
ACCU Conference
2022

Attendees share their experiences as the
ACCU Conference returns as a hybrid
event, with many attending in person

Compile-timeWordle in C++20
Vittorio Romeo introduces wordlexpr, playing
the game using compiler error messages

Performance Considered
Essential
Lucian Radu Teodorescu argues that
performance is not just important but is
actually the most important thing

Afterwood
Chris Oldwood pulls a few threads

Join ACCU
Run by programmers for programmers,
join ACCU to improve your coding skills

www.accu.org

A worldwide non-profit organisation

Journals published alternate months:

CVu in January, March, May,
July, September and November

Overload in February, April, June,
August, October and December

Annual conference

Local groups run by members

professionalism in programming

Join now!
Visit the website

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

June 2022 | Overload | 1

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That
is, we care about writing good code,
and about writing it in a good way. We
are dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members – by
programmers, for programmers – and
have been contributed free of charge.

Copyrights and Trademarks
Some articles and other contributions use terms that are either registered trade marks or
claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request, we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the
author. By submitting material to ACCU for publication, an author is, by default, assumed to
have granted ACCU the right to publish and republish that material in any medium as they
see fit. An author of an article or column (not a letter or a review of software or a book) may
explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution
2) members to copy source code for use on their own computers, no material can be copied
from Overload without written permission from the copyright holder.

OVERLOAD 169

June 2022
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication
in Overload 170 should be
submitted by 1st July 2022 and
those for Overload 171 by 1st
September 2022.

 4 Performance Considered Essential
Lucian Radu Teodorescu argues that
performance is not just important but is
actually the most important thing.

 8 Compile-time Wordle in C++20
Vittorio Romeo introduces wordlexpre, using
compiler error messages to play the game.

 10 ACCU Conference 2022
The ACCU conference returned in hybrid
mode this year. Several writers share their
experiences.

 16 Afterwood
Chris Oldwood pulls a few threads.

FRAnCEs BUOntEmPOEDitORiAL

2 | Overload | June 2022

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been
a programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.

What Happened to Demo 13?
Making mistakes and forgetting are
facts of life. Frances Buontempo
tries to find ways to tackle this.

I’ve not had time to write an editorial because I
attended the ACCU conference in person this year
and spoke. Travelling is surprisingly time consuming
and tiring, especially if you’ve not done it in a while.
Furthermore, being around crowds of people can be

overwhelming when you are out of practice. My talk was about traffic
flow and crowds of people moving in space, which involved simulations
to remind me how this real life stuff works. The conference was run as
a hybrid event this year, so some attended in person while others joined
remotely. It worked well. If you’ve never been to a conference, find one
and go. If you can’t afford it or persuade work to pay, you can sometimes
volunteer and therefore get in for free. Also, don’t forget you get a
discount for the ACCU conference if you are an ACCU member.

You will be unsurprised to learn my talk involved coding your way out of
a paper bag. I have been using this as a toy problem to play around with
various machine learning and simulation algorithms for a very long time
now. Each attempt involves a paper bag and some blobs moving around
trying to get out of the bag. Sometimes the blobs are ‘particles’ which
either simulate Brownian motion [Wikipedia-1], or follow a particle
swarm optimization [Wikipedia-2]. Sometimes they are ants, forming an
ant colony [Dorigo04] or a bee colony [Scholarpedia]. You could even
imagine a miniature cannon firing cannon balls and use genetic algorithms
to decide the best angle and velocity to fire them with [Buontempo13].
Having a go-to toy problem often fires off lots of ideas and can also help
you focus on specific areas rather than trying to research everything and
leaving a trail of half-finished projects. Or maybe the deadline of giving
a talk helps. Or both.

Managing to think of a topic and implement something is one thing.
Writing up slides is another. This isn’t hard, but I’m never satisfied with
them. I don’t want to crowd them with too many words, but I want enough
there to remind me what to say. Speaker notes don’t help because trying
to talk and look at people is enough multi-tasking without having to try
to read as well. I also like to show a live demo of blobs moving in space,
which introduces another problem. With about 16 demos, each taking
various combinations of parameters, creating batch files meant I didn’t
need to remember which parameters to use when. I considered naming
these files, but naming is hard and I didn’t want to forget which order
they were supposed to be in. The obvious solution was to number them
instead. What could possibly go wrong? One demo per slide might have

worked, but of course some slides had no demos,
some had one and a few had several. Guess

what? During my talk, an audience member
asked a question. Great! However, I couldn’t
remember how real life worked, misheard,

and thought something about ‘Precinct 13’ had been mentioned so I
missed the actual question. You may be familiar with the film Assault
on Precinct 13 [IMDB], originally made by John Carpenter back in the
1970s, in which a gang siege a police station. That would be simulated by
blobs surrounding a paper bag, whereas my blobs were trying to leave the
paper bag at the time, so this ‘question’ seemed like a quip or suggestion
for another talk another day. It then dawned on me I hadn’t been listening
properly, so I asked for the question to be repeated. Turns out, I had
shown demo 12 and then demo 14, begging the question, ‘What happened
to demo 13?’ The 13th demonstration was duly shown and we all moved
on. I think I got away with it.

Making mistakes is a fact of life. Sometimes you can gloss over problems,
but owning them is often better. Or owning up you didn’t hear the question.
By using numbers, the audience could spot I had missed something. No,
not a lack of a file called demo13.cmd, not triskaidekaphobia, the
fear of number 13, but rather an inability to count while trying to talk.
Conventions, like numbering, help people follow what’s happening.
People can spot where you have gone wrong or forgotten something
if there’s some kind of pattern to follow. Conventions in naming help
us spot when something seems out of place. What happened to demo
13? What happened to Windows 9? And so on. Convention and pattern
recognition helps us navigate around ideas and physical space. You might
expect butter to be somewhere near the bread at a buffet breakfast in a
hotel. If you are looking for an even numbered house and each house
you walk by is odd numbered, crossing the road may help. If you come
down our end of the street that won’t work. Our house has a name
rather than a number, which means a local taxi firm refuses to come
here because their computer system can’t cope with addresses without
building numbers. Furthermore, all the front doors down the road from
us are even numbered, starting at 4 and ending at 12. What happened to
number 2? I have no idea. And just to keep you on your toes, numbers
49 and 51 are opposite us. I suspect there may be ‘historical reasons’ for
the unconventional numbering, though I can’t be sure what. I’ve been
trying to find my way round a large, unfamiliar code-base recently. I
resorted to asking a colleague for help locating some code and was told
the source file was in an unusual place ‘for historical reasons’. This must
be a euphemistic way of saying there is no sense in how things currently
are, though they have ended up this way because changes made over time,
including refactoring and repositioning, may have left a few bits and bobs
in unusual places.

So-called ‘legacy’ code bases can be very difficult to work with,
particularly if you don’t have the bandwidth to make them less confusing.
Some say a complete re-write might be better than tinkering with the
spaghetti mess. Others might say: ‘Nuke it from orbit, it’s the only way to

FRAnCEs BUOntEmPO EDitORiAL

June 2022 | Overload | 3

be sure.’ Some of you may be familiar with this phrase, based on a quote
from the film Aliens [IMDB2], “I say we take off and nuke the entire
site from orbit. It’s the only way to be sure.” For me, it’s a stock phrase
to use about certain types of code, so I was taken aback when I said this
once and was told off for talking about nuclear weapons. The trouble with
cultural references is they don’t work if a group of people don’t have a
shared taste in films and the like. It’s easy to forget your go-to memes and
quotes may not be universally understood. I’m aware I have mentioned
a couple of films as I am writing, which you may or may not know,
hence the inclusion of an IMDB link. Overload deliberately follows the
academic style of including references so you can check writers’ claims
and do further reading around a subject. This is not just convention for
convention’s sake. Context and background help communication and
learning, and sometimes force writers to check they are actually right.

Conventions also tend to come and go. Consider ‘Here come the beards’,
which often gets rolled out when older programmers speak up. So, what
happened to all the women? OK, we know what the phrase means;
however, not all old people grow beards and in fact many young men are
growing beards and wearing their hair up in a bun. Things change and
our stock-phrases might need to change accordingly. Let’s not hold on to
them for historical reasons.

Conventions can be a help. As discussed, the layout of food at a buffet
can enable people to move round space and find what they need. Clearly
marked exits help people find their way out of buildings. Using pictures
as well as words, for example in airports, is useful for people who don’t
speak the local language. Many usual approaches seem sensible at first
sight. For example, write ups and talks frequently seem polished and
don’t go into false starts and dead ends. We expect to be told the good
things and not the bad. The Guardian recently wrote about research
articles [Guardian22]. Covering various aspects of scientific journals
,including paper copies potentially becoming redundant, it also talks about
publication bias. If journals want positive results (this works) rather than
negative results (this doesn’t work), this can skew the research that gets
written up. It’s actually really useful to know what approaches have failed
and muse on why. This can lead to new ideas or stop people wasting time
on things that don’t and can’t work. The Guardian article also claims:

Studies almost always throw up weird, unexpected numbers that
complicate any simple interpretation. But a traditional paper – word
count and all – pretty well forces you to dumb things down.

If you have tried to do something and it didn’t work, then write an article.
If you have weird unexpected numbers (or strings) then chat about it on
the accu general mailing list [ACCU]. Maybe write that up too.

Patterns help us spot outliers and mistakes. Similarly protocols, such as
driving on a specific side of the road, help life flow smoothly. Memes
and similar can be a great, succinct way of communicating, however, it’s
worth taking stock once in a while to consider if times have changed or
there is now a better way to do things. Our brains seem to be wired up to
spot patterns. The last Overload had an article about Wordle [Handley22],
a daily puzzle to guess a five letter word. Wordle has sprouted many
similar games, including Primel, which involves guessing a five digit
prime number [Primel]. Prime numbers don’t have handy patterns like
vowel and consonant combinations, though there are a few rules to help
you get started, for example no five digit number (apart from 00002) is
even and none end in a five (apart from 00005). For a choice of five digits,
some can only be arranged in one way to get a prime number, for example
99991. Other combinations are not prime, for example 19999 is 7 × 2857.
Nonetheless a surprising number of five digit choices can be arranged in
several ways to make a prime. 13789 has loads. I periodically get three
of the five digits in the right place and find several other prime numbers
that would match the pattern. I could make a list or a little program with
some regex to find out how many such numbers there are, hoping to
find an amazing pattern, but I know full well I won’t. It’s possible to say
many things about prime numbers but I’ve never seen any useful rules to

quickly detect if a number is prime or not, let alone find a prime number
containing certain digits.

Patterns can help or hinder. Much has be written about the display of
information and how to avoid giving the wrong impressions. For example
you may have been encouraged to use donut charts rather than pie charts,
since humans seem to be better at judging distances, here the length of
the donut’s sections, rather than areas which a traditional pie chart uses
[Robertson16]. You may also be aware of Simpson’s paradox [Stanford]
wherein two variables may seem to have a positive or negative (or no)
correlation and yet dividing the data into subgroups and running the same
analysis make the correlation disappear (or appear). Simpson’s original
example showed this happening with a medical treatment. For the whole
population there was a 50% success rate, so no evidence of any difference
in recovery between those taking the medication and those not. However,
when he grouped the data by gender, the subgroups each showed a higher
success rate with the treatment. Patterns can appear or disappear as your
perspective shifts. If you spot an oversight or mistake, call it out. And if
you spot any typos in this publication, let me know. They do slip through,
even though a whole review team and the production editor try to flush
them out. And finally, if you forget what you are
doing, having supportive people around to help you
out is tremendous. So, thanks to everyone for a great
conference this year and thanks to Overload’s writers
and review team for their hard work.

References
[ACCU] accu-general mailing list: https://accu.org/members/mailing-

lists
[Buontempo13] Frances Buontempo (2013) ‘How to program your

way out of a paper bag using genetic algorithms’ in Overload 118,
published December 2013, available from: https://accu.org/journals/
overload/21/118/buontempo_1825/

[Dorigo04] Marco Dorigo and Thomas Stützle (2004) Ant Colony
Optimization MIT Press

[Guardian22] Stuart Ritchie ‘The big idea: should we get rid of the
scientific paper’ published 11 April 2022 at:
https://www.theguardian.com/books/2022/apr/11/the-big-idea-
should-we-get-rid-of-the-scientific-paper

[Handley22] James Handley (2022) ‘Taming Wordle with the Command
Line’ in Overload 168, published April 2022, available from:
https://accu.org/journals/overload/30/168/overload168.pdf

[IMDB] Assault on Precint 13 (1976): https://www.imdb.com/title/
tt0074156/

[IMDB2] Aliens (1986): https://www.imdb.com/title/
tt0090605/?ref_=nv_sr_srsg_0

[Primel] Primel game: https://converged.yt/primel/
[Robertson16] Andrea Robertson (2016) ‘Pie Chart vs Donut Chart:

Showdown in the Ring, published 6 December 2016, available
at https://medium.com/@hypsypops/pie-chart-vs-donut-chart-
showdown-in-the-ring-5d24fd86a9ce

[Scholarpedia] ‘Artificial bee colony algortihm’, available at:
http://www.scholarpedia.org/article/Artificial_bee_colony_algorithm

[Stanford] ‘Simpson’s Paradox’ on Stanford Encyclopedia of
Philosophy, published 24 March 2021, available at:
https://plato.stanford.edu/entries/paradox-simpson/

[Wikipedia-1] ‘Brownian motion’, available at: https://en.wikipedia.org/
wiki/Brownian_motion

[Wikipedia-2] ‘Particle swarm optimization’, available at:
https://en.wikipedia.org/wiki/Particle_swarm_optimization

LUCiAn RADU tEODOREsCUFEAtURE

4 | Overload | June 2022

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

Performance Considered Essential
We know that performance is important.
Lucian Radu Teodorescu argues that it is
actually the most important thing.

i sometimes hear fellow engineers say “performance is not a concern
in our project”, or “performance doesn’t matter”. I can understand
that, in certain projects, performance is not a major concern; and also

that, following usual engineering techniques, performance will be in an
acceptable range, without needing to dedicate time to performance related
activities. But I cannot agree, even in these projects, that performance
doesn’t matter.

What I find more worrying is that these performance ignoring projects
lead to generalisations: programmers claim that performance should be
ignored while building software.

The current article tries to counter this trend and argue that all software
problems are, in one way or another, a performance problem. That is,
performance cannot be fully ignored. I’ll give a couple of arguments as
to why we can’t ignore performance; among them, I attempt to prove that
without the performance concern, Software Engineering would be mostly
a solved domain.

misinterpreting Knuth
The proponents of the idea that performance should be ignored often
quote Knuth, in the simplified form [Knuth74]:

premature optimization is the root of all evil

Just quoting this leaves out the context, which contains important details.
A more appropriate quote would be [Knuth74]:

The real problem is that programmers have spent far too much time
worrying about efficiency in the wrong places and at the wrong
times; premature optimization is the root of all evil (or at least most
of it) in programming.

This is a far more nuanced quote. It’s not a problem with efficiency in
general, but a problem with spending too much energy on improving
performance in the wrong places.

But even this larger quote does not capture Knuth’s full intent. In the
surrounding paragraphs, he is criticising people who condemn program
efficiency [Knuth74]:

I am sorry to say that many people nowadays are condemning
program efficiency, telling us that it is in bad taste.

That is, often the simple quoting of Knuth contradicts the idea that Knuth
tried to make.

Frequently, when I hear Knuth’s short quote in the wrong way, I have
another quote ready:

Ignorance [is] the root and stem of all evil. ~ Plato (disputed)

Ignoring performance considerations can lead to unusable software.
Moreover, as we will further explain, performance is an essential part of
software engineering.

One algorithm to rule them all
In this section, we will assume that the performance of programs is
not relevant at all. We are free to implement any algorithm, with any
complexity, as long as it solves our problem; moreover, we should look
for simpler algorithms.

We might be proving something that is obvious for many readers. We
want to disambiguate some nuances and make it clear that performance
is more important than we generally consider. The aim is not to simply
convince software developers that performance matters, but rather to be
more helpful to theoreticians of software industry. This might help in
refocusing our perception of performance concerns.

Theorem. There is an algorithm that can solve all software problems, if
one can define an acceptance function for such problems.

Before proving this theorem, we need some clarifications. First, we
assume that all programs transform data, and we can express our
algorithm as a data transformation. That is, we have input data In, and
we are producing some output data Out. It is irrelevant for our goals how
we encode information in the input and output data, and our treatment of
time. For example, if the problem we are trying to solve is a GUI, then
the inputs would be the set of key presses, mouse movements and clicks,
all in relation to time; one can find a way to properly encode this into
In data. Encoding time is not easy, but we assume that this can be done.

Another important assumption is that the problems we are trying to solve
have solutions. We cannot solve a problem that can’t be solved. In other
words, for each problem, there is at least one sequence of bits that would
be accepted for that problem.

To properly build our algorithm, we need an acceptance function. In
code, the acceptance function would have the following signature:
 bool solution_is_valid(In data, Out result);

Our algorithm can be represented by a function:
 Out the_one_algorithm(In data);

LUCiAn RADU tEODOREsCU FEAtURE

June 2022 | Overload | 5

such as:
 solution_is_valid
 (data, the_one_algorithm(data)) == true.

We will define only one variant of the_one_algorithm, and we
assume that the solution_is_valid is given for each type of software
problem we need to solve.

To define our algorithm, we consider that In and Out are bitsets with
variable number of bits. We also assume that we don’t have limitations on
how many bits we can represent.

With all these discussed, Listing 1 is our fantastic algorithm.

Our algorithm is also known as the backtracking algorithm. We are
applying it to all possible problems for which we have an acceptance
criterion.

The backtracking algorithm will iterate over all possible combinations
of output bits, and we are guaranteed that there is at least one sequence
of bits that satisfies the acceptance function. This means that we are
guaranteed that our algorithm finds our solution.

Q.E.D.

Algorithm analysis
Positives:
	� can be used to solve any problem (that is solvable, and that has an

acceptance function)
	� it’s simple to understand

Negatives:
	� performance: complexity is O(2n), where n is the smallest number of

bits for an acceptable solution

The programmers who argue that performance doesn’t matter should
argue that this algorithm is great, as it doesn’t have any (major) negatives.
It’s the perfect algorithm!

However, one might argue that we are moving the problem somewhere
else. As it’s easy to solve the original problem, the difficulty moves
towards encoding the problem and defining the acceptance function. Let’s
analyse these.

We might have a complex system comprising multiple parts, and it might
be hard to combine them into an appropriate encoding. But, as system
parts should be simpler to encode, we can simply apply a recursive
decomposition pattern to the problem of encoding. That would give us a
process for encoding all the problems.

Moreover, encoding is also a software problem. We can apply the same
algorithm to generate solutions for it. The reader should agree with me
that deciding on the encoding of the problem should be less complex than
solving the complete problem.

The other aspect is the acceptance function. In most cases, this is a
simpler problem than the solution of the problem itself. As this is
problem-dependent, we cannot give a universal algorithm for it; but, we
can certainly apply our backtracking algorithm to simplify the acceptance
test too.

Thus, even if the complexity doesn’t completely disappear, we’ve
separated it into two parts, which, for the vast majority of problems,
should be simpler than the entire problem (which needs to include
encoding and acceptance testing).

Lehman’s taxonomy
Let us analyse whether this algorithm applies to different types of
programs. We use the Lehman taxonomy [Lehman80] for this analysis.

Lehman divided the set of programs that can be built into 3 types :
	� S-Programs
	� P-Programs
	� E-Programs

bool check_solution(int n, In data, Out& res);

Out the_one_algorithm(In data) {
 Out res; // initially zero bits
 while (true) {
 // keep adding bits
 res.add_bit(0);
 // backtrack until we find an acceptable
 // solution
 if (check_solution(0, data, res))
 return res;
 }
}
bool check_solution(int n, In data, Out& res) {
 if (n == res.size()) {
 return solution_is_valid(data, res);
 }
 else {
 res[n] = 0;
 if (check_solution(n+1, data, res))
 return true;
 res[n] = 1;
 if (check_solution(n+1, data, res))
 return true;
 }
 return false;
}
Listing 1

We might have a complex system comprising
multiple parts… But, as system parts should be

simpler to encode, we can simply apply a recursive
decomposition pattern to the problem of encoding

LUCiAn RADU tEODOREsCUFEAtURE

6 | Overload | June 2022

S-Programs are simple programs; the specification can be used to easily
derive the functionality of the program. We can derive the acceptability
of the solution directly from the specification of the problem. Most
mathematical problems are good examples of S-Programs.

P-Programs are slightly more complex. Precise specifications cannot be
directly used to derive the acceptability of the solution. The acceptance
function can be derived from the environment in which the program
operates.

The example that Lehman gives for P-Programs is a program to play
chess. We cannot define the quality of the program just by looking at the
chess rules. The rules can be relatively simple, but applying them can
generate good chess programs or terrible ones. We have to define the
acceptance criteria of the program by looking at how well the program
fares in competition with other actors (humans, other chess programs,
etc.). The evaluation of a chess program should always be done in its
operating context.

A good technique for evaluating P-Programs is comparison: we can find
a reference model, and then compare the behaviour of the program with
this model.

E-Programs are programs that are even more complex. They embed
human activities into their output. They can’t be separated from the social
contexts in which they operate. Any program that has a feedback loop
that includes human activities is an E-Program. A good current example
of an E-Program is a road traffic program. The program gives traffic
information to users; users take that into account when driving, and their
driving behaviour is fed in as traffic input to the program. Users driving
alternative routes will change the traffic conditions for the main routes
and the alternative routes.

E-Programs should also be evaluated in their operating contexts. This
time, the environment is more complex.

Kevlin Henney also frequently discusses this taxonomy in a more recent
context. See for example [Henney19].

Now, let’s analyse how this taxonomy affects our algorithm.

For S-Programs, we can derive the acceptance functions directly from the
specification of the problem. This is the simplest case.

P-Programs are harder to deal with. We cannot derive the acceptance
function directly from the specification. But, if this is a software problem,
there needs to be an acceptance criterion. Here, we have a hint: it’s often
the case that it’s easier to compare the outputs of our program with another
model (by another program or involving humans). The comparison can be
slow (especially if it involves humans), but for the current discussions we
have said that performance can be ignored.

For the chess program example, for every possible solution of the
program, after ensuring that it follows the basic rules, we can use the
output to play against human players (or other computer programs).
Finding a decent solution may take more than the expected lifetime of the
universe, but performance is not a concern here.

Finding an acceptance function for E-Programs involves a similar process.
There are some basic correctness checks that we can apply automatically,
but then we can ask human opinion whether the generated program is
acceptable or not. This time, it’s mandatory for us to involve human
feedback. Again, this can be extremely expensive, but we are entirely
ignoring performance aspects.

With this, we’ve argued that our algorithm applies to all types of problems.

Bottom line
If there are no performance constraints, we can solve all the problems
by using the above algorithm. But the time to solve the problem can be
incredibly large.

Typically, the more complex the problem we are solving, the more bits we
need in the output data. If we require n bits for the solution, then the time
complexity of the algorithm is in the order of O(2n).

The age of the universe is 14 billion years (approx. 4.4×1017 seconds).
Let’s assume that we have a computer with the core frequency of 3.2
GHz (3.2×109 cycles per second). With these, we can calculate that our
computer can execute about 1.4×1027 CPU cycles from the beginning of
the universe. This number is less than 291.

This means that problems that have more than 91 bits in the output require
more than the entire life of the universe to compute. But, except for trivial
problems, most problems require more than 91 bits in their output.

That is, we have a simple algorithm that can solve all the problems, but
for performance reasons, we cannot apply it. Thus, all software problems
are, in a way, performance problems.

This might be seen as a trivial result, but it is a fundamental aspect of
software engineering. It’s just as fundamental as “software is essential
complexity” [Brooks95]. We might be saying now that software is
performance-constrained essential complexity.

Convergent perspectives
Breaking the Enigma
One of the important points in the history of programable computers was
the development of the computers in World War 2 to break the Enigma
cipher machine.

The Enigma machine at that time was not breakable with a brute force
attack (i.e., performance limitations). As a consequence, the allies started
building the Colossus computer; this was the world’s first programable,
electronic, digital computer [WikiColossus]. So, one way to think of it, the
building of programable computers is due to performance considerations.

Furthermore, to speed up attacks on the Enigma machine, the allies
developed a series of strategies to allow them to have a higher likelihood
of deciphering German messages in short time [WikiEnigma]. That
is, at the birth of the computer industry, the first efforts were targeting
improving performance.

Performance concerns were central to the development of computers.

the sorting algorithm
Let’s look at the sorting algorithms. One of the most well-studied fields
in Software Engineering. Probably all software engineers spent hours at
looking at various sorting algorithms. Why is that?

Bubble Sort is one of the simplest sorting algorithms. And yet, this is
rarely used in practice. That’s because it is an inefficient algorithm. Its
complexity is O(n2); and even so, it’s slower than Insertion Sort that has
the same complexity.

And, Bubble Sort is not the simplest sorting algorithm. A simpler one
would be BogoSort (permutation sort). This can be expressed (in Python
as):
 def bogosort(elements):
 while not is_sorted(elements):
 shuffle(elements)
 return elements

LUCiAn RADU tEODOREsCU FEAtURE

June 2022 | Overload | 7

Very simple to understand. Yet, the performance is terrible: O((n−1)n!).

This is also an indication of why performance matters a lot for Software
Engineering.

textbooks
If one wants to learn programming, one needs to learn about algorithms
and data structures. One popular book for learning this is Introduction to
algorithms [Cormen22]. The first part of the book, called ‘Foundations’,
spends a great deal of time talking about performance of algorithms.
Performance-related discussions are present before introducing the first
algorithm.

This is yet another strong indication that performance is an important
aspect of Software Engineering.

Full-stack development
In recent times, we have often used the phrase ‘full-stack development’
to refer to a combination of skills for web development that includes
expertise both in frontend and backend development. But, as Kevlin
Henney points out [Henney19], this is just a narrow view of the stack.
If we look at the bottom of the stack, we typically exclude device driver
programming, operating-system programming, low-level libraries, etc.

Now, all these lower level layers in our stack are typically written in
languages like C and C++. The reason for this is performance. To have
decent performance at upper levels, we need to have good performance
at lower levels.

If performance was not a concern at the operating system level, we would
probably have OSes that would boot up in hours on modern hardware. I
don’t believe this is something that is acceptable to our users.

Performance and the rest of quality attributes
Architecturally speaking, performance is a quality attribute for the
software system. Other quality attributes that are generally applicable
include modifiability (how easy it is to change the code), availability
(what’s the probability for operating the system under satisfactory
conditions at a given point of time), testability (how testable is the
software), security (how secure is the software system), usability (how
easy is it to use the software system).

We briefly investigate here whether we can say about other quality
attributes what we said about performance.

One can argue that modifiability is as important as performance. This
can be argued to a large extent, but one cannot get as far as we have with
performance. Once we have a framework for writing code (language,
input methods, building and running), we might not need to spend too
much time on modifiability. Some programs are just written once, and
then never changed (rare, but it is still the case).

While we are constantly striving to improve the techniques for writing
software more easily (i.e., reduce accidental complexity) this is not
the dominant concern in software. As Brooks argues [Brooks95],
modifiability is an accidental concern, not an essential one. Thus, at least
ontologically speaking, it’s not as important.

Don’t get me wrong: modifiability is very important to software
engineering, but it’s not an essential part of it.

We won’t insist on the other quality attributes: availability, testability,
security, usability. There is still a lot of software for which these may
not be applicable. One may not think of the availability and security of a
sorting algorithm, one might choose not to test certain software, and, for
certain problems, it’s hard to define what usability means. These quality
attributes are nowhere near as important as performance.

This leaves us with the thought that performance is the most important
quality attribute for a software system, more important than modifiability
(at least from a theoretical perspective).

Conclusions
Performance is at the core of Software Engineering. It’s not just important,
it’s essential. Otherwise, this would have been a dull discipline: we have
one algorithm that can be applied to all the problems, it’s just a matter
of defining an appropriate acceptance function. But, as we know, this is
completely impractical.

To some degree, all software solutions have performance as a concern.
This is proven by the entire industry. This is why we use certain
algorithms (e.g., QuickSort) over others (e.g., BogoSort). This is why
we continuously spend money on researching how to make our programs
faster. And, this is why we have books to teach us the best algorithms we
know so far.

The fact that some projects may not have important performance
constraints doesn’t mean they don’t have performance constraints at all.
It’s just that, in those limited domains, it is highly unlikely to go outside
those constraints. For example, sorting a 10-element integer array can
be done almost in any way possible if the code needs to run in under
100ms. But, most projects aren’t like that. As software tends to compose
(software is essential complexity) inefficient algorithms, when composed,
tend to extrapolate slowness; after a certain limit, software built with
inefficient algorithms would be too slow.

This might have been a very long article for such a simple idea. But,
unfortunately, engineering is not always glamorous, shiny and cool.
Oftentimes, it ought to be boring and predictable. Yes, predictable, that’s
the word we should associate more with Software Engineering. However,
that is a topic for another article (or, set of articles). �

References
[Brooks95] Frederick P. Brooks Jr., The Mythical Man-Month

(anniversary ed.), Addison-Wesley Longman Publishing, 1995
[Cormen22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,

Introduction to algorithms (third edition), MIT press, 2022
[Henney19] Kevlin Henney, ‘What Do You Mean?’, ACCU 2019,

https://www.youtube.com/watch?v=ndnvOElnyUg
[Knuth74] Donald E. Knuth, ‘Computer Programming as an Art’,

Communications of the ACM 17 (12), December 1974
[Lehman80] Meir M Lehman, ‘Programs, Life Cycles, and Laws

of Software Evolution’, Proceedings of the IEEE 68, no. 9,
1980, https://www.ifi.uzh.ch/dam/jcr:00000000-2f41-7b40-ffff-
ffffd5af5da7/lehman80.pdf

[WikiColossus] Wikipedia, ‘Colossus computer’, https://en.wikipedia.
org/wiki/Colossus_computer

[WikiEnigma] Wikipedia, ‘Cryptanalysis of the Enigma’,
https://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma

VittORiO ROmEOFEAtURE

8 | Overload | June 2022

Vittorio Romeo is a modern C++ enthusiast who loves to share
his knowledge by creating video tutorials and participating in
conferences. He has a BS in Computer Science from the University
of Messina. He writes libraries, applications and games – check out
his GitHub page. You can contact him at mail@vittorioromeo.com

Compile-time Wordle in C++20
Wordle is everywhere. Vittorio Romeo
introduces wordlexpr, using compiler
error messages to play the game.

it felt wrong to not participate in the Wordle craze, and what better way
of doing so than by creating a purely compile-time version of the game
in C++20? I proudly present to you… Wordlexpr! [Wordlexpr]

Carry on reading to understand the magic behind it!

High-level overview
Wordlexpr is played entirely at compile-time as no executable is ever
generated – the game is experienced through compiler errors. Therefore,
we need to solve a few problems to make everything happen:

1. Produce arbitrary human-readable output as a compiler diagnostic.

2. Random number generation at compile-time.

3. Retain state and keep track of the player’s progress in-between
compilations.

Error is the new printf
In order to abuse the compiler into outputting errors with an arbitrary
string of our own liking, let’s start by trying to figure out how to make
it print out a simple string literal. The first attempt, static_assert,
seems promising:
 static_assert(false, "Welcome to Wordlexpr!");

However, our delight is short-lived, as static_assert only accepts a
string literal – a constexpr array of characters or const char* will
not work as an argument:
 constexpr const char*
 msg = "Welcome to Wordlexpr!";
 static_assert(false, msg);

So, how about storing the contents of our string as part of the type of a
struct, then produce an error containing such type?
 template <char...> struct print;
 print<'a', 'b', 'c', 'd'> _{};

Nice! We are able to see our characters in the compiler output, and we
could theoretically mutate or generate the sequence of characters to
our liking at compile-time. However, working with a char… template
parameter pack is very cumbersome, and the final output is not very
readable.

C++20’s P0732R2: ‘Class Types in Non-Type Template Parameters’
[P0732R2] comes to the rescue here! In short, we can use any literal type
as a non-type template parameter. We can therefore create our own little
compile-time string literal type (Listing 1).

We can then accept ct_str as a template parameter for print, and
use the same idea as before:
 template <ct_str> struct print;
 print<"Welcome to Wordlexpr!"> _{};

Now we have a way of making the compiler emit whatever we’d like as
an error. In fact, we can perform string manipulation at compile-time on
ct_str (Listing 2).

error: static assertion failed: Welcome to Wordlexpr!
 1 | static_assert(false, "Welcome to Wordlexpr!");
 | ^^^^^

error: expected string-literal before 'msg'
 2 | static_assert(false, msg);
 | ^^^

error: variable 'print<'a', 'b', 'c', 'd'> _'
 has initializer but incomplete type
 3 | print<'a', 'b', 'c', 'd'> _{};

struct ct_str
{
 char _data[512]{};
 std::size_t _size{0};
 template <std::size_t N>
 constexpr ct_str(const char (&str)[N])
 : _data{}, _size{N - 1}
 {
 for(std::size_t i = 0; i < _size; ++i)
 _data[i] = str[i];
 }
};

Listing 1

error: variable 'print<ct_str{"Welcome to
Wordlexpr!", 21}> _' has
 initializer but incomplete type
 22 | print<"Welcome to Wordlexpr!"> _{};
 |

constexpr ct_str test()
{
 ct_str s{"Welcome to Wordlexpr!"};
 s._data[0] = 'w';
 s._data[11] = 'w';
 s._data[20] = '.';
 return s;
}

print<test()> _{};

Listing 2

VittORiO ROmEO FEAtURE

June 2022 | Overload | 9

By extending ct_str with functionalities such as append, contains,
replace, etc… we end up being able to create any sort of string at
compile-time and print it out as an error.

First problem solved!

Compile-time random number generation
This is really not a big deal, if we allow our users to provide a seed on
the command line via preprocessor defines. Pseudo-random number
generation is always deterministic, and the final result only depends on
the state of the RNG and the initially provided seed.
 g++ -std=c++20 ./wordlexpr.cpp -DSEED=123

It is fairly easy to port a common RNG engine such as Mersenne Twister
to C++20 constexpr. For the purpose of Wordlexpr, the modulo
operator (%) was enough:
 constexpr const ct_str& get_target_word()
 {
 return wordlist[SEED % wordlist_size];
 }

Second problem solved!

Retaining state and making progress
If we allow the user to give us a seed via preprocessor defines, why not
also allow the user to make progress in the same game session by telling
us where they left off last time they played? Think of it as any save file
system in a modern game – except that the ‘save file’ is a short string
which is going to be passed to the compiler:
 g++ -std=c++20 ./wordlexpr.cpp -DSEED=123
 -DSTATE=DJYHULDOPALISHJRBFJNSWAEIM

The user doesn’t have to come up with the state string themselves – it will
be generated by Wordlexpr on every step:

The state of the game is stored in this simple struct:
 struct state
 {
 std::size_t _n_guesses{0};
 ct_str _guesses[5];
 };

All that’s left to do is to define encoding and decoding functions for the
state:
 constexpr ct_str encode_state(const state& s);
 constexpr state decode_state(const ct_str& str);

In Wordlexpr, I used a simple Caesar cipher to encode the guesses into the
string without making them human-readable. It is not really necessary,
but generally speaking another type of compile-time game might want to
hide the current state by performing some sort of encoding.

Third problem solved!

Conclusion
I hope you enjoyed this brief explanation of how Wordlexpr works.
Remember that you can play it yourself and see the entire source code on
Compiler Explorer. Feel free to reach out to ask any question! �

References
[P0732R2] C++20’s P0732R2: ‘Class Types in Non-Type Template

Parameters’, available at https://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2018/p0732r2.pdf

[Wordlexpr] Play Wordlexpr on Compiler Explorer: https://gcc.godbolt.
org/z/4oo3PrvqY

This article was previously published on Vittorio’s website on 27
February 2022: https://vittorioromeo.info/index/blog/wordlexpr.html

error: variable 'print<ct_str{"welcome to
wordlexpr.", 20}> _' has
 initializer but incomplete type
 33 | print<test()> _{};
 | ^

error: variable 'print<ct_str{"You guessed
`crane`. Outcome: `x-xx-`.
 You guessed `white`. Outcome: `xxox-`.
 You guessed `black`. Outcome: `xoxxx`.
 You guessed `tower`. Outcome: `xxxoo`.
 To continue the game, pass
`-DSTATE=EJYHULDOPALISHJRAVDLYWAEIM`
 alongside a new guess.", 242}> _' has
initializer but incomplete
 type
 2612 | print<make_full_str(SEED, guess,
s)> _{};
 |
^

Pseudo-random number generation is
always deterministic, and the final result
only depends on the state of the RnG and

the initially provided seed

COnFEREnCE AttEnDEEsFEAtURE

10 | Overload | June 2022

ACCU 2022 trip Reports
The ACCU conference returned in hybrid mode this
year. Several writers share their experiences.

From Phil nash

i’ve been attending ACCU conferences
since 2001, and I don’t believe I have
missed one since 2009 (except for 2020,

when the whole event was canceled). It was
the first programming conference I started
attending, and also where I launched my
speaking career in 2004, speaking at every
one since 2009. So ACCU is a conference
very close to my heart.

I was obviously disappointed that 2020 had
to be canceled – it was too short notice at
the time to transform it to an online event.
2021 did run online. But that means that the
2022 event was the first in-person ACCU
event since 2019! Actually about half of the
attendees were still online, as it was a hybrid
event. I didn’t really interact with the online component, though, except
for some minimal interactions on the Discord server. I heard from several
people, however, that the recreation of the physical venue in Gather
Town was very impressive and helped them to keep more connected to
the in-person event. Kudos to Jim and Jonathan Roper, and the others
at Digital Medium, for doing a great job of that while also handling the
recording and streaming on the in-person side, this year. As a conference
organizer myself, who has been navigating many of the same things (also
in collaboration with Jim) I have an idea of just how huge a task that is –
with so many possible ways to fail! Other than a handful of minor hitches,
from what I saw everything went remarkably smoothly!

But what about the content? Well, personally, I didn’t get to see many
of the talks. On the first day, I was focused on getting ready for my own
talk, at the end of the day, and a lightning talk after that. On day two I
was more focused on the Sonar booth – then had to leave before the end
of the day as I was off on a family holiday the next day! So I’ll cop out
and say that I’m familiar enough with many of the regular speakers and
the types of content they were presenting that I’m 100% sure that 2022
continued to be an exceptionally high quality conference year – both
for C++ developers and others. Traditionally two of the five tracks have
been C++ specific, and the others have been about other languages and
technologies, as well as less technical things, such as agile practices – but
almost always accessible to a C++ audience, which is still very strongly
represented at ACCU.

I did see the first 30 minutes of Guy Davidson’s opening keynote, which
had been excellent up to that point – so I will definitely be finishing it in
video form later. He had just gone through an extended, and entertaining,
setup for why the role of mentoring is so important, and I have to say I
agree with that.

Of course, I was there for my own talk. We had a slightly delayed start
due to some technical difficulties. Since the last time I have presented at
an in-person event I have bought a new Macbook Pro (M1 Pro). These
machines caused a bit of a stir for bringing back several non-USB-C
ports, including an HDMI port – so I thought I would have less trouble
with connecting to a display. In fact the main display was fine – but
connecting to Jim’s video capture device (or devices, he tried a couple)
had a lot of issues. This year it was not just recording that was impacted –
but the online attendees were relying on that stream to be able to see my
slides at all! Eventually we had to give up and they pointed a camera at
the projector screen and streamed that. There were some complaints that
it was not quite readable in places, but I think it just about worked. For
anyone that was watching that stream – sorry about that. You might want
to watch one of the other versions of it I have recorded, such as the one
from CPPP last December.

In the evening there was an hour of lightning talks, hosted by the shoeless
Pete Goodliffe! In fact there were lightning talks every evening (except
Saturday), but this was the only session I was present for, so I had
requested that my submission be on that night. The ACCU lightning talks
seem to have become a forum for speakers to challenge each other to do
sillier, funnier or more off-beat presentations each year! This time saw
Dom Davis spend most of his five minutes talking about USB connection
standards – all to set up reciting an extract from Queen’s Bohemian
Rhapsody, “Thunderbolt and Lightning, very very frightening, me” (and
it continues). Pete, himself, did a series of programming related visual
puns. The standout, for me, though, was Andy Balaam’s (pre-recorded,
but otherwise) live-coding of a Snake game in Javascript, all to set up a
set of puns about chasing our own tail and being consumed by ourselves.
My own lightning talk wasn’t really a talk at all. The exact nature is a
heavily guarded secret (so far I have only done it at conferences that don’t
record their lightning talks – and I hope to do it at least once more before

COnFEREnCE AttEnDEEs FEAtURE

June 2022 | Overload | 11

I make it fully public). All I’ll say is that it relates
to build dependencies and ABI stability in C++ ...
but barely.

On day two I went to see the sponsored session by
two of my colleagues at Sonar. After all, it would
have been rude not to! In fact one of the presenters
was our CEO, Olivier Gaudin – a very busy man
who took an unprecedented amount of time out of
his schedule to join us at the conference! The other
was PM for the C++ Analyzer, Geoffray Adde. I
could be biased but I think they did a fantastic job
of explaining what the problem is and how it affects
all of us – even if we are very careful about software
quality. Of course they followed up with how our
tools not only help, but have a few special features
that make it much easier than you might think. It
was great to see a good audience in attendance –
almost a packed room – which was very impressive
given the in-person attendance numbers this year.

Although these were the only sessions I saw this year, conferences like
the ACCU are as much about the so-called ‘hallway track’ as they are
about the sessions themselves. As my first in-person event with a Sonar
booth, since joining last June, the booth experience was also particularly
important for me. Unfortunately, the goodies that we had planned to
have on our table to give away didn’t turn up (an occasional bane of the
conference booth business)! So all we had were some Swiss chocolate
bars and a set of C++ puzzler questions I was able to print out while
I was there. Foot traffic was also lower, as everyone fit into the main

food areas at either end of the hallway we were in,
rather than having to spill down the hallway during
all the breaks! Nonetheless we had some great
conversations – many with people already familiar
with Sonar tools from other language ecosystems –
and the quiz questions proved to be very ‘sticky’ with
people hanging around and coming back repeatedly
– determined to solve them all. In retrospect we
may have made them a little too hard. By the time
I left, only one of the chocolate bars (which we
promised to anyone that answered all the questions
correctly) had gone – and even they admitted that
a few people (most or all of whom were standards
committee members) had pooled together to solve
the questions! Welcome to C++!

It goes without saying that it was amazing to catch
up with so many people that I hadn’t seen for 3+
years (as well as meeting a few new people). I
also managed to spend a whole evening in the bar
discussing coroutines with Nicolai Josuttis.

Which seems like a good point to do a final_suspend.

Phil Nash is the original author of the C++ test framework, Catch2,
and composable command line parser, Clara. He is Developer
Advocate at SonarSource, and a member of the ISO C++ standards
committee, organiser of C++ London and C++ on Sea. He co-hosts
and produces the cpp.chat and No Diagnostic Required podcasts.
You can contact him at accu@philnash.me

it goes without saying that it was amazing
to catch up with so many people that
i hadn’t seen for 3+ years (as well as

meeting a few new people)

COnFEREnCE AttEnDEEsFEAtURE

12 | Overload | June 2022

From Dom Davis
The three hardest things in software development are:
	� Explaining what I do to my mother
	� Agreeing on what the hardest things are
	� Writing date/time libraries

I write this on March 770th 2020 [2022-04-10 as Russel would have
written it in the old fashioned Gregorian calendar] after a whole bunch of
us got together for the first time in... well we’re not really sure. Time, it
seems, has been extra weird in the past 750 or so days.

I am, of course, referring to ACCUConf 2022, a partial return to the
ACCUConf we knew and loved in The Before. Carrying on from 2021’s
online only conference, 2022 saw a hybrid conference with some people
attending in person [God, I’d missed you lot], and some attending online
[I still miss you].

And wow, did I learn a lot. Including such esoterica as “I can’t read the
GoDocs for fmt”; spam, 419 advance fee fraud, and man in the middle
attacks are hundreds, if not thousands of years old; and new ways to code
my way out of a paper bag. And that was just the advertised sessions! As
always, a huge amount of learning, networking and communication was
going on in the ‘corridor conference’, but then if you’re reading this I’m
likely preaching to the converted. If you’ve not been, then next year’s
conference is 2023-04-19 to 2023-04-22. You really should come because
it’s the people who make the conference.

And it’s that point I want to raise. We want all sorts at ACCUConf, both as
attendees and as speakers. Fresh idea, new perspectives, bonkers personal
projects, or something that you find fun or interesting. Chances are if you
find it fun and interesting, lots of others will too. Honestly, some of my
favourite talks are the ones that go off the beaten track because so often
they surprise and delight.

Don’t get me wrong, I still enjoy the Big Name speakers ACCU continues
to attract, but I also want to see the next generation of Big Names. The
future luminaries in our field. So here is your challenge: Go out there
among your networks and encourage new people to submit talks, even
if it’s just a lightning talk – in fact especially if it’s just a lighting talk,
they’re the best bit of the whole conference.

For those that are completely new to public speaking I am absolutely
positive that some of us who are old hands would be happy to offer help,
guidance and mentorship. I know I would. Plus we can all offer smiling
faces and interested looks from the audience. We are, after all, a friendly,
welcoming, and inclusive crowd with a diverse array of interests.

If you include lightning talks I did 4 talks this year. My ego absolutely
loved it. You can be sure I’ll be submitting a plethora of talks for next year
[cough Keynote cough], do you really want to see me speak another four

times? Actually, thinking about it, forget everything I just said. We’re all
good J.

From Hannah Dee
ACCU was my first conference for a long time and I threw myself into the
conference experience, enjoying talks on all sorts of topics. The event was
a bit more dynamic in planning than many conferences because people
kept pulling out with COVID (and so other people kept stepping up and
offering talks to fill the gaps). This meant there were more short talks than
I think had originally been planned. There were also more general talks,
which suited me fine. Here are the things I’m taking away from those
sessions attended:

Day 1 highlights
Guy Davidson’s keynote on growing better programmers: Lots of good
insight into how to be more friendly and humane in code reviews and how
to mentor junior staff.

Seb Rose on behaviour driven development (BDD) and how to write good
scenarios, talked about how we break down programming tasks as part of
the development process, and how we communicate ideas. He introduced
a handy acronym for this. BRIEF: scenarios should be Business readable,
use Real data, be Intention revealing, be Essential, be Focused (and be
brief). I think this applies to all systems communication to be honest –
use shared language, sensible examples, right level of detail, don’t waste
each others time.

Charles Weir & Lucy Hunt ran an online session on different ways to
discover technical security requirements. I was a bit late to this one as I
went to the wrong online system, but the general idea was to investigate
a couple of different card games for information security [Berkeley,
Microsoft, Washington]. I might have to pick up some of the games and
look into this for teaching.

Day 2 highlights
Jutta Eckstein looked at how the Agile principles of development can
be sustainable. This was workshop where we considered of each of
the agile principles with regard to the triple bottom line of sustainable
development: environmental, social and economic sustainability. Some

Dom Davis is a veteran of The City and a casualty of The Financial
Crisis. Not content with bringing the world to its knees, he then went
off to help break the internet before winding up in Norfolk where
he messes about doing development and devops. Dom has been
writing code since his childhood sometime in the last millennium –
he hopes some day to become good at it. You can contact him via @
idomdavis or dom@domdavis.com

if you’ve not been, then next years
conference is 2023-04-19 to 2023-04-22.
You really should come because it’s the
people who make the conference.

COnFEREnCE AttEnDEEs FEAtURE

June 2022 | Overload | 13

of the agile principles (e.g. “simplicity: maximising the amount of work not
done”) fit really well with sustainable goals. Others not so much.

Dom Davies talked about remote vs distributed working based upon many
years in distributed teams – starting with global teams in the late 90s. He
suggested that the key is to deal with everyone as if they’re distributed,
even if you’re sitting next to each other. This makes a lot of sense to me.
The hybrid experience is a strange one.

Matthew Dodkins talked about designing systems that would run for a
long time without maintenance – specifically, bat and dolphin detectors
which could run for a year in a rainforest or underwater. This talk covered
a lot of detail about planning, testing, and concepts like sentinel functions
(things which spot when something stops happening). Always think about
what happens next.

Day 3 highlights
Patricia Aas’s keynote was one of my favourite sessions of the conference.
She looked at some “classic” vulnerabilities (heap manipulation, format
string vulnerabilities etc.) and showed how they related to modern
security issues. This is a talk I will watch again, and that I will heavily
recommend to my first year infosec students.

Next up was a talk after my own heart: Andy Balaam spoke about “vim for
fun”. I have been a user of vim for about 25 years now (whoops) so have
a fairly good understanding of how it works, however, it’s always good
to visit a session where you know. This time I picked up new movement
commands: } and { to go forwards or backward to the next empty line.

Kate Gregory’s talk was another strong contender for favourite
presentation. It was about abstraction, which is a pretty big topic.
Increasing abstraction localises complexity, which reduces the cognitive
load; quite often, you can work out abstractions from the code without
actually understanding the domain much at all.

Useful rules of thumb:
	� magic numbers-> named constant gives type and semantics
	� groups of variables -> struct or class

Variables can be grouped by similar names (empdate, empname,
empfirstname… are we looking at an employee class here?) or by ‘load
bearing white space’. I love the concept of load bearing white space.
So often we stick extra lines in code to break stuff up visually – but not
conceptually. why not make that break explicit and part of the abstraction?

It was really interesting to see a talk which looked at this from the
perspective of code, rather than problem analysis – Kate described being
brought in as a consultant to fix legacy systems with tens of thousands of
lines, and thinking about how we can abstract from code to tidier code
(rather than from a problem to code) was very interesting. One on my
‘will watch again’ list.

Day 4 highlights
Gail Ollis and Ian Reid spoke on the tension between information security
professionals (and security policies) and developers – often security is seen
as a bolt-on by developers, and fundamental by security professionals.
This is going to be a difficult circle to square, but they’ve been doing
some interesting work around interviews with both communities. A good
analogy came up – infosec professionals are like goalies: their aim is
a clean sheet; developers are like strikers: their aim is to score goals.
Success in one case is defined by absence of failure, which is going to
lead to different risk-taking behaviour.

Titus Winters delivered the final keynote of the event on how we measure
the cost of tradeoffs in the software engineering workflow. How to you
measure the cost of a mistake or the value of preventing a defect? The
earlier you detect, the lower the cost in terms of time (developers etc.).
Titus is dealing with very large systems and teams, with static analysis,
IDE, code review, CI, fuzzing, canary releases etc. etc. so the ability to
manage and measure this stuff is something he’s got some very interesting
thoughts on. Particularly liked:

It’s programming if ‘clever’ is a compliment, it’s software engineering
if ‘clever’ is a criticism.

Other intriguing things and references from the conference

	� This website: https://www.vimgolf.com/

	� A paper from Google about gender/age/race effects in code review:
https://cacm.acm.org/magazines/2022/3/258909-the-pushback-
effects-of-race-ethnicity-gender-and-age-in-code-review/fulltext

the tension between information security
professionals (and security policies) and developers

– often security is seen as a bolt-on by developers, and
fundamental by security professionals

Hannah’s contribution was originally published on her blog on 27 April
2022 and is available from: https://www.hannahdee.eu/blog/?p=1820

COnFEREnCE AttEnDEEsFEAtURE

14 | Overload | June 2022

	� This video from pyconline AU, available on YouTube:
 https://www.youtube.com/watch?v=AUTsDTVtfFE&t=2s

References
[Berkeley] ‘Adversary Personas’, available at https://daylight.berkeley.

edu/adversary-personas/
[Microsoft] ‘Elevation of Privilege’, available at

https://www.microsoft.com/en-gb/download/details.aspx?id=20303
[Washington] ‘Security Cards’, available at

https://securitycards.cs.washington.edu/

From timur Doumler
From April 6-9, 2022, I attended ACCU 2022, the 25th edition of the
ACCU conference, in Bristol, UK. It was only my third in-person
conference post-COVID (after CppCon’21 and ADC’21). It felt very
special to be back in Bristol after a three-year break, and it felt as good
as ever to be among real people again. With all COVID restrictions now
lifted in the UK, this was the first event on the C++ conference circuit that
truly felt like it was back to normal. There was no social distancing or any
other measures to impact the conference experience, and the vast majority
of attendees were not wearing masks.

For me, ACCU has a special place in the C++ calendar for many reasons.
First, ACCU is known for its exceptionally friendly and nice community,
including folks who have been attending ACCU regularly for a decade
or more, but also being especially welcoming and approachable to first-
timers. This year was no different – it was great to be back meeting old
friends and making new ones.

ACCU is also special in that it is not only about C++ (although it has a large
proportion of C++ content), so you also get content on other technologies
and non-technical talks about soft skills and other interesting things. The
quality of the talks is very high and the size is just right: bigger than ‘small’
conferences like C++Now, but not as big as CppCon or MeetingC++, so
you still get the chance to meet and talk to most attendees.

In pre-pandemic times, I would usually expect about 400 people at
ACCU. This year, however, we only had about 150 people on site, so
it was noticeably quieter than usual (although the vibe was as positive
as ever). In addition, there were about as many people attending online,
as the conference was fully hybrid this time, with three on-site and two
online tracks and the option for online attendees to watch the on-site talks
and ask questions.

The organizers went to great lengths to make the online component of the
conference really enjoyable, including recreating the whole conference
venue (Bristol Marriott) online inside gather.town. But I have to admit
that I did not engage with the online component. Why spend time in video

chat rooms when you are on site at the venue and have real people to
interact with? Therefore, the following trip report is focusing exclusively
on the on-site component of the conference.

Not only were there fewer people on-site, but also fewer booths. I spotted
the traditionally present Bloomberg booth, as well as Graphcore and
SonarSource booths. And we had a #include table again, which was a very
popular hangout spot. Sadly, JetBrains did not have a booth this time, as
the rest of my team was unfortunately unable to attend. In fact, out of
all of the ACCU conferences I’ve attended, this was the first one with
no JetBrains booth! One of my most memorable conference experiences
was walking up to the JetBrains booth at ACCU 2017 and asking them
whether they would consider hiring me, and the following year I was
working behind the very same booth. I very much hope we will be back
there in full strength next year, but this time I was representing JetBrains
on my own.

Conference day 1 started with Guy Davidson’s keynote ‘Growing Better
Programmers’. Guy is a good friend of mine and this was his first proper
conference keynote. I have to say he did an amazing job! Speaking
from many years of experience, Guy shared many great thoughts about
mentoring and supporting programmers, promoting good practices,
conducting helpful code reviews, being a good manager, and much more.

I missed the talks following the keynote because I was busy practising my
own talk, how to implement a lock-free atomic shared_ptr, which I
presented that afternoon. Following that, I was met with the usual dilemma
at such conferences: there are multiple tracks and you can only go to one.
The program is so high-quality that you end up missing a lot of fantastic
talks you really want to see. My talk of choice was ‘Zen and the Art of
Code Lifecycle Maintenance’, a very deep and insightful investigation
of what we actually mean by ‘code quality’. The talk was given by Phil
Nash, my predecessor as C++ Developer Advocate at JetBrains, who now
works at SonarSource.

My first day at ACCU 2022 wrapped up with a lightning talk session
moderated by Pete Goodliffe. This is the true highlight of the ACCU
conference: the lightning talks are usually very entertaining, creative,
funny, thoughtful, and mostly not about programming at all. In between
the talks, Pete tells dad jokes, and if any speaker overshoots their 5 minute
speaking limit, Pete takes away the microphone mid-sentence and pushes
them off the stage. It’s hilarious!

Day 2 opened with a keynote by Hannah Dee, ̀ Diversity Is Too Important
to Be Left to Women`. I was really impressed by this talk. It covered
why diversity and inclusion are important, what we should do, and what
we should not do, and covered it all in a way that felt extremely well-
researched and backed up by data and facts. Even though this issue was
already very close to my heart before Hannah’s talk, I learned about so
many new things from her, like the concepts of gender role spillover
and stereotype threat, how self-efficacy affects performance, the Petrie
multiplier (a very simple yet powerful mathematical model), pareidolia,
and more. I highly recommend this talk as a solid, approachable, and
enjoyable introduction to anyone interested in the topic of diversity in
tech.

Switching gears after the keynote and diving into C++ code again, I went
to ‘C++20 – My Favourite Code Examples’ by Nico Josuttis. This talk
was full of interesting C++20 code. Nico started by showing various ways
to use C++20 concepts and constraints in practice. Among other things,
I learned that we can use a requires-clause inside an if constexpr,
like this:
 void add(auto& coll, const auto& val)
 {
 if constexpr (requires { coll.push_back(val); })
 coll.push_back(val);
 else
 coll.insert(val);
 }

Hannah Dee is a lecturer in computing at Aberystwyth University.
She is interested in computer vision, robotics, information security
and data science. You can contact her via her blog at hannahdee.eu

COnFEREnCE AttEnDEEs FEAtURE

June 2022 | Overload | 15

This is a very convenient way to branch on the existence of a member
function, something that was a lot more cumbersome pre-C++20. Nico
then showed practical examples of how to use ranges, views, the spaceship
operator, and other C++20 features all working together. Along the way,
I also learned how to implement your own range sentinel! Of course,
it would not be a Nico Josuttis talk without a healthy dose of ranting
about things that the C++ standard committee has gotten wrong in Nico’s
opinion: how cbegin is utterly broken, how ‘forwarding reference’ is a
bad name, how std::views::elements<0> does not work for user-
defined types unless you declare your own tuple customization points
before you #include <ranges> (which is quite unfortunate indeed),
and so on.

ACCU is one of the conferences that offer talk slots to sponsors, but often
these can be very interesting, so I went to a sponsored session during the
lunch break: ‘The Power of Clean Code’ by the SonarSource folks. I was
very happy to see CLion in action there, supplemented by their SonarLint
plug-in, which looks like a very powerful tool that I definitely need to
check out in more detail.

After lunch, another ACCU speciality was waiting. The normal talk
length is 90 minutes, but they also have 20-minute ‘quick talks’, usually
several of them back to back. The ones I chose were very interesting
and relevant explorations of ‘soft’ topics: a talk by Björn Fahller about
burnout, a talk by Dom Davis about remote working, and a talk by Joe
Pascoe about how to be a good manager.

The second day finished with another round of lightning talks, followed
by the C++ Pub Quiz hosted by conference chair Felix Petriconi.

Day 3 started with a keynote by Patricia Aas about software vulnerabilities,
and this was another absolute highlight of the conference. Patricia took
us on a fascinating time travel journey through the last two decades.
Her slides were packed with interesting code examples demonstrating
vulnerabilities arising from malloc, use after free, heap buffer overflow,
integer operations, and printf format strings. Among other things, I learned
what a ‘Write-What-Where primitive’ is and that format strings are an
almost Turing-complete programming language! Patricia’s talk ended
with the thought that we would all benefit from more cross-pollination
between the systems programming community, which C++ is part of, and
the binary exploitation/vulnerability community.

The next talk slot had no fewer than three coroutines-related talks
scheduled against each other. I decided to listen to Björn Fahller’s talk
about using coroutines for asynchronous I/O on Linux and how they really
help to avoid callback hell. In C++20, we got a basic low-level API with
hooks into the compiler that enable the use of coroutines, but no library
facilities whatsoever on top of that to actually use them. So even for the
most basic coroutine example, we need to write a lot of boilerplate code
by hand – the coroutine type, the promise type, and so on. This is very
hard to learn and to teach, but Björn did a good job guiding the audience
through the required machinery. His talk also contained references to
other helpful introductory talks about C++20 coroutines, such as Pavel
Novikov’s ‘Understanding Coroutines by Example’.

The other highlights of Day 3 for me were Kate Gregory’s ‘Abstraction
patterns’ and another talk about coroutines, this time by Andreas Weis,
showing how to use them for data processing pipelines (reading a file
from the disk, compressing it, and so on). With my background in audio
software development, I was fascinated by how Andreas’ data pipelines
were structurally virtually identical to audio processing graphs, containing
sources, sinks, filters, and buffers, with data channels exchanged in
between them. This makes me think (again!) that coroutines would
probably be very useful in that domain, too.

In the evening, there was a third lightning talk session hosted by Pete
(they were so popular this year that Pete ran out of lightning talk slots!),
which was just as much fun as the others, and finally the traditional

conference dinner, which I always enjoy. The ACCU conference dinner
is geared towards enabling as many conference attendees as possible to
mingle with speakers. Speakers remain at the same table throughout the
dinner, while everyone else changes tables after every course. This is
good fun and you get to meet lots of new people. In addition, there is
always a theme – this year it was film.

And now we’re at the last day of ACCU! I started the morning by attending
Mathieu Ropert’s ‘Basics of profiling’. Mathieu delivered a really good
beginner-friendly introduction to profiling, why it’s important, things you
need to know such as sampling profiling vs. instrumentation profiling,
and more. He then actually live-demoed profiling his video game Hearts
of Iron IV with the Optick Profiler, a instrumentation profiler, and Intel
VTune, a very powerful sampling profiler. He explained what to look for
and how to interpret what you see, and finished off his talk with useful
general tips on how to optimize a C++ program. This hands-on approach
including live demoing is rarely seen in conference talks, and I really
enjoyed it.

Later that day I attended John McFarlane’s talk ‘Contractual
Disappointment in C++’, which I also highly recommend. The title would
suggest that the talk was about contracts in standard C++ and how we
ended up not having them, but actually it was not about that at all. Instead,
John talked about contracts as a programming concept, the difference
between bugs and errors, different types of contracts, and other things
that every programmer should think about.

Finally, it was time for the last talk of the conference: Titus Winters’
closing keynote! Titus, the author of Software engineering at Google,
aka the Flamingo Book, decided to fully embrace his new brand and
showed up on stage in a flamingo shirt. His keynote titled ‘Tradeoffs in
the Software Workflow’ was just as high-quality and thought-provoking
as I had hoped and tackled really big questions for our industry such as
‘What is the value of the code that you write?’ and ‘What is the value of
preventing a defect?’ This is another talk that I highly recommend. In fact,
all the talks I saw this year were so good that I am very impressed once
again by the quality of the ACCU conference program.

Of course, in between all the talks, there was the all-important hallway
track. Even though there was no JetBrains booth this time, I was still very
busy talking to people about JetBrains products in general and CLion
in particular. Some noteworthy interactions involved helping a CLion
user figure out how to build the LLVM project in CLion (which gave
me some good ideas for putting together a ‘CMake in CLion’ tutorial)
and multiple folks asking about the new ‘thin client’ remote development
mode in CLion (which is currently still in Beta, but nevertheless already
very usable, so I recommend you check it out now!).

And that was it from ACCU 2022! I am really looking forward to next
year’s conference, but in the meantime, I will be attending other in-person
C++ events, with the next one on the calendar being C++Now in beautiful
Aspen, Colorado. See you there! �

TImur Doumler is C++ Developer Advocate at JetBrains and an
active member of the ISO C++ standard committee. As a developer,
he worked for many years in the audio and music technology industry
and co-founded the music tech startup, Cradle. Timur is passionate
about building inclusive communities, clean code, good tools, low
latency, and the evolution of the C++ language. You can contact him
at timur.doumler@jetbrains.com

The contribution from Timur was originally published on the
JetBrains CLion blog on 21 April 2022, and can be accessed here:
https://blog.jetbrains.com/clion/2022/04/accu-2022-trip-report/

CHRis OLDWOODFEAtURE

16 | Overload | June 2022

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He has resumed
commentating on the Godmanchester duck race but continues to be easily distracted by messages to gort@cix.co.uk or @
chrisoldwood

Afterwood
Threads can mean many things. Chris
Oldwood pulls a few to see what happens.

i was recently watching an episode of Marvel’s Agents of S.H.I.E.L.D
with my youngest before his bedtime. In the episode they had travelled
back in time to 1940s America and were changing into clothes considered

more appropriate for the times, to blend in. After they all got changed and
met back up again one character remarked to the other, “Nice threads!”
In this instance they were referring to another person’s clothes, but it got
me thinking that nobody has ever said that to me, which, given my weak
fashion skills is not surprising, but more topically for this publication, it’s
not a phrase I’ve ever heard somebody remark about another person’s code
either. Given the problems that all too often arise from the introduction
of additional threads into a program it’s far more likely that you’ll be
chastised for your threads rather than commended for them.

The late Russel Winder was a programmer who was no stranger to
problems involving concurrency and had the good fortune to work with
some serious parallel hardware when some of us were still all gooey eyed
over the second CPU in our desktop machine. I’m pretty sure Russel
would never congratulate anyone on their choice of threads as he was
a big proponent of solving concurrency problems by using higher-level
concepts. Like so much in the world of Computer Science many of the
techniques for managing concurrency have been around for decades and
Russel was always keen to promote the Actor Model, Communicating
Sequential Processes (CSP), etc. in his talks and writings. I never really
grokked either of these until Russel published his Introduction to GPars
in CVu 22(6) back in 2011. I’ve still never written a line of Groovy or
done anything significant on the JVM but this article provided the clarity I
needed to start seeing how these ideas were realized in a modern language.

If you grew up in the UK during the 1980s you might already have
an aversion to threads due to the BBC’s film of the same name which
depicted the state of Britain after a nuclear war. I was slightly too young
to watch it first time around, although like any teenager that didn’t stop
me trying to because apparently there were ‘other kids’ in our school who
had allegedly watched it. Despite the grown-ups slapping a 15 certificate
on it to advise us youngsters against being foolish and dabbling in issues
we were emotionally under-equipped to deal with, we jumped right in
anyway and regretted it later. Why do we never listen to our elders? As
the old joke goes, “Some programmers, when confronted with a problem,
think ‘I’ll use threads’, now problems two have they.”

I once interviewed someone for a highly technical role and casually asked
them how they felt about lock-free programming. They simply replied,
“I’ll give anything a go.” While I admire their positive outlook on life,
this was not really the response I was expecting. Anthony Williams’ book
on concurrency with C++ weighs in at six hundred pages and Joe Duffy’s
concurrency book for Windows hits nine hundred. What this tells me is
that it isn’t something you can ‘dabble in’. It feels more like a career in
its own right.

Debugging multi-threaded programs is always an interesting prospect,
especially trying to single step through functions which are executing
similar workloads on different threads. It reminds me of my first foray
into the Usenet way back at university before the common availability
of ‘threaded newsreaders’. Contrary to what you might be thinking,
these weren’t programs which used multiple threads to achieve better
UI responsiveness (we’re talking Unix terminals here), this was about
stitching together a continuous stream of forum posts on different topics
so that you could focus on one conversation at a time instead of constantly
context switching between subjects. Single stepping through a multi-
threaded program is always a bit of a shot in the dark as you wonder how
far you’ll get before you’re whisked away to another land. At least we
eventually get to return to where we left off unlike poor old Sam Beckett
in Quantum Leap. “Oh, boy!” indeed.

It wasn’t just late 80s newsreaders though – this was also how Twitter felt
in its early years. Fortunately, everything was largely unrelated anyway so
there wasn’t really a context to be dragged away from and return to. The
introduction of the 280 character limit in late 2017 was swiftly followed
by the appearance of ‘threads’ as Twitter tried to convince its users that
brevity was no longer the soul of wit. Further correlation between social
media platforms and concurrent programming are possible when you
consider their problems with coherence and false sharing.

One career that seems to have died out since the C++ committee finally
decided to come clean with C++11 and define a thread-aware memory
model is that of answering Stack Overflow questions about how to safely
implement a Double-Checked Lock (DCL). The Internet was awash with
solutions on how to safely acquire a Singleton (though, once again, you
now have two problems) that turned out to be wrong. The dominance at
the time of the Intel CPU meant that ‘works on my machine’ was almost
a statistically valid argument. A few people working on more advanced
CPU architectures got bitten but the strong view taken by the incumbent
x86 meant that many of us lived in ignorant bliss. When Herb Sutter
declared to the world that the free lunch was over, he was talking about
CPU single core performance, but he might as well have been talking
about the rise of the ARM which has a weaker view on ordering and a
stronger view on messing with your head. Java had its DCL crisis just
after Y2K calmed down whereas .Net had another decade to go before
its bubble finally burst, even the JVM & CLR are not immune it seems.

With the continued working from home and decline of the suit and tie in
the workplace, I suspect my chances for a fashion compliment have long
since passed. As for the prospect of never having to deal with a threading
issue again, all I can say is, “Promises, promises!” �

Monthly journals, available printed and online

Discounted rate for the ACCU Conference

Email discussion lists

Technical book reviews

Local groups run by ACCU members

professionalism in programming
accu

Visit www.ACCU.org to find out more

To connect with
like-minded people

visit accu.org

accu

	What Happened to Demo 13?
	Performance Considered Essential
	Compile-time Wordle in C++20
	ACCU 2022 Trip Reports
	Afterwood

