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EDITORIAL FRANCES BUONTEMPO
Rip It Up and Start Again
Some things can be resurrected, others 
cannot. Frances Buontempo wonders 
when we need to repent and start over.
I have failed to write an editorial. I have notes dotted
all around the house, with potential titles or ideas
scribbled down. Many are unreadable. Several are so
old now, I’ve visited the topics from a different angle
in previous excuses for not writing an editorial. Now,
if I listened to my own musings in our last Overload

(‘Revolution, Restoration and Revival’, [Buontempo18]), I could try to
revive some of these. I didn’t. I decided to tidy the house, starting with
making a new TODO list, subsequently running out of paper because I
remembered several other things that needed to get done. I should throw
all my old notes out to give myself a fresh start for a new year. Restoring
or reviving something old is one way to go. Other times, the best thing to
do is rip it up and start again.

Take a previous talk or an old code base: sometimes you can refactor it
slightly, sometimes you can’t. A complete rewrite might be the way to go.
In order to refactor, a code base requires some tests, otherwise you are
reworking or changing the code instead and potentially changing its
behaviour. There might not be conventional unit tests. Sometimes the best
you can do is produce some output in a file and use that as a ground truth
to ensure any changes introduced don’t cause regressions. Emily Bache
ran a 90-minute workshop at the ACCU conference in 2013 on refactoring
[Bache13]. The code was a snaky mess of ifs and elses, with no tests.
However, it did write lots of log messages, so you could tell if it still was
functionally identical after making changes. This made it possible to
massage the code into a state where you could add a new feature. Watching
the number of lines decrease, then the lines, scattered with ands and ors,
get shorter was wonderful. Refactoring is a skill I need to work on. I
suspect many people don’t really understand what it means. I’ve heard
people say they don’t have time to refactor and know they are leaving lots
of technical debt behind. Sometimes the same people have gatekeeper-
style code reviews. These can work as a place to discuss potential
refactoring, and often do. I’ve not often seen a code review out and out
reject the proffered solution and demand a complete rewrite. I would hope
a team would talk to each other earlier, and realise they are about to walk
into a brick wall a long time before a huge patch file needs reviewing. By
that point, you have not only lost several days of work, but it’s hard to let
go of something you’ve spent a long time on and start over. 

Circumstances can force a new start on a project. Sometimes it is a
deliberate choice, such as time constraints pushing you into adopting a
Plan B. Once or twice, a machine crashed and I lost my work. Another

reason to do small commits often. However, I have
found that when I do something again from

scratch, it is often quicker than my first
attempt. I remembered some dead ends I
had explored before, or which order to

install dependencies in, or an edge case or two that needed a test. I’m not
suggesting that destroying your computer is the best way to discover if
you are improving. Nonetheless, circumstances sometimes push you to
rework or rebuild something. Trying to develop a sense of when you are
digging a deep hole for yourself and need to form a Plan B, regardless of
outside pressures, is an important skill. Keeping your eye on the prize, by
holding in mind what you are trying to achieve, can pull you back from
the edge. Being aware of options, so you can unwind your current attempts
and try a different method matters. The same goes for trying to mentor or
teach others. If one way of explaining things doesn’t work, just saying it
louder, more emphatically and waving your hands around probably won’t
work. Try diagrams instead. Or some code. Or going for a coffee and
moving cups and sugar bowls around. Or get them to explain you what
they understand. Shut up and listen.

Now, you might be faced with a challenge that is similar to an algorithm
or method you have previously implemented. The promise of object
oriented programming suggested code reuse. However, we all know that
adding a monster code base as a library to a new project in order to use
one or two utility functions is not a sensible plan. At the expense of
contradict ing my previous cry for a 5p copy-and-paste tax
[Buontempo15], it might be wise to copy and paste the functions you need
into a new project. You could carve them out into a shared library, of
course. But if your needs differ slightly, don’t be shy to look at something
you have previously built, and start over, using that for inspiration. In fact,
“Evidence suggests that cut ‘n’ paste is a nearly essential, and nearly
universal, practice when new framework applications are constructed, be
they for GUI code,” [Coplien05]. The article goes on to point out that a
copy provides a “safe sandbox” which cannot disrupt production code “for
a time”. In some circumstances, this will work like branching and need
merging back. For a new project, however, you may have no intention of
merging back; instead you are revisiting old code, and re-writing it is a
potential learning experience. Any copy can be shallow or deep. Copy-
and-paste code is a deep copy or a clone. Two, initially identical, functions
or classes exist afterwards. Cut-and-paste, in contrast, simply moves the
code. This may happen in order to refer to it from different places, either
in a code base, or across code bases. Can you shallow-copy code? I suspect
some meta-programming, or something functional would work, but I can’t
dream up a sensible use case here. Imagine if you could reference count
all your attempts at Fizz Buzz and so on, and garbage collect once in a
while, without your computer dying to enforce the code deletion. Various
tools for automatic code duplication detection exist. I’ve never used one…
well, that’s not strictly speaking true. I think an expensive enterprise tool
was being run on a CI box where I worked a while ago that claimed to
spot code duplication but I couldn’t make sense of the output it gave. Their
docs say, “A developer has everything at hand to take ownership of the

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in 
Chemical Engineering, but mainly programming and learning about AI and data mining – and she’s written 
a a book on machine learning (https://pragprog.com/book/fbmach/genetic-algorithms-and-machine-
learning-for-programmers). She has been a programmer since the 90s, and learnt to program by reading 
the manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.
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EDITORIALFRANCES BUONTEMPO
quality of his code.” Glad to see careless use of pronouns is alive and well.
I digress. 

Of course, if you try to use old code you might run into issues. An older
code base might use a library. Only newer versions may be available, so
you can run into compatibility issues. Or in my case, you can’t figure out
which version you were using because your machine died and your code
repo wasn’t entirely helpful. Beyond libraries, languages themselves
evolve and change. C++ has a veritable history of trying to avoid breaking
backwards compatibility. Nonetheless, the keyword has been repurposed,
and many features, such as auto_ptr have now been deprecated. The
new meaning of auto has theoretically stopped some older code working,
leaving it needing a rewrite. To be fair, a reviewer pointed out that a couple
of the larger companies checked for use in their code bases when the word
was originally repurposed and found almost no instances outside compiler
test suite. If you are using this, you need to rip it up and start again. Why
are interfaces and methods deprecated? “The deprecation period gives
people a chance to change their code before the compiler removes it
outright”, according to one stack exchange answer [StackExchange].
Where features have been deprecated, you have been warned, but can limp
along keeping things as they are. For now. What happens if you are trying
to migrate a Python 2 codebase to Python 3? Tools exist to help with the
upgrade [Python], but they might not catch changes in libraries. Feed our
esteemed CVu editor a pint and ask him about numpy and csv files. But
only if you have a whole evening free. The next step after deprecation is
obsolescence. Whether the old API or technology ever really goes away
is another matter.

OK, so we can muse on why deprecation happens. How do you deprecate
a method? It is possible to support two APIs in tandem, but that requires
careful thought. It can be argued this is better than slapping in a Boolean
flag and a new set of inputs to switch the behaviour via the calling code.
If you try to switch out a method, you need to be careful not to break
existing code. This, in essence, is the Liskov substitution principle. In
‘Kissing SOLID goodbye’, [Oldwood14] Chris Oldwood notes, “The
Liskov Substitution Principle (LSP) is usually ‘explained’ by quoting directly
from it. What it boils down to is the proposition that two types are related if
one can be used in place of the other and the code still works exactly as
before.” A square is not the same as a rectangle. A stack is not the same
as a queue. In contrast, version 2 of a function should still behave the same
way as version 1, if called with the same inputs. A naïve and misguided
explanation of LSP talks about inheritance. Oldwood’s article points out
switching between containers, supporting the same iterator interface,
allows a variation point, leaving the behaviour identical. Common
interfaces are one way to introduce changes. Feature toggles are another
way to migrate to new behaviour. Be warned: these can get out of hand if
you don’t retire them quickly.

Various different forces take you to the place of no return, where you do
start over. Trying to develop a good sense of when something isn’t working
is invaluable. It’s all too easy to keep on digging. That might work out in
the end, but might lead to despair. I notice Wikipedia has a disambiguation
page for ‘Metanoia’ [Wikipedia]. The psychology entry defines it as a

psychotic “breakdown” followed by a rebuilding or “healing”. Sometimes
coding feels that way. I know the word from theology, and Wikipedia
describes this sense as “a transformative change of heart”, carrying the
sense of repentance, atonement and conversion. Perhaps you’ve written
code you feel the need to repent for? I have. What would you do differently
if you revisited this code? The ‘Breakthrough Ideas’ article [Coplien05],
referred to earlier, started with a list of questions, one of which was, “If
you could delete any idea, technology, or event from computing history, what
would it be?” What a splendid question. I’d consider voting for an editorial
in each Overload, but that might just be me. I’m not sure you can delete
an idea. What technology would you delete? OO? VBA? JavaScript?
Wizards? Dependency injection frameworks? Anything with the word
Enterprise in? What about an event? Recent news about the US joint
enterprise defense initiative (JEDI) military cloud request for proposals
[Wired]. “This program is truly about increasing the lethality of our
department.” Skynet anyone? It aims to “inject” AI into data analysis and
provide real-time data during operations. What could possibly go wrong?
Some things seem like a bad idea from the outset. Others start well but their
time comes. Knowing when that time has come is
important. Pick something you don’t like about your
approach to programming and stop it. Find a new way
forward. 
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FEATURE SERGEY IGNATCHENKO
5 Big Fat Reasons Why 
Mutexes Suck Big Time
Mutable shared state in multithreaded code is often 
protected by mutexes. Sergey Ignatchenko reminds us 
that Re-Actors can avoid many of the problems.

Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Hare, and do not necessarily coincide with the opinions of the
translators and Overload editors; also, please keep in mind that
translation difficulties from Lapine (like those described in
[Loganberry04]) might have prevented an exact translation. In
addition, the translator and Overload expressly disclaim all
responsibility from any action or inaction resulting from reading this
article.

Amicus Plato, sed magis amica veritas
Plato is my friend, but truth is a better friend

~ Aristotle

f course, I am perfectly aware that an all-powerful multithreaded
inquisition will try to burn me at the stake for publishing this kind
of heresy. Still, I do believe in the truth (at least as I understand it),

so – trying to keep in line with Aristotle, mentioned in the epigraph – I
have no choice other than to try to bring these things (that have been known
for ages but conveniently forgotten way too often) to the forefront. 

And yet it moves they suck!
~ Galileo Galilei ‘No Bugs’ Hare

On terminology
Just to be clear: in this article I am not attacking mutexes in a narrow sense,
so don’t think that a critical section or an OpenMP lock is in any way better;
rather, all techniques which provide mutual exclusion functionality are
equally bad for the purposes of this article. These include, but are not
limited to:

 All kinds of mutexes (whether recursive or not, single-process or
multi-process, etc. etc.)

 Critical sections (including both Windows ones and OpenMP ones)

 Semaphores used for mutual exclusion

 Java synchronized objects.

A bit of history
…in the Beginning there was only The Darkest Darkness, and in the

Darkness – Magnetics, which unwound the atoms; spinning, the atom
struck the atom, and Pra-Current arose, and with it the First Light...

and the stars lit up, the planets cooled, and
mini-micro-Pramachines emerged, and from them Pramachines

developed, and then, by the Providence of Holy Statistics –
Protomachines. They still could not count, they only knew what is two
plus two,  and nothing more, but then, thanks to the Natural Evolution,

somehow they got the hang of it, and the Multi-Stats and Omnistats
originated from them, and then there was Pithecanthrobotus and from

him our forefather, Automatus  Sapiens…
~ Stanislaw Lem, The Cyberiad

In the very beginning, Stone Age programmers were programming directly
on the hardware, without any intermediaries. However, by 1956, it was
realized that app-level programs need some kind of a helper program
between them and hardware, and the first operating system (intended for
one single computer!) was written [Wikipedia]; it was the beginning of the
Bronze Age of programming. 

With the advent of a common OS for multiple computers (OS/360 in the
mid-60s), computing progressed into the Iron Age. It was during the Iron
Age that threads were first introduced (as ‘tasks’ in OS/360 in 1967 or so).
Still, the dominant approach to programming at the time was via processes
rather than via threads. From our current perspective, the main difference
between processes and threads is that with processes we don’t normally
have shared memory, and have to communicate using more structured IPC
means.

By the mid-70s, computing got microprocessors (including my personal
favorite, i8080A) and has reached Ancient Times. By the early 80s,
microprocessors have become ubiquitous and have started to make inroads
into our homes. 

By the late 80s, POSIX threads had been developed [McCracken02], and
by the early 90s, (originally thread-oriented) WinNT was released.
However, threads were still seriously unpopular with developers; just as
one example, Linux didn’t get even a half-decent implementation of
POSIX threads until LinuxThreads in 1996 (and a really good
implementation wasn’t there until 2003, after the CPUs hit the gigahertz
wall – more on this below). 

Hardware-wise, in the 90s, there was an explosive growth in the
performance of microprocessors; in 1989, the i486 was running at 25MHz
and by 2000, Willamette P4 was running at 1.5GHz – this is a whopping
60x increase in frequency in about ten years (and more like a 100x overall
performance increase if we count in other optimizations). Some dinosaur
hares like me can even remember an interpretation of Moore’s Law saying
that not only the number of transistors but also CPU frequencies will
double every two years; in 2000, Intel promised 10GHz CPUs by 2005
[Shimpi00].

However, after approximately 2002, all this explosive growth in CPU
frequencies (and in per-core performance) abruptly slowed down;
frequencies even dropped (reaching 4GHz again only after ~10 years with
the 4GHz but hugely inefficient Netburst), and per-core performance
improvements have slowed down very significantly [Edwards12]. 

As a result of this sudden stop in GHz growth, Intel gave up on GHz-based
marketing, and switched to marketing based on the number of cores. But
there was an obstacle to this – the lack of programs able to use multi-core
processors. And Intel has started to promote multi-cored programs. There
is nothing wrong with multi-coring per se, but apparently, the most
efficient tactics for going this way turned out to be to say “Hey! You can

O

‘No Bugs’ Hare Translated from Lapine by Sergey Ignatchenko 
using the classic dictionary collated by Richard Adams.
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sergey@ignatchenko.com
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FEATURESERGEY IGNATCHENKO
simply take your existing program, and just make a few minor changes (often
even called ‘annotations’): just insert this magical mutex (critical section,
etc.) whenever you have a data race – and your program will be able to utilize
all our cores!”

I remember attending an Intel workshop on OpenMP during one of the
ACCU conferences in the early 2000s… Marketing-wise, it was probably
a success, but OMG, technically it was a disaster. Just two observations
from the workshop supposed to teach us proper multithreading; first, there
was a multithreading bug even in the few hundreds of lines of code they
gave us; and if the Intel folks teaching us multithreading cannot write 200
LoC without a bug, what can an Joe Average developer with expertise
elsewhere hope for?! However, while the bug was pretty telling per se,
IMNSHO much more annoying was the following occurrence. When we
did run their code, it was able to utilize all the cores (“hey, look at taskman
– see, we ARE utilizing ALL the four cores!”); however, while all four cores
were working like crazy, the wall-clock time of the calculation actually
increased after we introduced multi-threading (!! – actually, it is quite
common when MT is too fine-grained, more on this below). Of course,
Intel’s job at selling us their CPUs does stop as soon as 100% utilization
is reached (!), but as a developer who cares about my customers and not
about Intel’s profits, I have absolutely zero reason to use this kind of
multithreading (and I contend that the whole premise of utilizing more
cores is deadly wrong – instead, the whole multi-coring thing is only about
decreasing response time to an incoming request, and there is absolutely
no other reason to use more than one CPU core to perform a given task). 

That’s where we were standing during the 2000s – pretty much everybody
was writing multithreaded mutex-synced programs, and “hey, our program
is multithreaded” started to be used as a selling point(!); as a result, lots of
devs with no idea about multithreading started to add threads just for the
sake of it. These were the Dark Ages of Multithreaded Inquisition in
programming, which caused programs to crash often due to data races, and
to perform poorly too. In my personal experience, I’d estimate that at least
half of the crashes I personally ran into were due to some kind of a
multithreading race; this is not to mention that our esteemed translator has
personally found MT bugs in such projects as OpenSSL, most C++ std::
implementations [Ignatchenko98] of the time, and in a WG21 working
paper [NoBugs17]. Worse than that, one of those bugs was reported to
manifest itself only once a month on a client site (!). As for performance,
one of those faulty std:: implementations in [Ignatchenko98] exhibited
up to a 100x performance degradation compared to a mutex-less fix – even
in those use cases when it didn’t crash. 

To be perfectly honest, even in the Dark Ages, there were people and whole
technologies that avoided mutexes (such as Erlang), but sadly, such
projects were very few and far between. Fortunately, starting around 2010,
a more widespread understanding started to form that mutex-based
programs suck, and more and more material started to emerge arguing that
mutex-based sync must die – or at least that better alternatives are viable
[NoBugs10] [TheGoBlog] [Henney16] [Fowler11b]. I would even say that
by 2017, we had already passed the point of no return with regards to
mutexes at the app level – and that mutexes will follow the lead of that
once ubiquitous and now not really used operator, goto (sure, we can still
use goto in quite a few languages – but we should NOT).

So, why do mutexes suck?
Now, after all the historical ranting, let’s start looking at those promised
Big Five Reasons for mutexes being, ahem, sub-optimal for the vast
majority of tasks out there. 

Big fat reason #1: Error-prone beyond belief
The very first reason why mutex-based programs suck big time is that it
is extremely easy to write a seemingly-working multithreaded program
which actually contains a bad data race. Looking from 50,000 feet, there
are two types of data-race-related bugs in mutex-based multithreaded
programs: (a) forgotten mutex lock, and (b) deadlock. And while it is
possible to write correct mutex-based programs (for (a) you just need to
be ultra-hyper-careful, and for (b) meticulously following of some kind of
global order of acquiring locks will do the trick), in practice it happens to

be an insurmountable task waaaay too often. If even such supposedly
expert developers as those of Intel (teaching multithreaded programming,
no less!), half a dozen different implementors of the std:: library, and
several WG21 members, cannot do it right even for a relatively small and
static piece of code – what can the rest of us realistically hope for,
especially when working on ever-changing app-level code?!

BTW, while it is theoretically possible to use tools to enforce safe mutex-
locking programming practices, even the best thing I know in this regard
(the Rust programming language) only solves the problem partially: even
after jumping through all the Rust hoops (and there are lots of them ),
and even if we manage to avoid any unsafe{} code, Rust can only guarantee
safety against forgotten mutex locks; as for deadlocks, “Rust considers it
‘safe’ to… deadlock” [Rustonomicon], so deadlocks are still perfectly
possible even within ‘safe’ Rust code .

Big fat reason #2: Fundamentally untestable
The second Big Fat Problem™ with mutex-based programs is that these
data races (both forgotten locks and deadlocks) are fundamentally
untestable (well, at least on all the existing hardware). How it works in the
real world:

 You write your mutex-based program.

 You test it, and it passes all of your unit tests.

Some of unit tests may occasionally fail – but when you re-run them,
they’re fine, so you ignore such occasional failures (which is BTW
a Mortgage-Crisis Size Mistake™).

 You deploy it to your servers.

 You run it for months without a hitch. 

 You start saying, “Hey, see – it is easy to write perfectly correct
mutex-based programs, I did it myself!”

 Then your Big Day comes (Christmas sale, Tournament of the Year,
Black Thursday, etc.) – and the bug which was sitting there all this
time manifests itself, so your system crashes (and being on your Big
Day, this crash comes at the worst possible moment too).

 Bummer.

The root of this problem is that inter-thread interaction is inherently non-
deterministic (at least with modern hardware). Each and every run of a
multithreaded program is potentially substantially different from a
previous one, with thread context switches – as well as inter-core
interactions – happening at random times on each run. As a result, it is
perfectly possible that the same program with the same input data which
was running ok 99 times in a row, will crash on the 100th run; even worse,
crash probabilities are highly dependent on the environment (including,
but not limited to, specific hardware, load at the time of test, other
programs running at the same time, and Acrux rising interrupts from your
NIC coming at a specific moment).

This, in turn, means that any test we can possibly run is inherently
meaningless   (as Fowler wrote: “Non-deterministic tests have two
problems, firstly they are useless…”) [Fowler11a]; in other words –
regardless of the amount of testing, we cannot possibly say that we have
tested all the possible data-race-related scenarios. 

From this very observation, it follows that

We have to prove the correctness of our mutex-based programs.

However, as mentioned above, even after jumping through all the hoops
of Rust, we cannot really prove the correctness of our mutex-based
programs (as the potential for deadlocks is still there); in general,
automated tools for such proofs are not really here (and given the rest of
the problems with mutex-based stuff, chances are they will never be
written).

In the real world, this problem happens to be soooo bad that once upon a
time I was even involved in writing a tool which used fibers to simulate a
preemptive scheduler to ensure that if a bug in a program under test is found
during such testing, the bug is at least reproducible (also, it was possible
to run an exhaustive test, though this was feasible only for very small
programs). 
February 2019 | Overload | 5
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Big fat reason #3: Mental overload  development slow down
In addition to the two first Big Fat Problems discussed above, the third one
becomes apparent – being ultra-careful and meticulously following
prerequisites to writing correct code (exacerbated by an inherent inability
to test our mutex-based programs) tends to take a toll on the mind of the
app-level developer who tries to do it. The cognitive capabilities of our
brains are actually very limited, so being occupied with mutexes and their
order – which are things light years away from the app-level task we’re
trying to solve – inevitably causes much fewer brain resources to be
available for that app-level task we’re really programming right now. 

As discussed in [NoBugs15], thinking both about thread sync and about
the business-level task at the same time quickly leads to an explosive
growth in number of entities the developer has to keep in mind while
programming; this, in turn, leads to exhaustion/exceeding the cognitive
capacity of our brains (violating the so-called 7±2 rule, and leading to
cognitive overload), which means that either development speed has to
suffer a lot, or our program will have more bugs (including non-
multithreaded ones!), or both. To make things even worse, maintenance
of mutex-based code (and we do have to re-prove MT correctness after
each and every potentially relevant change!) is not really feasible for
anything more complicated than a ‘Hello, mutex!’ program.

Big fat reason #4: Poor performance
The fourth reason for mutexes sucking Really Badly™ follows from two
observations: (a) whenever we’re trying to obtain a lock on an already-
locked mutex, we’re about to cause an inter-thread context switch, and (b)
the cost of an inter-thread context switch is huge. 

Let’s discuss the cost of an inter-thread context switch. In [Li07], it was
observed that as soon as we account for cache invalidation costs, the cost
of an inter-thread context switch can easily reach a million CPU clock
cycles; my personal calculations show that on a modern Xeon-class CPU,
theoretically cache invalidation can cost up to 30M CPU clock cycles. In
practice, my personal observations are much milder, but even the 20–50K
CPU clock cycles I observed are bad enough to want to avoid mutexes, at
least in seriously contentious scenarios. BTW, IMNSHO my observations
are consistent with the practice of spin-locks; just think of it: how bad is
the cost of a thread context switch that it’s better to be busy-waiting for
several thousand iterations (with each taking at least 3 CPU cycles to read
from L1) just in the blind hope that we will avoid the thread context switch?
That is, if we’re lucky, with a spinlock we’ll just incur the penalty of the
spinning though not of the context switch, but if we’re NOT lucky – we’ll
incur both the cost of the spinning and the cost of the context switch; and
even with all of this in mind, spinning still makes sense for quite a few use
cases… 

Yet another observation, which will lead us to about the same numbers, is
that (as mentioned above) it is easy to utilize more cores while increasing
the total time of solving a certain problem; as mentioned above, this
problem often manifests itself if our calculations are split into slices which
are way too fine-grained (and this often causes context switches to kick
in, eating up all the resources). As a Big Fat Rule of Thumb™, if we’re
running for ~100ms, we can realistically consider a/the? thread context
switch negligible (actually, 100–200ms is a typical time slice of a modern
OS, and for this very reason too). On a modern CPU, 100ms corresponds
to ~300M CPU cycles, so the decision of OS developers to have a time
slice of 100–200ms to ensure that thread context switch costs are negligible
looks rather consistent with our worst-case estimates of millions CPU
cycles per thread context switch.

There is one more way to think about it: if we take a look at a CPU, we’ll
realize that it is inherently an event-driven system; all we have at the
hardware level are cores and hardware interrupts routed to those cores,
there is nothing more – and in this case, each core is actually a (Re)Actor
with its state being core registers + associated memory, allowing the
(Re)Actor to handle interrupts (including timer interrupts which cause
preemption) as its input events. From this point of view, the very concept
of a thread is an artificial entity (~= ‘abstraction with a non-zero cost’) –
and using threads, and especially inter-thread synchronization between

those threads, the non-zero cost of this abstraction starts to hurt
performance.

Big fat reason #5: Lack of scalability
By design, shared-memory approaches (which BTW include both mutexes
and atomics) cannot be scaled beyond one single computer (well, strictly
speaking, it is possible to simulate shared memory across boxes, but it is
going to be excruciatingly slow [StackOverflow] – that’s like 1000x
slower, which makes it impractical).

Ok, mutexes are bad – but is there anything better?
By now, I hope that I have made a case against mutexes (and, more
generally, against shared-memory architectures). But this line of argument
makes sense only if something better exists (otherwise we’re stuck with
“Hey, it is the worst thing in the universe – except that it is the only one, so
we have to use it anyway”). 

Message-passing, including (Re)Actors a.k.a. Actors a.k.a. 
Reactors a.k.a. event-driven a.k.a. ad hoc FSMs
Fortunately, there is a well-known approach that solves all the issues raised
above (though not without some cost): it is using message-passing shared-
nothing architectures. They have been known for ages; in modern
computing, the oldest living relative of the shared-nothing message-
passing stuff is probably Erlang; however, recently many more
technologies have emerged which are operating more or less along the
same lines (though they’re mostly event-driven which is a subset of more
generic message-passing): Akka Actors, Python Twisted, Go (at least as
its idiomatic version), and of course, Node.js; also there is an ongoing
development in which I am involved too [Node.cpp].

Let’s take a look at the Five Big Deficiencies of mutexes we discussed
above, and observe how shared-nothing message-passing and (Re)Actor-
like programming models fare in this regard:

1. MT-error prone. As message-passing and event-driven programs
behave ‘as if’ they’re single-threaded, they’re naturally mostly free
from shared-memory artifacts such as forgotten mutexes and
deadlocks (well, in theory it is possible to have a deadlock between
different message-passing programs, but during all my years with
them I didn’t see one). 

More formally, while message-passing programs may still use some
multithreading primitives deep inside (say, to implement inter-
thread queues), these primitives are extremely small and never-
changing, and therefore can be proven to be correct. And as soon as
we’re inside a message-passing program which doesn’t use shared
memory, all such programs can be proven just once to be MT-
correct regardless of their specific logic.

2. Untestability. Unlike mutex-based stuff, message-passing
programs are testable; in other words, if we feed the same inputs to
a message-passing program, it will produce the same results (=‘our
tests become reproducible’)

Even better, message-passing/(Re)Actor programs can be made
deterministic in a practical sense, all the way up to recording-replay
logic, which can be used in production (!!). While such things are
known, I don’t know of a single generic framework providing this
functionality (except for WIP [Node.cpp]).

3. Complexity. As with message-passing programs, there are no
mutexes to worry about, which eliminates related mental costs. In
practice, the development of non-mutex programs is known to be
significantly faster than that of mutex-based ones.

As discussed in [DDMoGv2], while asynchronous processing has
its own complexity costs, as soon as we’re speaking about the
interaction between different requests, this complexity happens to
be much lower than that of thread-synced approaches; this becomes
even more true if we can use modern async-oriented constructs such
as futures/promises and the await operator in C#, Node.js,
and C++. 
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4. Performance. No mutexes and blocking calls  no forced thread
context switches  no millions of CPU cycles spent on those thread
context switches. In practice, it means the best possible performance
for our message-passing/(Re)Actor program (hey, there is a reason
why nginx performs significantly better than Apache). One way to
think about comparing a mutex-based system with a message-
passing one is an analogy with traffic: each mutex is a traffic light,
slowing things down; and message-passing doesn’t have mutexes/
traffic lights, which allows to move like on a highway – much faster. 

5. Scalability. Message-passing programs can scale to multiple boxes
easily; two common examples are Erlang and MPI, but I’ve seen
much more examples in the real-world than that. 

As we can see, none of the Five Big Fat Problems of mutex-based programs
apply to message-passing and event-driven programs. 

Conclusion
We discussed Five Big Fat Reasons why mutexes are bad… Moreover, we
took a look at the alternative message-passing/event-driven programs and
found that none of the Five Big Reasons apply. 

Therefore:

If you care about any of the {correctness | MTBF | complexity |
performance | scalability} of your programs, do you and your
customers a favour and get rid of mutex-based shared-memory
abominations.

Note that this does NOT exclude multi-coring as such – but moves thread
sync out of sight of the app-level and very severely limits its nature, so it
becomes manageable (and its correctness, provable). 
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A Small Universe
Writing a programming language is a hot 
topic. Deák Ferenc shows us how he wrote a 
compiler for bytecode callable from C++.
et’s take a deep dive in the world of programming languages,
compilers, virtual machines and embeddable execution environments
in this article, since we are not setting a lesser goal than creating a tiny

programming language, then writing a compiler for it which will create
bytecode for a virtual machine – which, of course, we have the luxury of
imagining from scratch – and last but not least, making all this run while
being embedded inside a C++ application. 

But before we embark on this epic journey, we also need to know what we
are dealing with by providing an overview of how compilers work, what
the steps are they perform in order to transform human-readable (or better
said,  human-engineered) source code into a series of bytes
incomprehensible for aforementioned humans, but which makes perfect
sense for computers. So, our article will start with an overview of the inner
working of a generic compiler, on a level more theoretical than practical.
From there, we will move to one of the main goals of this article, which
is the creation of a very simple programming language and providing a
fully functional compiler for it.

Since creating a simple compiler is a task which usually targets the
architecture of a computer, we also will introduce a virtual machine, with
a set of unique instructions that will be executing our compiled language,
so let’s get started.

How a compiler works
The widely used mainstream compilers tend to appertain to a family of
applications characterized by complexity, with elaborately written source
code, most typically engineered over several years by a few experts in the
field. When an end user uses a compiler in order to compile a piece of
source code, the compiler has to go through a series of intricate steps in
order to produce the required executable, or to provide valuable error
messages if errors are found during compilation.

On a very high level, Figure 1 shows the steps a compiler does with a source
file, in order to generate executable binary code.

First, it takes the source code and reads it. This step provides input for the
next, usually in forms of ‘tokens’. The output of step 1 is run through an
analyze phase (step 2), which generates a so-called ‘Abstract Syntax Tree’,
which in turn is used as input for the last stage. The last stage provides the
binary code that is runnable on the target platform.

Between these steps, a compiler often translates the data into an
Intermediate Representation that is equivalent to the input source code but
that the compiler can work with more easily (the data are algorithmically
easier to process), such as graphs, trees or other data structures – or even
a different (programming) language.

And at a high level, this explanation is more than enough for someone to
understand what happens inside a very simple and naïve compiler.

Types of compilers
When it comes regarding the approach of a compiler to source files, we
can differentiate two types of compilers:

 One-pass compilers

 Multi-pass compilers

One-pass compiler
As the name suggests, the one-pass compiler is a compiler which passes
through a compilation unit exactly once, and it generates corresponding
machine code instantly. ‘One-pass’ does not mean that the source file is
read only once but that there is just one logical step affecting the various
(compiler internal) data of the compilation steps. The compiler does not
go back to run more steps on the data once done; instead the compiler
passes from parsing to analyzing and generating the code then going back
for the next read.

A compilation unit can be also imagined as just a fancy technical term for
a source file, but in practice it can be a bit more. For example, it might
contain information provided by the pre-processor, if the target language
has this notion, or it might contain all the imported source code of the
modules this file needs in order to compile (again if there is support for
this feature in the language this compiler targets).

One-pass compilers have a few advantages, and several disadvantages, in
comparison to multi-pass compilers. Some advantages are that they are
much simpler to write, they are faster and much smaller. For some (most
popular) programming languages, it is impossible to write a one-step
compiler due to the syntax the languages require. A notable exception is
the programming language Pascal, which is a perfectly good candidate for
a one-pass compiler because it requires definitions be available before use
(by requiring syntactically that the variables are declared at the beginning
of the current procedure/function or that the procedure is forward
declared). The application provided as educational material within this
article is a simple one-pass compiler.

Multi-pass compilers
In contrast, multi-pass compilers [Wikipedia-3] convert the source into
several intermediate representations between various steps in the long path
from source code to the corresponding machine code. These intermediate
representations are passed back and forth between various stages of the
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compile process between the compilation phases. At all stages, the
compiler sees the entire program being compiled in various shapes.

Multi-pass compilers – because they have access to the entire program in
each pass (in various internal representations) – can perform optimizations,
such as removing irrelevant pieces of binary code to favor smaller code,
or excluding redundant code, and they can apply a variety of other gains
at the cost of a slower compile time, and higher memory usage.

The typical stages of a multi-pass compiler can be seen in Figure 21.

Lexical analysis
The lexical analysis stage is the first stage in the front end of a compiler’s
implementation. When performing lexical analysis, the compiler considers
the source as a big chunk of text, which needs to be broken up into small
entities (called tokens). 

This stage is responsible for building up the internal representation of the
source code using tokens, after removing irrelevant information from it
(such as comments, or contiguous space, unless they are relevant to the
syntax of the source code, just like in case of Python). Each token is
assigned a type (for example, identifiers, constants, keywords) among
other relevant information, and the information from this point on is passed
on to the next stage.

Now follows a very simple example of tokenization.

The following expression x = a + 2; can be tokenized into the resulting
sequence (partially using the example from [Wikipedia-2])

  [(identifier, x), (operator, =), (identifier, a),
  (operator, +), (literal, 2), (separator, ;)] 

One of the methods of constructing an efficient lexer for a language is to
build the language based on a regular grammar for which there are already
well defined, efficient and optimal algorithms. A regular expression
[Wikipedia-5] can parse the language generated by the regular grammar
and, most importantly, there is a finite state automaton that can interpret
the given grammar. 

Finite state automatons
A finite state automaton can be viewed as an abstract machine that is in exactly
one specific state at any given moment in time. The automaton changes its

state because of an external impact, and this process is called a transition. It
can be modelled from a mathematical point of view as a quintuple:

where:

 Q is a finite set of states

 Σ is a finite alphabet

 δ is the transition function:

 F represents the set of finite states, and

 F  Q, F might be empty.

For example, the finite state machine in Figure 3 is designed to recognize
integral numbers (without sign).

Working out the mathematical definitions and the regular expression for the
given automaton from the diagram is left as a fun homework for the reader.

Syntax analysis
In the next phase of the compilation, the tokens (the output of the lexical
analysis stage) are checked in order to validate their conformity with the
rules of the programming language. Regardless of the success of the lexical
analysis, not all randomly gathered tokens can be considered a valid
application, and this step ensures that these tokens are indeed a valid
embodiment of a program written in this language. Due to the recursive
nature of a programming language’s grammar and syntax, at this stage the
application is best represented by a context-free grammar, and the
responsible corresponding push-down automaton. Once the rules are
satisfied, an internal representation of the source is generated, most
probably an abstract syntax tree.

Context-free grammars
A context-free grammar is just another way of describing a language and
mathematically it can be represented with the following structure:

where:

 N is a finite set of non-terminals (variables), which represent the
syntactic constructs of the language

 Σ contains the symbols (terminals) of the alphabet on which the
automaton is working, ie. the symbols of the alphabet of the defined
language (and not to be confused with Σ from the previous definition
of the automaton: it’s not the same)

 P is a set of rules used to create the syntactic constructs which
operate on the variables and result in a string of variables and
terminals (rules for different derivation of the same non-terminal are
often separated by "|").

 S is the start symbol

Consider the following context-free grammar:

1. Original diagram by Kenstruys (own work) and placed in the public domain.
Gratefully downloaded from Wikimedia Commons. 
https://commons.wikimedia.org/w/index.php?curid=6020058.
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which was designed to be able to generate the language L. L(G) is the
notation for the language generated by the given grammar G: 

For example, obtaining 000111 can be done by starting with the Start
symbol and consecutively applying the rules (2), (2) and (1) resulting in
the following derivation:

A derivation in CFGs, which have rules in their rulesets involving more
than one non-terminal (for example, ({S},{+,1},{SS+S |S |1},S) is
called a left-most (right-most) derivation. At each step, we replace the left-
most (right-most) non terminal:

thus obtaining the expression 1+1 and the parse tree (shown in Figure 4),
which is an ordered tree representing the structure of the string according
to the context-free grammar used to derive it.

Push-down automaton
A push-down automaton can be imagined like a finite state-machine but
with an extra stack attached to it. The following 7-tuple gives a more or
less formal definition for it:

where:

 Q, Σ and F are defined likely as for a finite-state automaton

 Γ is the alphabet of the stack

 q0 is the start state of the automaton

 Z0 is the start symbol, Z0 Γ

and the transition function is:

so it takes in a triplet of a state from Q, an input symbol (which can also
be the empty string, called ϵ – epsilon) from Σ and a stack symbol from Γ
and it gives result a set of zero or more actions of the form (p, α) where p
is a state and α is a string of concatenated stack symbols.

Remembering the context-free grammar from our previous paragraph, we
can construct a push-down automaton which will recognize the elements
of {0n 1n |n 1}:

Concerning the states:

 q is the initial state and the automaton is in this state if it has not
detected the symbol 1 so far but only 0s. 

 p is the state where the automaton lies if it has detected at least one
1 and it can proceed forward only if there are 1s in the input. 

 f is the final state

And where the transition function is defined as:

These two rules are handling the 0 from the input: both of them push one
X onto the stack of the automaton for each 0 identified.

This rule will change to state p and pop one X from the stack

If in state p and we encounter a 1 in the input, pop one X from the stack

And finally, at this stage we have supposedly successfully identified our
string of 0s and 1s. Our stack needs to be empty, the input fully consumed
and then we can advance to the final state.

So, if we have 000111, the automaton goes through the following steps in
order to recognize it as a valid input for the given grammar:

Now we can hopefully see the methodology involved in this step, we just
need to create a push down automaton for our language which will
successfully consume the series of tokens from the previous step thus
resulting in a syntactically correct application. 

In the paragraphs below, we frequently mention elements of a push-down
automaton and refer to (context-free) grammars, hence this very short
theoretical introduction. Unfortunately, a deeper study of this very exciting
subject is beyond the scope of this article, being such a huge subject in the
field of computer science that there are semester-long courses dedicated
to the research of this domain. It is practically impossible for us to dig
deeper into this field now. For everyone interested in this fascinating
domain, I highly recommend Introduction to Automata Theory,
Languages, and Computation by Hopcroft, Motwani and Ullman (2nd,
2001 edition). 

The parser
The component responsible for this step in the compiler’s architecture is
called the parser. Depending on the approach chosen to build the parse tree
upon encountering an expression, we differentiate between the following
types of parsers:

 descending – the tree is built from the root towards the leaves. In this
situation, the parsing starts by applying consecutive transformations
to the start symbol till we obtain the required expression. This
approach is also called top-down parsing.

 ascending – the tree is built from the leaves towards the root, upon
applying reverse transformations to the expression in order to reach
the start symbol. This is also called bottom-up parsing.

Recursive-descent parsing
Usually the top-down parsers, which process the input from left to right,
and the parse tree, which is constructed from top to bottom, are also known
as recursive-descent parsers due to the recursive nature of context-free
grammars. In the construction of the tree, a backtracking mechanism might
be involved, which results in a less effective performance due to the
constant back-stepping of the algorithm. These parsers are usually avoided
in case of large grammars.

The parsers which are able to ‘predict’ which production is to be used on
the input string do not require any backtracking steps and are called
predictive parsers. These parsers operate on specialized LL(k) grammars,
which are a simplified subset of the context-free grammars. Due to some
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applied restrictions and a precomputed state transition table introduced in
the algorithm (which determines how to compute the next state from the
current state and the lookahead symbol), they gain an extra simplicity when
it comes to implementation.

LL(k) can be interpreted in the following manner:

 the first L means: Left to right

 the second L means: Left-most derivation

 and the k represents the number of lookaheads the parser can
perform.

Parsers which operate on LL(k) grammars are also called LL(k) parsers.

Shift-reduce parsing
While reading the input, usually from left to right and trying to build up
sequences on the stack which are recognized as the right side of a
production, the parser can use two steps:

 Reduce: Let’s consider the rule Aw. When the stack contains qw,
its content can be reduced to qA, where A is a non-terminal from our
grammar. When the entire content of the stack is reduced to the start
symbol, we have successfully parsed the expression.

 Shift: If we can’t perform a reduction (or ‘if we can’t reduce the
stack’) of the stack, this step advances the input stream by one
symbol, which is pushed onto the stack. This shifted symbol will be
treated as a node in the parse tree.

Parsers using these steps are called shift-reduce parsers. 

LR-parsers
A more performant family of the shift-reduce parsers are the LR parsers
(invented by Donald Knuth in 1965 [Knuth65]). They operate in linear
time, producing correct results without backtracking on the input, using a
Left to right order and always use the Right-most derivation in reverse.
They are also known as LR(k) parsers, where k denotes the number of
lookahead symbols the parser uses (which is mostly 1) in the decision-
making step. Similarly to LL parsers, LR parsers use a state transition table
that must be precomputed from the given grammar.

Several variants of the LR parsers are known:

 SLR parsers: these are the Simple LR parsers, categorized by a very
small state transition table, working on the smallest grammars. They
are easy to construct.

 LR(1)parser: these parsers work on large grammars. They have large
generated tables, and they are theoretically enough to handle any
reasonably constructed language – they are just slow to generate due
to the huge state transition table.

 LALR(1) parsers: the Look Ahead LR parsers are a simplified
version of the LR parsers, able to handle intermediate size
grammars, with the number of states being similar to SLR parsers.

LR parsers operate on LR grammars, whose pure theoretical definition we
will skip for now. We will just mention that as per the [Dragon] book, page
242, the requirement of an LR(k) grammar states that “we must be able to
recognize the occurrence of the right side of a production in a right-sentential
form with k input symbols of lookahead” is less strict than the one for LL(k)
grammars “where we must be able to recognize the use of a production
seeing only the first k symbols of what its right side derives”. This allows
LR grammars to describe a wider family of languages than LL grammars
with only one drawback: the allowed complexity of the grammar makes
it difficult to hand-construct a proper parser for it, so for a context-free
grammar with a decent complexity, a parser generator will be required to
generate a parser.

With this, we have ended our long but still frivolous journey in the world
of parsers and syntax analysis, but for anyone interested there is no better
source to turn to, than Chapter 4 of the dragon book [Dragon] where all
these concepts are discussed in great length.

Semantic analysis
The semantic analysis stage during compilation validates the output
generated by the syntax analysis and applies semantic rules to it in order
to confirm the requirements of the language, such as strict type checking
or other language-specific rules.

The input to this stage is an intermediate representation, mostly in the form
of an abstract syntax tree created by the previous step, and the following
operations may be performed on it, resulting in an annotated abstract
syntax tree (or, if our product is a source-to-source translator, even the final
variant of the result). The following list contains a few of the rules that can
be applied in this stage; however, since semantic analysis is a highly
programming-language-specific step, it is worth mentioning that each of
the items can be prepended with ‘if the language has support for it then’:

 Type checking for various entities (such as, does the language
require that indexes to an array must be a positive integer – for
example, Pascal allows also negative indexes in the syntax).

 Validation of operands of various operators (some programming
languages may consider having a multiplication sign between a
string and an integer to be ill-formed to have, but not Python).

 Verification of implicit conversions (what will be the result of an
addition of a real type variable to an integer type variable).

Code generation
In the last step of the compilation process, a typical compiler will generate
executable code for the application. This is done by converting the
resulting intermediate representation into a set of instructions (usually
target architecture assembly, if we are compiling through assembly, or
direct binary code).

The code generation phase, depending on the compiler itself, might be
through the introduction and use of intermediate code, or some compilers
can generate code directly for the target architecture. The intermediate
code is a sort of machine code, which without being architecture specific
can still represent the operations of the real machine.

The intermediate code is very often represented in the form of a 3-address
code. The 3-address code can be viewed as a set of instructions where each
instruction has at most 3 operands, and they are usually a combination of
an assignment operation and a binary operation. For example, the
following expression:

can be represented by the following sequence of 3-address code
instructions:

The importance of a 3-address code is that a very complex expression is
broken down into several separate instructions which are very close to
assembly level and they are very easily translated into the required
machine code instruction.

Transforming an abstract syntax tree into a series of 3-address instructions
is not an extremely complex task; basically, it just means traversing the
tree and correctly identifying the set of temporaries and the values assigned
to them, so generating code for the simple expressions of the language is
possible using this process.

Generating code for compound statements, such as representing IF or FOR
loops, usually boils down to a combination of jumps depending on the
conditions imposed on the statements and then again generating code for
simple expressions.

Generating code for function calls requires the presence of a stack, where
– in the currently used Von Neumann architecture – we store not only the
ingoing parameters to a function (if any) but also the addresses of return
after the completion of the function.
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First, the parameters are calculated, and their value is pushed onto the
stack, then we issue the call command to invoke the method. This will also
push the address where the called function should return after completing
its execution. After the function has returned, we are back to the first
instruction after the call of the method; the only thing that remains is to
adjust the stack properly and continue execution.

Architecture of a compiler
For complex compiler projects, we usually see a three-stage structure like
in Figure 5.

This design has the advantage that several programming languages can be
compiled using the same compiler (applying the same optimizations to all
the source code written in different programming languages) to several
machines and architectures (image courtesy of Wikipedia).

The front end
The front end section of the compiler is the one responsible for the lexical
and syntax analysis of a dedicated programming language. It produces an
intermediate representation of the program and should also manage the
symbol table (which is a map of the symbols that were encountered in the
program, such as variable names and function names, together with their
location).

The lexical analysis, the syntax analysis and the semantic analysis steps
are all part of the front end since these steps are all programming-language
dependent.

If there is macro support in the language, the preprocessing phase is also
part of the front end. The front end is responsible for creating an
intermediate representation for further processing by the middle end.

The middle end
The middle end of the compiler is responsible for performing
optimizations on the intermediary code. This is a platform and
programming language independent operation, so all the programs
compiled from languages that the compiler’s front end supports will
benefit from this optimization phase. Some of the easiest to implement
optimizations that can be performed on the intermediary code are in the
section following, but for those interested in this subject [CompOpt] and
[Wikipedia-1] contain pretty exhaustive lists.

Constant folding and constant propagation
This optimization is responsible for finding values in code that occur in
calculations that will never change during the lifetime of the application
and for calculating them instead of doing the operations at runtime. for
example:

  const int SECONDS_IN_HOUR = 60 * 60;
  const int SECONDS_IN_DAY = SECONDS_IN_HOUR * 24;

can be replaced with

  const int SECONDS_IN_DAY = 86400;

where the value of SECONDS_IN_HOUR has been propagated to contain
the correctly calculated (folding) value.

Dead code elimination
Sometimes there is a piece of code in the application which will not be
reached. Dead code elimination will identify these cases and remove them,
thus reducing the size of the code. For example:

  bool some_fun(int a)

  {
    if( a < 10)
    {
      return true;
    }
    else
    {
      return false;
    }
    std::cout << "some_fun exiting";
  }

In this case, the std::cout will never be called, so the compiler is free
to remove it.

Common sub-expression identification
This optimization is responsible for identifying calculations which are
performed more than once. It extracts them into a commonly used part
which can be inserted into the location where the calculation was done.

  int x = a + b + c;
  int z = a + b - d;

This can be optimized into the following sequence of code by extracting
the common part (a+b) and reducing the generated code to the following:

  int temp = a + b;
  int x = temp + c;
  int z = temp - d;

These items are just a quick peek into the exhaustive list that an optimizing
compiler does to your source code, so feel free to do more research in this
field if you are interested in this fascinating domain.

The back end
The back end component of a compiler is the one which actually generates
the code for the specified platform that this back end was written for. It
receives the optimized intermediate representation (either an abstract
syntax tree or a parse tree) from the middle end, and it may do some
optimizations which are platform specific. In cases where is support for
debugging the applications on the given platform, debug info is collected
and inserted into the generated code.

As presented in the code generation paragraph, the abstract syntax tree is
converted into a 3-address code representation, which the back end then
re-works and re-organizes in order to represent the real computer
architecture related concepts, such as registers, memory addresses, etc…

Modern compilers also have support for generating code for a specific
platform (for example x86/64) but for different processor architecture,
with the risk that the generated code will not run on anything else, but that
specific processor, or it is possible to have the back end generate code for
a totally different architecture (which process is called cross compilation).

Real-life compilers
In real life, it is a very frequent situation that a compiler is split up into
several smaller applications, for example considering gcc, the following
applications can be found on the system [GCCArchitecture]:

 gcc is a driver program which invokes the appropriate compilation
application for the target language (for example cc1 being the
preprocessor and the compiler for the C language, or gdc is the front
end for the D language)

 as being the assembler (the assembler is the application which
creates object (machine) code for specific compilation units),
actually it is a part of the binutils package shipped with various
systems

 collect2 is the linker (the application that creates a system specific
binary from the various object files)

For clang, the overall system architecture and design is very similar to
GCC, with the major difference being that clang was created with the aim
of integration into various IDEs so there is a considerable set of libraries
that make the project more flexible and easier to work with [Guntli11], andFigure 5
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also clang has the advantage of using the LLVM compiler infrastructure
[LLVM].

For those not familiar with the terminology, LLVM used to stand for ‘Low
Level Virtual Machine’, but right now it is just … LLVM, since the project
outgrew the notion of a virtual machine, and evolved into a collection of
various compiler-related artifacts that include a set of high quality
components. This includes an implementation of the C++Standard Library
to a debugger (lldb), and a set of front and back ends for various languages
and target architectures via a powerful intermediate representation of the
compiled language with a unique language (which is similar to assembly,
and can be read by humans too) that the middle layer uses to perform strong
optimizations on it before emitting architecture-specific code.

A script called primal
Now that we are done with the theoretical introduction of what a compiler
is, how it works, and the algorithms and data structures behind the wall, it
is time to sail into more practical waters, by introducing a small scripting
language for which we create a compiler from scratch, and also a virtual
machine to actually run the compiled code.

I mentioned that we will create the compiler from scratch although there
is a plethora of tools available for this purpose. However, in my experience
they have a tendency to generate code which is overly complex, difficult
to read, and not suitable for our situation, where we want to explain the
methodology of creating a compiler. Regardless, feel free to browse
[Wikipedia-4] to find a list of these tools stacked up against each other and
find your favourite in there, dare you endeavour to create a new
programming language.

The basic syntax
The script’s syntax is highly inspired by BASIC and for now it will support
the following (very limited set of) operations:

 Mathematical operations: + (addition), - (subtraction), 
* (multiplication), / (division)

 Binary operations: & (and), | (or), ! (not), ^ (xor)

 Comparison operators: > (greater than), < (less than), == (equals),
<= (less than or equals), >= (greater than or equals)

 Assignment operator: = (assignment)

And the following keywords will be implemented:

 if and then to verify the truthness of an expression (sadly, no
else is implemented yet)

 goto to hijack the execution flow by jumping to a specified label

 let to define a variable (if not found) and assign a value to it

 asm to directly tell the compiler to compile assembly syntax as per
the VM’s opcodes (presented below)

 var to introduce a variable to the system

As a side note, all variables need to be declared before they are used,
à la Pascal. And for the moment, only numeric variables are
supported.

 end to close the code blocks of commands which have blocks (such
as if)

 import to include the content of another source file into the current
one

In order to define a label we use the following syntax:

:label

And as an extra feature, we will implement a write function which simply
writes out what is passed in as parameters.

And now, armed with this knowledge we can write the following short
application to print out a few Fibonacci numbers (see Listing 1).

As you have correctly observed, each line contains exactly one instruction.
And also as you have observed, each line starts with a keyword. Both of
these play an important role in the design of an application and will be
explained later in the article.

In case you wish to compile scripts upon compilation, there are two
executables in the build directory: primc is the compiler for the script
language and primv is the virtual machine which runs the output of the
compiler.

The Backus-Naur form of the primitive script
The Backus-Naur form is a notation scheme for context-free grammars,
and it can be used to describe programming languages. Our own primitive
script can be described (with a more complete version) of the following
sequence of BNF (where | is used to indicate that only one can be chosen
from the given set between { and }, the items between [ and ] are optional,
... means a repetition of the previous group and CR means a newline).

I have omitted few of the supported keywords from Listing 2 (overleaf) in
order to not to have the listing very long and boring; however, the example
gives an overview of the complexity of how to start implementing the
grammar required for a programming language, which in turn can be fed
into a compiler compiler (for example yacc or bison) in order to generate
a parser for the language.

Our compiler
The project is a simple one-pass compiler, without any implemented
optimizations. It was written in C++ and uses CMake as the build system.
After you have checked out the project from https://github.com/fritzone/
primal, you will find a directory structure, where the names of the
directories are hopefully self-explanatory:

 compiler is where the compiler files are to be found

 vm stands for the source code for the virtual machine

 hal stands for the ‘Hardware Abstraction Layer’, just a fancy name

 opcodes stands for the assembly opcodes supported by the virtual
machine

 tests is the directory of the unit tests, right now we use Catch2

But before we dig deeper here, just a quick mention: this entire project was
created as a homegrown fun project, mostly for research purposes, so don’t
expect production-quality speed (or code) neither from the compiler, nor
from the compiled part. There are several excellent compilers in the market
right now. I have tried to keep the primal compiler as simple and
understandable as possible, and sometimes I had to cut a few corners to
have it in a digestible size. For now, the entire project is released under an
Affero GPL license, so feel free to modify, contribute and distribute in the
spirit of true open source.

Banalities of the compiler
I had to create a few wrappers around common notions, such as ‘source’
in order to have an easier approach to them, but the entire project is packed

Listing 1

import write

var t1, t2, nextTerm, n

let n = 100
let t1 = 0
let t2 = 1

:again

let nextTerm = t1 + t2

let t1 = t2
let t2 = nextTerm
if nextTerm < n then
    write(nextTerm, "  ")
    goto again
end
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in the primal namespace to not to pollute the global one. As mentioned
above, the compiler does not follow the standard mechanisms of creating
a compiler, as we have not created a context-free grammar for it that can
be fed in one into one of the automated tools to generate the proper
mechanisms to automatically deal with situations that you can (will)
encounter while writing a compiler. Instead, we tried to ‘guess’ how to
approach these situations and ‘solved’ what had to be solved in a more
manual manner, and – with explanations – they are presented here.

 The compiler itself is located in the class compiler.

 The source code is wrapped into the class source. Very
conveniently for us, this class uses std::stringstream to read
in the required source code, from a string variable. As mentioned
before, each line in the script lives its own life, and we have abused
the string stream to serve us the text line by line by using
std::getline. The text of the source is traversed only once.

 Each line of code is wrapped into a class sequence derived
keyword object. As mentioned before, in this programming
language each line starts with a keyword, and these keywords are
stored in their separate classes too, in the keywords folder inside
the compiler. This decision was mainly influenced by the following

 To keep it simple and easy to implement.

 To make it extensible without too much hassle – for example,
introducing a new keyword should not be an extremely complex
operation.

Parsing and tokenizing
For our little compiler, we have created a very simple tokenizer with a few
lines of code, which suits very well our primitive script’s syntax. It can be
found spread across the classes lexer, parser and token. 

The parser class is responsible for parsing the entire source object that
it was assigned, and the method parser::parse does the actual work:

  template<class CH> parse(source& input, 
  CH checker, std::string& last_read) { ... }

The checker parameter has a specific role: the caller of the parse method
can specify the condition at which the current sequence can stop. For the
m a in  co mp i l e r ,  t h i s  me t hod  i s  c a l l e d  l i k e  ( f ro m
insidecompiler::compile):

  std::string last;
  auto seqs = p.parse(m_src, [&](std::string) {
    return false;}, last);

however the implementation of the if keyword does something else:

  parser p;
  std::string last;
  auto seqs = p.parse(m_src,[&](std::string s)
    {
      return util::to_upper(s) == "END";
    },
    last);
  m_if_body = std::get<0>(seqs);

The reasoning is the following: in the primal language’s implementation,
each keyword manages its own parsing and compilation, with some backup
from the underlying architecture. So, the if keyword was responsible of
extracting its own body (m_if_body) from the source object (m_src)
and due to the syntax of the language, the body of the if is between the
current position in the m_src and the corresponding endif keyword. 

The inner workings of the parser::parse method are as following:

  std::string next_seq = input.next();

which will extract the next sequence of code (for us: next line) from the input
(remember, this was of type source), and at the same time advance the
location in the input. We see the result of the checker on the current sequence:
if it evaluates to true, we will not continue the parsing but will go back to
the entity which requested the parsing of the source from its specific location.

If we are still in the parsing phase, the tokenizer jumps in:

  lexer l(next_seq);
  std::vector<token> tokens = l.tokenize();

where the tokenize method is just a very rudimentary implementation of
splitting a string into several components separated by space, comma or
other characters. The result of the method is a vector of tokens, where each
token has its own type that you can check out in token.h:

  enum class type
  {
    TT_OPERATOR  = 1, // omitting the rest
                      // to save space

The very first token, as per the definition of the language, must be a
keyword. After tokenizing the sequence, we try to identify the keyword
object and pass the control to it in order to prepare the sequence in the
requested manner (for example, the way it was done for the if keyword
is presented a few lines above). Different keywords do different
preparations and checks, in order to validate the sequence.

<identifier>              ::= <letter>[{<letter>|<digit>}...]
<label identifier>        ::= <identifier>
<letter>                  ::= <small letter> | <capital letter>
<small letter>            ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
<capital letter>          ::= A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z
<digit>                   ::= 0|1|2|3|4|5|6|7|8|9
<digit string>            ::= digit [{digit}...]
<label>                   ::= :<label identifier>
<immediate statement>     ::= <compound statement> CR
<compound statement>      ::= <statement> | <immediate statement>
<statement>               ::= let <identifier>=<expression>                   |
                              if <expression> then <compound statement> endif |
                              goto <label>                                    |
                              <label>                                         |
<comp op>                 ::= < | > | <= | >= | == | !=
<add op>                  ::= + | -
<mul op>                  ::= * | /
<expression>              ::= <term1> | <expression> \| <term1>
<term1>                   ::= <term2> | <term1> & <term2> | !<term2>
<term2>                   ::= <term3> | <term2> <comp op> <term3>
<term3>                   ::= <term4> | <term3> <add op> <term4>
<term4>                   ::= <term5> | <term4> <mul op> <term5>
<term5>                   ::= <term5> | <term5> ^ <term6>
<term6>                   ::= <expression> | <identifier> | <digit string>

Listing 2
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When the keyword has successfully prepared and validated the sequence
of tokens, it is time for us to run Edsger Dijkstra’s shunt-yard algorithm
[Dijkstra61] on it in order to obtain a reverse Polish notation from which
we will construct the abstract syntax tree of the expression.

Building the ast is done in a recursive manner in

  static void build_ast(std::vector<token>& output,
  std::shared_ptr<ast>& croot);

where the parameter output is the actual output of the shuntyard algorithm:

  // create the RPN for the expression
  std::vector<token> output = shuntyard(tokens);
  // build the abstract syntax tree for the result
  // of the shuntyard
  ast::build_ast(output, seq->root());

Compiling
When the parsing is done, we get back the list of sequences – and by
continuing our journey in compiler::compile we have reached the
stage where we need to actually compile the sequences into the
corresponding machine code. This is achieved by:

  // now compile the sequences coming from the parser
  for(const auto& seq : std::get<0>(seqs))
  {
    seq->compile(this);
  }

don’t let std::get<0>(seqs) scare you: as you can see in the source
code, parser::parse actually returns a tuple of vector of sequences,
where the first one means the instructions from the global namespace.
Also, now you might want to jump down to the virtual machine section
and read a bit about the architecture of it, to understand the instructions
below, and come back after that.

As mentioned before, each keyword is required to compile its own code.
Let’s present (in Listing 3), as an example, how the if keyword is actually
doing its work (kw_if::compile).

I n  t he  v e ry  f i r s t  s t ep :  we  compi l e  t h i s  s e quence  v i a
sequence::compile(c); to obtain the expression, the trueness of
which is used by the if to decide whether to execute its body or not. Then

we create two labels, one for the body of the if, the other one for the
immediate location after the if.

Now, we obtain the comparator object from the root of the abstract syntax
tree of this if object. At the current stage of the script (when writing this
article), that must be a check for equality or comparison as no other
operation is supported. The comparators are stored in the global map of
primal::operators found in operators.h. This just lists all the
operators the scripting language supports at the moment, together with the
assembly opcode (more about this at a later stage, when we discuss the
virtual machine) and a jump operation depending on the trueness of the
operation.

The expression *c->generator() will yield a generate object which
is actually a convenience class for seamlessly accessing (read: appending
to) the compiled_code class, which is the part of the compiler where
the compiled code actually resides.

Now that we have a generate object, first we output into it the JUMP
operation (which is currently a jump depending on the state of a flag in the
machine where this will run, which will be set depending on the trueness
of the expression of the if) and the label of the body of the if.

After that, we output a direct jump to the first instruction after the body of
the if (just in case the if was actually false).

Now it is time to compile the body of the if, and we are done.

Implementing the jumps
There is just one issue with compiling the jumps. Some of the labels might
refer to locations/labels that at the current moment are not known because
they come way after the current location. How this is solved currently is
that the compiler inserts a bogus value at the location of the jump label,
and in an internal map marks the spot of the label and its reference point.
This happens in generate::operator<<(const label& l).

When a label declaration happens, the compiler will finally know the
location of the label, so it can update its map with the location in
generate::operator<<(declare_label &&dl).

When the compilation is done and all the locations of the labels are known,
compiled_code::finalize() will patch the locations of the labels
with the correct value.

The sequence compiler
At the very lowest level of the compiler is the sequence compiler found in
sequence::traverse_ast(uint8_t level, const
std::shared_ptr<ast>& croot, compiler* c). This is
responsible for compiling basic arithmetic expressions, dealing with
numbers and variables, etc… The result – the compiled code – is actually
a 3-address representation of the code, and the virtual machine interpreting
the compiled bytecode was written to execute this representation.

This level tracks the variable index of the 3-address code. Initially, this
starts at 0, is very conveniently mapped to registers in the virtual machine,
and each descent in the abstract syntax tree will increment this. At the end
of the traversal of the tree, the Reg(0) of the virtual machine will contain
the value of the expression.

Depending on the type of the expression found in the current node of the
tree, a different set of instructions is created. For example, the arithmetic
operations generate the sequence of code shown in Listing 4 (overleaf).

To understand this piece of code, let’s consider that we are trying to
compile the expression 2+3.

This has yielded the following tokens, where TT stands for Token Type:
(2, TT_NUMBER), (+, TT_OPERATOR) and (3, TT_NUMBER).

After shuntyarding the expression, we have the following reverse Polish
notation: (+, TT_OPERATOR), (3, TT_NUMBER), (2, TT_NUMBER).

This was transformed into the abstract syntax tree in Figure 6. 

Now we enter the sequence::traverse_ast method with the current
root pointing to the root of the above tree, on level 0. The code sees that
we actually have to deal with an operator: +.

Listing 3

// to compile the expression on which the IF takes
// its decision
sequence::compile(c);

// and set up the jumps depending on the trueness
// of the expression
label lbl_after_if = 
  label::create(c->get_source());
label lbl_if_body = 
  label::create(c->get_source());

// the comparator which evaluates the expression
comp* comparator =
  dynamic_cast<comp*>
  (operators[m_root->data.data()].get());

// generate code for the true case of it
(*c->generator()) << comparator->jump 
  << lbl_if_body;
(*c->generator()) << DJMP() << lbl_after_if;

(*c->generator()) << declare_label(lbl_if_body);
for(const auto& seq : m_if_body)
{
  seq->compile(c);
}
(*c->generator()) << declare_label(lbl_after_if);
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It enters the if above, and it will immediately start descending into the
tree on the next level, towards the left side of the tree. Now the current node
points towards the 2. The code sees that the data is actually a number, so
it enters here:

  if (tt == token::type::TT_NUMBER)
  {
    (*c->generator()) << MOV() << reg(level) 
      << croot->data;
  }

Now the following piece of code will be generated (which has the
significance of initializing the register number 1 to 2):

  MOV $r1 2 

Since there is nothing more to be done here, we go back to the previous
step (we were inside the TT_OPERATOR if branch), where the following
instruction waits for us:

  (*c->generator()) << MOV() << reg(level) 
    << reg(level + 1);

which will generate:

  MOV $r0 $r1

ie. move the content of register 1 into register 0. Don’t forget that register
1 was initialized to 2 a few lines above. Now, we descend the tree to the
right branch, where we see the 3 thus giving us the following:

  MOV $r1 3 

and we are done with that part too. Back to the inside of the if for
TT_OPERATOR where the next operation is:

  (*c->generator()) 
    << operators.at(croot->data.data())->opcode 
    << reg(level) << reg(level + 1) 

This will go searching in the global operators table for the operator
which is at the current level in the tree, and it will find the following row:

  ("+",  util::make_unique<ops> ("+", PRIO_10, 
    new opcodes::ADD))

where the opcodes::ADD is the opcode responsible for executing
addition in the system. So it will generate the following assembly code
sequence:

  ADD $r0 $r1

Since we are done with the tree, we are also done with the compilation,
and we just exit. And at a very high level, this is the logic based on which
the compiler is built. 

There is just one drawback for this entire mechanism: since the virtual
machine was built to have 256 register (see below) at some point in very

complex expressions, we simply might run out of registers. A resolution
for future versions would be to implement the inclusion of a temporary
variable in the code generation where the partial results are accumulated,
but I reserve this for future enhancements of the compiler.

The assembly compiler
The script provides the programmer with the possibility of writing virtual-
machine-specific assembly instructions. The keyword responsible for this
is asm and the implementation is found in kw_asm.cpp. The build system
generates a set of compiler files for the registered opcodes (please see
below on how to register new opcodes) and a special component called the
asm_compiler found in asm_compiler.h will generate the required
code for the assembly instruction.

How to deal with the write function calls
As mentioned above, the function write is added to the system (see its
source code in Appendix 1) as a way to output data onto the screen. The
write function is a dynamic function, meaning it can take in a various
number and type of arguments (strings, variables and numbers) so I had
to come up with a way to make it flexible enough to be usable.

One way to deal with it would have been the C way with a format string
where various format specifiers are representing various interpretations of
the data, but personally I’m not a great fan of it. Another way of dealing
with this situation is presented by the Pascal compiler: while printing out,
each type printed out is represented by a different function being called,
and the compiler generates a list of method calls for all the parameters.
Simple and effective. But unfortunately, at this moment I don’t have the
infrastructure to support this.

So, I went in a third direction with this. With the help of the stack, I specify
the number of parameters the function is having, then their type (string
constant/number for now) and then the actual parameters. Now all is
needed is just a clever write function which interprets the data from the
stack, and all is done.

The output of the compiler
The compiled application has a very simple format. The bytecode starts
with .P10 representing the version of the script, 4 bytes follow as
reserved, 4 more bytes representing the number of global variables and 4
more bytes to indicate the start of the string table of the application (or,
depending on how we view it, the size of the compiled bytecode).

The constant string table, which is populated by the compiler upon
encountering a string in the source, is to be found in the generated code
after the application bytes. The string representation in this part always
starts with an 8-bit value, representing the length of the string followed by
the ASCII characters themselves. 

This output is then read and interpreted by the virtual machine, which sets
up its structures and starts executing the application code from the first
application bytecode.

Adding a new keyword to the language
In its current incarnation, the script is quite … primitive, and lacks support
for most of the keywords and provided functionality we are used to from
other scripting languages. But extending the script is actually quite easy.
When introducing a new keyword, we will need to provide the parsing
implementation and the compilation ourselves. Let’s consider
implementing the while keyword as an exercise.

We can get some inspiration from the if keyword, since the difference
between while and if is just a jump back to testing again the trueness of
an expression, so let’s start and declare the header file for while in the
keywords directory of the compiler, with the content in Listing 5 (I have
omitted things like include guard and base class includes).

And some explanation:

 A keyword must inherit from sequence in order to have access to the
prepare and compile methods that actually perform the parsing
of the keyword and the compilation of the keyword.

Listing 4

if (croot->data.get_type() ==
  token::type::TT_OPERATOR)
{
  traverse_ast(level + 1, croot->left, c);
  (*c->generator()) << MOV() << reg(level) 
    << reg(level + 1);
  traverse_ast(level + 1, croot->right, c);
  (*c->generator())
    << operators.at(croot->data.data())->opcode 
    << reg(level) << reg(level + 1) ;
}

Figure 6
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 A keyword must inherit from the keyword class in order to be
included in the keyword store of the application.

 The kw_while::N must have the name of the keyword as present
in the scripting language’s syntax in uppercase. At some point it is
used to compare in a cases insensitive comparison, which means the
scripting language itself is case insensitive. Just like Pascal.

 Since this keyword will have a body, we need a list of sequences that
will represent the body of it, hence the m_while_body.

Now the implementation of the while keyword can commence with the
parsing of the new syntax (see Listing 6).

The prepare of the while keyword is very similar to the prepare of
the if keyword, with the difference being that since we have no then in
the while, that part is missing. Parsing out the body of the while is
identical to the if, ie. read and parse lines till we encounter the END
keyword. At this level, you don’t have to worry about the expression of
the while (like in: while expression) as parsing it is taken care of
by the layer calling it; however, if you wish to inspect it, feel free to use
and consume the tokens parameter. If you wish to notify the parsing layer
not to try to parse the expressions after your keyword has done its work
on it, simply return sequence::prepared_type::PT_CONSUMED
instead of PT_NORMAL as we do here.

And the compilation of the while keyword is shown in Listing 7.

The compilation begins with declaring a label to the location where the
evaluation of the while’s expression will be performed. Then we do the
actual compilation of the expression via sequence::compile. The rest
till (*c->generator()) << DJMP() << lbl_while; is actually
the looping in the while loop itself, and is identical to the if keyword,
as presented above.

Now, only one step remains: writing a unit test for it. The project uses
Catch2 as its unit test framework, so into the tests.cpp found in the
tests directory add the contents of Listing 8.

The virtual machine
The general design and architecture of the virtual machine is loosely based
on the workings of a Turing machine: it relentlessly behaves in a similar
manner to a computer adhering to the von Neumann architecture, it feels
more like a real mode x86 machine thus suffering from all its deficiencies
and efficiencies, it has a dedicated assembly level programming language
and it contains the following important components:

 A set of 256 registers, integers, 32 bit by default represented in the
source code by the type word_t found in numeric_decl.h. 

 Reg 255 is reserved for the stack pointer

Listing 5

namespace primal
{
  class kw_while : public sequence, public keyword
  {
  public:
    static constexpr const char* N= "WHILE";
    explicit kw_while(source& src) : sequence(src)
    {}
    sequence::prepared_type
      prepare(std::vector<token>& tokens) override;
    bool compile(compiler* c) override;
    std::string name() override { return N; }
  private:
    std::vector<std::shared_ptr<sequence>>
      m_while_body;
  };
}

Listing 6

sequence::prepared_type 
kw_while::prepare(std::vector<token> &tokens)
{
  if(tokens.empty())
  {
    return sequence::prepared_type::PT_INVALID;
  }
  parser p;
  std::string last;
  auto seqs = p.parse(m_src,[&](std::string s)
  {
    return util::to_upper(s) == kw_end::N;
  },
  last);
  m_while_body = std::get<0>(seqs);
  return sequence::prepared_type::PT_NORMAL;
}

Listing 7

bool kw_while::compile(compiler* c)
{
  label lbl_while = label::create(c->get_source());
  (*c->generator()) << declare_label(lbl_while);
  sequence::compile(c);
  label lbl_after_while = 
    label::create(c->get_source());
  label lbl_while_body = 
    label::create(c->get_source());
  comp* comparator =
    dynamic_cast<comp*>
    (operators[m_root->data.data()].get());
  if(!comparator)
  {
    throw syntax_error("Invalid WHILE statement
      condition. Nothing to compare");
  }
  (*c->generator()) << comparator->jump 
    << lbl_while_body;
  (*c->generator()) << DJMP() << lbl_after_while;
  (*c->generator()) 
    << declare_label(lbl_while_body);
  for(const auto& seq : m_while_body)
  {
    seq->compile(c);
  }
  (*c->generator()) << DJMP() << lbl_while;
  (*c->generator()) 
    << declare_label(lbl_after_while);
  return false;
}

Listing 8

TEST_CASE("Compiler compiles, while test", 
"[compiler]")
{
  auto c = primal::compiler::create();
  c->compile(R"code(
             var a,b
             let a = 5
             let b = 0
             while a > 0
             let a = a - 1
             let b = b + 1
             end
           )code"
         );
  auto vm = primal::vm::create();
  REQUIRE(vm->run(c->bytecode()));
  REQUIRE(vm->get_mem(0) == 0);
  REQUIRE(vm->get_mem(word_size) == 5);
}
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 Reg 254 is frequently used by the compiler

 Reg 253 holds the value of the LOF flag (see below)

 Reg 252 is initialized to the start of the stack segment

 Reg 251 is initialized to the entry point of the application upon
the start of the application

 Reg 250 is reserved for future endeavours

All other registers are freely available for you to play with.

 A flag (called LOF – Last Operation Flag) which is set to a non-zero
value by the last operation if the value after the operation evaluated
to non-zero and is cleared to zero by the first conditional jump
command. 

 A code segment which is the application’s compiled byte-code. The
size of this is flexible and depends on the application compiled. This
is a read-only section and its content populated upon start-up by the
virtual machine ‘loader’. For the sake of completeness, we have to
mention that the virtual machine places the code segment in memory
after the memory segments 1MB limit, continuously.

The machine has an Instruction Pointer to track the next instruction
that needs to be executed. Initially, this is placed on the very first
byte-code, and on stepping through the code, this can increase or
decrease. When the virtual machine encounters errors in byte-code
being executed, it issues a PANIC call and exits.

 A free-memory segment, which is used by the virtual machine and
the code of the programmer. Usually it’s 1MB in size; however, it
can be modified by specifying the size in the hal.h header. At this
moment, only assembly level access (r/w) is granted to this area via
the MOV and COPY instructions, since the compiled script makes no
use of it. The virtual machine will allocate this memory segment on
the heap of the real machine.

 The memory can be accessed by loading the desired address
value into a register and then performing the required memory
access operation: either a full 32 bit value will be loaded from
the memory into the required register either a byte value will be
moved in the required register target.

 A memory area (usually beginning after the end of the global
variables) is designated to be functioning as a stack which can
be controlled via the PUSH/POP/MOV commands. The assembly
instructions CALL and RET are also utilizing the stack, CALL
pushes the address where the code should continue when a RET
was issued. POP or RET in case of the stack pointer being 0 will
result in PANIC. 

There is a Stack Pointer (same variable type as the registers,
referenced in register with index 255) that is used to access the
stack. Upon a push, the stack pointer increases its value, and
upon pop, it decreases it. The assembler syntax for the stack
pointer is: $sp

 An important compatibility note: due to the way the direct jump
addresses are calculated, both the compiler and vm need to be
compiled using the same memory size.

 A set of 256 interrupts, but only one of them is used at the moment
to handle writing to the screen, the other ones are available for
adventurous programmers to experiment with.

The opcodes of the virtual machine
In order to perform the lowest possible level of operations, the primitive
virtual machine has a set of opcodes that are acted upon by the VM.

Following is a brief presentation of the opcodes which for the technically
versed should be immediately familiar due to the heavy influence of the
Intel family of opcodes.

Target specifiers
Please note that in the binary stream (some of) the values (the parameters
to the assembly commands) are prepended by a type specifier which
indicates how to interpret the bytes following the specifier. There is a
specific assembly syntax for the various specifiers.

The specifier is always 1 byte, and it can be:

 0x00 – the following 4 bytes are to be interpreted as an immediate
number, negative or positive. Assembler syntax: 12345 (ie: just a
normal number)

 0x01 – the following 1 byte is the index of a given register.
Assembler syntax: $r123 for register 123.

 0x02 – this represents the value of the memory at the register’s
value in the following byte. The syntax: [$r123] will give the byte
value stored at the value of register 123 in the memory. 

 0x4X – the following 1 byte is the index of a register, and the nibble
marked with X is the index of the byte in the given register.
Assembler syntax: $r12@1 meaning byte 1 from register 12. For 32
bit virtual machines @0, @1, @2, @3 are valid byte indexes. 

 0x05 – the coming 4 bytes represent a number, and its value
represents an address in the memory. Syntax: [1234]. This is
mostly used by the compiler to index in variables from the memory.

 0x06 – the coming 4 bytes represent a number, and its value
represents the address of 1 byte in the memory. Syntax: [@1234]

 0x07 – this represents the value of the memory at the register’s
value in the following byte + the added offset following that. The
syntax: [$r123+4] will give the byte value stored at the value of
register 123 + 4 in the memory and [$r123-4] will give the byte
value stored at the value of register 123 - 4 in the memory. The four
basic operations (addition, multiplication, division, subtraction) are
possible in this context.

 0x08 represents the value of the memory at the register’s value in
the following byte + the following register’s value. The syntax:
[$r123+$r245] will give the byte value stored at the value of
register 123 + value of register 245. The four basic operations
(addition, multiplication, division, subtraction) are possible in this
context.

MOV
The MOV opcode moves data from the given source to the given destination. 

The following is the syntax of the command:

  MOV <DST> <SRC>

where the syntax of <DST> and <SRC> correspond to specific syntax in
the target specifier list. MOV makes sure that only sane operations are
permitted, and the machine will stop execution with a PANIC command
if an invalid operation is attempted for execution (for example trying to
load a value into an immediate number). One of <DST> or <SRC> must
be a register. For example, see Listing 9 (overleaf).

ADD, SUB, MUL, DIV, MOD, OR, XOR, AND and NOT
The assembly opcodes with these very descriptive names perform the
requested operation on two parameters following them. The syntax of the

Listing 9

MOV $r1 12       # initialize register 1 to 12
MOV [0] $r1      # load into memory, at location 0 the value of register 1
MOV $r6@0 12     # load 12 into register 6’s lowest byte
MOV $r1@1 [@$r2] # load into byte 1 of reg 1 the value in memory at register 2’s value
MOV $r3@0 [@0]   # load into byte 0 of reg 3 the byte value in memory at addr 0
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parameters is identical to the parameters of MOV, so you can just refer to
that section when writing your assembly code should you require it. 

NOT requires only one parameter and it will do a binary negation of it,
which cannot be an immediate value. If any of the operations results in a
zero value, the LOF flag will be set to false, otherwise to true.

COPY
COPY is used to copy data between two addresses in the memory segment.
COPY can be imagined as multiple MOV commands where both the
destination and source are at increasing locations.

The syntax of the command is:

  COPY <DEST> <SRC> <COUNT>

where DEST is interpreted as a numerical value representing the address
of the area in the memory, SRC represents the source address and COUNT
is the number of bytes to copy. If DEST + COUNT > MEM_SIZE, the virtual
machine will issue a PANIC call and not perform the operation. At the
implementation level, std::memmove is used so it is possible to have
overlapping memory areas for this command. This operation does not
modify the content of the LOF flag.

EQ, NEQ, LT, GT, LTE and GTE
The comparison operators perform two operations. The first one is to
compare the value of the two parameters they get, and the second one is
to set the value of the LOF flag to be either true or false. 

JMP, JT and JNT
The direct jump commands will set the IP of the virtual machine to the
specified parameter and will continue the execution of the code from the
new location.

 The JMP command will jump to the given address regardless of any
surrounding conditions.

 The JT will jump only if the VM’s LOF flag was set to true by the
previous comparison operation, and it will clear the flag
simultaneously. 

 The JNT command will jump to the given location only if the flag
was set to false, and it also will clear the flag to false.

The syntax of the commands is:

  JMP | JT | JNT <ADDRESS> 

where ADDRESS will be interpreted as the address where the execution will
be continued. The programmer needs to take into consideration that
ADDRESS is actually a valid destination, where valid, executable code is
to be found.

DJMP, DJT and DJNT
The delta jump commands, such as the ‘direct jump’, ‘jump if last
comparison was true’ and ‘jump if last comparison was not true’
commands, jump from the current location in various directions and the
new address determined as being at a specific bytes away from the current
location. The syntax is:

  DJMP | DJT | DJNT <DELTA> 

where DELTA is to be interpreted as the difference between the current IP
(instruction pointer) and the upcoming new location. At this point of
execution (when DST was evaluated by the jump command) the IP points
to the next executable operation, this needs to be taken into consideration
when manually calculating jump addresses.

As a side note, the jump commands cannot jump to labels since they all
expect a number. In order to jump to a specific label, you will have to use
goto.

PUSH and POP
As guessed from the name, PUSH and POP work with the stack. PUSH
always pushes an immediate value onto it, with the type modifier 0 for
numeric data or 7 for string indexes, and POP pops the value into the

parameter it was required to pop into. The syntax is: PUSH <SOMETHING>
and POP <SOMETHING>.

Internals of the VM
Like every other code interpreter out there, our VM is performing very
similar operations:

1. Load the next instruction
2. The code for the instruction loads its parameters
3. The code for the instruction executes the instruction
4. Check for failure
5. Repeat from step 1.

A big part of the virtual machine’s code (specifically automatic handling
of the registered opcodes) is generated by the build system (see below at
the extending the VM) and the remaining of the operations are distributed
between the data types representing the VM’s data structures and the actual
operations the VM can perform.

The virtual machine’s basic data structures are declared in the header
registers.h. This header has a basic data type primal::valued.
The class acts as a common aggregate for the entities that can be handled
by the virtual machine (see Figure 7, overleaf).

Upon each execution step, the instruction (opcode) needs to fetch its
parameters from the memory of the virtual machine (the opcode can have
zero, 1, 2 or 3 parameters for now) and perform the most basic of operations
on the data types. The overloaded operators in the valued class more act
as commodities, the most important operations are the word_t value()
and the void set_value(word_t). This class hierarchy makes it very
easy to implement basic operations, for example this is the implementation
of the ADD opcode (found in impl_ADD.h):

  bool primal::impl_ADD(primal::vm* v)
  {
    primal::valued* dest = v->fetch();
    primal::valued* src  = v->fetch();
  
    *dest += *src;
  
    v->set_flag(dest->value() != 0);
  
    return true;
  }

Extending the virtual machine
The project was created with extendibility in mind, and nothing is easier
than adding a new binary opcode and the corresponding implementation,
or providing your own interrupt to deal with tasks.

Adding a new opcode
As you might have observed, we have not introduced the INC operation
when designing the virtual machine (along with other missing operations,
which hopefully will be implemented at a later stage), but no worries – let’s
read through the following paragraph in order to see how you can
implement your own opcodes to extend the virtual machine.

We will need to do modifications to the build system and also add a new
file to it in order to have the new opcode up and running. You have to open
the CMakeLists.txt from the opcodes directory around line 35 to find
the registration of the opcodes section.

Go to the end of the section, and after the last register_opcode call
insert yours:

  register_opcode("INC" 0xEE 1 OF_ARITH)

With this you have told the build system the following facts:

 It will have an opcode called INC

 When in the binary stream, it will be represented by the value 0xEE

 It expects one parameter, ie. the one which will be incremented. 

 It is of type arithmetic
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What happens behind the scenes is that CMake generates two files for you:

 One is the opcodes header file INC.h in the build/opcodes
directory (see Listing 10), which has the declaration of the class INC
and also two functions.

 The other file is compile_INC.cpp, generated in the same
directory, which will be used by the compiler when encountering the
INC opcode in the assembly code of your source file.

The two functions in the header file are:

 compile_INC, which is responsible for compiling the assembly
statements into corresponding (virtual) machine code and it will be
provided by the build system in the compile_INC.cpp file

 impl_INC, which actually tells the virtual machine what to do upon
encountering the INC in the binary stream, needs to be provided by
us in the opcodes/impl/impl_INC.cpp file, because this is
where the build system will look for it.

So create that file and paste in the following:

      #include <INC.h>
      #include <vm.h>
      bool impl_INC(vm* v)
      {
        valued* dest = v->fetch();
        dest->set_value(dest->value() + 1);
        return true;
      }

Figure 7

0..1

+m_r

va lued
+ m_value : word_t
+ valued(v : word_t) «constructor»
+ valued(o : const valued& ) «constructor»
+ operator =(v : word_t) : valued&
+ operator =(o : const valued& ) : valued&
+ operator ==(v : word_t) : bool
+ operator ==(v : const valued& ) : bool
+ operator !=(v : word_t) : bool
+ operator !=(v : const valued& ) : bool
+ operator >=(v : word_t) : bool
+ operator >=(v : const valued& ) : bool
+ operator <=(v : word_t) : bool
+ operator <=(v : const valued& ) : bool
+ operator >(v : word_t) : bool
+ operator >(v : const valued& ) : bool
+ operator <(v : word_t) : bool
+ operator <(v : const valued& ) : bool
+ operator +=(v : word_t) : valued&
+ operator +=(v : const valued& ) : valued&
+ operator -=(v : word_t) : valued&
+ operator -=(v : const valued& ) : valued&
+ operator /=(v : word_t) : valued&
+ operator /=(v : const valued& ) : valued&
+ operator * =(v : word_t) : valued&
+ operator * =(v : const valued& ) : valued&
+ operator %=(v : word_t) : valued&
+ operator %=(v : const valued& ) : valued&
+ operator & =(v : word_t) : valued&
+ operator & =(v : const valued& ) : valued&
+ operator | =(v : word_t) : valued&
+ operator | =(v : const valued& ) : valued&
+ operator ^=(v : word_t) : valued&
+ operator ^=(v : const valued& ) : valued&
+ value() : word_t
+ set_value(v : word_t)
+ get_type() : type_destination

reg_subbyte
+ m_r : reg*
+ m_bidx : uint8_t
+ reg_subbyte(r  : reg* , bidx : uint8_t) «constructor»
+ set_value(v : word_t)
+ get_type() : type_destination

memaddress
+ m_address : word_t
+ m_getter : std::function< word_t ( word_t ) >
+ m_setter : std::function< void ( word_t , word_t ) >
+ memaddress(address : word_t, setter : std::function< void ( word_t , word_t ) >, getter : std::function< word_t ( word_t ) >) «constructor»
+ set_value(v : word_t)
+ value() : word_t
+ get_type() : type_destination

immedia te

+ immediate(p : word_t) «constructor»
+ set_value( : word_t)
+ get_type() : type_destination

memaddress_byte_ref
+ m_address : word_t
+ m_getter : std::function< uint8_t ( word_t ) >
+ m_setter : std::function< void ( word_t , uint8_t ) >
+ memaddress_byte_ref(address : word_t, setter : std::function< void ( word_t , uint8_t ) >, getter : std::function< uint8_t ( word_t ) >) «constructor»
+ set_value(v : word_t)
+ value() : word_t
+ get_type() : type_destination

reg
+ m_reg_idx : uint8_t
+ reg() «constructor»
+ reg(i : uint8_t) «constructor»
+ reg(o : const reg& ) «constructor»
+ operator =(v : word_t) : reg&
+ operator =(ov : const reg& ) : reg&
+ operator ==(v : const reg& ) : bool
+ set_value(ov : const reg& )
+ idx() : uint8_t
+ set_idx(i : uint8_t)
+ get_type() : type_destination

Listing 10

struct INC final : public opcode
{
  uint8_t bin() const override {return 0xEE; }
  std::string name() const override {return "INC";}
  size_t paramcount() const override { return 1; }
  virtual opcode_family family() const override 
  { return
    primal::opcodes::opcode_family::OF_ARITH; };
};

bool impl_INC(vm*);
std::vector<uint8_t>
  compile_INC(std::vector<token>&);
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After you regenerate your CMake cache, and once the build of the system
is ready, everything should be up and running, and you can use INC in your
assembly commands. So maybe it’s time to write a unit test for this purpose
too (Listing 11).

Now if you run make test, your newly created opcode should be up,
running and incrementing values you want to.

How the opcodes are registered into the VM
When you have declared a new opcode, with the register_opcode
function in the build system in the background a CPP file (opcode-
impl.cpp) is generated with the contents similar to Listing 12 for each
of the opcodes. In the VM’s implementation class (vm_impl.h) this boils
down Listing 13. 

Now in its turn, the VM’s opcode runner has the code in Listing 14.

And in short, this sums up how the VM is handling the execution of the
various opcodes.

Writing a new interrupt
The interrupts are pieces of code that are compiled C++ code, and they can
be used by the VM to communicate with the world outside the sandbox.

For the moment, only one interrupt is in use, which is INT 1 used to write
to the screen. In order to implement a new interrupt, you will have to
modify the CMakeLists.txt of the virtual machine in the section where
it states ‘Register the interrupts’ add the interrupt with a new call to
enable_interrupt, for example: enable_interrupt(2).

Now, create the implementation file for the interrupt in vm/intr and call
it intr_2.cp As a start, the content of it can be:

  #include <vm.h>
  namespace primal
  {
    bool intr_2(vm* v)
    {
      return true;
    }
  }

And from this point on, you can provide the implementation for your
interrupt. You can use the interface exposed by vm.h in order to get access
to the VM internals and memory.

Binding it together
As I mentioned in the introduction, our ultimate goal in this article is to
have it all in one place, ie: in one CPP file we compile a piece of primal
script code and let it run in the primal VM.

Using the compiler to compile and the vm in your own source files is pretty
easy, you just need a few instructions.

To properly use it in your own code, you will need a sequence of
instructions like:

  std::shared_ptr<primal::compiler> c 
    = primal::compiler::create();

This will create for you the object c which is a primal script compiler that
you can use to compile code in the following manner:

  c->compile(R"code(
      let x = 40
    )code"
  );

The next step you need to do is to create a virtual machine:

  std::shared_ptr<primal::vm> vm 
    = primal::vm::create();

Listing 11

TEST_CASE("ASM compiler - INC opcode", "[asm-
compiler]")
{
  auto c = compiler::initalize();
  c->compile(R"code(
              asm MOV $r1 10
              asm INC $r1
            )code"
  );
  auto vm = vm::create();
  REQUIRE(vm->run(c->bytecode()));
  REQUIRE(vm->r(1).value() == 11);
}

Listing 12

namespace primal {
  void register_opcodes() {
    vm_impl::register_opcode
      (primal::opcodes::MOV(),
        [&](primal::vm* v) -> bool 
        { return primal::impl_MOV(v); }
      );
    vm_impl::register_opcode
      (primal::opcodes::ADD(),
        [&](primal::vm* v) -> bool
        { return primal::impl_ADD(v); }
       );

Listing 13

struct executor
{
  std::function<bool(vm*)> runner;
};
template<class OPC, class EXECUTOR>
  static void register_opcode(OPC&& o, 
  EXECUTOR&& ex)
{
  auto f = [&](vm* machina) -> bool {
    return ex(machina);};
  executor t;
  t.runner = std::function<bool(vm*)>(f);
  opcode_runners[o.bin()] = t;
};
static std::map<uint8_t, executor> opcode_runners;

Listing 14

while(opcode_runners.count(ms[static_cast<size_t>
  (m_ip)]))
{
  // read in an opcode
  uint8_t opc = ms[static_cast<size_t>(m_ip++)];
  try
  {
    // is there a registered opcode runner for 
    // the given opcode?
    if(!opcode_runners[ opc ].runner(v))
    {
      panic();
    }
  }
  catch(...)
  {
    panic();
  }
  if(ms[static_cast<size_t>(m_ip)] == 0xFF)
  {
    return true;
  }
}
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It is possible to use auto for the return type: I just wanted to show the
actual return type. Now that you have the compiled code in the compiler
and the virtual machine up and running, nothing is easier than to run it:

  vm->run(c->bytecode())

After this point, you have full access to the memory and registers of the
virtual machine with the proper function calls found in class primal::vm
located in vm.h:

 word_t get_mem(word_t address) – to get the 32/64 bit
numeric value from the memory of the virtual machine from the
specified address.

 uint8_t get_mem_byte(word_t address) – to get the 8 bit
value from the memory of the virtual machine from the specified
address.

 const reg& r(uint8_t i) const – to get the object
representing the ith. register of the VM.

Conclusion
Working on this project was really fun, and I have learned a lot during the
implementation. However, progress does not stop here. There are a lot of
features in the compiler to be implemented, new keywords, proper register
handling, and – why not – even some optimizations that can be introduced.
The VM needs good profiling in order to pinpoint the bits that can be
optimized, and a lot of other features can be included too in the entire
ecosystem. While designing this whole universe, I made it as modular as
possible with the thought that some day, someone might have time to work
on it, and include the features he/she considers nice to have. So, if you feel
that you could contribute in any way, feel free to get in touch and start
coding on it in the spirit of open source. 
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Appendix – The write function
As promised, Listing 15 is the write function you can use to display data.
Save it under the name write.prim and place it in the directory where
your compiler and source file is, for the moment. Don’t forget to include
it in your project.

Listing 15

fun write(...)
  asm MOV $r249 $r255
  # Decrease the stack pointer to skip the pushed
  # R254 and the return address.
  # This is for 32 bit builds. For 64 bit builds,
  # use 16
  asm SUB $r255 8

  # First: the number of parameters that came in
  asm POP $r10

:next_var
  # fetch the value that needs to be printed
  asm POP $r2

  # This $r1 will contain the type of the variable:
  # 1 for string, 0 for number
  asm POP $r1

  # Is this a numeric value we want to print?
  asm EQ $r1 0

  # If yes, goto the print number location
  asm JT print_number

  # else goto the print string location
  asm JMP print_string

:print_number
  # print it out
  asm INTR 1

  # Move to the next variable
  asm SUB $r10 1

  # JT is logically equivalent to JNZ
  asm JT next_var

  # Done here, just return
  asm MOV $r255 $r249
  asm JMP leave

:print_string
  # Here $r2 contains the address of the string,
  #first character is the length

  # Initialize $r1 with the length
  asm MOV $r1 0
  asm MOV $r1@0 [$r2+$r251]

  # Get the address of the actual character data
  asm ADD $r2 1

  # Print it
  asm INTR 1

  # Move to the next variable
  asm SUB $r10 1

  # JT is logically equivalent to JNZ
  asm JT next_var

  # Done here, just return
  asm MOV $r255 $r249
:leave
end
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FEATUREMATTHEW WILSON
QM Bites: Understand Windows 
Operating-System Identification 
Preprocessor Macros
Quality matters and bite sized articles help. 
Matthew Wilson returns with a QM Bites.
TL;DR
Compiler defines _WIN32 and _WIN64; you define WIN32 or WIN64.
Carefully discriminate.

Bite
hen compiling for Windows 32 and 64-bit architectures, there are
four main preprocessor object-like macro definitions for
discriminating operating system (not architecture) that one may

encounter:

 _WIN32

 _WIN64

 WIN32

 WIN64

You must take care that you understand the origins and meanings of these.

_WIN32 and _WIN64
The symbol _WIN32 is defined by the compiler to indicate that this is a
(32-bit) Windows compilation. Unfortunately, for historical reasons, it is
also defined for 64-bit compilation.

The symbol _WIN64 is defined by the compiler to indicate that this is a
64-bit Windows compilation.

Thus:

To identify unambiguously whether the compilation is 64-bit Windows
one tests only _WIN64 as in:

  #if defined(_WIN64)
  /* Is Windows 64-bit */
  #else
  /* Is not Windows 64-bit */
  #endif

To identify unambiguously whether the compilation is 32-bit Windows
one tests both _WIN32 and _WIN64 as in:

  #if defined(_WIN32) && \
     !defined(_WIN64)
  /* Is Windows 32-bit */
  #else
  /* Is not Windows 32-bit */
  #endif

To identify unambiguously whether the compilation is one or the other
form of Windows one tests both _WIN32 and _WIN64 as in:

  #if defined(_WIN64)
  /* Is Windows 64-bit */
  #elif defined(_WIN32)
  /* Is Windows 32-bit */
  #else
  /* Not Windows */
  #endif

WIN32 and WIN64
The symbol WIN32 is defined by the user to indicate whatever the user
chooses it to indicate. By convention, the definition of this symbol
indicates a 32-bit Windows compilation, and nothing else! Microsoft (and
other) tools generate projects with this symbol defined.

The symbol WIN64 is defined by the user to indicate whatever the user
choose it to indicate. By convention, the definition of this symbol indicates
a 64-bit Windows compilation, and nothing else!

When properly defined, these symbols can be used to indicate
unambiguously the 32- and 64-bit Windows compilation contexts.

Caution with WIN32 / WIN64
Unfortunately, when duplicating a Win32 project to x64, the Microsoft
Visual Studio wizards do not translate WIN32 to WIN64. You must
remember to do this yourself, in order for the inferences given above to
hold. Do not add a separate WIN64 to the x64 configuration settings –
replace the existing WIN32 with WIN64. (All of this can be dealt with much
better by use of props files, but that’s a long article …)

Why bother with WIN32 / WIN64 (and not simply rely on _WIN32 / 
_WIN64)?
There are doubtless many reasons. The reasons I adhere strictly to this are:

 it is a widely adopted and meaningful convention, so adheres to the
principle of least surprise [Raymond03];

 it facilitates the emulation of (parts of) other operating systems (e.g.
UNIX [UNIXem]) while on Windows, which can be tremendously
helpful when porting code. 
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A Thorough Introduction to 
Distributed Systems
What is a distributed system, and why is it so 
complicated? Stanislav Kozlovski explains.
ith the ever-growing technological expansion of the world,
distributed systems are becoming more and more widespread.
They are a vast and complex field of study in computer science.

This article aims to introduce you to distributed systems in a basic manner,
showing you a glimpse of the different categories of such systems while
not diving deep into the details.

What is a distributed system?
A distributed system in its most simplest definition is a group of computers
working together as to appear as a single computer to the end-user.

These machines have a shared state, operate concurrently and can fail
independently without affecting the whole system’s uptime.

I propose we incrementally work through an example of distributing a
system so that you can get a better sense of it all.

Let’s go with a database! Traditional databases are stored on the filesystem
of one single machine, whenever you want to fetch/insert information in
it – you talk to that machine directly (see Figure 1, a traditional stack).

For us to distribute this database system, we’d need to have this database
run on multiple machines at the same time. Users must be able to talk to
whichever machine they choose and should not be able to tell that they are
not talking to a single machine – if they insert a record into node#1, node
#3 must be able to return that record. Figure 2 (overleaf) shows an
architecture that can be considered distributed.

Why distribute a system?
Systems are always distributed by necessity. The truth of the matter is –
managing distributed systems is a complex topic, chock-full of pitfalls and
landmines. It is a headache to deploy, maintain and debug distributed
systems, so why go there at all?

What a distributed system enables you to do is scale horizontally. Going
back to our previous example of the single database server, the only way
to handle more traffic would be to upgrade the hardware the database is
running on. This is called scaling vertically.

Scaling vertically is all well and good while you can, but after a certain
point you will see that even the best hardware is not sufficient for enough
traffic, not to mention impractical to host.

Scaling horizontally simply means adding more computers rather than
upgrading the hardware of a single one. Figure 3 (overleaf) shows that
horizontal scaling becomes much cheaper after a certain threshold.

It is significantly cheaper than vertical scaling after a certain threshold but
that is not its main case for preference.

Vertical scaling can only bump your performance up to the latest
hardware’s capabilities. These capabilities prove to be insufficient for
technological companies with moderate to big workloads.

The best thing about horizontal scaling is that you have no cap on how
much you can scale – whenever performance degrades you simply add
another machine, up to infinity potentially.

Easy scaling is not the only benefit you get from distributed systems. Fault
tolerance and low latency are also equally as important.

 Fault Tolerance – a cluster of ten machines across two data centers
is inherently more fault-tolerant than a single machine. Even if one
data center catches on fire, your application would still work.

 Low Latency – The time for a network packet to travel the world is
physically bounded by the speed of light. For example, the shortest
possible time for a request‘s round-trip time (that is, go back and
forth) in a fiber-optic cable between New York to Sydney is 160ms.
Distributed systems allow you to have a node in both cities, allowing
traffic to hit the node that is closest to it.

For a distributed system to work, though, you need the software running
on those machines to be specifically designed for running on multiple
computers at the same time and handling the problems that come along
with it. This turns out to be no easy feat.

Scaling our database
Imagine that our web application got insanely popular. Imagine also that
our database started getting twice as much queries per second as it can
handle. Your application would immediately start to decline in
performance and this would get noticed by your users.
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The truth of the matter is – managing
distributed systems is a complex topic,

chock-full of pitfalls and landmines
Let’s work together and make our database scale to meet our high
demands.

In a typical web application you normally read information much more
frequently than you insert new information or modify old one.

There is a way to increase read performance and that is by the so-called
Master-Slave Replication strategy. Here, you create two new database
servers which sync up with the main one. The catch is that you can only
read from these new instances. (See Figure 4, overleaf.)

Whenever you insert or modify information – you talk to the master
database. It, in turn, asynchronously informs the slaves of the change and
they save it as well.

Congratulations, you can now execute 3x as much read queries! Isn’t this
great?

Pitfall
Gotcha! We immediately lost the C in our relational database’s ACID
guarantees, which stands for Consistency.

You see, there now exists a possibility in which we insert a
new record into the database, immediately afterwards issue a
read query for it and get nothing back, as if it didn’t exist!

Propagating the new information from the master to the slave
does not happen instantaneously. There actually exists a time
window in which you can fetch stale information. If this were
not the case, your write performance would suffer, as it would
have to synchronously wait for the data to be propagated.

Distributed systems come with a handful of trade-offs. This
particular issue is one you will have to live with if you want
to adequately scale.

Continuing to scale
Using the slave database approach, we can horizontally scale
our read traffic up to some extent. That’s great but we’ve hit
a wall in regards to our write traffic – it’s still all in one server!

We’re not left with much options here. We simply need to
split our write traffic into multiple servers as one is not able
to handle it.

One way is to go with a multi-master replication strategy.
There, instead of slaves that you can only read from, you have
multiple master nodes which support reads and writes.
Unfortunately, this gets complicated real quick as you now
have the ability to create conflicts (e.g insert two records with
same ID).

Let’s go with another technique called sharding (also called
partitioning).

With sharding you split your server into multiple smaller
servers, called shards. These shards all hold different records
– you create a rule as to what kind of records go into which

Figure 2

Figure 3
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shard. It is very important to create the rule such that the data gets spread
in a uniform way.

A possible approach to this is to define ranges
according to some information about a record
(e.g users with name A-D, as illustrated in
Figure 5).

This sharding key should be chosen very
carefully, as the load is not always equal based
on arbitrary columns. (e.g more people have
a name starting with C rather than Z). A single
shard that receives more requests than others
is called a hot spot and must be avoided. Once
split up, re-sharding data becomes incredibly
expensive and can cause s ignif icant
downtime, as was the case with FourSquare’s
infamous 11 hour outage.

To keep our example simple, assume our
client (the Rails app) knows which database to
use for each record. It is also worth noting that
there are many strategies for sharding and this
is a simple example to illustrate the concept.

We have won quite a lot right now – we can
increase our write traffic N times where N is
the number of shards. This practically gives us
almost no limit – imagine how finely-grained
we can get with this partitioning.

Pitfall
Everything in Software Engineering is more or less a trade-
off and this is no exception. Sharding is no simple feat and is
best avoided until really needed.

We have now made queries by keys other than the partitioned
key incredibly inefficient (they need to go through all of the
shards). SQL JOIN queries are even worse and complex ones
become practically unusable.

Decentralized vs distributed
Before we go any further I’d like to make a distinction
between the two terms.

Even though the words sound similar and can be concluded
to mean the same logically, their difference makes a
significant technological and political impact.

Decentralized is still distributed in the technical sense, but the
whole decentralized systems is not owned by one actor. No
one company can own a decentralized system, otherwise it
wouldn’t be decentralized anymore.

This means that most systems we will go over today can be
thought of as distributed centralized systems – and that is
what they’re made to be.

If you think about it, it is harder to create a decentralized
system because then you need to handle the case where some
of the participants are malicious. This is not the case with
normal distributed systems, as you know you own all the
nodes.

Note: This definition has been debated a lot and can be
confused with others (peer-to-peer, federated). In early
literature, it’s been defined differently as well. Regardless,
what I gave you as a definition is what I feel is the most widely
used now that blockchain and cryptocurrencies popularized
the term.

Distributed system categories
We are now going to go through a couple of distributed

system categories and list their largest publicly-known production usage.

Figure 4

Figure 5
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Bear in mind that most such numbers shown are outdated and are most
probably significantly bigger as of the time you are reading this.

Distributed data stores
Distributed data stores are most widely used and recognized as distributed
databases. Most distributed databases are NoSQL non-relational
databases, limited to key-value semantics. They provide incredible
performance and scalability at the cost of consistency or availability.

Known Scale – Apple is known to use 75,000 Apache
Cassandra nodes storing over 10 petabytes of data, back in
2015

We cannot go into discussions of distributed data stores without first
introducing the CAP Theorem.

CAP theorem
Proven way back in 2002, the CAP theorem states that a distributed data
store cannot simultaneously be consistent, available and partition tolerant.

Choose 2 out of 3 (but not consistency
and availability).

Some quick definitions:

 Consistency – What you read and
write sequentially is what is
expected (remember the gotcha
with the database replication a few
paragraphs ago?)

 Availability – the whole system
does not die – every non-failing
node always returns a response.

 Partition Tolerant – The system continues to function and uphold
its consistency/availability guarantees in spite of network partitions

In reality, partition tolerance must be a given for any distributed data store.
As mentioned in many places, one of which this great article, you cannot
have consistency and availability without partition tolerance.

Think about it: if you have two nodes which accept information and their
connection dies – how
are they both going to
b e  av a i l a b l e  an d
s i mu l t a ne ous ly
p r ov ide  you  wi th
consistency? They
h a v e  n o  w a y  o f
knowing what  the
other node is doing
and as such have can
either become offline
(unavailable) or work
with stale information
(inconsistent).

What do we do? In the
end, you’re left to
choose if you want
your system to be
strongly consistent or
highly available under
a network partition
(see Figure 6).

Practice shows that
most applications value
availability more. You
do not necessarily
always need strong
consistency. Even then,
that trade-off is not
necessar i ly  made

because you need the 100% availability guarantee, but rather because network
latency can be an issue when having to synchronize machines to achieve strong
consistency. These and more factors make applications typically opt for
solutions which offer high availability.

Such databases settle with the weakest consistency model – eventual
consistency (strong vs eventual consistency explanation). This model
guarantees that if no new updates are made to a given item, eventually all
accesses to that item will return the latest updated value.

Those systems provide BASE properties (as opposed to traditional
databases’ ACID)

 Basically Available – The system always returns a response

 Soft state – The system could change over time, even during times
of no input (due to eventual consistency)

 Eventual consistency – In the absence of input, the data will spread
to every node sooner or later – thus becoming consistent

Examples of such available distributed databases – Cassandra, Riak,
Voldemort

Of course, there are other data stores which prefer stronger consistency –
HBase, Couchbase, Redis, Zookeeper

The CAP theorem is worthy of multiple articles on its own – some
regarding how you can tweak a system’s CAP properties depending on
how the client behaves and others on how it is not understood properly.

Cassandra
Cassandra, as mentioned above, is a distributed No-SQL database which
prefers the AP properties out of the CAP, settling with eventual
consistency. I must admit this may be a bit misleading, as Cassandra is
highly configurable – you can make it provide strong consistency at the
expense of availability as well, but that is not its common use case.

Cassandra uses consistent hashing to determine which nodes out of your
cluster must manage the data you are passing in. You set a replication
factor, which basically states to how many nodes you want to replicate your
data. (Figure 7, overleaf, shows a sample write.)

When reading, you will read from those nodes only.

Figure 6
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Cassandra is massively scalable, providing absurdly high write
throughput. Figure 8 is a possibly biased diagram, showing writes per
second benchmarks. [Datastax].

Even though this diagram might be biased and it looks like it compares
Cassandra to databases set to provide strong consistency (otherwise I can’t
see why MongoDB would drop performance when upgraded from 4 to 8
nodes), this should still show what a properly
set up Cassandra cluster is capable of.

Regardless, in the distributed systems trade-
off which enables horizontal scaling and
incredibly high throughput, Cassandra does
not provide some fundamental features of
ACID databases – namely, transactions.

Consensus
Database t ransact ions  are  t r icky to
implement in distributed systems as they
require each node to agree on the right action
to take (abort or commit). This is known as
consensus and it is a fundamental problem
in distributed systems.

Reaching the type of agreement needed for
the “transaction commit” problem is
straightforward if the participating processes
and the network are completely reliable.
However, real systems are subject to a
number of possible faults, such as process
crashes, network partitioning, and lost,
distorted, or duplicated messages.

This poses an issue – it has been proven
impossible to guarantee that a correct
consensus is reached within a bounded time
frame on a non-reliable network.

In practice, though, there are algorithms that
reach consensus on a non-reliable network

pretty quickly. Cassandra actually provides
lightweight transactions through the use of the
Paxos algorithm for distributed consensus.

Distributed computing
Distributed computing is the key to the influx of
Big Data processing we’ve seen in recent years.
It is the technique of splitting an enormous task
(e.g aggregate 100 billion records), of which no
single computer is capable of practically
executing on its own, into many smaller tasks,
each of which can fit into a single commodity
machine. You split your huge task into many
smaller ones, have them execute on many
machines in parallel, aggregate the data
appropriately and you have solved your initial
problem. This approach again enables you to
scale horizontally – when you have a bigger task,
simply include more nodes in the calculation.

Known Scale – Folding@Home had
160k active machines in 2012

An early innovator in this space was Google,
which by necessity of their large amounts of data
had to invent a new paradigm for distributed
computation – MapReduce. They published a
paper on it in 2004 and the open source
community later created Apache Hadoop based
on it.

MapReduce
MapReduce can be simply defined as two steps – mapping the data and
reducing it to something meaningful.

Let’s get at it with an example again (see Figure 9, overleaf).

Figure 7
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Say we are Medium and we stored our enormous information in a
secondary distributed database for warehousing purposes. We want to
fetch data representing the number of claps issued each day throughout
April 2017 (a year ago).

This example is kept as short, clear and simple as possible, but imagine
we are working with loads of data (e.g analyzing billions of claps). We
won’t be storing all of this information on one machine obviously and we
won’t be analyzing all of this with one machine only. We also won’t be
querying the production database but rather some “warehouse” database
built specifically for low-priority offline jobs.

Each Map job is a separate node transforming as much data as it can. Each
job traverses all of the data in the given storage node and maps it to a simple
tuple of the date and the number one. Then, three intermediary steps (which
nobody talks about) are done – Shuffle, Sort and Partition. They basically
further arrange the data and delete it to the appropriate reduce job. As we’re
dealing with big data, we have each Reduce job separated to work on a
single date only.

This is a good paradigm and surprisingly enables you to do a lot with it –
you can chain multiple MapReduce jobs for example.

Better techniques
MapReduce is somewhat legacy nowadays and brings some problems with
it. Because it works in batches (jobs) a problem arises where if your job
fails – you need to restart the whole thing. A 2-hour job failing can really
slow down your whole data processing pipeline and you do not want that
in the very least, especially in peak hours.

Another issue is the time you wait until you receive results. In real-time
analytic systems (which all have big data and thus use distributed
computing) it is important to have your latest crunched data be as fresh as
possible and certainly not from a few hours ago.

As such, other architectures have emerged that address these issues.
Namely Lambda Architecture (mix of batch processing and stream
processing) and Kappa Architecture (only stream processing). These
advances in the field have brought new tools enabling them – Kafka
Streams, Apache Spark, Apache Storm, Apache Samza.

Distributed file systems
Distributed file systems can be thought of as distributed data stores.
They’re the same thing as a concept – storing and accessing a large amount
of data across a cluster of machines all appearing as one. They typically
go hand in hand with Distributed Computing.

Known Scale – Yahoo is known for running HDFS on over
42,000 nodes for storage of 600 Petabytes of data, way back in
2011

Wikipedia defines the difference being that distributed file systems allow
files to be accessed using the same interfaces and semantics as local files,
not through a custom API like the Cassandra Query Language (CQL).

HDFS
Hadoop Distributed File System (HDFS) is the distributed file system used
for distributed computing via the Hadoop framework (see Figure 10,
overleaf). Boasting widespread adoption, it is used to store and replicate
large files (GB or TB in size) across many machines.

Its architecture consists mainly of NameNodes and DataNodes.
NameNodes are responsible for keeping metadata about the cluster, like
which node contains which file blocks. They act as coordinators for the
network by figuring out where best to store and replicate files, tracking the
system’s health. DataNodes simply store files and execute commands like
replicating a file, writing a new one and others.

Unsurprisingly, HDFS is best used with Hadoop for computation as it
provides data awareness to the computation jobs. Said jobs then get ran
on the nodes storing the data. This leverages data locality – optimizes
computations and reduces the amount of traffic over the network.

IPFS
Interplanetary File System (IPFS) is an exciting new peer-to-peer protocol/
network for a distributed file system. Leveraging Blockchain technology,
it boasts a completely decentralized architecture with no single owner nor
point of failure.

IPFS offers a naming system (similar to DNS) called IPNS and lets users
easily access information. It stores file via historic versioning, similar to
how Git does. This allows for accessing all of a file’s previous states.

Figure 9
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It is still undergoing heavy development (v0.4 as
of time of writing) but has already seen projects
interested in building over it (FileCoin).

Distributed messaging
Messaging systems (see Figure 11) provide a
central place for storage and propagation of
messages/events inside your overall system.
They allow you to decouple your application
logic from directly talking with your other
systems.

Known Scale – LinkedIn’s Kafka
cluster processed 1 trillion messages a
day w i th  peaks  o f  4 .5  m i l l ions
messages a second.

Simply put, a messaging platform works in the
following way:

A message is broadcast from the application
which potentially create it (called a producer),
goes into the platform and is read by potentially
multiple applications which are interested in it
(called consumers).

If you need to save a certain event to a few places
(e.g user creation to database, warehouse, email
sending service and whatever else you can come
up with) a messaging platform is the cleanest
way to spread that message.

Consumers can either pull information out of the
brokers (pull model) or have the brokers push
information directly into the consumers (push
model).

There are a couple of popular top-notch
messaging platforms:

 RabbitMQ – Message broker which
allows you finer-grained control of
message trajectories via routing rules and
other easily configurable settings. Can be
called a smart broker, as it has a lot of
logic in it and tightly keeps track of
messages that pass through it. Provides
settings for both AP and CP from CAP.

Figure 11

Figure 10
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Uses a push model for notifying the consumers.

 Kafka – Message broker (and all out platform) which is a bit lower
level, as in it does not keep track of which messages have been read
and does not allow for complex routing logic. This helps it achieve
amazing performance. In my opinion, this is the biggest prospect in
this space with active development from the open-source
community and support from the Confluent team. Kafka arguably
has the most widespread use from top tech companies. I wrote a
thorough introduction to this, where I go into detail about all of its
goodness.

 Apache ActiveMQ – The oldest of the bunch, dating from 2004.
Uses the JMS API, meaning it is geared towards Java EE
applications. It got rewritten as ActiveMQ Artemis, which provides
outstanding performance on par with Kafka.

 Amazon SQS – A messaging service provided by AWS. Lets you
quickly integrate it with existing applications and eliminates the
need to handle your own infrastructure, which might be a big
benefit, as systems like Kafka are notoriously tricky to set up.
Amazon also offers two similar services – SNS and MQ, the latter
of which is basically ActiveMQ but managed by Amazon.

Distributed applications
If you roll up 5 Rails servers behind a single load balancer all connected
to one database, could you call that a distributed application? Recall my
definition from up above:

A distributed system is a group of computers working together as to appear
as a single computer to the end-user. These machines have a shared state,
operate concurrently and can fail independently without affecting the
whole system’s uptime.

If you count the database as a shared state, you could argue that this can
be classified as a distributed system – but you’d be wrong, as you’ve
missed the “working together” part of the definition.

A system is distributed only if the nodes communicate with each other to
coordinate their actions.

Therefore something like an application running its back-end code on a
peer-to-peer network can better be classified as a distributed application.
Regardless, this is all needless classification that serves no purpose but
illustrate how fussy we are about grouping things together.

Known Scale – BitTorrent swarm of
193,000 nodes for an episode of
Game of Thrones, April, 2014

Erlang Virtual Machine
Erlang is a functional language that has great
semantics for concurrency, distribution and
fault-tolerance. The Erlang Virtual Machine
itself handles the distribution of an Erlang
application.

Its model works by having many isolated
lightweight processes all with the ability to
talk to each other via a built-in system of
message passing. This is called the Actor
Model and the Erlang OTP libraries can be
thought of as a distributed actor framework
(along the lines of Akka for the JVM).

The model is what helps it achieve great
concurrency rather simply – the processes
are spread across the available cores of the
sys tem running them.  Since  th is  i s
indistinguishable from a network setting
(apart from the ability to drop messages),
Erlang’s VM can connect to other Erlang
VMs running in the same data center or even

in another continent. This swarm of virtual machines run one single
application and handle machine failures via takeover (another node gets
scheduled to run).

In fact, the distributed layer of the language was added in order to provide
fault tolerance. Software running on a single machine is always at risk of
having that single machine dying and taking your application offline.
Software running on many nodes allows easier hardware failure handling,
provided the application was built with that in mind.

BitTorrent
BitTorrent is one of the most widely used protocol for transferring large
files across the web via torrents. The main idea is to facilitate file transfer
between different peers in the network without having to go through a main
server.

Using a BitTorrent client, you connect to multiple computers across the
world to download a file. When you open a .torrent file, you connect to a
so-called tracker, which is a machine that acts as a coordinator. It helps
with peer discovery, showing you the nodes in the network which have the
file you want. Figure 12 shows a sample network.

You have the notions of two types of user, a leecher and a seeder. A leecher
is the user who is downloading a file and a seeder is the user who is
uploading said file.

The funny thing about peer-to-peer networks is that you, as an ordinary
user, have the ability to join and contribute to the network.

BitTorrent and its precursors (Gnutella, Napster) allow you to voluntarily
host files and upload to other users who want them. The reason BitTorrent
is so popular is that it was the first of its kind to provide incentives for
contributing to the network. Freeriding, where a user would only
download files, was an issue with the previous file sharing protocols.

BitTorrent solved freeriding to an extent by making seeders upload more
to those who provide the best download rates. It works by incentivizing
you to upload while downloading a file. Unfortunately, after you’re done,
nothing is making you stay active in the network. This causes a lack of
seeders in the network who have the full file and as the protocol relies
heavily on such users, solutions like private trackers came into fruition.
Private trackers require you to be a member of a community (often invite-
only) in order to participate in the distributed network.

After advancements in the field, trackerless torrents were invented. This
was an upgrade to the BitTorrent protocol that did not rely on centralized

Figure 12
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trackers for gathering metadata and finding peers but instead use new
algorithms. One such instance is Kademlia (Mainline DHT), a distributed
hash table (DHT) which allows you to find peers through other peers. In
effect, each user performs a tracker’s duties.

Distributed ledgers
A distributed ledger can be thought of as an immutable, append-only
database that is replicated, synchronized and shared across all nodes in the
distributed network.

Known Scale – Ethereum Network had a peak of 1.3 million
transactions a day on January 4th, 2018.

They leverage the Event Sourcing pattern, allowing you to rebuild the
ledger’s state at any time in its history.

Blockchain
Blockchain is the current underlying technology used for distributed
ledgers and in fact marked their start. This latest and greatest innovation
in the distributed space enabled the creation of the first ever truly
distributed payment protocol – Bitcoin.

Blockchain is a distributed ledger carrying an ordered list of all
transactions that ever occurred in its network. Transactions are grouped
and stored in blocks. The whole blockchain is essentially a linked-list of
blocks (hence the name). Said blocks are computationally expensive to
create and are tightly linked to each other through cryptography.

Simply said, each block contains a special hash (that starts with X amount
of zeroes) of the current block’s contents (in the form of a Merkle Tree)
plus the previous block’s hash. This hash requires a lot of CPU power to
be produced because the only way to come up with it is through brute-
force. Figure 13 shows a simplified blockchain.

Miners are the nodes who try to compute the hash (via bruteforce). The
miners all compete with each other for who can come up with a random
string (called a nonce) which, when combine with the contents, produces
the aforementioned hash. Once somebody finds the correct nonce – he
broadcasts it to the whole network. Said string is then verified by each node
on its own and accepted into their chain.

This translates into a system where it is absurdly costly to modify the
blockchain and absurdly easy to verify that it is not tampered with.

It is costly to change a block’s contents
because that would produce a different hash.
Remember that each subsequent block‘s
hash is dependent on it. If you were to change
a transaction in the first block of the picture
above – you would change the Merkle Root.
This would in turn change the block’s hash
(most likely without the needed leading
zeroes) – that would change block #2’s hash
and so on and so on. This means you’d need
to brute-force a new nonce for every block
after the one you just modified.

The network always trusts and replicates the
longest valid chain. In order to cheat the
system and eventually produce a longer
chain you’d need more than 50% of the total
CPU power used by all the nodes.

Blockchain can be thought of as a distributed
mechanism for emergent consensus .
Consensus is not achieved explicitly – there
is no election or fixed moment when
consensus occurs. Instead, consensus is an
emergent product of the asynchronous
interaction of thousands of independent
nodes, all following protocol rules.

This unprecedented innovation has recently become a boom in the tech
space with people predicting it will mark the creation of the Web 3.0. It is
definitely the most exciting space in the software engineering world right
now, filled with extremely challenging and interesting problems waiting
to be solved.

Bitcoin
What previous distributed payment protocols lacked was a way to
practically prevent the double-spending problem in real time, in a
distributed manner. Research has produced interesting propositions
([Osipkov07] and [Szabo05]) but Bitcoin was the first to implement a
practical solution with clear advantages over others.

The double spending problem states that an actor (e.g Bob) cannot spend
his single resource in two places. If Bob has $1, he should not be able to
give it to both Alice and Zack – it is only one asset, it cannot be duplicated.
It turns out it is really hard to truly achieve this guarantee in a distributed
system. There are some interesting mitigation approaches predating
blockchain, but they do not completely solve the problem in a practical
way.

Double-spending is solved easily by Bitcoin, as only one block is added
to the chain at a time. Double-spending is impossible within a single block,

Figure 13
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therefore even if two blocks are created at the same time – only one will
come to be on the eventual longest chain.

Bitcoin relies on the difficulty of accumulating CPU power.

While in a voting system an attacker need only add nodes to the network
(which is easy, as free access to the network is a design target), in a CPU
power based scheme an attacker faces a physical limitation: getting access
to more and more powerful hardware.

This is also the reason malicious groups of nodes need to control over 50%
of the computational power of the network to actually carry any successful
attack. Less than that, and the rest of the network will create a longer
blockchain faster.

Ethereum
Ethereum can be thought of as a programmable blockchain-based software
platform. It has its own cryptocurrency (Ether) which fuels the deployment
of smart contracts on its blockchain.

Smart contracts are a piece of code stored as a single transaction in the
Ethereum blockchain. To run the code, all you have to do is issue a
transaction with a smart contract as its destination. This in turn makes the
miner nodes execute the code and whatever changes it incurs. The code is
executed inside the Ethereum Virtual Machine.

Solidity, Ethereum’s native programming language, is what’s used to write
smart contracts. It is a turing-complete programming language which
directly interfaces with the Ethereum blockchain, allowing you to query
state like balances or other smart contract results. To prevent infinite loops,
running the code requires some amount of Ether.

As the blockchain can be interpreted as a series of state changes, a lot of
distributed applications (DApps) have been built on top of Ethereum and
similar platforms.

Further usages of distributed ledgers
 Proof of existence – A service to anonymously and securely store

proof that a certain digital document existed at some point of time.
Useful for ensuring document integrity, ownership and
timestamping.

 Decentralized autonomous organizations (DAO) – organizations
which use blockchain as a means of reaching consensus on the
organization’s improvement propositions. Examples are Dash’s
governance system, the SmartCash project

 Decentralized authentication – Store your identity on the
blockchain, enabling you to use single sign-on (SSO) everywhere.
Sovrin, Civic

And many, many more. The distributed ledger technology really did open
up endless possibilities. Some are most probably being invented as we
speak!

Summary
In the short span of this article, we managed define what a distributed
system is, why you’d use one and go over each category a little. Some
important things to remember are:

 Distributed systems are complex

 They are chosen by necessity of scale and price

 They are harder to work with

 CAP Theorem – Consistency/Availability trade-off

 They have 6 categories – data stores, computing, file systems,
messaging systems, ledgers, applications

To be frank, we have barely touched the surface on distributed systems. I
did not have the chance to thoroughly tackle and explain core problems
like consensus, replication strategies, event ordering & time, failure
tolerance, broadcasting a message across the network and others.

Caution
Let me leave you with a parting forewarning: 

Don’t get addicted to the buzz that comes with solving
hard problems. If you’re solving the wrong problems,

your effort will be wasted. If you miss a chance to turn a
hard problem into an easy one, your effort will be wasted.

Find inspiration in progress, not problem solving.
~ @practicingdev

You must stray away from distributed systems as much as you can. The
complexity overhead they incur with themselves is not worth the effort if
you can avoid the problem by either solving it in a different way or some
other out-of-the-box solution. 
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FEATURE CHRIS SHARPE
Don’t Use std::endl
How do you add a new line in C++? 
Chris Sharpe suggests std::endl is a tiny 
utility that’s more trouble than it’s worth.
Just what am I complaining about?
wanted to write about a particular bad habit I always see from students
and C++ beginners, especially in questions on Stack Overflow, that
seems to be taught in a lot of books, online tutorials, classes, etc.

Do you use std::endl to end lines when streaming text? Do you know
what it does?

  std::cout << "Foo" << std::endl;

std::endl does two things:

 writes '\n' to the stream

 flushes the stream [cppreference-1].

And nothing else. I’ve seen people mention that it is the right thing to use
to get cross platform line endings. This is just wrong; streaming
std::endl is guaranteed to do the same thing as streaming '\n', and
platforms make their own guarantees about expanding this into their
canonical line endings (for instance, it becomes <CR><LF> on Windows).
std::endl exists in the Standard Library only for those situations where
you want to both write a newline character and flush the stream. I think,
with the benefit of hindsight, it is wrong for such a utility to exist.

Why use std::endl?
In my mind, these are two entirely unrelated operations. The first is simply
writing a character to the target underlying the stream, no more special than
any other character. The second is an administrative action on the stream
object itself, and one that I have rarely seen a good reason to carry out
manually. Why would you want to do both at once? Some possibilities:

 You have some urgent output you want the user to see immediately.
Sounds like a perfect case for std::cerr, which has unitbuf
[cppreference-2] set so will display all output immediately and
never needs to be manually flushed, entirely for this purpose.

 You want to display a prompt and make sure it appears before
asking for input. std::cout and std::cin are tie()’d together
[cppreference-3], so this will happen automatically. (Note they are
also synced with the C equivalents [cppreference-4]).

 You want some sort of live updating output that is not urgent per se,
and is not part of user interaction (interleaved with reading).

Well it may be the case that for a live updating UI (e.g. top [linux-1]),
basic console output is not the best thing, and you should use a toolkit such
as ncurses [linux-2]. But let’s say you are just writing a basic example, like
the pendulum simulator in Listing 1. What should you use in that case?

Why NOT use std::endl?
Ok, now I’ve painted myself into a corner where you might legitimately
want to flush the stream each time. But the delimiter is still irrelevant to
the flushing. What if you decided to separate the ticks with spaces or tabs
instead? And anyway, many implementations of std::cout are line-
buffered when writing to an actual terminal, for instance libstdc++ (default
with gcc) [GNU], but of course you can’t 100% rely on that and remain
completely cross-platform.

So I’ve argued that writing a newline and flushing a stream are unrelated
operations, and you rarely want to do the latter anyway. But maybe you
do occasionally want to do both at the same time. Isn’t std::endl ideal
for that?

I’d still argue no. It’s very important to clearly express your intent in code.
Comments are important of course, but it’s even better when they simply
aren’t necessary. Comments can be out of date. The code can’t. Now many
beginners (and some more experienced programmers, sadly) simply don’t
know that std::endl flushes. So when I see it used, I simply have no
idea if the original author really intended to flush or not. I see many uses
of std::endl where flushing makes absolutely no sense whatsoever, and
plenty of uses where it is certainly not clear that flushing is useful.

What should I do instead?
So what do I recommend? Use '\n', and std::flush if you really do
mean it. You may as well put the '\n' into the preceding string literal
while you are at it.

  std::cout << "foo\n";
  std::cout << "Some int: " << i << '\n';
  std::cout << "bar\n" << std::flush;

If your printing is a bit convoluted and you really do want to make it clear
where you are printing a newline, you can separate it from the preceding
string literal, and even give it a name if you like (Listing 2) or you can
model it on more closely on std::endl (Listing 3).

I
Listing 1

while (true) {
  std::cout << "Tick" << std::endl;
  sleep(1);
  std::cout << "Tock" << std::endl;
  sleep(1);
}

Listing 2

namespace cds {
  char const nl = '\n';
}
// ...
std::cout << "Tick" << cds::nl << std::flush;

Chris Sharpe In between herding cats leading a team, juggling, and 
being a domestic servant to two huskies, Chris Sharpe occasionally 
finds time to write C++ at Bloomberg L.P. He can be reached at 
chris.sharpe.99@gmail.com
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I’ve argued that writing a newline and flushing
a stream are unrelated operations, and you

rarely want to do the latter anyway
If you stream a function that takes and returns an std::ostream&, the
function is called on the stream.

My argument is simply about writing expressive code – code that says what
you mean and means what you say. If you don’t find that convincing, many
other people have also raised the genuine performance problem all the
extra flushing can cause [Kuhl12], [Stroustrup] and [Turner16]. (The first
of those links also provides another nl manipulator, that will work on
streams with a character type other than char.)  
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Listing 3

namespace cds {
  std::ostream& nl(std::ostream& os) {
    return os << '\n';
  }
}
// ...
std::cout << "Tick" << cds::nl << std::flush;
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FEATURE CHRIS OLDWOOD
Afterwood
Good workers tidy up after themselves – it avoids accidents 
and makes them more productive. Chris Oldwood argues that 
good software developers should do the same.
Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit 
micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the 
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

t’s interesting to watch other professions at work. Unless you work on
the ground floor of a glass building or sit on a train with a monster-
sized laptop, it’s highly unlikely that Joe Public is ever going to be able

to watch you writing software without being highly intrusive. Even if
someone is visiting the office much of what happens is on a screen that is
too small and inappropriately angled to see what’s really going on; an
impromptu huddle or conversation around a whiteboard is about the only
glimpse they might get of us in action.

Sitting in the queue at the hairdressers – a traditionally open-plan
workspace – you can watch the staff at work. While plenty of time is spent
working directly with each client to make their hair look special, there are
other activities which take place before, during and after which are not
directly related to styling the client’s hair, but nevertheless still contribute
to the experience for both the client and stylist. For example, it’s quite
common for a member of staff to be wandering around with a broom
constantly sweeping the floor. This task is not solely performed by some
intern or graduate who’s beginning to learn the ropes but may be done by
senior staff too, if the need arises, rather than let the pile of discarded hair
accumulate. Similarly, their core tools and products are readily accessible
– you rarely see a hairdresser wandering around trying to find a pair of
scissors or some styling wax.

I find the same can be true of building sites, whether it be large scale
construction or a new extension to the house. Decent builders will
constantly sweep up and clean around themselves whilst they are
working, not just at the end of the day before knocking off. Likewise,
people working in a kitchen can be seen wiping the sides, returning
products to the store and washing up crockery and utensils.

While there is undoubtedly an element of ‘health & safety’ in all these
professions that acts as a strong driver to try and keep the workspace clean
and tidy, that can’t be the only reason. The open plan nature of many
hairdressing salons no doubt acts as another driver for them to keep the
place presentable, as the window is literally a shop window showing
passers-by what’s on offer. Open kitchens are ‘a thing’ too, so that
customers can sit and watch the chefs at work and be part of the entire
cooking experience.

I find it hard to believe anybody truly enjoys working in a pig sty, except
maybe some pig farmers, and yet those of us who work in offices (of the
virtual kind where our ‘files’ and ‘folders’ exist merely as electrical
phenomena and our ‘desktop’ is just a visual metaphor) often seem
oblivious to the virtual detritus surrounding us. Unless you’re working in
an industry where lives are at stake, there is no risk to anyone’s health
from leaving around commented out code, ignored tests, unused source
files, stale 3rd party packages, old build configurations, redundant source

repositories, out of date documentation, uncommitted deployment hacks,
build warnings, temporary log messages, etc.

While there are essentially no health risks, undue stress notwithstanding,
there is surely an effect on productivity as people keep discovering the
same remnants of days gone past and then wasting time on questioning
what they’re failing to comprehend until somebody fills in the blanks. It
takes time before the muscle memory kicks in so that the same discovery
again and again can quickly be discarded. Even if we deal with the
problem the first time we encounter it, we are unlikely to have all the same
context the original ‘perpetrator’ had and therefore it will take us longer
to correct than simply doing it properly first time around.

While commented out code is trivial to deal with, dead code is often much
harder to isolate even with modern refactoring tools unless it literally has
no call sites and is not an obvious target for invocation by reflection
either. Writing unit tests is great for live code but it hides dead code from
our tools. Even when you don’t have any tests keeping it alive, finding the
roots and checking if they are still live can require a fair bit of legwork.

Ancillary code such as the tools and scripts used to stitch together build,
test, deployment and support processes can often accumulate a large
amount of cruft over time as their ‘non-production’ status frequently
grants them only 3rd class citizenship. Their very nature can be highly
environment-specific too, meaning that any change is going to be tricky
to test and therefore proving redundancy could be non-trivial.

Not all changes start with a clear entry path that leads to an obvious test
plan either. Often, we find something that needs changing and then go
looking sideways to find similar points of interest, such as the same type
of mistake made elsewhere or where the same code could have been copy-
pasted rather than factored out. Once we find them, unless we are going
to simply ‘hit and hope’, we have to navigate back out again to work out
how we’re going to test those changes too. Choosing not to join up the
dots and blindly changing redundant code or configuration only adds to
the appearance of liveliness.

Remember when you were a student or first shared a house with other
people you didn’t really know? Don’t be that person who puts empty
cereal boxes back in the cupboard, leaves a useless amount of milk in the
carton and only washes up their own dishes. Please, for the sake of your
flat-team-mates, clean the sides and sweep the floor. 

I
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