

We at JetBrains have spent the last
decade and a half helping developers
code better faster, with intelligent
products like IntelliJ IDEA, ReSharper
and YouTrack. Finally, you too have
a C++ development tool
that you deserve:

Rely on safe C++ code
refactorings to have all usages
updated throughout the whole
code base

Generate functions
and constructors instantly

Improve code quality
with on-the-fly code analysis
and quick-fixes

Find a C++ tool for you
jb.gg/cpp-accu

A Power Language
Needs Power Tools
—

ReSharper C++

Visual Studio Extension
for C++ developers

CLion

Cross-platform IDE
for C and C++ developers

AppCode

IDE for iOS
and OS X development

April 2017 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 Space Invaders in Elm
Ossi Hanhinen provides an overview of Elm.

7 Single Module Builds – The Fastest Heresy
in Town
Andy Thomason shows how much difference unity
builds can make to build times.

10 An Interview: Emyr Williams
Frances Buontempo interviews the CVu interviewer:
Emyr Williams

12 (Not Really So) New Niche for C++:
Browser!?
Sergey Ignatchenko demonstrates how to use
Emscripten.

16 Contractual Loopholes
Deák Ferenc explores ways to stop compilers
optimising away functions.

20All About the Base
Teedy Deigh counts the ways to represent numbers.

OVERLOAD 138

April 2017

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication
in Overload 139 should be
submitted by 1st May 2017 and
those for Overload 140 by
1st July 2017.

EDITORIAL FRANCES BUONTEMPO
Breadth First, Depth First,
Test First
You can approach a problem top-down or bottom-up.
Frances Buontempo wonders if algorithms can help us
choose the most appropriate direction.

Trying to decide what to write an editorial on is a Many technical people will follow one line of enquiry to its logical end,

continuing struggle. Should I do a deep dive into a
subject I have been learning or thinking about
recently? Should I cast my eyes over a wide panorama
of topics that are on the horizon? This indecision has
led to writer’s block. A similar problem often happens

when bug-hunting or developing code. Should you follow one path and
get a complete feature working or have an overall shape or walking
skeleton [Cockburn] first when writing code? Should you choose
London-style versus Detroit-style, also referred to as outside-in, top-
down or mockist style versus inside-out, traditional style test driven
development [StackExchange]? It appears, as ever, to depend. There is no
one true way, though Steve Freeman says on a Google groups discussion
about the GOOS book “Do the stuff that you need to learn most about first”
[Freeman]. Of course, some people choose a third option and don’t test
first, possibly don’t even have tests at all and the really fool-hardy don’t
use version control. What about bug-hunting? Recently ‘Cloudbleed’
surfaced, a memory leak which appeared to corrupt some HTTP requests
sent through Cloudflare [Cloudbleed]. They managed to track where the
problem was very quickly and turn off the features, which stopped the
problem across the board, but then required a deep-dive follow-up to fix
the problem and clean up any cached sensitive data. Because they had
services they could swap out quickly, it took under seven hours to deploy
a full fix. This did require a team of people round the globe with their
heads down checking the problem stopped when the services were
stopped and that the fix did actually work. The approach of ‘breadth-
first’, to stop things running across the board, then ‘depth-first’ deep dive
to find the problem (a case of == instead of <= in some C code)
succeeded. Spending time finding the bug while the problem continued
would have been a mistake. This was supplemented with some fuzz
testing from an InfoSec team to find similar problems in similar areas of
their code. I am reminded of several demos I have seen finding
Heartbleed in a very short period of time by using fuzzers [for example,
Boeck]. Fuzzers are a form of ‘random testing’ [Fuzzing], often using
genetic algorithms, to generate input cases which cause memory leaks or
similar. They can be purely black-box or combined with some form of
instrumentation to seek out problems. I frequently wonder how many
bugs could be fettered out by trying fuzz testing on a code base. Are any
readers regularly using these tools?

If you find yourself in a high-pressure situation, such as hunting a
production bug, possibly with the added stress of it being pointed out on

a late-night phone-call, it can be hard to keep
your wits about you, and pull back from a

depth-first plunge down a rabbit-hole of a
call-stack guided by clues in a log file.

because a task-switch to look at something else feels like an interruption.
It is important to build up an instinct of what is likely to be waste of time
though, and perhaps jotting down a note, either in the form of your bug
tracking system, a hand-written TODO list or just a post-it note, might be
enough to pick up where you left off if you spot something else that might
be related and feels more likely to be fruitful. If you don’t find a way to
keep track of what you have already visited, you might find yourself
going round in circles. Another thing to try is time-boxing. Give yourself
thirty minutes debugging, and not a moment more, just to get a feel for
what might be going on. Don’t allow yourself to have ‘just five more
minutes’. Stop. Step away from the keyboard and think. If you can’t fix
it, it might be best to just turn off some features, if you can do that, and
get some sleep before continuing your investigation. A lack of sleep will
mean you are not on top form. It can be more heroic, or at least sensible,
to stop than plough on regardless. It might be worth adding more logging
to get better clues, and in fact Cloudflare did add extra logging as part of
their investigation. Having a good logging system that allows you to
explore and aggregate logs easily is also a good thing. Having a bird’s eye
view with the possibility of a swoop down to dig in the depths if required
is ideal.

In a calmer world, where you are not fire-fighting a production bug, but
creating a new program the breadth-first or depth-first dichotomy still
matters. I have previously been amused as I coded with colleagues who
would either complete one feature first, not paying enough attention to
how it might fit into the big picture or who would skip around from part
of one thing to part of another and leave lots of functions marked ‘Not
implemented’ or ‘Todo’. It was often worse if I worked by myself, with
no-one to hand to say, ‘Hang on a minute’. I have got more disciplined at
jotting a note on a list of what needs investigating next, allowing me to
finish my current item, or at least writing a new test, which fails, to
remind me of something distracting that will need doing, just not now. It
is important to keep track of what you are doing and to learn when
something does matter, but not at the moment, since it is a distraction
from your current focus. Trying not to interrupt yourself is an important
skill to learn. Just because you have thought of something doesn’t mean
you should always do it immediately. Conversely, there will be times
where it will take as long to raise a Jira ticket, or similar, than it will to
just do it on the spot. As ever, it depends.

The observation of breadth-first versus depth-first, of course, stems from
two main approaches to iterating through a tree structure. Situations in
life are often more like cyclic-graphs than trees, or even tangled string, so
the analogy will not apply in all situations. Sometimes the only solution
to a knotty problem is lateral thinking, or a giant sword which legend has
Alexander the Great used to ‘untie’ the Gordian knot. Straining the

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad's BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | April 2017

EDITORIALFRANCES BUONTEMPO
analogy, a breadth-first approach tends to use more storage, and I feel that
my brain fills up as I walk across all the possible approaches and things
that could be explored or discussed up front. I would rather park
something under ‘Any other business’ and talk about it at the next
meeting, or leave a function to be implemented later, or a test to get to
pass. Later. I know I am easily distracted though. If you do choose a
depth-first approach, you still have options. Should you adopt pre-order,
in-order, or post-order? At this point I have taken the analogy too far now,
I’m sure. The three approaches will enumerate the tree’s content in
different orders, so it will depend what you are trying to achieve if this is
a pure algorithm question. Not all trees are binary. Not all trees are
balanced. Not everything is black and red. Sometimes life is too short to
conduct an exhaustive search anyway. Recently, computers playing Go
have employed Monte-Carlo search trees [MCST]. This combines
heuristics – guiding suggestions – with random sampling to explore more
promising looking paths through the search space. It seems that there are
times when it is better to randomly try something than to spend time
enumerating all the possible approaches before getting things done. Brute
force will only work if you have the space and time to enumerate all the
options. This might not even be possible.

Besides impossibilities, choices and forks in the road can freeze us. If
there is no obvious advantage in one path over another, how do you decide
what to do? I watched some friend on social media discussing whether
Blocky or Scratch is better for using to teach children to program. I
suspect it will be hard to decide which is better. You often also see people
asking which programming language they should learn. Sometimes you
should just try something. If you really can’t decide, toss a coin. It might
be that your circumstances make one thing easier than another. If you
have a friend who already knows a programming language and has tools
set up for it, try that. To quantify which of a set of options is better requires
a suitable metric. It can be worth spending time figuring this out, but it
might not be. Try something, test it out and hold on to what is good.

Something similar can happen in mathematics. Kevlin Henney talked
about Pythagoras’ theorem at NorDevCon [NORDEVCON] in February.
He observed there are several different proofs of this theorem, though was
only taught one at school. I don’t recall being shown a proof at school,
though have subsequently read about some. Inspired by Kevlin, I have
found a website [cut-the-knot] which gives 118 proofs. This may not be
exhaustive. A reference to the Gordian knot again, however this is not my
point. I have observed several mathematics lessons attempting to provide
the pupils with some exemplars of right-angled and non-right angled
triangles and encourage them to discover Pythagoras’ theorem. This is a
frustrating and boring thing to be subjected to, in my opinion.
Furthermore, pupils with a mathematical bent are likely to correctly think
these are just one or two examples and it proves nothing. There is nothing
wrong with exploring one or two examples up front, to investigate the
problem, but this does not prove in general what is going on. The
mathematical test at this point is a compelling proof; some form of
deduction or a formal proof by induction, rather than the equivalent of ‘It
works on my bit of paper’. If you employ test-driven development, are
you just giving one or two examples in the hope that this proves your
software works by extrapolation? In general, no. Some problems are more
appropriately tested with properties, rather than one or two specific
examples. Moving in a different direction, many people have written
about why they don’t accept the call to use test-first or TDD [for example,
Reddit]. This might not mean no tests that can be run by machines, of
course, however, many people do find some form of TDD useful for a
variety of reasons. Matteo Vaccari wrote a blog called ‘TDD is no
substitute for knowing what you are doing’ [Vaccari]. You are unlikely to
discover Pythagoras’ theorem by trying a few arithmetic combinations of
the lengths of the sides of a variety of triangles. Vaccari says,

it is not satisfying to use the tests in TDD as a crutch for constructing
haphazard code that, with a kick here and a few hammer blows
there, seems to work. The point of TDD is to design code; and a
good design shows how and why a solution works… TDD does not
work well when we don’t know what we’re doing.

He talks though Peter Norvig’s approach to writing a Sudoku solver
[Norvig], observing there are two main approaches; depth-first and
constraint based. His main point is you might still need to think first
before diving in and writing some tests. You might need to learn some
data structures and algorithms first. Alternatively you could explore the
extent of the problem, then stop and revise or learn specific algorithms
you need. Knowing some basics is a good thing. There are, however,
many times where a random walk, in one form or another can be useful.
Many financial pricing and risk models use stochastic calculus, or random
stuff if you will, to produce useful results. Furthermore, a fuzzer is doing
random stuff to explore the search space. A fuzzer using genetic
algorithms is using randomness in conjunction with a fitness function. It
is guided by randomness (and fitness) rather than fooled. There are many
choices of paths through a problem. Each will have advantages and
disadvantages, though having a good fitness function or clear goals can
stop you wasting a lot of time. Keep track of where you’ve already
explored, as many tree and graph algorithms do. Possibly try to find a
solution, however suboptimal, then incrementally improve it, as many
flow path algorithms do [for example an augmented path: Weisstein]
Being slightly meta, being aware of the approach you are taking to
problem solving is both interesting and can suggest alternatives. For
example, getting round to writing an editorial. One day.

References
[Boeck] https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-

been-found.html

[Cloudbleed] https://blog.cloudflare.com/incident-report-on-memory-
leak-caused-by-cloudflare-parser-bug/

[Cockburn] http://alistair.cockburn.us/Walking+skeleton

[cut-the-knot] http://www.cut-the-knot.org/pythagoras/

[Freeman] https://groups.google.com/forum/#!topic/growing-object-
oriented-software/GNS8bQ93yOo

[Fuzzing] https://en.wikipedia.org/wiki/Fuzzing

[MCST] https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

[NORDEVCON] http://www.nordevcon.com/nordevcon2017/

[Norvig] http://norvig.com/sudoku.html

[Reddit] https://www.reddit.com/r/programming/comments/kq001/
testdriven_development_youve_gotta_be_kidding_me/

[StackExchange] http://softwareengineering.stackexchange.com/
questions/166409/tdd-outside-in-vs-inside-out

[Vaccari] http://matteo.vaccari.name/blog/archives/416

[Weissstein] Weisstein, Eric W. ‘Augmenting Path’ From MathWorld –
A Wolfram Web Resource http://mathworld.wolfram.com/
AugmentingPath.html
April 2017 | Overload | 3

https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
http://alistair.cockburn.us/Walking+skeleton
http://www.cut-the-knot.org/pythagoras/
https://groups.google.com/forum/#!topic/growing-object-oriented-software/GNS8bQ93yOo
https://groups.google.com/forum/#!topic/growing-object-oriented-software/GNS8bQ93yOo
https://en.wikipedia.org/wiki/Fuzzing
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
http://norvig.com/sudoku.html
https://www.reddit.com/r/programming/comments/kq001/testdriven_development_youve_gotta_be_kidding_me/
https://www.reddit.com/r/programming/comments/kq001/testdriven_development_youve_gotta_be_kidding_me/
http://softwareengineering.stackexchange.com/questions/166409/tdd-outside-in-vs-inside-out
http://softwareengineering.stackexchange.com/questions/166409/tdd-outside-in-vs-inside-out
http://matteo.vaccari.name/blog/archives/416
http://mathworld.wolfram.com/AugmentingPath.html
http://mathworld.wolfram.com/AugmentingPath.html
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
http://www.nordevcon.com/nordevcon2017/

FEATURE OSSI HANHINEN
Space invaders in Elm
Elm is a functional language which
compiles to JavaScript. Ossi Hanhinen
provides an overview.
 first learned about Elm in May 2015. I fell in love. I also wrote an
article describing how to get started with the language by
implementing the base for a game. Its title, ‘Learning FP the hard way’

[Hanhinen15], was supposed to be a joke of sorts, as Elm is in fact a very
easy language to learn! I’m not sure how many people got that.

Since then, I have used Elm in two separate customer projects, and it has
definitely made my work better!

The recent update (0.17) meant a rather large shift in the way the language
works, so I decided to revisit the original subject. So here it is: the base
for a Space Invaders game in Elm 0.17!

You can find all of the code on GitHub, along with some setup
instructions. [SpaceInvaders]

Elm, what is it again?
Elm is a “delightful language for reliable webapps.” [Elm]. It is a
functional language which compiles to JavaScript. You can explore it
online at http://elm-lang.org/try. If you’re interested in an overview, I
gave a talk about the language, called ‘Confidence in the frontend with
Elm’ at GeeCON 2016. [Hanhinen16]

Modeling the problem
First off, let’s re-iterate what we want to achieve.

From the player’s perspective the program should be like this:

 There is a ship representing the player near the bottom of the screen

 The player can move the ship left and right with corresponding
arrow buttons

 The player can shoot with the space bar

And from the ship’s perspective the same is:

 Ship has a position on a 1D axis

 Ship can have a velocity (positive or negative)

 Ship changes position according to its velocity

 Ship can shoot

This gives us a definition of what the Model of our little program should
look like:

 type alias Model =
 { position : Float
 , velocity : Float
 , shotsFired : Int
 }

This is an example of a data structure called Record. It is like a strongly
typed and immutable cousin of the JavaScript object. Now, we have only
defined the type of the data so far, so let’s create a model to start from:

 model : Model -- this is a type annotation
 model =
 { position = 0
 , velocity = 0
 , shotsFired = 0
 }

What we have here is a simple value, or a constant. As everything in Elm
is immutable, model will always be the same no matter what happens in
the app. If we tried to redefine it, the compiler would simply complain that
there are multiple definitions for the same name and the code would not
compile.

Alright, moving on to moving the ship! I remember from high school that
s = v*dt, or moved distance is the product of the velocity and the time
difference. So that’s how we can update the ship. In Elm, that would be
something like the following.

 applyPhysics : Time -> Model -> Model
 applyPhysics dt model =
 { model | position =
 model.position + (model.velocity * dt) }

The above is the way to update a record. We start off with the model as
the base, but update the position as per the formula. Note that
{ record | x = newX } creates a new record, as everything in Elm
is immutable. We will never have to worry about affecting anyone else’s
state by accident. Even better, we can be certain no one else is affecting
our state either!

The type annotation on applyPhysics says: given a Float and a
Model, I will return a Model, but also: given a Float, I will return
Model -> Model. For example, (applyPhysics 16.7) would
actually return a working function to which we can pass a Model, and get
the physics-applied ship as the return value. This property is called
Currying and all Elm functions automatically behave this way. Currying
is very useful in many cases, but that is a topic for another article.

We can update the other properties in the very same way (see Listing 1).

Using these little functions we can update all of our state, but we’re
missing something quite necessary: 1. View of the current state, and 2.
getting input from the user and turning that into updates.

I

Listing 1

updateVelocity : Float -> Model -> Model
updateVelocity newVelocity model =
 { model | velocity = newVelocity }

incrementShotsFired : Model -> Model
incrementShotsFired model =
 { model | shotsFired = model.shotsFired + 1 }

Ossi Hanhinen Ossi is building apps for browsers to run and users to
enjoy at Futurice. He likes to constantly challenge his views on user
interface programming, and has gravitated towards functional
programming and strong typing with the Elm language. Ossi has
started two customer projects using Elm, making Futurice one of the
first commercial users of it. Contact him at ossi.hanhinen@futurice.com
4 | Overload | April 2017

http://elm-lang.org/try

FEATUREOSSI HANHINEN

Elm 0.17 brought a new way of reacting
to changes: Subscriptions
Showing the state
Our game wouldn’t be much use if it couldn’t show the current state in
some way. To keep things as simple as possible, let’s just print the model
as text. We can do it like so:

 view : Model -> Html msg
 view model =
 text (toString model)

Here, toString turns the model record into a readable String
representation of it, and text from the Html package turns a String into
an HTML text node. Pretty handy! Now the strange part here might be the
return type of our view function: Html msg. We don’t need to worry
about it too much right now, but what the type annotation is saying is in
essence: “I am returning some HTML, which may produce messages of
the msg variety.”

This will do for now, so let’s move on to the interactive part!

Subscribing to user input
Elm 0.17 brought a new way of reacting to changes: Subscriptions. What
we will do is this: we will subscribe to certain changes in the world, and
when they happen, give the changes some names. We want to control the
game by keyboard, so let’s start by taking a look at the Keyboard package.
It seems we want to listen for both pressing down on buttons, and letting
go of them. With these, we can determine when the user is pressing down
on a certain key. We will need something else as well: to keep updating
the position of our ship, we need to have a somewhat steady rhythm of
applyPhysics with the time difference! That we can get using the
AnimationFrame.diffs. Bundling that up into code works like this,
defining the messages in our program:

 type Msg
 = TimeUpdate Time
 | KeyDown KeyCode
 | KeyUp KeyCode

Here we have a union type. For something to be considered a Msg in this
module, it will have to be one of the above (TimeUpdate, KeyDown or
KeyUp). Furthermore, the contents of e.g. TimeUpdate must be
something that can be considered Time, and so on.

Okay, now let’s declare the subscriptions we need, and name them with
our newly-defined message types.

 subscriptions : Model -> Sub Msg
 subscriptions model =
 Sub.batch
 [AnimationFrame.diffs TimeUpdate
 , Keyboard.downs KeyDown
 , Keyboard.ups KeyUp
]

This again will just return a subscription, or a Sub Msg. It doesn’t do
anything on its own, but we need it for the actual wiring part of our code
(see Listing 2).

If you are really paying attention, you might notice that we have view and
subscriptions done by now, but both init and update are still
missing. Luckily we already have all the building blocks, so taking this
home shouldn’t be too much of a stretch anymore! In fact, init is so
simple that we should get it out of the way right now.

 init : (Model, Cmd Msg)
 init =
 (model, Cmd.none)

That’s all there is to it! Again, we can leave the Cmd stuff for later, but just
as a primer: commands are the only way to have effects in an Elm
program. What are effects? They are anything that can affect the world
outside the app (such as posting something to the Internet), or whose value
can vary between program runs (such as the current time, or random
numbers). Here we don’t need to do any commands, so we define it to be
none.

Putting it all together: the update
All right, now’s the time to make it all work!

Let’s begin from the high level. The update function takes the incoming
message and the old model, and returns the updated model along with
possible commands. In this case we won’t need any commands, but we
still need to fulfil the contract with nones (see Listing 3).

Note that each of the possible Msg options is handled. If they weren’t, the
Elm compiler would catch the problem, which is pretty cool and
impressive. Anyway, the TimeUpdate is nice and easy. We can simply
use the applyPhysics function to get the updated model. For the

Listing 2

main =
 Html.program
 { init = init
 , view = view
 , update = update
 , subscriptions = subscriptions
 }

Listing 3

update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
 case msg of
 TimeUpdate dt ->
 (applyPhysics dt model, Cmd.none)

 KeyDown keyCode ->
 (keyDown keyCode model, Cmd.none)

 KeyUp keyCode ->
 (keyUp keyCode model, Cmd.none)
April 2017 | Overload | 5

FEATURE OSSI HANHINEN

When it comes to the packages, Elm 0.17
is still a bit of a work in progress
keypressing cases, I decided to split the handling into their own functions
as well.

When it comes to the packages, Elm 0.17 is still a bit of a work in
progress. So to make the keyboard handling a little nicer, I made a tiny
helper module. There is a function that can turn a KeyCode into a Key,
which is a simple union type. It only has the keys we need for this exercise
now, but could easily be extended (see Listing 4).

The above should be pretty clear. Spacebar shoots once as soon as it is
pressed down and doesn’t do anything else. The arrow keys set the
velocity of the ship when pressed down. Notice that we need an
“otherwise” case, customarily denoted as _. This is because there are
many other possible keys on the keyboard besides the ones we’ve
covered.

How about the release part? See Listing 5...

If the released key happened to be one of the movement keys, reset the
velocity to 0, otherwise let’s just keep the current model. Pretty
straightforward, right?

Now it should work!

References
[Elm] http://elm-lang.org/

[Hanhinen15] Learning FP the hard way: Experiences on the Elm
language
 https://gist.github.com/ohanhi/0d3d83cf3f0d7bbea9db#learning-fp-
the-hard-way-experiences-on-the-elm-language

[Hanhinen16] https://speakerdeck.com/ohanhi/confidence-in-the-
frontend-with-elm-1

[SpaceInvaders] https://github.com/ohanhi/elm-game-base

Kindly republished from Ossi’s blog:
http://ohanhi.github.io/base-for-game-elm-017.html

Listing 4

keyDown : KeyCode -> Model -> Model
keyDown keyCode model =
 case Key.fromCode keyCode of
 Space ->
 incrementShotsFired model

 ArrowLeft ->
 updateVelocity -1.0 model

 ArrowRight ->
 updateVelocity 1.0 model

 _ ->
 model

Listing 5

keyUp : KeyCode -> Model -> Model
keyUp keyCode model =
 case Key.fromCode keyCode of
 ArrowLeft ->
 updateVelocity 0 model

 ArrowRight ->
 updateVelocity 0 model

 _ ->
 model

Live on-site C++ Training
by Leor Zolman

www.bdsoft.com • bdsoftcontact@gmail.com • +1.978.664.4178Co
ur

se
s:

wwwww..b

Moving Up to Modern C++
An Introduction to C++11/14/17 for experienced C++
developers. Written by Leor Zolman.
3-day, 4-day and 5-day formats.

Effective C++
A 4-day “Best Practices” course written by Scott
Meyers, based on his Legacy C++ book series.
Updated by Leor Zolman with Modern C++ facilities.

An Effective Introduction to the STL
In-the-trenches indoctrination to the Standard
Template Library. 4 days, intensive lab exercises,
updated for Modern C++. bdsoftcontact@ggmamaililil c.comom •• ++11.979788.66666644.41417878

Mention ACCU and receive the U.S. training
rate for any location in Europe!
6 | Overload | April 2017

https://gist.github.com/ohanhi/0d3d83cf3f0d7bbea9db#learning-fp-the-hard-way-experiences-on-the-elm-language
https://gist.github.com/ohanhi/0d3d83cf3f0d7bbea9db#learning-fp-the-hard-way-experiences-on-the-elm-language
http://elm-lang.org/
https://github.com/ohanhi/elm-game-base
https://speakerdeck.com/ohanhi/confidence-in-the-frontend-with-elm-1
https://speakerdeck.com/ohanhi/confidence-in-the-frontend-with-elm-1
http://ohanhi.github.io/base-for-game-elm-017.html

FEATUREANDY THOMASON
Single Module Builds – The
Fastest Heresy in Town
Unity builds can be controversial. Andy
Thomason shows how much difference
they can make to build times.
e have been building our C++ projects pretty much the same way
since the early 80s and maybe it is time to change. Back then, no
one could imagine the need for more than 640k of RAM and so

C and C++ modules needed to be small enough to fit in memory. In the C
world, we would build modules with a single C function or a group of
related functions, carefully keeping the limit to under a thousand lines or
so as any more than this would cause the memory to page, causing the
build time to shoot up. Linking, too, was a problem as file systems were
quite slow and so we needed to build libraries which were archives of
object files to minimise link times.

To understand the build process in depth let us look at the layers that we
must go through to make an executable file.

This is pretty much the same stack as the original C compilers, with the
exception of the C++ semantics. Most of the compile time comes from the
fact that #include will typically read hundreds of thousands of extra
lines per module, no matter how careful you are with the includes. In
addition to this, the full code generation path is executed for many
functions defined in header files but only one version of the binary will
make it to the executable. Worse than that this is the amount of work
needed to generate debug information for every class included, with
multiple versions of debug information for each instantiated template
class.

Traditional C++ builds
In most C++ projects declarations are made in .h files with classes
defined separately using :: in .cpp or .cc files. Some functions are
inline in the class, but usually only short ones. The reason for this is
largely historical, and some developers prefer not to have function
definitions in classes because it clutters the simplicity of their class
definitions. However, as we shall see this comes at a very high price in
terms of build time and code generation (see Listing 1).

Unity builds
In the games industry, many large engines use ‘unity builds’. A unity
build reduces the number of modules in a compilation and has a
significant impact on build time. They work by constructing .cpp files
that look like Listing 2.

The source code in the .cpp files still looks the same with the exception
that it must be ‘clean’, ie. no static or global variables and no anonymous
namespaces. Also it is important to avoid using namespace globally
as this can cause some problems.

The result is a build that contains fewer modules. Because every module
includes pretty much the same header files, despite your best efforts, then
it turns out that it takes about the same time to compile a module
regardless of its complexity. Fewer modules mean less duplication of
debug information and common functions, less code generation, more
optimisation opportunities as compilers can inline any function in the
module.

Unity builds made a significant difference to large game projects, which
often have more than ten thousand source files. But the logical assumption

Preprocessor Reads include files, expands macros.

Lex/Parse Generates tokens for uninstantiated functions

C++ Semantics Template expansion, class instantiation.

Intermediate
Representation (IR)

Platform independent assembly-like pseudo
language for high level optimisation.

Code Generation
(CG)

Platform specific pseudo language for low level
optimisation.

Object files/Static
libraries

Platform specific binary code plus debug information
(Dwarf/PDB)

Executable/
Dynamic library

Linker-generated code ready to run.

W

Listing 1

toaster.cpp:

#include "bread.h"
#include "toaster.h"

bread &toaster::eject() {
}

bread.cpp:

#include "bread.h"
bread::bread(flour &f, water &w) {
}

Listing 2

my_unity_build_1.cpp:

#include "renderer.cpp"
#include "ui_elements.cpp"
#include "gameplay_code.cpp"
#include "character_AI.cpp"

my_unity_build_2.cpp:

#include "file_io.cpp"
#include "cat_dynamics.cpp"
#include "wobbly_bits.cpp"
#include "death_ray.cpp"

…

Andy Thomason Andy worked for Sony Computer Entertainment
on the Playstation compilers. He now teaches game programming
to aspiring developers and runs a consultancy analysing scientific
data. Contact Andy at a.thomason@gold.ac.uk
April 2017 | Overload | 7

FEATURE ANDY THOMASON

link time tends to dominate for projects
with thousands of modules
is that the larger the modules, the slower the build would be for an
individual change to a file. In practice, in many cases, this turns out not to
be true because the link time tends to dominate for projects with
thousands of modules and will easily exceed the time taken to compile a
single module, thus the incremental compile time is also improved by
unity builds.

I demonstrated a unity build of Clang at LLVM 2014 that reduced the
compile time from over an hour to twenty seconds and incremental builds
to five seconds, but there was fierce resistance to this concept despite the
200 speedup. I had to make over a thousand edits to the codebase to make
it build and Clang makes extensive use of static variables and anonymous
namespaces, as well as having some namespace name clashes.

Beyond unity builds: single module compilation
One thing that C++ did for us was to allow us to define small functions in
the class definition itself. As compilers got better, a new kind of library
emerged: the header-only C++ library. Many of the libraries in Boost, for
example, are header only and this has the huge advantage that we do not
need to build and distribute a binary of the library and so can run the code
on any platform with a modern compiler.

JavaScript is also an example of header-only code. When we load a web
page, we compile all the JavaScript in a single module – there is no
concept of linking in JavaScript, and yet this works well and is accepted
practice.

A single module is the ultimate unity build with only one module to build,
no linking and source-only library distribution. Advantages are very fast
build times in most circumstances, clearer code and very fast link and
rebuild times in builds dominated by links. Disadvantages include the
effort to re-write libraries to be header only, a ‘brick wall’ response when
compilers consume all available DRAM and start paging to SSD and a
potentially worse response to very complex template metaprogramming.

How about circular references? In single module builds, if class A refers
to class B and vice versa, it is still necessary to separate declarations from
definitions as in traditional builds. This is because C++ processes classes
in the file scope in the order they are seen in the file. To do this we
generally use .inl files, which use the :: operator and the inline
keyword. Using the inline keyword means the defined functions are
created in linkonce sections rather that the regular sections and as a
result then the library can be used in multiple modules. The key is to
declare the classes from leaf to root so that forward references are
minimal. Another method is to use only template classes or to declare all
classes inside a struct which defers the evaluation of the function
definitions. It would be possible to change the language to allow classes
to be declared in any order, a small change now as compilers keep
everything in memory.

So why not build C++ programs as a single module? We know that the
build time is very good and the code generation is close to optimal. The
answer currently is that there are very few header-only libraries and there
is no infrastructure of header-only libraries that we can call on to build our

code. There is no packaging mechanism for header-only libraries and
finding them on GitHub for example is something of a lottery.

Using the Unity build method helps to bridge the gap somewhat, for
example Bullet Physics, TinyXML, LUA (see table) and other libraries
can be converted to header-only form without too much effort, but the
effort to ‘clean’ the builds and remove static variables can be daunting.

But if you can build your code in a single module, the performance of the
build and the generated code can improve by several orders of magnitude.

In an ideal world, compilers would be multithreaded, but even Clang,
which is fairly modern, is stubbornly single threaded and the design is not
likely to accommodate multithreaded compilation. This means that there
is a lower limit on module compile time that will be with us for some time.

Include vs import
Java and C# have both adopted the header-only style as the designers
realised that separate declarations and definitions were unnecessary. Java
and C# also dropped the #include mechanism in favour of an ‘import’
mechanism. C++ is acquiring an import mechanism of its own and we hope
that it will improve build times when it makes it into mainstream
compilers. There have been many proposals, however, and all are different.

Daveed Vandevoorde’s original 2006 proposed paper is here:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2073.pdf

Daveed is VP of engineering at Edison Design Group, whose front end we
used for the Playstation 3 and Vita compilers. Many well-know compilers
are based on EDG. Incidentally, EDG is a well-structured C library and
builds as a single module unity build in less than a second.

Microsoft have a module mechanism in VS2015:
https://kennykerr.ca/2015/12/03/getting-started-with-modules-in-c/

 #include <stdio.h>
 module dog;
 export namespace dog {
 void woof() {
 printf("woof!\n");
 }
 }
 …
 import dog;

Clang also is working up to module support:
https://clang.llvm.org/docs/Modules.html

This involves a module map which maps headers to modules.

 module std [system] [extern_c] {
 module assert {
 textual header "assert.h"
 header "bits/assert-decls.h"
 export *
 }
 }
 …
 import std.assert;
8 | Overload | April 2017

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2073.pdf
https://kennykerr.ca/2015/12/03/getting-started-with-modules-in-c/
https://clang.llvm.org/docs/Modules.html

FEATUREANDY THOMASON

We can see that single module builds
… can improve rebuild times by up to

three orders of magnitude
Whilst modules improve the structure of C++ programmes, will they
improve build times? Much will depend on the implementation.

Synthcode
To help demonstrate the benefits of single module compilation, I've
created a simple python script in a project called synthcode. (https://
github.com/andy-thomason/synthcode)

This script generates a synthetic C++ project with a variable number of
classes. It offers the choice of a single module build (one file per class) or
a traditional multi-module build (two files per class) so that we can
benchmark the two against each other.

The generated classes aggregate other classes and call a single function on
each aggregated member. A more sophisticated script could generate
more complex behaviour but even this simple method is quite revealing
of build and code performance. Table 1 shows the results on Windows
using using cmake -G "Ninja" (Ninja is a high-performance build tool
using multiple threads.)

Note that the traditional build time scales roughly linearly with project
size but the build time for a single module change also goes up due to link
times. On GCC builds the link time can increase to an hour or more on
debug builds thanks to the DWARF information replicated in all the
object files.

The Single module build time grows much more slowly regardless of the
number of classes compiled although in a real scenario thousands of big
and complex classes could slow it down to a few tens of seconds.

We are also not using template metaprogramming which performs
functional style programming in the compiler. Every operation of
template metaprogramming can consume millions of cycles in the
compiler and each template expansion can create large amounts of debug
information. This can be very useful, however, if properly controlled.

The module compile time is largely dependent on the number of lines
pulled into the project by #include. In this case I am including the
following with each class which contributes about 110,000 lines to the
build:

 #include <vector>
 #include <iostream>
 #include <algorithm>
 #include <cstdint>
 #include <future>

Code size, an indication of optimisation, in the single module builds is
consistently low but in the multi module builds it is high. In GCC builds
this can lead to multi-gigabyte executable sizes and hour-long link times.

Conclusion
We can see that single module builds not only can improve rebuilds of
C++ projects but can improve rebuild times by up to three orders of
magnitude. Of course it is not likely that it will be widely adopted as most
projects are legacy projects which cannot be updated and C++ literature
abounds with illustrations of traditional programme layouts. However, for
new projects it would be wise to consider it as an option.

Another very useful side effect of fast compile times is that we could
follow the javascript route and distribute code solely as source. A three
second compile time for a thousand class application is less that the
loading time for even a modest JavaScript application. C++ scripting in
web pages would be a very nice thing with libclang embedded in the
browser. More palatable than asm.js in many ways.

Heresy? Undoubtedly. New ideas, especially pragmatic ones, take time to
become mainstream. 100 times build speed improvements are a
compelling argument however.

Table 1

Results are an average of three runs

Number of
classes

Traditional
rebuild time

Traditional build time
(single change)

Traditional build exe
size (bytes)

Single module build/
rebuild time

Speedup Single module exe
size (bytes)

10 6.12s 1.93s 12800 2.14s 2.87x 11776

100 41.12s 2.36s 14336 2.06s 19.92x 11776

1000 401.66s 4.77s 30208 2.87s 139.88x 11776

Some libraries that can be built header-only even though not designed
to do so.

 bulletphysics.org/

Bullet is Erwin Coumans’ excellent physics library. As a multi-module
build, it takes about a minute to build; as a single module build, it
takes around a second.

 https://github.com/leethomason/tinyxml2

TinyXML is a lovely little XML parser that is widely used. As it has
very few files, a single module build does not make it much faster,
but it does make it portable as no binary is required.

 https://www.lua.org/

LUA is a small script language that is widely used in the game
industry. It is written in C, but with a little hacking it will run as a
header-only library.

Libraries that can be built header-only
April 2017 | Overload | 9

https://github.com/andy-thomason/synthcode
https://github.com/andy-thomason/synthcode
bulletphysics.org/
https://github.com/leethomason/tinyxml2
https://www.lua.org/

FEATURE FRANCES BUONTEMPO
An Interview: Emyr Williams
CVu has been running a series of
interviews. Frances Buontempo interviews
the interviewer, Emyr Williams.
irst, introduce yourself.

I’m Emyr, I’ve been a professional developer for eight years or so,
I’ve coded in Java, Python, C++ and I’ve been an ACCU member
for the last four years. I have a keen interest in all things space
related, I’m an avid reader, and my favourite Science Fiction book
is The Martian.

When did you join ACCU?

I joined the ACCU in 2014, I think.

Why?

I attended the ACCU Conference for the first time in 2013, and met
some awesome people there, who were passionate not just about
C++, but about software development in general. And they were
always willing to answer some inane question a C++ newbie had for
them. I wanted to be part of such an organisation.

Has joining the ACCU been worth it?

Yes, without question.

Can you expand on that? What do you get out of it that makes it worth
£45 a year?

Well, you get a discount on the ACCU Conference, which is always
worth it, you also get two great publications in CVu and Overload,
but more than that, it’s the sense of you belonging to a body of like-
minded people who are passionate about being professional
software developers. And it’s the community spirit that I enjoy as
well. It’s a close knit group despite having people all over the world.
I’ve never felt I can’t approach someone with a question I have.

What was the first thing you wrote for us?

The first thing I wrote was an interview with Bjarne Stroustrup, who
I met at the ACCU conference in 2013, I happened to bump in to him
and I rather cheekily asked if he’d be willing to be interviewed for
my blog, which ended up working out slightly different.

How did getting something published feel?

Quite cool actually, if a little weird. I’ve not been in a publication
before.

What tech talks have you given?

I’ve given some talks at work on moving to C++ 11, and I’ve given
a couple of lightning talks at the main conference. I’m not confident
enough yet to give a full technical talk, but I am building up to that.

Do you conduct interviews face to face or electronically?

I mostly interview via e-mail, the exception was the interview I did
with Scott Meyers, I was fully intending on doing the interview via

e-mail, but Scott suggested a face to face interview as I was on a
training course he was running in London, which was pretty
awesome if not a little scary. Especially as it’s someone I look up to
and have read most of his books. I admit I was a bit star struck, but
it was an awesome experience.

What inspired you to interview people for CVu?

I originally intended to interview people for my blog, which
chronicles how I’m trying to become a better programmer. I’d just
managed to get Bjarne Stroustrup to agree to be interviewed, and I
was telling Pete Goodliffe about it. He promptly encouraged me to
talk to Steve about writing for CVu, and that’s how that started.

You mention ‘Becoming Better’. Is that an oblique reference to Pete’s
writings? I dimly remember you giving a lightning talk about this. In fact,
I found this link: https://www.slideshare.net/welshboy2008/becoming-
better-a-two-year-journey Why this name for your blog?

The first time I was at the ACCU main Conference, Pete Goodliffe
hosted a talk called ‘Become a better programmer’, which had a
panel of people, I can’t recall the names of the panellists now, but it
challenged me to improve as a programmer as I’d been on autopilot,
not really pushing myself. And I thought I’d start blogging about it.
I checked with Pete that he was ok with me calling my blog
Becoming Better, and he was great and said he was ok with it. He’s
also challenged me on some stuff over the years, and two years later,
he asked me to do a lightning talk to show how I’d got better over
the year, so it was pretty cool.

In what ways have you changed?

What’s changed in me? Well, I’m more keen to try other languages,
whereas I only wanted to do C++. So I’ve learned to code in
Javascript, Python and Java, even if they weren’t my first choices.
For example, I found that coding in Javascript helped me to
understand what the practical use for a lambda function was. I’ve
learned that my mind works best when given real world examples of
something, rather than abstract examples. I also read a lot more than
I used to now, and I try to make sure that I have time in my day to
read, whether it be the current book I’m reading, or a blog post. I’ve
also learned to widen my skill set as well, for example the last few
weeks I’ve been doing mainly sysadmin tasks at work, in which I
learned to use Ansible and Bamboo.

How do you think of the questions?

I often look up the people I’m interviewing so I don’t ask pre-canned
questions. There are some generic ones of course, but the questions
I asked Scott Myers for example, would be very different to the
questions I asked Kate Gregory. I think you need to show that
you’ve done some research, otherwise it shows a lack of effort on
your part.

How did the questions to Scott Meyers differ from those for Kate
Gregory?

I’m not sure I can give a satisfactory answer to that question if I’m
honest. I basically base my questions on stuff I’ve read from Scott

F

Frances Buontempo Frances has a BA in Maths + Philosophy, an
MSc in Pure Maths and a PhD technically in Chemical Engineering, but
mainly programming and learning about AI and data mining. She has
been a programmer since the 90s, and learnt to program by reading the
manual for her Dad's BBC model B machine. She can be contacted at
frances.buontempo@gmail.com.
10 | Overload | April 2017

https://www.slideshare.net/welshboy2008/becoming-better-a-two-year-journey
https://www.slideshare.net/welshboy2008/becoming-better-a-two-year-journey

FEATUREFRANCES BUONTEMPO

I mainly ask on the ACCU Mailing list for
volunteers to give talks. I’m also keen on getting

more technically diverse speakers as well
or Kate, and their respective backgrounds. I also have a group of
colleagues who are also ACCU members and I ask them “What
would ask X if you could do so...?”

How do you find people?

It’s usually through a blog post I’ve read, or someone I look up to,
and sometimes it’s “Wow, wouldn’t be cool if I could interview
them?” sort of thing. I’ve also had people suggest folk to interview
as well.

If a reader wants you to interview them for CVu what should they do?
Or thinks of someone for you to interview?

Feel free to ping me an e-mail (egwilliams2002@googlemail.com),
or ping me on twitter (@welshboy2008). I’m usually around

Why did you volunteer to run the Bristol group?

Ha ha, well I don’t think I stepped back fast enough, I think Nigel
had a hand in that. I knew Ewan was stepping down after doing an
amazing job, then Nigel suggested I take it over. I wasn’t too sure,
but I thought I’d give it a go. Ewan was graceful enough to let me
see how I got on by arranging a few evenings and work as a double
act, a sort of long handover if you will.

How do you find speakers?

I’m not sure I’ve found the best way for that yet, at the moment, I
mainly ask on the ACCU Mailing list1 for volunteers to give talks.
I’m also keen on getting more technically diverse speakers as well,
so for example I’m hoping a friend of mine who runs a small ISP in
rural Scotland will be able to come and give a talk on setting up an
ISP but nothing’s confirmed yet.

When will you give a longer talk? What will it be about?

I’m not sure at the moment. I tried to do a technical talk a year or so
ago at a local ACCU group which didn’t go very well. Mainly due
to a lack of preparation on my part, or rather rushed preparation. And
it shot my confidence a bit. I do get nervous when I give technical
talks because I overly worry about people’s reactions. I will do a
technical talk at some point, just not sure when at the moment.

If you could summarise the benefit you’ve got from being a ACCU
member in a sentence, what would you say?

It’s a great community of like-minded people from all walks of life,
from all corners of the globe who are passionate about
professionalism in software, and you’ll be made to feel welcome.

1. https://accu.org/index.php/mailinglists

 Reduced member-rate for the annual
conference

 Member-only discussion lists

 Study groups

 Book reviews

 Become part of a great community,
meeting developers at local groups

 Printed copy of CVu and Overload
(depending on membership package)
delivered to your door

 Online access to back issues of both CVu
and Overload

visit www.accu.org for details
April 2017 | Overload | 11

https://accu.org/index.php/mailinglists

FEATURE SERGEY IGNATCHENKO
(Not Really So) New Niche for
C++: Browser!?
How do you run C++ in a browser? Sergey Ignatchenko
demonstrates how to use Emscripten.
Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Hare, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04]) might have prevented
an exact translation. In addition, the translator and Overload expressly
disclaim all responsibility from any action or inaction resulting from reading
this article.

[In chess annotation,] ‘!?’… usually indicates that
the move leads to exciting or wild play but that the

objective evaluation of the move is unclear
~ Wikipedia

or quite a long while, C++ had been losing popularity; for example,
as reported in [Widman16], in 2016 it got 7% less of the listings on
Dice.com compared with a year earlier; and according to [TIOBE17],

from the C++ Golden Age in 2004 till 2017, the C++ share fell from ~17%
to a measly 6%.

As all of us (as in, ‘hardcore C++ fans’) know </tongue-in-cheek>, this
has nothing to do with the deficiencies of C++; rather it is related to an
observation that the time of downloadable clients (which was one of the
main C++ strongholds) has changed into the time of browser-based clients
– and all the attempts to get C++ onto browsers were sooo ugly (ActiveX,
anyone?) that this didn’t really leave a chance to use C++ there.

Well, it seems that this tendency is already in the process of being
reverted:

C++ can already run on all four major browsers – and moreover, it
has several all-important advantages over JavaScript, too.

And this – not too surprisingly – is what this article is all about.

A word of warning: please do NOT expect any revelations here; this
article is admittedly long overdue – and quite a few people know MUCH
more than I can fit here (and MUCH more than know myself). Still, given
the lack of such overviews intended for those of us who haven’t tried it
yet, I am sure that such an article has its merits. In the article, I will try to
provide a very high-level overview of Emscripten, of the technologies
involved, of the performance which can be expected, of the APIs which
can be used – and what we can gain from using it.

JavaScript to the rescue!
Attempts to get C++ on browsers were continuing all the time (such as
(P)NaCl), but all of them were platform- (and/or browser-)specific, and
(as a result) were very problematic for browser deployments. However,

help for the C++ side of things has come from exactly the same rival
which has been stealing the browser show for all these years – from
JavaScript. It wasn’t easy, and took several all-important (and IMO
ingenious) pieces of the puzzle to make it useful.

Piece I – asm.js
In 2013, so-called asm.js was released. Essentially, asm.js is just a very
small subset of JavaScript, intended to simulate good old assembler. If we
take a look at a real-world asm.js program (not hand-written, but compiled
from C++), we’ll see something along the lines of Listing 1 [Resig13].

As we can see, it is nothing like your usual high-level JavaScript, which
deals with DOM and high-level onclick handlers. Instead (except from
the if statements and function declarations) it directly translates into
what we’d usually expect from an assembler language.

On taking a closer look, we can observe the following elements of more-
or-less typical assembler in the code above:

 registers (implemented as JavaScript vars)

 ALU operations (via JavaScript doubles, but converting them into
uint32_t all the time via | 0)

 Ability to access memory (as one huge array; in the example above
– c[])

 Control operations (if and function)

Well, that’s pretty much all we need to get the full-scale assembler
rolling.

F

Listing 1

function Vb(d) {
 d = d | 0;
 var e = 0, f = 0, h = 0, j = 0, k = 0, l = 0,
 m = 0, n = 0, o = 0, p = 0, q = 0, r = 0, s =
0;
 e = i;
 i = i + 12 | 0;
 f = e | 0;
 h = d + 12 | 0;
 j = c[h >> 2] | 0;
 if ((j | 0) > 0) {
 c[h >> 2] = 0;
 k = 0
 } else {
 k = j
 }
 j = d + 24 | 0;
 if ((c[j >> 2] | 0) > 0) {
 c[j >> 2] = 0
 }
 ...
}

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
and Dmytro Ivanchykhin using the classic dictionary collated by
Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience,
including architecture of a system which handles hundreds of millions
of user transactions per day. He currently holds the position of
Security Researcher and writes for a software blog (http://ithare.com).
Sergey can be contacted at sergey@ignatchenko.com
12 | Overload | April 2017

http://ithare.com
[Loganberry04]

FEATURESERGEY IGNATCHENKO
For our current purposes, we don’t really want to go any deeper, but
hopefully I’ve managed to describe the idea behind asm.js: essentially, it
is pretty much a simulator of a strange CPU with a strange instruction
set. In other words, asm.js did NOT try to simulate any existing
instruction sets (and doing so would make it fatally inefficient).

Instead, asm.js has invented its own instruction set, which can be
still seen as an instruction set of a CPU, at least from the point of
view of a C++ compiler.

Piece II – LLVM/Emscripten
The above observation has made it possible to write a back-end for the
LLVM compiler, and this back-end has allowed the generation of asm.js
out of our usual C++ (some restrictions apply, batteries not included).
Moreover, such a compiler is not only possible, but it exists and is
working: it is Emscripten.1

Actually, the asm.js in the example above has been generated by
Emscripten. Using Emscripten is indeed rather simple:2 we just take our
existing standard-compliant and not-using-platform-specific-stuff C++
code (hey, you DO write your code as cross-platform and standard-
compliant, don’t you?</wink>), and compile it into asm.js. As long as our
code is just ‘moving bits around’, it works near-perfectly (and what will
happen when we need to interact with the rest of the world, we’ll discuss
in the ‘APIs’ section below), producing asm.js code which looks similar
to the example above.

Piece III – optimizations for asm.js
When looking at all the stuff above, a very natural scepticism goes along
the lines of “Ok, this compiled piece of [CENSORED] stuff MAY work
correctly, but how slow it is going to be???” And here is the point where
the third piece of the C++-to-asm.js puzzle comes in. I’m speaking about
asm.js-specific optimizations.

The thing is that with asm.js being this simple and restricted, it becomes
possible to optimize it during a JIT compile. That’s it – we can have our
cake (write in C++) and eat it (run it in asm.js with a reasonable speed)
too!

As of now, all the four major browsers (in alphabetical order: Chrome,
Edge, Firefox, and Safari3) – at least try to optimize for asm.js. Results
vary, but currently, most of the time, we’re speaking about a less than 2×
performance degradation of asm.js compared to native C++ (say,
compiled with Clang) [Zakai14]. While comparisons with native C++ are
difficult to find (which BTW does make me to raise an eyebrow), the few
resources available seem to support this claim (see, for example,
[AreWeFastYet17]). BTW, Firefox results listed by the link are of special
interest – in fact, it manages to keep the performance of asm.js within a
mere 20% of the ‘native’ performance – and while we cannot rely on such
performance (hey, we don’t want to be restricted only to Firefox users), it
still serves as an indication of what it is possible to achieve (well, if
enough effort is spent on it).

BTW, one important property of asm.js is that

As asm.js is a strict subset of JavaScript – it will run even if there is
no special support for asm.js in browser.

Sure, without special support asm.js will be pretty slow – but if we’re
speaking about ‘glue code’, it still may fly even with asm.js support being
unavailable/disabled.

Restrictions
While Emscripten provides a full-scale and very usable environment,
there are certain limitations due to the need to run from within browser.
When you’re ready to go ahead with Emscripten, make sure to read

[Emscripten.Porting]; the following is only a very short summary of the
Emscripten restrictions and capabilities.

APIs
The most annoying restriction of Emscripten is (arguably) related to the
provided APIs. First of all, we can use pretty much all the C++ standard
libraries which don’t need to interact with the system – and that’s
including STL (phew). boost:: libraries are not explicitly supported,
but there are reports that some of them can be compiled too (not without
some associated headaches); most of the header-only boost:: libraries
are expected to work with Emscripten ‘out of the box’ (no warranties of
any kind, batteries not included).

As noted above, libraries which interact with the rest of the world are a
different story. Contrastingly, in general, all the stuff which we’d need to
use on the client is present in the APIs; in particular, the following APIs
are supported:

 Network support (libc-style, non-blocking only(!))

 File system access

 Graphics (OpenGL ES – though it is better to restrict yourself to
WebGL-friendly subset, as I’ve heard that emulation of the rest
kinda suxx)

 Audio, keyboard, mouse, joystick (SDL)

 Integration with HTML5 (DOM, some of the events – including
device orientation, touch, gamepad, etc.)

Threads and main loop
Due to the Emscripten runtime being run on a top of the JS engine,
threading in Emscripten is quite limited from the point of view of a C++
developer.

First of all:

Unless we’re speaking about ‘Workers’, everything within our app
happens within a single ‘browser main loop’

In practice, this means a few things:

 Our app MUST adhere to the ‘event processing’ model (i.e. if our
code blocks for a while, it means that the whole page is blocked).

 APIs are built in a way to help us with this; in particular,
network access being non-blocking only, is a Good Thing™
from this perspective.

 If we have our own infinite loop (event processing loop, game loop,
simulation loop, etc.), we’ll need to break it and re-implement it on
top of the browser main loop. It is NOT as bad as it sounds – see
[Emscripten.BrowserMainLoop] for details

 Handling replies to asynchronous calls (such as replies to our
requests which are coming from the server-side) can be a headache.
For an overview of non-blocking handling techniques in C++
(though not taking Emscripten-specifics into account), see
[NoBugs16] and [NoBugs17].

Personally, I do NOT think that this is really restrictive; in other words, I
am arguing to write the code in such an event-driven manner (which I like
to name ‘(Re)Actor-style’) in any case, even when there is no Emscripten
in sight. Very briefly – considering I have been arguing that having thread
sync at app-level is evil for years now (see [NoBugs10] and [NoBugs15])
– going for a bunch of event-driven (Re)Actors exchanging messages is a
Good Thing™.

Using multiple cores
While I am all for event-driven single-threaded processing, I am the first
one to admit that there are situations when one single thread (and as a
result, a single CPU core) is not sufficient to do whatever we need to do.
Which means that we do need a way to use multiple cores.

However, being able to use multiple cores, DOES NOT necessarily imply
the need to go into traditional mutex- and atomics-ridden untestable
nightmare. Rather, we can have more than one separate event processor

1. There are alternative compilers (formerly Mandreel, now cheerp) which
compile C++ not into asm.js, but into other subtypes of compliant
JavaScript; we’ll see in a jiff why compiling into asm.js is so important.

2. After the usual jumping through the hoops to get stuff installed
3. Well, actually – WebKit
April 2017 | Overload | 13

FEATURE SERGEY IGNATCHENKO
a.k.a. (Re)Actors (in Emscripten-speak, additional (Re)Actors – that is,
beyond the original one running within the ‘browser main loop’ – are
called ‘workers’) and exchange messages with them. It provides several
benefits compared to classical mutex-based shared-state synchronization
models:

 There is no need to think about thread sync when programming.

 While it comes at the price of headaches related to handling non-
blocking calls, I am arguing that – in those scenarios when we
need to handle intervening events anyway – non-blocking
single-threaded handling is the least evil; for more discussion,
see [NoBugs17].

 Each of the (Re)Actors is deterministic. This, in turn, enables
several all-important improvements (from testability and replay-
based testing, to production post-mortem analysis), see [NoBugs17]
for a detailed discussion.

 This approach is Shared-Nothing and, as a result, it scales near-
perfectly (though see the note below). This phenomenon (and
problems with scaling shared states) is well-known; very briefly,
each and every shared state (in other words, every mutex) carries a
risk of becoming a very serious contention, causing severe
degradation of scalability; moreover, in quite a few cases you may
find that 90% of all your processing happens under one of the
mutexes, which means that regardless of the number of cores, you
cannot possibly scale more than to 1.1 core.

 As discussed in [NoBugs17], the only case which I know when
pure (Re)Actors-exchanging-messages are not scaling well is
when we have a big unbreakable state with lots of calculations
performed over it at the same time. This can be solved (and was
solved for an AAA game Client too) without departing too much
from the event-processing (Re)Actor-based ideology (using
what I call (Re)Actor-with-Extractors). However, at the
moment, (Re)Actor-with-Extractors is not supported by
Emscripten, so there may be some issues on this way.

 (Re)Actor-based systems tend to exhibit very good performance.
Discussion of performance advantages of event-driven systems over
thread-synced ones is well beyond the scope of this article, but very
briefly, it boils down to the costs of thread context switches (which
can take anywhere between 10K and 1M CPU cycles(!)), and event-
driven systems tend to have much fewer of these switches. From a
completely different point of view, there is a reason why event-
driven non-blocking systems (such as nginx) tend to beat blocking
systems (such as Apache) performance-wise.

Pthread support
In theory, Emscripten has support for pthreads. However, the support is
experimental – and moreover, it is Firefox-only. This, of course, makes its
use for serious projects a non-starter; however, my rant about pthreads
goes deeper than that:

Even in the long run, I would prefer support for (Re)Actor-with-
Extractors to support for pthreads.

Sure, having full-scale pthreads, we can implement (Re)Actor-with-
Extractors ourselves; however:

 I have no idea how difficult it will be to push pthreads into all the
browsers (from what I’ve seen, it can easily become an
insurmountable task). (Re)Actor-with-Extractors should be easier to
implement (while providing all the safety guarantees – and
testability too).

 In addition, at least in some cases, (Re)Actor-with-Extractors
may happen to be more efficient (it depends on specifics of
pthreads implementation under each of the browsers, but in
general, it might easily happen)

 Enabling pthreads would bring us back into dark ages of massive
usage of mutexes – and as you may have noticed, I am a very strong
opponent of mutex-based thread sync at application level. I prefer to
keep my code clean in this regard.

64-bit int and 32-bit float issues
As of now, the only numeric data type in JavaScript is 64-bit float; in
addition, some operations (mostly bitwise ones) return 32-bit integer
(which always fits into 64-bit float). As a result, any operations which are
neither 64-bit float nor 32-bit integer are not 100%-efficient in asm.js. In
particular:

 32-bit floats need to be processed as 64-bit floats, which is rather
slow compared to native 32-bit floats

 64-bit integers need to be simulated from 2 of 32-bit integers, which
is pretty slow too.

There are some proposals to deal with it (see, for example, [Zakai14]) but
as far as I know, these slowdowns still apply, so if you’re after best-
possible performance, you need to keep them in mind.

Practical uses
As noted above, I haven’t used Emscripten for a serious project (yet).
However, quite a few projects were reported as compiled and working,
including:

 Game Engines(!)

 UE3 (reported to be ported in 4 days)

 UE4

 Unity

Unity is quite an interesting beast when it comes to its use of
Emscripten; as it uses C# at the app-level, it first re-compiles C#
parts into C++ using IL2CPP compiler, and then uses
Emscripten to compile it into asm.js. You won’t believe it – but
it does work.

 Games

 Quake 3

 Doom

 OpenDune

 Libraries/Frameworks

 OpenSSL

 SQLite

 Pepper (via pepper.js)

 Quite a few of Qt demos

For a much more comprehensive list of ports and demos, please refer to
[Emscripten.PortingExamples].

Competition: NaCl/PNaCl
An alternative way of running C++ code on browsers, is NaCl/PNaCl by
Google. It serves pretty much the same noble purpose of running C++ on
the browser, however, it has the BIG problem of being restricted to
Chrome. As (a) no other browser has followed suit, and (b) as Chrome
market share, while it grew to about 60%, has slowed down its growth in
2016, I do NOT think that NaCl/PNaCl is a viable option (except for some
very narrowly defined scenarios) – especially when comparing it to
Emscripten+asm.js.

Moreover, I’ve got a feeling (no warranties of any kind) that Google itself
has realized futility of (P)NaCl and has slowed down development as a
result; overall, my wild guess is that in a few years from now, (P)NaCl
will be quietly abandoned in favor of asm.js (and Google is already
working on support for asm.js optimizations) or in favor of WebAssembly
(see below).

As a result, while the only thing which is certain is that nothing is certain
yet, if faced with the task of developing/porting a new C++ Client for
browser, I would clearly prefer Emscripten+asm.js.

Oh, BTW – if you already have a (P)NaCl client, there is a library
pepper.js, which aims to provide a migration path from (P)NaCl to
Emscripten; while I didn’t try it myself – well, it seems to be worth trying.
14 | Overload | April 2017

FEATURESERGEY IGNATCHENKO
Ongoing development: WebAssembly a.k.a. wasm
As a next step in this development (and to compensate for certain
problems such as asm.js parsing times on mobile devices), an alternative
representation – known as WebAssembly or wasm – is being actively
worked on.

The idea is to use (give or take) the same C++ source code as already can
be used to compile into asm.js, and to compile it to a very different
assembler (wasm). Then wasm will be loaded into the browser, where it
will be JIT-compiled and then executed.

There seems to be quite significant momentum behind wasm – but as of
now, it is too early to tell anything specific. What matters though is that

As app-level developers, we do NOT really care much whether it is
asm.js or wasm which wins in the end. Rather, we can use asm.js
right now, and hope that we won’t need to change our programs too
much when re-compiling them into wasm (when/if it is widely
available)

Whether these hopes will stand in reality, we’ll see, but as of now, it is
IMNSHO by far the best option we have to try pushing our C++ Clients
into browsers.

Practical uses: porting downloadable clients to the
web
Well, it is all this stuff is certainly technically exciting, but what can we
get from it in practice? Most importantly,

we can port our (well-written-enough) C++ Clients to the web.

Until two or so years ago, there was no way to port an existing
downloadable Client into a web app. In other words, whatever we were
doing with our C++, we weren’t able to avoid download and at least some
warnings about how malicious our code can be from the browser – and
this was the point where our potential users were dropping out the most.

So, for a long while, when deciding how to develop our Client,

we were facing a tough choice: either to develop it in JS-only (losing
all the bells, whistles, and performance of C++ development) – or
to have it in C++ but at the cost of dropping those users who don’t
want to download.

With Emscripten and asm.js, these problems are gone. We can have our
C++ cake and eat it on browsers too.

In addition, such an option opens a door for some things that are not really
widely used yet – such as creating live demo versions which can be
viewed in-browser without the need to
download and install them; it looks very
promising for reducing drop-out rates of
potential customers (as showing a live
demo tends to work orders of magnitude
better then showing a screenshot, and if
we can get live demo without download,
we have a clear winner).

Of course, to achieve this holy grail of
multi-platform clients with one of the
platforms being ‘web browser’, we’ll need
to re-learn how to write cross-platform
programs (and apparently, with all the
vendor efforts to lock us in, it is not an easy
feat), but as soon as we do it (and some of us
were doing it all the way regardless of
Emscripten), we will be able to have one
single C++ code base over all of the
following: desktops, phones/tablets, and
web (with AAA gamedevs being able to add
consoles to the mix too).

Acknowledgement
Cartoon by Sergey Gordeev from
Gordeev Animation Graphics, Prague.

References
[AreWeFastYet17] AreWeFastYet, https://arewefastyet.com/

#machine=28&view=single&suite=asmjs-apps

[Emscripten.BrowserMainLoop] Emscripten Contributors, Emscripten
Runtime Environment#Browser main loop,
https://kripken.github.io/emscripten-site/docs/porting/emscripten-
runtime-environment.html#browser-main-loop

[Emscripten.Porting] Emscripten Contributors, Porting,
https://kripken.github.io/emscripten-site/docs/porting/index.html

[Emscripten.PortingExamples] Emscripten Contributors, Porting
Examples and Demos, https://github.com/kripken/emscripten/wiki/
Porting-Examples-and-Demos

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[NoBugs10] ‘No Bugs’ Hare, Single-Threading: Back to the Future?,
Overload #97/#98

[NoBugs15] ‘No Bugs’ Hare, Multi-threading at Business-logic Level is
Considered Harmful, Overload #128

[NoBugs16] ‘No Bugs’ Hare, Asynchronous Processing for Finite State
Machines/Actors: from plain event processing to Futures (with OO
and Lambda Call Pyramids in between), http://ithare.com/
asynchronous-processing-for-finite-state-machines-actors-from-
plain-events-to-futures-with-oo-and-lambda-call-pyramids-in-
between/

[NoBugs17] ‘No Bugs’ Hare, upcoming book Development &
Deployment of Multiplayer Online Games, Vol.II, chapter on
(Re)Actors, current beta available at Leanpub and Indiegogo

[Resig13] John Resig, Asm.js: The JavaScript Compile Target,
http://ejohn.org/blog/asmjs-javascript-compile-target/

[TIOBE17] TIOBE Index (February 2017), http://www.tiobe.com/tiobe-
index/

[Widman16] Jake Widman, The Most Popular Programming Languages
of 2016, https://blog.newrelic.com/2016/08/18/popular-
programming-languages-2016-go/

[Zakai14] Alon Zakai, NATIVE SPEED ON THE WEB. JAVASCRIPT
& ASM.JS, http://kripken.github.io/mloc_emscripten_talk/
sloop.html#/
April 2017 | Overload | 15

https://arewefastyet.com/#machine=28&view=single&suite=asmjs-apps
https://arewefastyet.com/#machine=28&view=single&suite=asmjs-apps
https://kripken.github.io/emscripten-site/docs/porting/emscripten-runtime-environment.html#browser-main-loop
https://kripken.github.io/emscripten-site/docs/porting/index.html
https://github.com/kripken/emscripten/wiki/Porting-Examples-and-Demos
https://github.com/kripken/emscripten/wiki/Porting-Examples-and-Demos
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://ithare.com/asynchronous-processing-for-finite-state-machines-actors-from-plain-events-to-futures-with-oo-and-lambda-call-pyramids-in-between/
http://ithare.com/asynchronous-processing-for-finite-state-machines-actors-from-plain-events-to-futures-with-oo-and-lambda-call-pyramids-in-between/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
https://blog.newrelic.com/2016/08/18/popular-programming-languages-2016-go/
https://blog.newrelic.com/2016/08/18/popular-programming-languages-2016-go/
http://kripken.github.io/mloc_emscripten_talk/sloop.html#/
http://kripken.github.io/mloc_emscripten_talk/sloop.html#/

FEATURE DEÁK FERENC
Contractual Loopholes
Compilers can optimise away functions
you may want to time. Deák Ferenc
explores ways to stop this happening.
ecently, I attended a course held by Andrei Alexandrescu (of
Modern C++ Design and C++ Coding Standards fame) about C++
optimization. Some of the concepts that were suggested during the

lecture have opened up a series of questions, which have lead to some
research and finally the creation of this article, in which we explore the
delicate interface of the compilers in regard to concepts of real life. We’ll
look the way a compiler digests information and some of the measures it
takes in order to assure highest performance of delivered application so
vital for most systems. But mostly we will try to find loopholes in the
contract covering the interfacing of the compiler in relation to the real life
notion it represents.

When we programmers look at a source, with or without exhaustive
experience in certain fields, some patterns will emerge, mental maps will
be charted and some conclusions will be drawn from our in-mind analysis
of the few lines observed. Using the familiar building blocks of the
language (such as conditions, loops, jumps, etc) we will automatically
recognize situations that certain pieces of code will provide us with, and
we will act accordingly. However, when an optimizing compiler looks at
the code, it sees something completely different.

It is extremely difficult, or might not even be possible, to fully understand
all the operations performed by the compiler while generating optimized
code, due to our very different view and approach of the same problem.
The transformation of the source code into the generated binary code goes
through a sequence of steps (each deserving a dedicated chapter in the big
book of compiler implementation) and from the various intermediary
representations, taking into consideration a series of settings, the final
result may emerge having a wide variety of embodiments due to settings
to optimization, environment and target system.

The background
During the course, while circumstantiating various techniques regarding
C++ optimizations Alexandrescu was talking about measuring the time
some operations take, how your compiler might disregard all your hard
work while optimizing the final code (because the only code you should
benchmark and optimize is Release code), and finally how to trick the
compiler into actually performing what you want it to do, regardless of
optimizations settings.

And let’s admit it: the best compilers available nowadays are the C++
compilers, which are among the most advanced ones available – in
today’s performance oriented world they generate possibly the fastest and
most efficient code which satisfies the requirements of lots of platforms
and systems. And they have really advanced mechanisms of providing
you with the fastest code. They can calculate during compile time

complex operations of known data (there go your carefully handcrafted
unit tests with vigorously chosen constant data), they can see if you ever
intended the use of a function and if not they… just don’t call it if they
detect it does not affect other data, they … can do a lot of unimaginable
things to make your application faster.

Let’s consider the code in Listing 1.

In the context above, when the code is compiled with high optimizations
(-O3, -O2 for gcc/clang) enabled, the body of the function
some_operation_you_want_to_measure() will be present in the
generated code (unless you have told the compiler that this is a static
method in which case it will … miraculously disappear in the void) but the
only thing that the main will do is:

main: # @main
 xor eax, eax
 ret

This, however, might change once you change the optimization settings
or the compiler. http://gcc.godbolt.org provides an excellent platform for
comparing the output of various compilers when applied to the same
source (as a side note: both clang and gcc are able to calculate the result
of the function above being 60 and directly feeding it into the required
place if we assign it to a variable which is printed).

In order to avoid this uncertainty, Alexandrescu has suggested the
following solution: “Use I/O combined with a non-provable false test”. His
solution is a short function, like Listing 2.

And from this point on, we use the syntax in Listing 3.

As per [Alexandrescu], the code in Listing 1 will be treated by the
optimizer in a fashion that guarantees the call (or calculation, as we have

R

Listing 1

long some_operation_you_want_to_measure(
 const char *a, int l)
{
 long c, n = 1;
 for (c = 0; c<l ; c++)
 {
 if(a[c] > '9') return 0;
 n += n * (a[c] - '0');
 }
 return n;
}

int main()
{
 unsigned counter = 1000000;
 while(--counter > 0)
 {
 some_operation_you_want_to_measure("234" , 3);
 }
}

Deák Ferenc Ferenc has wanted to be a better programmer for the
last 15 years. Right now he tries to accomplish this goal by working
at FARA (Trondheim, Norway) as a system programmer, and in his
free time, by exploring the hidden corners of the C++ language in
search for new quests. fritzone@gmail.com
16 | Overload | April 2017

http://gcc.godbolt.org

FEATUREDEÁK FERENC

I have started looking for ‘contractual loopholes’ …
specifically researching situations where the compiler

could have been clever enough to determine that a
condition will always evaluate to false
o b s e rv e d f o r c e r t a i n s i m pl e s i t u a t i o ns) o f t h e
some_operation_you_want_to_measure and it will assure you
the code will not be ‘optimized away’. What the code above does is the
following: it defines a function which will act as a placeholder, it is never
optimized away (due to the fact that it contains an I/O operations which
are never optimized away), but regardless does nothing (because no user-
land process in a sane system can have their PID equal to 1, the value
(un)officially being reserved to the init process).

And this unprovable false was the spark for this article. I have started
looking for ‘contractual loopholes’ in the standard libraries and functions,
specifically researching situations where the compiler could have been
clever enough to determine that a condition will always evaluate to false,
and use this knowledge while generating code.

The falses
The C and C++ standard libraries contain a huge number of functions,
providing abstractions of real life concepts which easily can be translated
into computer code. However, due to particularities of computing
systems, these translations on certain occasions are unable to fully model
the real life situations, thus providing me with the required attack surface.

Playing with time
There are several functions and structures related to time retrieval in the
C++ standard libraries we can find in <ctime>, and its counterpart C
library’s <time.h>. One of them is the localtime function, which
populates a tm structure with human readable values of the current time.

As per [n1256], Listing 4 is the list of its fields (and the declaration was
taken from my time.h).

As the comment says, all of these fields are restricted to meaningful
values; however, no-one can stop me writing code like Listing 5.

Now, we humans know that in reality this will never happen (just like
checking if the hour is >24); however, the compiler currently is not clever
enough and the suggested feature of contracts in the C++17 standard
currently has no coverage for this situation [CppContracts], thus the
compiler will happily generate the following code (showing the output
from clang 3.9.1, since this came up with the cleanest code – the comment
is from me):

 xor edi, edi
 call time
 mov qword ptr [rsp], rax
 mov rdi, rbx
 call localtime
 cmp dword ptr [rax], 62 ;
 jl .LBB0_3

However, all compilers I have tested with this piece of code provided me
with the same result: a comparison which can never be true.

Wondrous world of mathematics
There is an exhaustive library of mathematical functions available in C++
and C (found in <cmath> or the corresponding <math.h> header files)

Listing 2

template <class T> void doNotOptimizeAway (
 T&& d)
{
 if (getpid () == 1)
 {
 const void *p = & d ;
 putchar (* static_cast < const char *>(p));
 }
}

Listing 3

unsigned counter = 1000000;
while(counter-- > 0)
{
 doNotOptimizeAway(
 some_operation_you_want_to_measure("234" , 3)
);
}

Listing 4

struct tm
{
 int tm_sec; /* Seconds.[0-60](1 leap second)*/
 int tm_min; /* Minutes.[0-59] */
 int tm_hour; /* Hours. [0-23] */
 int tm_mday; /* Day. [1-31] */
 int tm_mon; /* Month. [0-11] */
 int tm_year; /* Year - 1900. */
 int tm_wday; /* Day of week. [0-6] */
 int tm_yday; /* Days in year. [0-365] */
 int tm_isdst; /* DST. [-1/0/1] */
};

Listing 5

time_t now;
struct tm *tm;
now = time(0);
tm = localtime (&now);
if(tm->tm_sec >= 62)
{
 const void *p = & d ;
 putchar (* static_cast < const char *>(p));
}

<-- This is the
unnecessary comparison
April 2017 | Overload | 17

FEATURE DEÁK FERENC
which can take almost all basic mathematical concepts and translate them
into corresponding function calls providing the expected result. One of
these is the sin() functions which computes the sine of the argument
(given in radians). If no error occurs, the sine of the argument is returned,
the value is in the range [-1 .. +1] as per the definition of the
trigonometrical function. So, from a human’s point of view it really makes
no sense to check for values >1. However, again, the compiler is not
clever enough to realise this, so the following call:

 if (sin(*(reinterpret_cast<float*>(&d)))
 > 1.0f)
 {
 const void *p = & d ;
 putchar (* static_cast < const char *>(p));
 }

will happily generate code like:

 movss xmm0, DWORD PTR .LC1[rip]
 mov QWORD PTR [rsp+8], 60
 call sinf
 ucomiss xmm0, DWORD PTR .LC0[rip]
 jbe .L2

where the number 60 is the value precalculated by the compiler (as
presented above) however the call to the sin and the comparison after
(ucomiss = Unordered Compare Scalar Single-Precision Floating-Point
Values and Set EFLAGS) are present in the generated code.

The code above was generated by gcc 6.3. I’ve had the same result with
gcc 6.2 and 6.1. The gcc 5.x series produces also similar code (not exactly
this, but a bit longer using a different set of assembly commands) which
is identical to the code generated by gcc 4.9.x however the gcc 4.8 and 4.7
series did not generate any code for this senseless sin check which
behaviour was also manifested by clang 3.9, 3.8. Basically, all clangs up
to 3.0. Microsoft’s Visual C++ compiler generated code, which was very
similar to the code generated by gcc 5.x family with the check inside.

The interesting part came, however, when I increased the complexity of
the some_operation_you_want_to_measure function. I have
added the following line

 if(n > 24) n-= n* a[c];

in the body of the for loop after the line n += n * (a[c] - '0');.
Suddenly the compilers which did not take into consideration my
senseless juggling with sine started paying attention to it and all of them
generated some code to handle it. However, if I put the new line before
the existing line nothing changed, the behaviour was the same as without
the line. Seems that I have really stepped on the toes of some optimizers.

Af t e r s eve ra l expe r i men ta t i o n s t a g e s w i t h t h e f un c t i o n
some_operation_you_want_to_measure, I have drawn the
conclusion that the more complex the function I want to measure gets, the
least possible is for the call to the senseless sin to be optimized away.
A n d w h e n th e co m p l e x i t y o f t h e f un c t i o n
some_operation_you_want_to_measure has reached a stage
when the compiler was not able to automatically calculate its result during
compile time, the senseless sine check was always called. I leave to the
imagination of the reader to try to envision what other misconducts can be
done with the function from the mathematical library.

The null-terminated byte strings
Not a very widely known name, but there is a header file <cctype>
which has it roots in C’s <ctype.h> containing all kind of functions
which can be used to manipulate… well, null terminated byte strings. You
can find in there a wide range of functions for checking various properties
of characters (in the likes of is this an UPPERCASE character, is this a
digit, etc...).

Among them is the very useful tolower(int) function which, as its
name suggests, will convert its argument (an int, representing a
character) to its lower case equivalent using character conversion rules as
per the current C locale. The function, however, will return its unmodified
argument if no lowercase version is available in the current C locale. And

its counterpart toupper, which behaves the same way, but it converts the
argument to an uppercase character if possible.

We can exploit this, in order to create another unprovable false. Let’s
consider:

 if (toupper('2') == 1)
 {
 const void *p = & d ;
 putchar (* static_cast < const char *>(p));
 }

Again, the compiler does not know that the uppercase of the character 2
does not exist, due to specification toupper will return 2 and this is
again a false which cannot be optimized away.

Contracts
The C++17 standard supposedly will include a notion of contracts which
will be like a run time assertion for allowing checks for validity of input
arguments or other dependants, but as per the latest (as of February, 2017)
available draft [n4618] I have found no mention of them. Due to the
nature of some of the falses from above, these would be very easily
identifiable at the compilation time and the compiler could take steps in
order for them to not to behave as erratic as today.

For example let’s consider the sin function. Currently one of the
declarations it has is the following:

 float sin(float arg);

which says nothing to the compiler about the nature of the function, ie:
that its return value is always between -1 and +1 (inclusive).

Let’s revise the declaration of the sin function, empowered with the
concepts of contracts using the syntax from [CppContracts] (please note,
the code below is not valid C++):

 float sin(float arg)
 [[ensures: return <= 1 && return >= -1]];

Due to the almost documentation like nature of a contract, the compiler
instantly knows that the following

 sin(*(reinterpret_cast<float*>(&d))) > 1.0f

will always be false and can generate proper code in order to achieve
maximum performance and speed.

There is just a tiny little problem with the code above: return is not part
of the upcoming C++ contracts specification, so the declaration above is
just a small dream that might come true one day.

Conclusion
The list of the presented falses is just a subset of all those that exist out
there, when you shall look specifically for them you shall find even more,
from various libraries, through operating system specific data, to
miscellaneous functions. I just wanted to follow up on [Alexandrescu],
list a few more currently in existence and offer a theoretical way to
mitigate the not so serious threat they represent. Once the compilers fully
support the contracts, I am sure a new set of improved C++ libraries will
come in existence which will help the compilers in their everyday job.

Appendix 1
The techniques presented above, however, have a minor downside to
them: Strictly speaking the measurement of time variations will include a
tiny fraction consumed by the function call together with the performed
operations, which introduces variable distortions in the performance
measurements thus degrading the quality of the data we receive. In order
to achieve constant time and minimum overhead we can use the following
technique: we always call the function we want to measure via a volatile
function pointer (Listing 6). This introduces only a few extra bytes in the
code (see Listing 7), and by using it we do not depend on calling external
functions with all their side effects, and indeed the calls are performed as
we would expect them to be. Also and interesting fact is, that in this case
the compiler is not able to do the precalculation of the result of the
18 | Overload | April 2017

FEATUREDEÁK FERENC
function, nor will it inline the called function into the body of the calling
function.

Appendix 2
In order to have a base of comparison for the variations in the generated
code, I have created the test application also in two other programming
languages with syntax very familiar to C and which also compile into
binary code: Go and D.

Listing 8 is the Go version of the same program. The corresponding
assembly code generated was (only showing the interesting parts, since
Go compiled an executable file of 1.1Mb) is in Listing 9.

The same application in D is shown in Listing 10, and the generated code,
which was compiled with optimizations on (-O) (the final executable was
594Kb long, I took only the relevant parts) is in Listing 11.

Although this is not necessarily related to the article, regardless it’s
interesting to see how various compilers handle the same situation.

Acknowledgements
I have referenced frequently [Alexandrescu] through the article, and with
his permission I have re-used code written by him which was presented at
the course. It was awesome.

Regarding Appendix 1: it came into existence during the review phase of
the article when one of the reviewers draw my attention towards the
distorted time measurements and kindly suggested the solution to mitigate
this problem. Thank you!

References
[Alexandrescu] Fastware: The art of optimizing C++ code, Kongsberg,

2017 January

[CppContracts] http://www.open-std.org/JTC1/SC22/WG21/docs/
papers/2015/n4415.pdf

[n1256] http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

[n4618] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/
n4618.pdf

Listing 6

using ptr_fn =long(const char*, int);

ptr_fn* volatile pfn = some_op;

unsigned counter = 1000000;
while(counter-- > 0)
{
 pfn("234" , 3);
}

Listing 7

mov QWORD PTR [rsp+8], OFFSET FLAT:some_operat
ion_you_want_to_measure(char const*, int)
.L10:
mov rax, QWORD PTR [rsp+8]
mov esi, 3
mov edi, OFFSET FLAT:.LC0
call rax

Listing 8

package main
func
some_operation_you_want_to_measure(a string,l int)
 int {
 var n int = 1
 for c := 0; c<l ; c++ {
 if(a[c] > '9') {
 return 0
 }
 n = n + n * int(a[c] - '0')
 }
 return n
}
func main() {
 var counter int = 1000000
 for counter > 0 {
 some_operation_you_want_to_measure("234" , 3)
 counter --
 }
}

Listing 9

 mov rax,0xf4240
 nov OWORD PTR [rsp+0x20],rax
 cmp rax,0x0
 jle loc_00461oea
1oc_004010b5:
 lea rbx,[rip+0x711c4]
 mov QWORD PTR [rsp],rbx
 mov QWORD PTR [rsp+0x8],0x3
 mov QWORD PTR [rsp+0x10],0x3
 call main.some_operation_you_want_to_measure
 mov rax,QWORD PTR [rsp+0x20]
 dec rax
 mov QWORD PTR [rsp+0x20],rax
 cmp rax,0x0
 jg loc_004010b5
1oc_004016ea:
 add rsp,ox28
 ret

Listing 10

long some_operation_you_want_to_measure(const
char *a, int l) {
 long c, n = 1;
 for (c = 0; c<l ; c++) {
 if(a[c] > '9') return 0;
 n += n * (a[c] - '0');
 }
 return n;
}
int main() {
 int counter = 1000000;
 while(--counter > 0) {
 some_operation_you_want_to_measure("234" , 3);
 }
 return 1;
}

Listing 11

 mov ebx,0xf423f
loc_00427d53:
 lea rsi,[rip+0x26806]
 mov edi,0x3
 call
_DZtt34some_operation_you_want_to_measureFxPaiZL
 dec ebx
 test ebx,ebx
 jg loc_00427d53
April 2017 | Overload | 19

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4618.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4618.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4415.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4415.pdf

FEATURE TEEDY DEIGH
All About the Base
Representing numbers presents many choices.
Teedy Deigh counts the ways.
 programmer is nothing without numbers. And there are so many to
choose from! Unfortunately, because of the taxation of
representation – integers are bitly stunted to ints and floating-point

numbers aren’t real – a programmer has fewer to play with than the
average (and sometimes mean) mathematician. This can leave some
programmers with an inferiority complex, a problem that is both real and
imaginary.

Many mathematicians, however, fear both numbers and meaningful
variable names. Programmers, on the other hand, revel in – and overflow
– different number representations and bases and delight in the full range
of identifiers from the unidentifiable to the VeryExplicitlyMeaningfulThi
sIsAnAdjectivalPhraseServingAsANominal.

To make life a little more interesting and less inferior, here is a brief list
of some bases you should know and employ, presented in hash order:

binary is the base line of code, its very bits: on or off, 1 or 0, yes or no,
true or false, fact or alternative fact, to be or not to be, do or do not... there
is no try – which goes some way to explaining the popularity of Boolean
and Booleanish return values in languages without exception handling,
leaving readers with the frisson of uncertainty as to whether 0 means
success or failure or quite possibly both.

unary is the fundamental counting system of the universe – a million
things is represented by a million things, not seven. Getting your hands on
this original digital base is easy: one finger is 1, two fingers is 2 – or 111
– three fingers is three – or 1111 – and so on. The simplicity of this system
means that you can be free and easy with your choice of digit, i.e., instead
of 1 you can use a pebble, a dash or a solipsistic I. It is also easy to
generate in code. For an integer n, the following Python expression is a
unary converter:

 ('I' * n)

You can also give it a bash with

 printf %"$n"s | tr ' ' 'I'

ternary does not simply give us the operator of champions – Elvis is not
dead... albeit conditionally – it gives us the three-valued logic of
comparisons (-1, 0, +1) and uncertainty: SQL’s TRUE, FALSE and NULL;
JavaScript’s "false", false and NaN; the it-compiles-but-does-it-
work yes/no/maybe.

octal is the base of the Unix demigods. It has been said that it is better to
fseek forgiveness than to ask permission, which perhaps explains why
octal has been progressively marginalised and relegated to file
permissions. New Testament C makes it clear that 8 and 9 are not octal
digits, whereas old testament C was somewhat looser and more
permissive, anticipating Postel’s law (‘Be liberal in what you accept, and
conservative in what you send’) and the Liskov Substitution Principle
(LSP, which is not to be mixed up with LSD... although that might explain
a few things).

nonary is of surprisingly little use to the programmer, except as an off-
by-one overflow for octal. It should be noted that 9 is not a nonary digit.

It is listed here simply to highlight the common existential confusion
between nonary and...

nunnery, which is a number base that highlights deep questions of
existence and non-existence in black and white (and wimples). For
example, Hamlet’s to-be-or-not-to-be binary quandary takes place in
what is known as the nunnery scene. When it comes to representation of
nunnery in code we can turn to Nietzsche for implementation inspiration:

If you gaze long into a void, the void also gazes into you.

decimal is widely understood and in common use among the general
population. It is, therefore, of little interest to the programmer.

hexadecimal is how binary wants to be organised and what octal always
wanted to be. Use it everywhere, especially when people are expecting
decimal.

duodecimal is often touted as a geeky base which should be used in place
of decimal. While this is certainly a point in its favour, it’s a claim that
doesn’t meet all of its challenges. For example, base 12 is often touted as
being better than decimal because 12 has so many divisors – 1, 2, 3, 4, 6,
12 – which means that in the interval 1..12 half of the integers are divisors.
50%? Not bad. Applying the same analysis to binary – 1, 2 – and unary –
1 – however, gives 100% coverage.

Advocates of legacy measurement systems also advocate duodecimal,
noting that uncia, the Latin for twelfth part, gives us inch and ounce.
Hence, 12 inches per FPS foot, 16 ounces to an avoidupois pound (a
hexadecimal wannabe if ever I saw one) and 20 fluid ounces to an
imperial pint (easily expressed in a bi-denary system). Clearly, there are
some issues of legacy and implementation to be worked out before they’re
ready to present this one.

dewey decimal is an arcane numerological system for organising
libraries. Forget packages and namespaces – or, more popularly, spaghetti
inheritance and obfuscators – the priesthood of librarians has developed a
far more obscure approach to structuring and deploying information
systems.

There is also a parable of number systems, as told in Silent Running,
which begins with ternary (Huey, Dewey and Louie), is reduced to binary
(Huey and Dewey), then finally unary (Dewey).

bi-quinary is a much overlooked and classic digital system. Bi-quinary
coded decimal is based on pairs of fives - hold out your hands - and can
be found in proper abacus systems and early computers, such as the
Colossus. It has been said that it is awkward to use and difficult to convert
to and from. On the other hand, given a prior unary conversion, it has also
been sed:

 s/IIIII/V/g
 s/IIII/IV/
 s/VV/X/g
 s/VIV/IX/
 s/XXXXX/L/g
 s/XXXX/XL/
 s/LL/C/g
 s/LXL/XC/
 s/CCCCC/D/g
 s/CCCC/CD/
 s/DD/M/g
 s/DCD/CM/

A

Teedy Deigh has no idea who Megan Trainor is – or, indeed, what
any kind of trainer is. Teedy codes by night and counts imaginary
sheep by day. Basically, she makes stuff up using numbers.
20 | Overload | April 2017

Alison
Cross-Out

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

	Breadth First, Depth First, Test First
	Space invaders in Elm
	Single Module Builds – The Fastest Heresy in Town
	An Interview: Emyr Williams
	(Not Really So) New Niche for C++: Browser!?
	Contractual Loopholes
	All About the Base

