent operator
declarations for types. Stepanov’s original design for the STL was based
on his work in Elements of Programming and he defined various type
attributes such as Regular and Constructible. This type of classification is
a natural fit for this sort of use of concepts.

However, it can increase the work needed to adapt a class to comply with
a concept. C++ programmers are used to providing the minimal set of
methods to use a template and have a reluctance to provide more than this.
Whether this is something to be encouraged is arguable.

The ‘requires requires’ use is less affected by this issue as each
function template has its own clause – but it raises the complexity of
reading each function declaration, and breaks DRY.

Behaviour under change
When using run-time polymorphism, the derived type must implement all
the pure virtual methods in the base class. If a new method is added, or a
signature is changed, errors are reported when the derived class is
compiled and/or instantiated (depending on exactly what’s changed).

When the constraints for a function change, the type provided may now
silently fail to satisfy the constraints. This may result in a compile time
failure, or may result in a different overload of the function being selected.

More complex constraints
If we look at an example with a more complicated constraint we see some
additional benefits of using concepts over the existing technology that
uses enable_if or other SFINAE techniques.

While enable_if and similar techniques do provide ways to constrain
function templates it can get quite complicated. One recurring problem is

the ambiguity of template argument types solely constrained by
enable_if – for example, see Listing 9.

Unfortunately this example does not compile – as we have two overloads
of the same constructor with the same type (that of the first template
argument) – see Listing 10.

The compiler never gets to try overload resolution as declaring the two
overloads is a syntax error. If we add a second argument we can resolve
the ambiguity and allow overload resolution to take place; SFINAE will
then remove the case(s) we do not want.

We can give the extra argument a default value to avoid the caller needing
to be concerned with it. (Listing 11)

The additional dummy arguments are of two different types, dummy<0>
and dummy<1>, and so we no longer have ambiguity and both functions
participate in overload resolution.

However, this addition of dummy arguments that take no other part in the
function call adds needless complexity for both the compiler and for the
readers and writer of the template. We are also relying on the optimiser
removing the dummy arguments.

Concepts are a language feature and so the solution using them is much
clearer, as can be seen in Listing 12.

Listing 8

struct Test{
 bool operator==(int);
 bool operator!=(int);
};

// These two cannot be defined in-class
bool operator==(int, Test);
bool operator!=(int, Test);

bool foo(Test v)
{
 return check(v, 0); // Ok
}

Listing 9

struct V {
 enum { int_t, float_t } m_type;

 // Constructor from 'Int' values
 template <typename Int,
 typename = std::enable_if_t<
 std::is_integral<Int>::value>>
 V(Int) : m_type(int_t) { /* … */ }

 // Constructor from 'Float' values
 template <typename Float,
 typename = std::enable_if_t<
 std::is_floating_point<Float>::value>>
 V(Float) : m_type(float_t) { /* ... */ }
};

Listing 10

ambiguity_with_enable_if.cpp:25:5: error:
 'template<class Float,
 class> V::V(Float)' cannot be overloaded
 V(Float) : m_type(float_t) {}
 ^
ambiguity_with_enable_if.cpp:20:5: error:
 with 'template<class Int, class> V::V(Int)'
 V(Int) : m_type(int_t) {}
 ^
28 | Overload | June 2016

FEATUREROGER ORR

The concepts TS supports a ‘concept
introducer’ syntax and an

abbreviated syntax
There is no ambiguity here as the constraints are part of the overload
resolution rules themselves and so there is no need for dummy arguments.

Concept introducer syntax
The concepts TS supports a ‘concept introducer’ syntax and an
abbreviated syntax which I have not yet demonstrated, so let’s modify the
example to do so.

A lot of the complexity in the wording of the Concepts TS is to ensure that
the specification of a constrained function using this additional syntax is
equivalent to the requires form (Listing 13).

This is syntactic sugar to avoid needing to use typename:

 template <Int T>
 bool check(T value);

is equivalent to:

 template <typename T>
 requires Int<T>
 bool check(T value);

The translation between the introducer syntax and that using requires
is fairly simple and unlikely to cause confusion. Note though that, as they
are equivalent, both forms can occur in the same translation unit – and that
the name T could be different.

It does save characters: in this case 37 vs 58. How much of a benefit this
is seems to depend who you ask.

You can further abbreviate the syntax:

 struct V {
 enum { int_t, float_t } m_type;

 // Constructor from 'Int' values
 V(Int) : m_type(int_t) { /* ... */ }

 // Constructor from 'Float' values
 V(Float) : m_type(float_t) { /* ... */ }
 };

This syntax allows the declaration of templates without needing to use <>.

Is this a good thing? There seem to be three main answers:

 Yes

 No

 Maybe

One reason why it might be troublesome is the difference that a function
being a template or not makes to the lookup and argument matching rules
(see Listing 14).

Listing 11

enum { int_t, float_t } m_type;

template <int> struct dummy { dummy(int) {} };

// Constructor from 'Int' values
template <typename Int,
 typename = std::enable_if_t<
 std::is_integral<Int>::value>
>
V(Int, dummy<0> = 0) : m_type(int_t) {/* ... */}

// Constructor from 'Float' values
template <typename Float,
 typename = std::enable_if_t<
 std::is_floating_point<Float>::value>
>
V(Float, dummy<1> = 0) : m_type(float_t) {/*...*/}

Listing 12

struct T {
 enum { int_t, float_t } m_type;

 // Constructor from 'Int' values
 template <typename Int>
 requires std::is_integral<Int>::value
 V(Int) : m_type(int_t) { /* ... */ }

 // Constructor from 'Float' values
 template <typename Float>
 requires std::is_floating_point<Float>::value
 V(Float) : m_type(float_t) { /* ... */ }
};

Listing 13

template <typename T>
concept bool Int = std::is_integral_v<T>;

template <typename T>
concept bool Float = std::is_floating_point_v<T>;

struct V {
 enum { int_t, float_t } m_type;

 // Constructor from 'Int' values
 template <Int T>
 V(T) : m_type(int_t) { /* ... */ }

 // Constructor from 'Float' values
 template <Float F>
 V(F) : m_type(float_t) { /* ... */ }
};
June 2016 | Overload | 29

FEATURE ROGER ORR
Will check() get called? If Int is a type we look for conversions on
argument types that we will not look for if Int is a concept.

Additionally, whether we need access to the definition of check()
depends on whether it is a template or not.

Equivalent or functionally equivalent?
What does it all mean, anyway?

 bool check(Int value);

This is equivalent to:

 template <Int A>
 bool check(A value);

which is itself equivalent to:

 template <typename C>
 requires Int<C>
 bool check(C value);

and all of these are functionally equivalent to:

 template <typename D>
 requires std::is_integral_v<D>
 bool check(D value);

The difference is that a program can contain two declarations of a
function template that are equivalent – but it is not valid to contain two
declarations of a function template that are only functionally equivalent.
There are additional rules defining the finer details of equivalence in the
concepts TS (or [N4335]).

Restrictions on the concept introducer syntax
 bool check(Int value, Int other);

This is equivalent to:

 template <Int T>
 bool check(T value, T other);

Note that the two variables will always have the same type – we cannot
use the short form syntax (there were some very tentative proposals, but
nothing was accepted) to replace:

 template <Int T, Int U>
 bool check(T value, U other);

auto templates
The concepts TS also allows using auto to introduce an unconstrained
template parameter (Listing 15).

I see this as less problematic than the constrained case – it mirrors the
existing use of auto for declaring a polymorphic lambda. There is no
ambiguity in the mind of the reader about whether or not the function so
declared is a template, the use of auto means it must be a template and
so no further context is needed.

While ‘Concepts Lite’ is not part of C++17 (see, for example,
[Honermann] for more on this...) this part of the TS does stand a little
apart from the rest and I for one would have been happy to accept this into
C++17 as a separate proposal; sadly this hasn’t been proposed yet and the
departure gate for C++17 is probably closed for that option.

Summary
Concepts do seem to be significantly simpler to read and write than the
current alternatives.

It does seem to me that it delivers better compiler errors for users; while
I’m sure it is possible to find counter-examples I expect them to be rarer.

It is easier to constrain functions, for writers, without requiring complex
and sometimes fragile meta-programming trickery. Concepts also express
intent in code rather than by inference, in documentation, or in comments.

Using concepts does have the potential of under or over constraining. If
we under-constrain types that match, the concepts fail when the template
is instantiated, and if we over-constrain, we restrict the set of allowable
types further than we needed.

The syntax is slightly awkward – this is my biggest issue with the current
wording in the TS.

 template <typename T> requires requires(T t) {…}

‘requires requires’ – can we be serious?

 concept bool x = requires(...) {}

the type must be specified and must be bool

 supporting the variable form, in addition to the function form, seems
to be unnecessary

I am not persuaded that we need the concept introducer syntax. While it
reduces the number of symbols in the code I am not sure that this actually
simplifies things or merely hides away complexity that we do need to
know about.

Now is the time for C++ programmers to use concepts and to provide
feedback to the standards body. With the recent release of gcc 6.1 doing
this has become easier.

References
[Honermann] http://honermann.net/blog/?p=3 (‘Why concepts didn’t

make it into C++17’)

[N1510] http://www.stroustrup.com/n1510-concept-checking.pdf

[N2018] http://open-std.org/jtc1/sc22/wg21/docs/papers/2006/
n2081.pdf

[N4335] http://open-std.org/jtc1/sc22/wg21/docs/papers/2014/
n4335.html (pre-publication concepts working paper)

Listing 14

bool check(Int value);

void test(Float f)
{
 if (check(f))
 {
 // do something
 }
}

Listing 15

bool check(auto value);

void test(Float f)
{
 if (check(f))
 {
 // do something
 }
}

30 | Overload | June 2016

http://honermann.net/blog/?p=3
http://www.stroustrup.com/n1510-concept-checking.pdf
http://open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2081.pdf
http://open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2081.pdf
http://open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4335.html
http://open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4335.html

FEATURECHRIS OLDWOOD
Afterwood
Magazines sometimes use the back page for
adverts or summaries. Chris Oldwood has decided
to provide us with his afterwords, or ‘afterwood’.
ack when I started my professional programming career, the world
was awash with paper-based programming journals. At the first
company I worked for they had some of the more popular ones on

circulation, such as Dr Dobbs Journal (DDJ), Microsoft Systems Journal
(MSJ), Windows Developer Magazine (WDM) and C/C++ Users Journal
(CUJ). On my travels as a journeyman I’ve also ended up discovering a
number of other journals that I subscribed to in an attempt to help quench
my thirst for programming knowledge: C++ Report, Java Report,
TechNet Magazine and Application Development Advisor. Sadly it wasn’t
until the demise of many of these that I happened across ACCU and
therefore C Vu and Overload. (I had asked on a company C++ forum
about what printed journals were still around now that CUJ was going the
way of the Dodo.)

The format was largely the same for each publication – there was a
beginning, middle, and an end. The start of the magazine usually had
some kind of editorial, which might be a simple summary of the content,
perhaps calling out the most exciting contributions, or it could be more
like a conference keynote – just some musing on the IT industry in
general. If our esteemed editor thinks she’s doing a good job at avoiding
writing a proper editorial then she should re-read some older journals to
see how much an editor can really get away with...

Naturally the meat of the sandwich was the articles, with a mixture of
regular columnists like Ed Nisley and Al Williams (DDJ), and one-off
submissions from other people like ACCU’s own Matthew Wilson.
Occasionally you had a little garnish, such as a ‘Letters Page’ where
readers would email (or even write, like with an actual pen and paper, or
perhaps a typewriter) to the magazine to comment on some previous
article from months ago. Maybe there was a typo in the code, or (more
likely) a disagreement about the approach taken or conclusion drawn.
Another common filling was the ‘New Products’ section which was often
a listing of ‘recently’ released software tools provided by the
manufacturers themselves. Luckily the cadence of software releases was
so much greater than that of the printed publication so there was always
something different each month.

In contrast, the final piece, like some editorials, was more of an art form
in its own right. Where the editorial perhaps appeared to have some
constraints around it being a fairly straight-laced affair, the closing
remarks seemed to be pretty much a free-for-all sometimes. That said they
were related, though occasionally only very tangentially, to the IT
industry. With just a single page and less chance of putting off punters
browsing in the shops (the contents page being nearer the front than the
back) there was more latitude.

I’ll be honest and admit that I didn’t really have the foggiest idea about
what a few of the authors were on about some of the time. That will likely
be due to a series of in-jokes and references to people and technology that
probably pre-dates my birth, let alone my entry into the profession. But
that didn’t stop me loving them all the same. In fact I felt uncomfortable
being on the outside, not knowing what those inside were savouring, and
so in a way it drove me to take more of an interest in the history of the
industry and its people. My own comparisons around the Kardashians and

JavaScript frameworks will no doubt soon become an anachronism too
due to the pace of technology.

Not every journal followed this format for its conclusion though, or
perhaps not for every issue. As an example, this very publication
(Overload) has, as far as my cursory sampling suggests, never had an
afterword to match every foreword. I was originally going to say ‘regular
afterword’ but there is a pattern, albeit only once a year, where the April
issue sees Teedy Deigh pass on her own brand of programming wisdom.
C++ Report utilised its final page to carry on an earlier tradition by
hosting a showcase of Obfuscated C++ which was curated by Rob
Murray. Whilst meant to tax your C++ skills, or in jest to show how
perverse you could be with C++, it often felt scarily close to the codebase
I was working on during the day.

Some of those that were given a platform at the tail end of the magazine
used it to have a good old-fashioned rant. David S. Platt, the incumbent
for MSDN Magazine (the modern successor to MSJ), currently has a
column titled ‘Don’t Get Me Started’ where he gets to let off a little steam.
Another notable grumpy voice from the past was Gary Barnett who
penned ‘Angry Young Man’ for Application Development Advisor. I
seem to remember that he occasionally tag-teamed with Martin Banks
who took up the mantle under the subtly different guise of an ‘Angry Old
Man’. Luckily the arguments were a little more coherent than some of the
rants you see during the lightning talks at a conference, and in the end they
soon mellow out into ‘Mildly Displeased Columnists’. Well, the British
ones did.

Michael Swaine, with his ‘Swaine’s Flames’ for Dr Dobbs Journal, was a
more sedate affair. Often his musings were played out as a scene between
various techies that frequented a fictitious ‘watering hole’ in Silicon
Valley that went by the cute name of Foo Bar. I didn’t know nearly
enough about what was happening in that part of the world to truly grasp
whatever point he was making (if any) but I enjoyed the relaxed attitude
and the writing style made a real change from the usual dry technical
prose. Not content with propping up the back end of DDJ he also wrote
‘The Final Page’ for one of DDJ’s sister publications – Web Techniques
– and I wouldn’t be at all surprised to bump into him in other parts of CMP
Media’s vast publishing estate. Michael Swaine, now editor for PragPub,
still appears to be going strong in the digital age under the banner of
Swaine’s World.

Of all the columns that I probably understood the least at the time, but still
revered the most, was the bi-monthly ‘Post-Mortem Debunker’ in the
C/C++ Users Journal written by Stan Kelly-Bootle. I had always
assumed it was a pen name which, given the style, might have been
attributable to someone such as Douglas Adams if it wasn’t a physical
impossibility by then. It was also somewhat reminiscent of the writings of

B

Chris Oldwood Chris is a freelance programmer who started out
as a bedroom coder in the 80's writing assembler on 8-bit micros.
These days it’s enterprise grade technology in plush corporate
offices. He also commentates on the Godmanchester duck race
and can be easily distracted via gort@cix.co.uk or @chrisoldwood
June 2016 | Overload | 31

FEATURE CHRIS OLDWOOD

Back in those youthful days, when the printed
page ruled the roost, I wondered if the final
page was a form of ‘pasture’ for old
programmers
John Gall (The Systems Bible) which I had only briefly glimpsed back
then. With the birth of Wikipedia I discovered that he really was an
accomplished author with a distinguished past-life in computer science.
Oh, and he was a singer and song-writer too, if the man wasn’t already
talented enough. What made his writing particularly entertaining was his
word play against a backdrop of modern computing fused with some
interesting tales about what it was like programming right back at its dawn
(on the EDSAC). I seem to remember his footnotes were often a goldmine
of little one liners.

The one end page that I turned to as the first thing I hastily wanted to read
was Raymond Chen’s ‘Windows Confidential’ column in Microsoft’s
TechNet Magazine. His blog ‘The Old New Thing’ (an extended version
of his column) became the first one I read every day, and it eventually
turned into one of my favourite technical books too. Its name provides the
(somewhat obvious) inspiration for my own blog – The OldWood Thing.

Each month for his column he would pick something curious about the
way the Windows operating system or Win32 API behaved and would
provide some background material that would bring a semblance of sanity
to what was often seemingly perverse. Regularly the answer would reach
right back into the dim-and-distant past of 16-bit Windows, DOS or its
predecessors. Other times it might involve a backwards compatibility
issue with a product that was just far too popular with customers to

alienate. To balance things out there were also a few misguided design
decisions thrown in there too, but ultimately it’s helped instil in me a
perspective of what software engineering at a mammoth scale is all about.

Back in those youthful days, when the printed page ruled the roost, I
wondered if the final page was a form of ‘pasture’ for old programmers.
Hipsters hadn’t started sporting beards back then and the only data point
I had was of Michael Swaine; I hope they’ll forgive my statistical error.
Now finding myself in this very position I can speculatively report that the
end of the magazine does not appear to be correlated with the end of one’s
programming career. If anything it may provide the catalyst for indulging
in a more elaborate style of writing.
32 | Overload | June 2016

	Overload133.pdf
	Metrics and Imperialism
	Dogen: The Package Management Saga
	QM Bites – Order Your Includes (Twice Over)
	A Lifetime In Python
	Deterministic Components for Distributed Systems
	Programming Your Own Language in C++
	Concepts Lite in Practice
	Afterwood

	Overload133_final2.pdf
	Metrics and Imperialism
	Dogen: The Package Management Saga
	QM Bites – Order Your Includes (Twice Over)
	A Lifetime In Python
	Deterministic Components for Distributed Systems
	Programming Your Own Language in C++
	Concepts Lite in Practice
	Afterwood

