
 [image: Cover]

 Overload

Issue 173 - February 2023

ISSN 1354-3172

www.accu.org

Editor

Frances Buontempo overload@accu.org

Advisors

Ben Curry b.d.curry@gmail.com

Mikael Kilpeläinen mikael.kilpelainen@kolumbus.fi

Steve Love steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal pasa@lib.hu

Tor Arve Stangeland tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising Enquiries

ads@accu.org

Printing and Distribution

Parchment (Oxford) Ltd

Cover design

Original design by Pete Goodliffe pete@goodliffe.net

Cover photo by Lari Bat from iStock Photo

The ACCU

ACCU is an organisation of programmers who care about professionalism in programming. That is, we care about writing good code, and about writing it in a good way. We are dedicated to raising the standard of programming.

The articles in this magazine have all been written by ACCU members -- by programmers for programmers -- and have been contributed free of charge.

Write for us!

C Vu and Overload rely on article contributions from both members and non-members. That’s you! Without articles there are no magazines. We need articles at all levels of software development experience; you don’t have to write about rocket science or brain surgery.

What do you have to contribute?

	What are you doing right now?

	What technology are you using?

	What did you just explain to someone?

	What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

Advertise with Us

The ACCU magazines represent an effective, targeted advertising channel. 80% of our readers make purchasing decisions or recommend products for their organisations.

To advertise in the pages of C Vu or Overload, contact the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer advertising discounts for corporate members.

Copyrights and Trademarks

Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor disparage any trade mark claim. On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication, an author is, by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers, no material can be copied from Overload without written permission from the copyright holder.

A Note on the ePub Edition

Please note that some characters used in the articles in this eBook version of the publication
may not be able to be rendered correctly on some minimally functional eBook readers. In case of
uncertainty please try a different reader or consult the print or PDF version of the Journal.

Under Pressure

Mounting pressure can be problematic. Frances Buontempo takes a step back and wonders if pressure is always a bad thing.

The news in the UK has told me everything is under pressure, and I know the feeling. I have been trying to write two conference talks, along with doing a variety of other tasks and there are just not enough hours in the day. Suffice it to say, I haven’t written an editorial, but instead thought long and hard about being under pressure. Much of this is of my own making and I must learn to say, “No” more often. Maybe the start of a new year is a good time to reflect and think about how to make changes.

Mind you, pressure, in and of itself, is not a bad thing. We own a pressure cooker, which is useful for cooking beans and pulses. My hazy memory of physics from school tells me that the cooker is sealed, so keeps the volume fixed, meaning as the pressure increases when heat is supplied, the temperature also increases, cooking food more quickly than in an unsealed pan. The internet suggests this is related to Gay Lussac’s law, “the pressure of a gas varies directly with temperature when mass and volume are kept constant”, so that

for two pressures, P1, P2 and two volumes, V1, V2 [ChemTalk]. Similar physics means trying to boil a kettle up a mountain is somewhat difficult, or rather the water boils, but at a much lower temperature than some people would want. Since the atmospheric pressure is lower there, water boils below 100⁰, making a substandard cup of tea. Pressure is sometimes useful!

Running performance tests on a system can be illuminating. Stress or load tests simulate high traffic to a website, or service or similar, to see what happens. There is a subtle difference between them. A load test shows what happens under an expected load, meaning you know how long you expect a response or similar to take. In contrast, a stress test finds the upper limits of a system’s capacity, meaning you can prepare for a DDoS attack, or at least be aware of what might happen to your system [LoadNinja]. You can even run such tests as part of your CI pipeline, to keep an eye on timings and so on. Putting your system under pressure in a dev environment prepares you for production. In theory.

Knowing upper limits can be important. Big-oh notation is a fundamental part of many computer science courses. For once, that was not a typo, the technical term is big-o, but, like me, you might say uh-oh internally if someone asks what the space or time complexity of a specific algorithm is, when you haven’t thought about this for a long time. Nothing like the pressure of an interview or similar to make your brain seize up. Of course, big-o is short for order of approximation [Wikipedia]. It tells us how many calculations, or how much space, an algorithm might take in the worst case, giving a sense of how an algorithms scales with the item count. Roger Orr wrote an article a long while ago, looking at what can actually happen in real life [Orr14]. He reminded us that big-O “may ignore other factors, such as memory access costs that have become increasingly important in recent years.” Given the article was written in 2014, I wonder how different the results might look today. Feel free to re-read the article and run the test cases to see what happens now.

The runtime behaviour of a system can be hard to predict, and different architectures will have different runtime profiles. If a system appears to be under strain, you can try throwing more hardware at it, as the phrase goes. Not literally, of course. Now, we’ve all read, or are at least aware of, The Mythical Man Month by Fred Brooks, originally published in 1975. He shows that adding more people to a software project that is behind schedule is likely to delay it even longer. I wonder if adding more hardware to a system can have a similar effect. Changing the hardware can improve some performance measures. Certainly an SSD is likely to be quicker than a spinning disk, and probably use less energy and generate less heat. The SSD may not improve the performance of your linked list, though. And adding a second computer might make it take even longer to traverse the nodes of the list. Changing the data structure is more likely to improve performance. Adding more hardware can speed up calculations, provided you get the parallelism right. Some problems are embarrassingly parallel, in the sense that they do not need to communicate, which is often the bottleneck, both in the Mythical Man Month and many parallel algorithms. Others are not, which is why we often see multithreaded code run slower than equivalent single threaded code. The point about swapping to an SSD shows that changing a setup can make more difference than adding more of the same. In order to cope with pressure, finding a way to do things differently often helps. If a deadline is looming, the best approach might be to limit what gets delivered, so a minimum viable product (MVP). Many people have written about this, and an MVP is about more than doing the bare minimum. The Agile Alliance attributes the term to Eric Ries in his Lean Startup book [Agile Alliance], and emphasizes the MVP as the core piece of a strategy of experimentation. Finding a “version of a new product which allows a team to collect the maximum amount of validated learning about customers with the least effort,” means you get feedback quickly. This might mean teams “dramatically change a product that they deliver to their customers or abandon the product together based on feedback they receive from their customers.” Furthermore the MVP is supposed to reduce stress or pressure. As with many agile ideas, small baby steps FTW.

You cannot add more people to solve certain problems, such as taking an exam. You have a limited amount of time to prepare beforehand and a maximum amount of time in the examination itself. Though you can find friends to help you revise, you cannot parallelise that task, with three or four people learning different parts and taking a section of the exam each. Well, you could try, but the invigilator will almost certainly spot what you are doing. However, if a group of friends split up to learn different aspects of a subject, and reconvene to share what they have learnt, this can work. Each person will know some of the subject in depth and by explaining it to others may understand even better. Those they explain to might pick up some of the subset explained to them. Collaborating can take some of the pressure off, and give an arena to vent frustration in. Without a group of friends to help, you can choose to focus on a smaller subset yourself, and at least ensure you can answer some of the exam questions.

If you are building a software system with several moving parts, you might split the work up between teams. However you make the split, you need to make sure the whole system works when the pieces are glued together. I’ve seen this succeed when pieces from another team are mocked out; for example, a service returning hard coded results, until the database is in place, and so on. When this happens, the teams can program to an interface and be sure the parts will slot together. Without an initial discussion on the interfaces to use, trying to make the parts work together at the last minute often leads to trouble, late nights, and fraught discussions. Some pressure is avoidable.

Pressure can lead to innovation, but so can the offer of a reward. King Oscar II of Sweden and Norway offered a prize in 1885 for a solution to the problem of determining the stability of the solar system. The question was, “Will the planets of the solar system continue forever in much the same arrangement as they do at present? Or could something dramatic happen, such as a planet being flung out of the solar system entirely or colliding with the Sun?” [Britannica].

At the time, modelling the motion of two bodies was possible, but not three or more, let alone all of our solar system’s planets and moons. Poincaré won the prize, though he couldn’t fully solve the problem. His ideas lead to differential equations. Differential equations can be used to model all kinds of dynamical systems, and every now and then people find relatively simple looking equations that lead to very complex solutions. “Even when there is no hint of randomness in the equations, there can be genuine elements of randomness in the solutions.” [Britannica]. Now, whether the solutions exhibit genuine randomness is a big question. Certainly you might see one small change in initial conditions leading to a large change in outcomes. The recurrence relationship governing the familiar Mandelbrot set gives a clear example of this. The simple looking equation used is

where c is a complex number and z starts at 0. Any numbers which leave z bounded belong to the set. The boundary of the set is very complicated and if you zoom in, you start to see patterns repeating. This is often cited as an example of chaos. I am sure this is something very different to randomness. Surprising complex behaviour emerging from a simple model is deterministic, and I suspect randomness is often used synonymously with non-determinism. Radioactive decay is often regarded as random, in the sense that we are not able to predict when a specific atom will decay, even if we can be very precise about the half-life of a radioactive material. Einstein said “God does not play dice with the universe” in response to the probabilistic laws used in quantum mechanics. He did not like the idea of randomness as a fundamental feature of any theory. [Natarajan08]. He had other objections too, but that would require a digression into linear models and more maths and physics. The salient point is that sequences regarded as random do often have predictable properties. Whether anything is truly random is another matter. I shall attempt to broach this subject in my ACCU conference talk this year, if I ever finish my slides.

We’ve looked briefly at pressure and how it can have positive aspects. If people or systems are under too much pressure, they usually crack or fail in some way. Having knowledge on the upper bound that a setup can handle is useful, but if the environment strays towards that upper bound, trouble is on the way. That Poincaré won a prize for developing a new area of mathematics is marvellous. Sometimes curiosity and a carrot, rather than a stick, is a great motivator. If you are under pressure to complete something by a deadline, work extra hours, or do something else you can’t manage, learn to say “No”. I haven’t yet, but might give it a go this year.

References

[Agile Alliance] Minimal Viable Product (MVP): at https://www.agilealliance.org/glossary/mvp/

[Britannica] Dynamic systems theory and chaos: https://www.britannica.com/science/analysis-mathematics/Dynamical-systems-theory-and-chaos

[ChemTalk] Gay-Lussac’s Law: https://chemistrytalk.org/gay-lussacs-law/

[LoadNinja] https://loadninja.com/articles/load-stress-testing/

[Natarajan08] Vasant Natarajan (2008) ‘What Einstein meant when he said “God does not play dice…”’, Resonance, published July 2008, pp.655–660. Available online at: https://arxiv.org/ftp/arxiv/papers/1301/1301.1656.pdf

[Orr14] Roger Orr (2014) ‘Order Notation in Practice’, Overload, 22(124):14-20, December 2014. https://accu.org/journals/overload/22/124/overload124.pdf#page=15

[Wikipedia] Big O notation: https://en.wikipedia.org/wiki/Big_O_notation

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and data mining. She's written a book about machine learning: Genetic Algorithms and Machine Learning for Programmers. She has been a programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B machine.

[image: Book cover]You can find details of Fran’s book, Genetic Algorithms and Machine Learning for Programmers, at https://pragprog.com/titles/fbmach/genetic-algorithms-and-machine-learning-for-programmers/

Floating-Point Comparison

Comparing floating point values can be difficult. Paul Floyd shows how you should perform floating-point comparisons (and how not to do it).

It is often said that you shouldn’t compare two floating point numbers for equality. To quote one erstwhile guru:

Any programmer claiming competence that uses equality between floating point values clearly requires re-education on this point.

I agree that in general you need to take care with floating point comparisons, but there are times when using == and != is the right thing to do. There are two major problems that I see

	You don’t want to use a tolerance on every single floating-point comparison. Not knowing what you are doing and just randomly sprinkling tolerances into your comparisons won’t make the problems go away.

	Often the way that the tolerance is used is just plain wrong.

When you use a tolerance to make a floating-point comparison you are in effect saying, “This value has some inaccuracy, so I’ll do an inaccurate comparison to compensate for it”. The two questions that need to be answered are a) is that really the case and b) how inaccurate should the comparison be?

A lot depends on your domain of application. First, let’s consider mathematical libraries. Here you want to strive to get as much accuracy as possible (and indeed the precision may be mandated by [IEEE754]). I’ll take the C standard library ‘pow’ function as an example. One implementation can be found on GitHub [GNU].

Consider this check

 if (y == 0)
 return 1.0;

I think that it would be an extremely bad idea to use a tolerance here. I expect x**0 to be 1. I do not expect x**1e-5 to also be 1 (unless x is 1 or close to it). There are similar tests for x**1, x**2 and x**-1. There is not one use of tolerance in this function, and several floating-point comparisons.

Another situation where you shouldn’t use a tolerance is if you are doing 3-way testing like

 If (a < b) {
 // handle less than
 } else if (a == b) {
 // handle equality
 } else {
 // handle greater than
 }

This is fine as it is and using a tolerance instead of a == b just adds gratuitous inaccuracy.

If your numbers come from physical observations, then your precision is probably way below the precision of double and even float. Double has a precision of about 1 part in 1016 (1 in ten quadrillion). That’s about a thousand times more precise than the most accurate measurements that we can make [StackExchange].

Even if your data doesn’t come from some inexact source, if you do any sort of operation on the data then there will be some rounding error. One common case that often surprises the uninitiated is the conversion from base 10 strings to binary floating-point (via functions like ‘atof’, strtod or std::stod). This doesn’t give an exact result in the sense of being identical to the original base 10 value. Furthermore, there will be rounding errors on most floating-point operations. The analysis of floating-point errors is too big a subject to cover even superficially here.

If you’d like to delve deeper into the subject, I recommend Accuracy and Stability of Numerical Algorithms [Higham02]. For an overview of techniques to mitigate rounding errors, see the series of articles published by the late Richard Harris [Harris11]. Thirdly, there is ‘What every computer scientist should know about floating-point arithmetic’ [Goldberg91] which gives a thorough explanation of floating-point. All I will say is that if your numerical code is not too badly written then rounding errors will generally accumulate slowly in the manner of a drunkard’s walk.

Potential errors

What could happen if you don’t use a tolerance in a floating-point comparison? The most immediate thing is that the wrong branch of your code could execute.

 if (a == b) {
 action1();
 } else {
 action2();
 }

In the above code, there is the risk that a and b are very close but not equal and action2() gets performed rather than action1().

One possibly worse situation that can occur is that your code hangs in a loop.

 while (estimation != answer) {
 estimation = refinement(x);
 }

I say possibly worse since at least if this does get stuck in an infinite loop it will be easy to debug and fix. Algorithms like this that use progressive refinement are common in numerical analysis.

How not to perform floating-point comparisons.

For pedagogical purposes, I’ll start with some bad code that shows how not to perform floating-point comparison. This will build up to something reasonably functional. All my examples use double but apply equally to float and long double.

My first example is the worst code. Don’t do this.

 bool cmpEq(double a, double b)
 {
 return std::fabs(a – b) <
 std::numeric_limits<double>::min();
 }

I’ve seen this in production and it is almost totally wrong. This applies equally to the macro DBL_MIN. The problem is that the ‘min’ value here is the smallest possible non-denormalized value of a double, typically something like 2e-308. For the expression to be true, either a and b have to be equal or either/both denormalized. (For those that are not familiar with denormalized numbers, they are a special case of the set of floating-point numbers that extend the minimum possible value to approx. 5e-324 at the expense of losing precision and slower CPU execution.)

To all intents and purposes, this code only gives a false sense of security and behaves like operator==.

The intention here was probably to use std::numeric_limits<double>::epsilon(). Epsilon is the smallest representable number that can be added to 1.0 to make a new value. This means that it represents the limits of numerical precision around the value 1.0. The precision is determined by the bits of the hardware – 53 binary digits for 8-byte doubles which is roughly 16 decimal digits.

This is not the same thing as the accuracy, which is the measure of error of a sequence of computations.

Since I’ve mentioned epsilon, how about using that? Quite often I see code like

 bool cmpEq(double a, double b)
 {
 return std::fabs(a – b) <
 std::numeric_limits<double>::epsilon()*10.0;
 }

(DBL_EPSILON could be used instead of std::numeric_limits<double>::epsilon()).

I’ve somewhat arbitrarily multiplied it by a factor of 10 to give a bit of margin. But what if a and b are far away from 1.0? If both a and b are much smaller than 1.0 then the above comparison will always be true. Let’s say a is 1e-18 and b is 1e-24. a is a million times bigger than b yet the above function will say that they are equal. That may not be what you want. Now what if a and b are much greater than 1.0? Let’s say a is 1e10 and b is 1.0000000000001e10. That’s a difference that could arise from rounding error, but the difference is still 1e-3 which is much greater than the 2e-15 tolerance used above. In short, the above function will only work well for values that are not too far from 1.0. That might be a big restriction.

For my third bad comparison function, I’ll introduce the notion of relative tolerance (reltol). The idea behind a reltol is to have a tolerance that scales with the values being compared which avoids the problems with big and small values that the previous version suffered from. Unfortunately, there are still weaknesses and several ways to get this wrong.

 bool cmpEq(double a, double b)
 {
 double reltol = fabs(a)*1e-7;
 return std::fabs(a – b) < reltol;
 }

There is a potential problem with this function not being commutative if the double tolerance is larger. More specifically, if the factor used for the tolerance is larger than sqrt(DBL_EPSILON) (which is about 1.5e-8) and the difference between a and b is a factor between (1.0 + DBL_EPSILON) and (1.0 + DBL_EPSILON + DBL_EPSILON^2) then the comparison is not commutative.

This can be illustrated by Listing 1, which outputs only “then these should also equal”. That can be the source of nasty bugs that are hard to track down (for instance if this function were used as part of a test in code that requires strict weak ordering, for instance as a predicate for std::sort or the ordered containers std::map and std::set).

#include <iostream>
#include <limits>
#include <cmath>

const double EPSILON = 1e-7;

bool cmpEq(double a, double b)
{
 double reltol = std::fabs(a) * EPSILON;
 return std::fabs(a - b) < reltol;
}
int main()
{
 double testValue = 42.0;
 double otherValue = testValue *
 (1.0 + EPSILON + EPSILON * EPSILON / 2.0);
 if (cmpEq(testValue, otherValue)) {
 std::cout << "if these are equal then \n";
 }
 if (cmpEq(otherValue, testValue)) {
 std::cout <<
 "then these should also equal\n";
 }
}
Listing 1

The second problem is that it doesn’t handle infinity nicely. Infinity is sticky, which mean that the reltol will also be infinite. So, if both a and b are infinite then the expression std::fabs(a - b) < reltol becomes Inf < Inf which is false, but Inf == Inf is true.

There are a few things that we can do to fix these problems. Firstly, we can apply the reltol factor to a combination of a and b. But what combination? I’ve seen their sum, average, min and max used. The sum and average have the disadvantage of requiring checks that there is no floating-point underflow or overflow, so I don’t recommend using them. That leaves min and max. The only difference is that the choice will slightly narrow or widen the tolerance, respectively. Since the reltol factor itself is somewhat arbitrary, that’s not a big difference. I’ve seen the min version referred to as “essentially equal to” ([Knuth97]), and the Boost documentation refers to the max version as “close enough with tolerance” and the min version as “very close with tolerance”.

The problem with infinity can be fixed by adding a quick check for equality of the arguments.

So now we have Listing 2.

bool cmpEq(double a, double b)
{
 const double EPSILON = 1e-7;
 if (a == b) {
 return true;
 }
 double reltol = std::max(std::fabs(a),
 std::fabs(b)) * EPSILON;
 return std::fabs(a - b) < reltol;
}
Listing 2

This works with infinity (and NaN which should never compare equal) as well as my corner case with values separated by a factor of about 1.0 + EPSILON.

Are we all done? Sadly not. Using just a reltol is not good for very small values that are close to zero. cmpEq(1e-85, 2e-85) will return false. In many situations values these small are just numerical noise possibly arising from cancellation and should be considered equal to zero. To eliminate these, we must add back a test along the lines of our second version using an absolute tolerance (abstol).

 One final version is in Listing 3.

bool cmpEq(double a, double b,
 double epsilon = 1e-7, double abstol = 1e-12)
{
 if (a == b) {
 return true;
 }
 double diff = std::fabs(a - b);
 double reltol = std::max(std::fabs(a),
 std::fabs(b)) * epsilon;
 return diff < reltol || diff < abstol;
}
Listing 3

This is still not completely safe. If a and b are very large and of opposite signs, then a - b could overflow. If a and b are both very small, then multiplying by EPSILON could underflow – moving the abstol comparison earlier would fix that.

That only leaves one thing and that is how to choose the relatively arbitrary constants used for abstol and reltol EPSILON? For that you need to apply your domain knowledge as unfortunately there is no one-size-fits-all solution. It also depends on your accuracy requirements. I work in the domain of analogue microelectronic circuit simulation. In this domain voltages are typically 1V and currents are typically 1µA. A good rule of thumb is to have an EPSILON for reltol something like 1e-4 and an abstol something like 1e-6 times your typical domain values. So, for circuit simulation that would be a voltage abstol of 1e-6 and a current abstol of 1e-12 [Kundert95].

Existing implementations

Most unit test libraries will have functions for performing floating-point comparisons, for instance the WithinAbsMatcher of [Catch2]. Boost has floating_point_comparison.hpp [Boost]. One thing that I don’t like about this is that the code normalizes the difference by dividing by the values. Floating-point division is slow, and I’d rather avoid it when possible. The other problem that I see with this is that it suffers from Boost template bloat. The header when pre-processed is about 54k lines of which about 42k lines are code. That’s a lot for what is essentially a 5-line function. A functor close_at_tolerance is provided which tests with a relative tolerance. Despite my reservations I would still prefer to see boost being used than a wrong home-rolled comparator.

Summary

	Don’t blindly use tolerances in all floating-point comparisons.

	Don’t use std::numeric_limits<double>::min() or DOUBLE_MIN for tolerances.

	Consider whether you need an absolute tolerance or not.

	Choose abstol and reltol EPSILON with care depending on the domain of application.

	Consider using existing and well-tested libraries.

References

[Boost] floating_point_comparison.hpp: https://www.boost.org/doc/libs/1_81_0/boost/test/tools/floating_point_comparison.hpp

[Catch2] catch_matchers_floating_point.hpp: https://github.com/catchorg/Catch2/blob/223d8d638297454638459f7f6ef7db60b1adae99/src/catch2/matchers/catch_matchers_floating_point.hpp

[GNU] e_pow.c: https://github.com/lattera/glibc/blob/master/sysdeps/ieee754/dbl-64/e_pow.c

[Goldberg91] David Goldberg ‘What every computer scientist should know about floating-point arithmetic’, published in ACM Computing Surveys, Volume 23, Issue 1 March 1991 and available at: https://dl.acm.org/doi/10.1145/103162.103163

[Harris11] Richard Harris wrote a series of four articles in Overload from 2010 to 2011:

	Why Fixed Point Won’t Cure Your Floating Point Blues, Overload 18(100):14-21 available at: https://accu.org/journals/overload/18/100/harris_1717/

	Why Rationals Won’t Cure Your Floating Point Blues, Overload 19(101):8–11 available at: https://accu.org/journals/overload/19/101/harris_1986/

	Why Interval Arithmetic Won’t Cure Your Floating Point Blues, Overload 19(103):18-23 available at: https://accu.org/journals/overload/19/103/harris_1974/

	Why Computer Algebra Won’t Cure Your Floating Point Blues, Overload 20(107):14-19 available at: https://accu.org/journals/overload/20/107/harris_1938/

[Higham02] Nicholas J. Higham (2002) Accuracy and Stability of Numerical Algorithms, 2nd Ed.,, SIAM, ISBN 978-0-898715-21-7

[IEEE754] 754-2019 – IEEE Standard for Floating-Point Arithmetic, available at: https://ieeexplore.ieee.org/document/8766229 (Non-free download.)

[Knuth97] Donald E. Knuth (1997) The Art of Computer Programming, Volume 2, Seminumerical Algorithms, 3rd Ed, Addison-Wesley, ISBN 0-201-89684-2

[Kundert95] Ken Kundert (1995) Appendix A ‘Simulator Options’ from The Designers Guide to SPICE and Spectre available at: https://designers-guide.org/analysis/dg-spice/chA.pdf Details of the book are available at: https://designers-guide.org/analysis/dg-spice/index.html

[StackExchange] Physics: What is the most precise physical measurement ever performed? Question and answers available at: https://physics.stackexchange.com/questions/497087/what-is-the-most-precise-physical-measurement-ever-performed

Paul Floyd has been writing software, mostly in C++ and C, for about 30 years. He lives near Grenoble, on the edge of the French Alps and works for Siemens EDA developing tools for analogue electronic circuit simulation. In his spare time, he maintains Valgrind.

Determining If A Template Specialization Exists

How do you tell if a class or function template can be used with specific arguments? Lukas Barth details his approach.

One C++17 problem I come across every now and then is to determine whether a certain class or function template specialization exists – say, for example, whether std::swap<SomeType> or std::hash<SomeType> can be used. I like to have solutions for these kind of problems in a template-toolbox, usually just a header file living somewhere in my project. In this article I try to build solutions that are as general as possible to be part of such a toolbox.

Note that it is not entirely clear what ‘a specialization exists’ means. Even though this might seem unintuitive, I’ll postpone that discussion to the last section (‘What do I mean by ‘a specialization exists’?’) and will, for now, continue with the intuitive sense that ‘specialization exists’ means ‘I can use it at this place in the code’.

Where I mention the standard, I refer to the C++17 standard [C++17], and I usually use GCC 12 and Clang 15 as compilers. See the sidebar on MSVC at the end for why I’m not using it in this article.

Testing for a specific function template specialization

First, the easiest part: Testing for one specific function template specialization. I’ll use std::swap as an example here, though in C++17 you should of course use std::is_swappable to test for the existence of std::swap<T>.

Without much ado, my proposed solution is in Listing 1.

struct HasStdSwap {
private:
 template <class T, class Dummy =
 decltype(std::swap<T>(std::declval<T &>(),
 std::declval<T &>()))>
 static constexpr bool exists(int) {
 return true;
 }
 template <class T> static constexpr bool
 exists(char) { return false; }
public:
 template <class T> static constexpr bool
 check() {
 return exists<T>(42); }
};
Listing 1

Let’s unpack this: The two exists overloads are doing the heavy lifting here. The goal is to have the preferred overload when called with the argument 42 (i.e., the overload taking int) return true if and only if std::swap<T> is available. To achieve this, we must only make sure that this overload is not available if std::swap<T> does not exist, which we do by SFINAE-ing it away if the expression

 decltype(std::swap<T>(std::declval<T&>(),
 std::declval<T&>()))

is malformed.

You can play with this at Compiler Explorer [CompExp-1]. Note that we need to use std::declval<T&>() instead of the more intuitive std::declval<T>() because the result type of std::declval<T>() is T&&, and std::swap can, of course, not take rvalue references.

Testing for a specific class template specialization

Now that we have a solution to test for a specific function template specialization, let’s transfer this to class templates. We’ll use std::hash as an example here.

To transform the above solution, we only need to figure out what to use as default-argument type for Dummy, i.e., something that is well-formed exactly in the cases where we want the result to be true. We can’t just use Dummy = std::hash<T>, because std::hash<T> is a properly declared type for all types T! What we actually want to check is whether std::hash<T> has been defined and not just declared. If a type has only been declared (and not defined), it is an incomplete type. Thus we should use something that does work for all complete types, but not for incomplete types.

In the case of std::hash, we can assume that every definition of std::hash must have a default constructor (as mandated by the standard for std::hash), so we can do Listing 2.

struct HasStdHash {
 private:
 template <class T, class Dummy = decltype(std::hash<T>{})>
 static constexpr bool exists(int) {
 return true;
 }
 template <class T>
 static constexpr bool exists(char) {
 return false;
 }
 public:
 template <class T>
 static constexpr bool check() {
 return exists<T>(42);
 }
 }
Listing 2

This works nicely as you can see at Compiler Explorer [CompExp-2]. This is how you can use it:

 std::cout << "Does std::string have std::hash? "
 << HasStdHash::check<std::string>();

A generic test for class templates

If I want to put this into my template toolbox, I can’t have a implementation that’s specific for std::hash (and one for std::less, one for std::equal_to, …). Instead, I want a more general form that works for all class templates, or at least those class templates that only take type template parameters.

To do this, I want to pass the class template to be tested as a template template parameter. Adapting our solution from above, Listing 3 is what we would end up with.

template <template <class... InnerArgs>
 class Tmpl>
 struct IsSpecialized {
 private:
 template <class... Args,
 class dummy = decltype(Tmpl<Args...>{})>
 static constexpr bool exists(int) {
 return true;
 }
 template <class... Args>
 static constexpr bool exists(char) {
 return false;
 }
 public:
 template <class... Args>
 static constexpr bool check() {
 return exists<Args...>(42);
 }
 };
Listing 3

This does still work for std::hash, as you can see at Compiler Explorer [CompExp-3], when being used like this:

 std::cout << "Does std::string have std::hash? "
 << IsSpecialized<std::hash>::check<std::string>();

However, by using Tmpl<Args...>{}, we assume that the class (i.e., the specialization we are interested in) has a default constructor, which may not be the case. We need something else that always works for any complete class, and never for an incomplete class.

If we want to stay with a type, we can use something unintuitive: the type of an explicit call of the destructor. While the destructor itself has no return type (as it does not return anything), the standard states in [expr.call]:

If the postfix-expression designates a destructor, the type of the function call expression is void; […]

So Listing 4 will work regardless of how the template class is defined1 (changes highlighted in Listing 4).

As an aside, if you know of a way to extend this to templates taking non-type template parameters, please let me know!

template <template <class... InnerArgs>
 class Tmpl>
struct IsSpecialized {
private:
 template <class... Args,
 class dummy =
 decltype(std::declval<Tmpl<Args...>>()
 .~Tmpl<Args...>())>
 static constexpr bool exists(int) {
 return true;
 }
 template <class... Args>
 static constexpr bool exists(char) {
 return false;
 }
 public:
 template <class... Args>
 static constexpr bool check() {
 return exists<Args...>(42);
 }
 };
Listing 4

Note that we use std::declval to get a reference to Tmpl<Args...> without having to rely on its default constructor. Again you can see this at work at Compiler Explorer [CompExp-4].

Problem: Specializations that sometimes exist and sometimes don’t

The question of whether SomeTemplate<SomeType> is a complete type (a.k.a. ‘the specialization exists’) depends on whether the respective definition has been seen or not. Thus, it can differ between translation units, but also within the same translation unit. Consider this case:

 template<class T> struct SomeStruct;
 bool test1 =
 IsSpecialized<SomeStruct>::check<std::string>();
 template<> struct SomeStruct<std::string> {};
 bool test2 =
 IsSpecialized<SomeStruct>::check<std::string>();

What should happen here? What values would we want for test1 and test2? Intuitively, we would want test1 to be false, and test2 to be true. If we try to square this with the IsSpecialized template from Listing 4, something weird happens: The same template, IsSpecialized<SomeStruct>::check<std::string>(), is instantiated with the same template arguments but should emit a different behavior. Something cannot be right here. If you imagine both tests (once with the desired result true, once with desired result false) to be spread across different translation units, this has the strong smell of an ODR-violation.

If we try this at Compiler Explorer [CompExp-5], we indeed see that this does not work. So, what’s going on here?

The program is actually ill-formed, and there’s nothing we can do to change that.

The standard states [C++17a]:

If a template […] is explicitly specialized then that specialization shall be declared before the first use of that specialization that would cause an implicit instantiation to take place, in every translation unit in which such a use occurs; no diagnostic is required. […]

Of course the test for the availability of the specialization would ‘cause an implicit instantiation’ (which fails and causes SFINAE to kick in).2 Thus it is always ill-formed to have two tests for the presence of a specialization if one of them ‘should’ succeed and one ‘should’ fail.

In fact, the standard contains a paragraph, [C++17c] that does not define anything (at least if I read it correctly), but only issues a warning that ‘there be dragons’ if one has explicit specializations sometimes visible, sometimes invisible. I’ve not known the standard to be especially poetic, this seems to be the exception:

The placement of explicit specialization declarations […] can affect whether a program is well-formed according to the relative positioning of the explicit specialization declarations and their points of instantiation in the translation unit as specified above and below. When writing a specialization, be careful about its location; or to make it compile will be such a trial as to kindle its self-immolation.

Thus, as a rule of thumb (not just for testing whether a specialization exists): If you use Tmpl<T> at multiple places in your program, you must make sure that any explicit specialization for Tmpl<T> is visible at all those places.

A generic test for function templates

The move from testing whether one particular class template was specialized for a type T to having a test for arbitrary class templates was pretty easy. Unfortunately it is a lot harder to replicate the same for function templates. This is mainly because we cannot pass around function templates as we can pass class templates as template template parameters.

If we want to have a template similar to IsSpecialized from above (let’s call it FunctionSpecExists), we need a way of encapsulating a function template so that we can pass it to our new FunctionSpecExists. On the other hand, we want to keep this ‘wrapper’ as small as possible, because we will need it at every call site. Thus, building a struct or class is not the way to go.

C++14 generic lambdas provide a neat way of encapsulating a function template. Remember that a lambda expression is of (an unnamed) class type. Thus, we can pass them around as template parameter, like any other type.

Encapsulating the function template we are interested in (std::swap, again) in a generic lambda could look like this:

 auto l = [](auto &lhs, auto &rhs) {
 return std::swap(lhs, rhs); };

Now that we have something that is callable if and only if std::swap<decltype(lhs)> is available. When I write ‘is callable if’, this directly hints at what we can use to implement our FunctionSpecExists struct – ‘is callable’ sounds a lot like std::is_invocable, right?

So, to test whether SomeType can be swapped via std::swap, can we just do this?

 auto l = [](auto &lhs, auto &rhs) {
 return std::swap(lhs, rhs); };
 bool has_swap = std::is_invocable_v<decltype(l),
 SomeType &, SomeType &>;

Unfortunately, no. [CompExp-6] Assuming that SomeType is not swappable, we are getting no matching call to std::swap errors. The problem here is that std::is_invocable must rely on SFINAE to remove the infeasible std::swap implementations (which in this case are all implementations). However, SFINAE only works in the elusive ‘immediate context’ as per paragraph 8 in section 17.8.2 (temp.deduct) of the specification [C++17d]. The unnamed class that the compiler internally creates for the generic lambda looks (simplified) something like this:

 struct Unnamed {
 template <class T1, class T2>
 auto operator()(T1 &lhs, T2 &rhs) {
 return std::swap(lhs, rhs);
 }
 };

Here it becomes obvious that plugging in SomeType for T1 and T2 does not lead to a deduction failure in the ‘immediate context’ of the function, but actually just makes the body of the operator() function ill-formed.

We need the problem (no matching std::swap) to kick in in one of the places for which the temp.deduct section of the specification [C++17d] says that types are substituted during template deduction. Quoting from paragraph 7:

The substitution occurs in all types and expressions that are used in the function type and in template parameter declarations.

One thing that is part of the function type is a trailing return type, so we can use that. Let’s rewrite our lambda to:

 auto betterL = [](auto &lhs, auto &rhs)
 -> decltype(std::swap(lhs, rhs)) {
 return std::swap(lhs, rhs);
 };

Now we have a case where, if you were to substitute the non-swappable SomeType for the auto types, there is an error in the types involved in the function type. And indeed, this actually works, as you can see on Compiler Explorer [CompExp-7] and in Listing 5.

auto betterL = [](auto &lhs, auto &rhs)
 -> decltype(std::swap(lhs, rhs)) {
 return std::swap(lhs, rhs);
};
constexpr bool sometype_has_swap =
 std::is_invocable_v<decltype(betterL),
 SomeType &, SomeType &>;
Listing 5

I don’t think that you can further encapsulate this into some utility templates to make the calls more compact, so that’s just what I will use from now on.

What do I mean by ‘a specialization exists’?

I wrote at the beginning that it’s not entirely clear what ‘a specialization exists’ should even mean. It is, of course, not possible – neither for class templates, nor for function templates – to check at compile time whether a certain specialization exists somewhere, which may be in a different translation unit. I wrote the previous sections with the aim of testing whether the class template (resp. function template) can be ‘used’ with the given arguments at the point where the test happens.

For class templates, I say a ‘specialization exists’ if, for a given set of template arguments, the resulting type is not just declared, but also defined (i.e., it is a complete type). As an example:

 template<class T>
 struct SomeStruct;

 template<>
 struct SomeStruct<int> {};
 // (Point A) Which specializations "exist"
 // at this point?
 template<>
 struct SomeStruct<std::string> {};

In this code, at the marked line, only the specialization for the type int ‘exists’.

For function templates, it’s actually a bit more complicated, since C++ has no concept of ‘incomplete functions’ analogous to ‘incomplete types’. Here, I say that a specialization ‘exists’ if the respective overload has been declared. Take this example:

 template<class T>
 void doFoo(T t);

 template<class T, class Dummy=
 std::enable_if_t<std::is_integral_v<T>,
 bool> = true>
 void doBar(T t);
 template<class T, class Dummy=std::is_same_v<T,
 std::string>, bool> = true>
 void doBar(T t) {};

 // (Point B) Which specializations "exist"
 // at this point?

At the marked, line:

	For any type T, the specialization doFoo<T> ‘exists’, because the respective overload has been declared in lines one and two.

	The two specializations doBar<std::string> and doBar<T> for any integral type T ‘exist’. Note that this is indenpendent of whether the function has been defined (like doBar<std::string>) or merely declared.

	For all non-integral, non-std::string types T, the specialization doBar<T> does ‘not exist’.

This of course means that our ‘test for an existing specialization’ for functions is more of a ‘test for an existing overload’, and can in fact be used to achieve this.

A note on MSVC and std::hash

In all my examples, I used GCC and Clang as compilers. This is because my examples for std::hash do not work with MSVC [CompExp-8], at least if you enable C++17 (it works in C++14 mode). That is because of this (simplified) std::hash implementation in MSVC’s STL implementation [Microsoft]:

 template <class _Kty, bool _Enabled>
 struct _Conditionally_enabled_hash
 {
 // conditionally enabled hash base
 size_t operator()(const _Kty &_Keyval) const
 {
 return hash<_Kty>::_Do_hash(_Keyval);
 }
 };
 template <class _Kty>
 struct _Conditionally_enabled_hash<_Kty, false>
 {
 // conditionally disabled hash base
 _Conditionally_enabled_hash() = delete;
 // *no* operator()!
 };
 template <class _Kty>
 struct hash
 : _Conditionally_enabled_hash
 <_Kty, should_be_enabled_v<_Kty>>
 {
 // *no* operator()!
 };

This implementation is supposed to handle all integral, enumeration and pointer types (which is what should_be_enabled_v tests for), but the point is: For all other types, this gives you a defined, and thus complete, class – which does not have an operator(). I’m not sure why the designers built this this way, but that means that on MSVC, our testing-for-type-completeness does not work to determine whether a type has std::hash. You must also test whether operator() exists!

References

[C++17] The C++17 Standard: https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

[C++17a] Explicit specialization declaration: https://timsong-cpp.github.io/cppwp/n4659/temp.expl.spec#6

[C++17b] Implicit specialization: https://timsong-cpp.github.io/cppwp/n4659/temp.inst#6

[C++17c] Explicit specialization: https://timsong-cpp.github.io/cppwp/n4659/temp.expl.spec#7

[C++17d] Template argument deduction: https://timsong-cpp.github.io/cppwp/n4659/temp.deduct

[CompExp-1] Compiler Explorer (1): https://godbolt.org/z/MjTn6Y3Eo

[CompExp-2] Compiler Explorer (2): https://godbolt.org/z/6hv4rcTrc

[CompExp-3] Compiler Explorer (3): https://godbolt.org/z/qhso5vajj

[CompExp-4] Compiler Explorer (4): https://godbolt.org/z/8ocaWMTd9

[CompExp-5] Compiler Explorer (5): https://godbolt.org/z/5xMv6Mh16

[CompExp-6] Compiler Explorer (6): https://godbolt.org/z/jj4PjYG9n

[CompExp-7] Compiler Explorer (7): https://godbolt.org/z/MWjW7WT84

[CompExp-8] Compiler Explorer (8): https://godbolt.org/z/8bMhM5xhq

[Microsoft] MSVC STL implementation: https://github.com/microsoft/STL/blob/214e0143d1d2f7a1c5ca53a338ba3fbb657bdfa3/stl/inc/type_traits#L2177-L2204

Footnotes

	With the notable exception of the template class having a private destructor.

	This is explicitly stated in [C++17b].

This article was published on Lukas Barth’s blog on 1 January 2023 and is available at: https://lukas-barth.net/blog/checking-if-specialized/

Lukas Barth is a software engineer who has been using C++ almost exclusively for a couple of years now. After completing his computer science PhD with a focus on algorithms in 2020, he now works at MENTZ on building a journey planner for public transport.

EPUB/media/Overload173v2.png
173

FEBRUARY 2023 £4.50

l\ﬂerwnnd
(GRTS.0ldwood.

EPUB/media/Editorial-01.png
VRN

W

EPUB/media/advert_0.png
Hosting a wide selection of keynote speakers,
training sessions and workshops,
this Conference is designed by programmers,
for programmers, about programming.

Wednesday 19° to Saturday 22°* April 2023 at Bristol Marriott Hotel City Centre
Pre-conference workshops on Monday 17 & Tuesday 18" April 2023

The AGCU Confrnc has O an Gt cam, ot This i a great vent o aend whether you a
als0 has sessions reating o other otuars doloer o prorammar workig a5 an

langua
255K Fh. o Haskal, . Kol Lo o o Lant o contractor
i and s The event welcomes:

ot ot sgunges, i s o + Talenad and innovatve programmers and

sessions on toos echriqus
75, 500 and how o progarming + oy onders anc game changers

Intemationaly renouned speakers

+ Industy orarisatons

Tris s an n-person corference, with
Contontove s conerence e bong e

o sy 157 At a0
2% ppril. Each day has e

concurntsans, g n et e o
programming and developmont, Day ticket

vty o anday 17 and T 18 Virtual (4 days)

e fullprogramme incuding confirme keynote
peakers - 1 a i accuconierence.org

and mu aneye
ve content!

il
Vo tscormmend yo bok FIG>
avoid disappointment at

www.accuconference.org

Book today to attend the ACCU Conference 2023

EPUB/media/bendersky-1.png

EPUB/media/Editorial-Book.jpg
Genetic Algorithms
and Machine Learning
for Programmers

Create Al Models

* ‘and Evolve Solutions

P o

EPUB/media/Editorial-02.png
2
Zx+1 = Zn+c

N

