
A magazine of ACCU ISSN: 1354-3172

In Search of a Better
Concurrency Model
Lucian Radu Teodorescu presents current

plans for concurrency in the VAL
programming language

Drawing a Line Under
Aligned Memory
Paul Floyd reminds us about various
aligned memory functions

C++20 Concepts: Testing
Constrained Functions
Andreas Fertig gives a worked
example of testing constraints on
functions or classes and other
template constructs

Meta Verse
Teedy Deigh turns on, jacks in, and
checks out the immersive experience

Monthly journals, available printed and online

Discounted rate for the ACCU Conference

Email discussion lists

Technical book reviews

Local groups run by ACCU members

professionalism in programming
accu

ACCU is a not-for-profit organisation.

Become a member and support your
programming community.

www.ACCU.org

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

April 2023 | Overload | 1

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That
is, we care about writing good code,
and about writing it in a good way. We
are dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members – by
programmers, for programmers – and
have been contributed free of charge.

Copyrights and Trademarks
Some articles and other contributions use terms that are either registered trade marks or
claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request, we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the
author. By submitting material to ACCU for publication, an author is, by default, assumed to
have granted ACCU the right to publish and republish that material in any medium as they
see fit. An author of an article or column (not a letter or a review of software or a book) may
explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution
2) members to copy source code for use on their own computers, no material can be copied
from Overload without written permission from the copyright holder.

April 2023
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo: Old unused iron
railway bridge, Old Coach Road,
North Island, New Zealand. By
imagoDens, iStock Photo.

Copy deadlines
All articles intended for publication
in Overload 175 should be
submitted by 1st May 2023 and
those for Overload 176 by 1st July
2023.

 4 Drawing a Line Under Aligned Memory
Paul Floyd reminds us about various
aligned allocation functions.

 7 C++20 Concepts: Testing Constrained Functions
Andreas Fertig gives a worked example of
putting constraints on functions or classes
and other template constructs.

 10 In Search of a Better Concurrency Model
Lucian Radu Teodorescu presents
current plans for concurrency in the
VAL programming language.

 16 Meta Verse
Teedy Deigh turns on, jacks in, and
checks out the immersive experience.

FrAnCES BUOnTEMPOEDITOrIAL

2 | Overload | April 2023

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

The news in the UK moved on from claiming
everything is under pressure, as I mention in the last
Overload [Buontempo23a], to telling us we’re at
breaking point. Then we ran out of tomatoes. This is
a grand distraction from a variety of important issues,
and furthermore has sidetracked me completely from

writing an editorial, which is a shame. We will produce extra copies of
this edition of Overload to hand out at the ACCU conference in Bristol
this year, so now would have been a good time to write an editorial. Hello
to attendees reading this. For those who have not read Overload before,
I have a track record of failing to write editorials, so this situation is
entirely expected by our regular readers. It’s therefore very easy to predict
whether I will write an editorial or not. Most situations in life are more
difficult to predict, though. Things come and go. Prices or even empires
rise and fall. Past performance is no indicator of future results. Of course,
this makes a mockery of any attempts at statistics or data science. Both
disciplines tend to rely on previous results and values to form a model
based on patterns. If we assume the future will be unlike the past, we are
in effect saying there is no point in making such models.

The philosopher David Hume grappled with this issue. He suggested that
trying to predict the future relies on moving from specific observations
to general principles, so is using induction or inductive inference.
This hinges on an assumption of what is sometimes referred to as the
uniformity principle: “The future will be like the past” [Henderson22]. He
[Hume48] claims:

That the sun will not rise tomorrow is no less intelligible a
proposition, and implies no more contradiction, than the affirmation,
that it will rise.

We assume unchanging laws govern the universe, and extrapolate from
there. In fact, someone, maybe Einstein, once said:

Insanity is doing the same thing over and over again and expecting
different results.

Whether or not the quote is ascribed correctly, we might expect calling
the same function to give the same results each time, with some caveats.
We might describe such a function as idempotent. We can call it twice
and expect the same results. Not all functions behave like this, C’s rand
being the first that springs to mind. Running a program using rand twice
and getting exactly the same results is not impossible, and confuses
coders used to some other languages. As soon as you seed the random

number generator, though, you will get a different
sequence of numbers. Some languages seed the

random number generator for you, but some
don’t, and this can be a source of confusion.

That we can generate sequences of numbers that appear to be random is
quite an achievement. John von Neumann once said:

Anyone who attempts to generate random numbers by deterministic
means is, of course, living in a state of sin.

The majority of the ‘random’ number generators we use are deterministic.
Whether we can generate a sequence of truly random numbers is another
matter, and I am starting to suspect I don’t even know what random
actually means. We do, however, have tests describing properties we
expect from ‘random’ numbers, including the Wald–Wolfowitz runs test:

Generate a long sequence of random floats on (0,1). Count
ascending and descending runs. The counts should follow a certain
distribution. [Wikipedia-1]

This test is more subtle than checking if the number of increasing and
decreasing steps are the same, but rather checks the numbers appear
to be independent and identically distributed. We know what we want:
numbers going up and down, even if we can’t define random precisely.

Sometimes people say, “What goes up must come down.” This isn’t
always true. For example, I could throw my keyboard out of the window,
and it might go down. If, instead, I launched it out of the window with a
suitable rocket, it could either reach escape velocity or orbit the planet.
Some things do go up and down though. When values follow such ups
and downs, they can be described as seasonal. Many trading strategies
fall into either a trend following approach or a seasonal approach. The
former tends to show a long term increase or decrease, while the latter
cycles over a fixed period. For example, power usage might go up in
the winter when the weather is colder and reduce in the warmer summer
months. Trying to spot when prices have changed from trend following to
seasonal is difficult, and usually relies on time series analysis.

Sometimes, you might think you have found a pattern. If I say 0, 1, 2, 3, 4,
5, you can guess what might happen next. If I then tell you these numbers
were generated using the increment operator starting with unsigned
x= 0; you know the numbers will increase, to a point, then return to
zero. What goes up might come down unexpectedly, which you may
only realise if you have full details on the context. Some things appear
to go up and down at the same time. Escher’s impossible staircase in
his lithograph Relativity immediately springs to mind. Escher had been
inspired by the Penrose stairs [Wikipedia-2], which appear to be going
up and down simultaneously. Such a staircase is impossible in Euclidean
geometry, but not infeasible in some pure mathematical models. As your
perspective shifts when you view the picture so too, as your world view
or framework changes, up may become down or vice versa.

If you’ve ever tried learning a new language, or even keeping up to date
with new versions of the same language, you will be familiar with the

The rise and Fall of
Almost Everything
Some things go up and up, while others go up and
down. Frances Buontempo considers whether the
distinction matters and how to spot the difference.

FrAnCES BUOnTEMPO EDITOrIAL

April 2023 | Overload | 3

rise and fall of learning. You might get to a point of considering yourself
an expert, only to be confronted with everything moving under your feet,
and falling back to feeling like a complete beginner again. You might feel
like you are failing with simple things initially. I mused on this a while
ago [Buontempo15], recalling the words of Batman’s father in Batman
Begins when the young Bruce Wayne falls down deep into the bat cave:

And why do we fall, Bruce? So we can learn to pick ourselves up.

I am still excited about trying out new programming languages and
technologies, but do sometimes experience a twinge of worry when
reading the documents or trying out something for the first time.

I’ve been writing a C++ book to try to help people catch up if they got
left behind with the various new features introduced over the last few
standards [Buontempo23b]. There are many books out there which go
into full detail, but I wanted to try out some small, self-contained projects
showcasing a few of the newer features, partly for self-indulgent reasons
and partly to see how well I can explain myself. I moved from feeling
excited when the publisher accepted my proposal, to feeling overwhelmed
and like a fraud. Imposter syndrome frequently rears its head. You can
avoid feeling like this if you never try anything new, but where’s the fun
in that? Trying to complete any project, be it an editorial or a book, tends
to hit a shaky patch in the middle. You might start full of determination
and find some extra stamina to make the finish line near the end, but the
middle is always difficult. Several of my friends dropped out of university
in the second year of a three year course. I keep trying to row 2km on a
rowing machine in the gym and almost always grind to a near halt a bit
over 1km. If I pace myself a bit and keep going, I get there, but it is hard
work. One day I might manage it in less than 10 minutes. We shall see.
Maybe latent heat is a good analogy for this sticky middle? If you heat a
substance, its temperature increases for a while. It hits a point where the
temperature ceases to increase, while the internal state changes, moving
from a solid to a liquid or a liquid to a gas. I haven’t managed to write any
book for the last few days. I shall tell myself it is latent heat. You can’t see
the page count increase, but something is shaping up in my head. Once
I’ve sorted out where I’m going next, the page count will start increasing
again. Some things can be an up-hill struggle for a bit. It’s OK to pause
and get your breath back.

Moving from physics to mathematics, we have points of inflection. If you
draw a plot of y = x3, to the left of the origin the values are negative but
increase, getting closer to zero. To the right, the numbers are positive and
increase. At the origin, y is zero. This point is neither a maximum nor a
minimum, but described as a point of inflection. Minimums, maximums
and points of inflection each have a derivative of zero, and are collectively
known as stationary points. The point of inflection might look slightly
like an S, with the curvature changing from upwards to downwards or
vice versa. They are notoriously sneaked into maths questions, because
it is very easy to find a derivative of zero, and forget to check it is a
maximum or minimum and not an inflection point. Sometimes things
are more complicated than they first appear. The same happens when we
write software. We might think we found a way to make code quicker,
only to find it plateaus at some point. We might download a device driver,
to be told we had 17 minutes remaining, 16, 15…, 53, then 2, then 19.
And so on. Many things seem to trend in one direction, but then things
change. The trick is spotting when you missed some information.

Hooke’s law tells us that the force needed to compress or extend a
spring or other elastic object, is proportional, or scales linearly, with
respect to the distance stretched or compressed. Until it isn’t. Wikipedia
[Wikipedia-3] says:

An elastic body or material for which this equation can be assumed
is said to be linear-elastic or Hookean.

If the equation “can be assumed” for some things, it cannot be assumed
for others. And if a heavy enough weight is put on a spring it will extend
and finally break, no longer being Hookean and in fact no long being
very springy. You can draw a graph of stress (force) against strain
(deformation) and see what happens. It might be linear to a point, known
as the elastic limit. Then things might change.

Almost nothing is really linear, though linear models lead to simpler
maths, so we often use them as an approximation. The trick is not to
believe our own lies. If a simple model does not work, this setback can
then be disheartening. We could recall the words in Monty Python’s Life
of Brian:

Let us not be down-hearted. One total catastrophe like this is just
the beginning!

However, it is more sensible to remind ourselves that learning and
growing is often non-linear. If my attempt on the rowing machine slips
by a few seconds one time, I will not give up. I still got some practice in,
so I should be pleased with myself. Don’t beat yourself up if something
doesn’t go as planned. Don’t give in to despair, like Reginald Perrin
[IMDb], who

Disillusioned after a long career at Sunshine Desserts, Perrin goes
through a mid-life crisis and fakes his own death.

Fear not, this old British comedy is very silly, and things work out for
him in the end.

Though the weather has been cold recently, I can see signs of spring in
our garden. We also still have several leaves rotting on the lawn from the
autumn, which some cultures call the fall. Maybe we should call spring
the rise? Things change, sometimes for the better,
sometimes not. Whatever is going on in your life,
hold on to the positives. Look out of the window and
see the flowers starting to bloom, and then settle back
and read Overload.

references
[Buontempo15] Frances Buontempo ‘Failure is an Option’, Overload

129, Oct 2015, https://accu.org/journals/overload/23/129/
buontempo_2156/

[Buontempo23a] Frances Buontempo ‘Under Pressure’, Overload 173
Feb 2023 https://accu.org/journals/overload/31/173/buontempo/

[Buontempo23b] Frances Buontempo C++ Bookcamp (under
development) https://www.manning.com/books/c-plus-plus-
bookcamp

[Henderson22] Leah Henderson ‘The Problem of Induction’ in The
Standford Encylopedia of Philosophy (Winter 2022 Edition),
available at: https://plato.stanford.edu/archives/win2022/entries/
induction-problem/

[Hume48] David Hume (1748) An enquiry concerning human
understanding.

[IMDb] ‘The Fall and Rise of Reginald Perrin’ https://www.imdb.com/
title/tt0073990/

[Wikipedia-1] Diehard tests: https://en.wikipedia.org/wiki/Diehard_tests
[Wikipedia-2] Penrose stairs: https://en.wikipedia.org/wiki/Penrose_

stairs
[Wikipedia-3] Hooke’s law: https://en.wikipedia.org/wiki/Hooke%27s_

law

https://accu.org/journals/overload/23/129/buontempo_2156/
https://accu.org/journals/overload/23/129/buontempo_2156/
https://accu.org/journals/overload/31/173/buontempo/
https://www.manning.com/books/c-plus-plus-bookcamp
https://www.manning.com/books/c-plus-plus-bookcamp
https://plato.stanford.edu/archives/win2022/entries/induction-problem/
https://plato.stanford.edu/archives/win2022/entries/induction-problem/
https://en.wikipedia.org/wiki/Diehard_tests
https://en.wikipedia.org/wiki/Penrose_stairs
https://en.wikipedia.org/wiki/Penrose_stairs
https://en.wikipedia.org/wiki/Hooke%27s_law
https://en.wikipedia.org/wiki/Hooke%27s_law

PAUL FLOyDFEATUrE

4 | Overload | April 2023

recently I’ve been doing some work with the various Unix-like
systems implementations of C functions to allocate aligned memory.
These are memalign, aligned_alloc and posix_memalign.

Typically, you would use these functions to get memory that is aligned
with cache lines or virtual memory pages. As an example of this, imagine
a networking application that needs to allocate struct msghdr and to
have the fastest memory access possible. This struct has a size of 56 bytes.
If you use malloc to allocate your memory you are likely to get back
a pointer that, depending on the system, is 8- or 16-byte aligned. That
means that there is a fair chance that the memory will straddle a 64-byte
alignment boundary. That is bad because that is what cache lines map to,
meaning that accessing fields of the structure will hit two cache lines.
This increases the risk of cache misses, resulting in lower performance.

I’m not going to detail the performance benefits (or drawbacks) of using
these functions. Instead in this article I’ll be discussing some of the issues
that I saw. The implementations that I’ve looked at are Linux glibc [GNU
libc], Linux musl [musl], FreeBSD jemalloc [FreeBSD], macOS [XNU]
and Illumos [illumos]. There are other malloc libraries (Illumos umem,
tcmalloc, rpmalloc and snmalloc for instance) but I haven’t looked at
them. Also, (almost) no Windows as I don’t use it enough to make fair
comment.

History
These functions go back a long way. memalign goes back to SunOS 4.1.3
(Aug 1992 according to Wikipedia). Despite its age it is not a ‘standard’
function. The non-standard-ness shows, as we’ll see shortly. That
means it doesn’t figure in either the C standard or the POSIX standard.
It doesn’t exist on macOS. glibc and musl both have implementations.
Finally, FreeBSD gained a version late in the game in 2020 to add glibc
compatibility.

posix_memalign, as the name implies, is a bona fide part of the
POSIX spec. IEEE Std 1003.1d-1999 Additional Realtime Extensions
to be precise. All the systems and libraries that I looked at implement
posix_memalign.

aligned_alloc was standardized in C11. Again, this was implemented
on all the systems that I looked at.

What they claim to do
Here is what the Linux man page says:

The function posix_memalign() allocates size bytes and places the
ad dress of the allocated memory in *memptr. The address of the
allocated memory will be a multiple of alignment, which must be a
power of two and a multiple of sizeof(void *). This address can later

be successfully passed to free(3). If size is 0, then the value placed
in *memptr is either NULL or a unique pointer value.

The obsolete function memalign() allocates size bytes and returns
a pointer to the allocated memory. The memory address will be a
multiple of alignment, which must be a power of two.

The function aligned_alloc() is the same as memalign(), except for
the added restriction that size should be a multiple of alignment.

That all sounds very reasonable. The POSIX standard has similar wording
for posix_memalign. The spec can be accessed from The Open Group
[opengroup], but you need to create an account and log in to access it.

Sadly, C11 does not have very much to say about aligned_alloc:

The value of alignment shall be a valid alignment supported by the
implementation and the value of size shall be an integral multiple
of alignment.

Great, so the alignment can be anything, but the size needs to be a multiple
of the same anything. The final draft of C11 can be found here [C11 final].

I can’t comment on memalign since it isn’t standardized.

Musl, and more specifically Alpine Linux, doesn’t change the man page.

The FreeBSD description for posix_memalign is very similar. For
aligned_alloc it says:

The aligned_alloc() function allocates size bytes of memory such
that the allocation’s base address is a multiple of alignment. The
requested alignment must be a power of 2. Behavior is undefined if
size is not an integral multiple of alignment.

There is no manpage for memalign on FreeBSD.

Illumos has the following to say of memalign:

The memalign() function allocates size bytes on a specified
alignment boundary and returns a pointer to the allocated block.
The value of the returned address is guaranteed to be an even
multiple of alignment. The value of alignment must be a power of
two and must be greater than or equal to the size of a word.

The Illumos wording for posix_memalign is again similar to the
others, but with one exception. This time the behaviour when the size
is zero is specified:

If the size of the space requested is 0, the value returned in memptr
will be a null pointer.

The macOS manpages are quite similar to FreeBSD.

To summarize so far, posix_memalign is fairly well defined.
memalign is a bit hazy for a size of zero and I’m not sure what Solaris
was getting on about saying that the return address will be an even
multiple of the alignment. All of the descriptions of aligned_alloc
say that the alignment must be a power of two and the size an integral
multiple of the alignment.

Drawing a Line Under
Aligned Memory
When we allocate memory we often forget about alignment.
Paul Floyd reminds about various aligned allocation functions.

Paul Floyd has been writing software, mostly in C++ and C, for
about 30 years. He lives near Grenoble, on the edge of the French
Alps and works for Siemens EDA developing tools for analogue
electronic circuit simulation. In his spare time, he maintains Valgrind.
He can be contacted at pjfloyd@wanadoo.fr

PAUL FLOyD FEATUrE

April 2023 | Overload | 5

What they actually do?
So how do the implementations match up to the specs? I’m not going to
go into internal details – all the functions may allocate more than asked
or be aligned to a higher value.

Thus far I’ve been describing the functions in chronological order.
This time I’m going to let posix_memalign jump the queue. All the
implementations behave as specified. Illumos does indeed not allocate
if the size is zero. The other implementations allocate some unspecified
amount.

The man page for Linux glibc memalign claimed that the alignment
must be a power of two. In fact, any value of alignment will be accepted
and silently bumped up to the next power of two.

Two of the memalign implementations were buggy. FreeBSD would
crash if the alignment was zero – I’ve submitted a patch for that which
has been merged. Illumos only restricts the memalign alignment to
being a multiple of four. That can result in some peculiar values for the
alignment. I’ve opened a bug tracker item for that. There was nothing
wrong with musl that I could see.

On to the last of the trio, aligned_alloc. The Linux man page claims
that this is the same as memalign except that the size should be a
multiple of the alignment. For glibc, doing that would be an amazing
technical feat. The two functions are in fact the same. To be more precise
they are both weak aliases of __libc_memalign. So, there is no extra
constraint on the size.

Other platforms also use a lot of code sharing. FreeBSD memalign calls
aligned_alloc but with the size rounded up to a multiple of alignment.
If anything, I would have expected the opposite, but anything goes when
functions are non-standard, or implementation defined. Musl memalign
just calls aligned_allloc. And with a nice bit of symmetry, Illumos
aligned_alloc just calls memalign.

Just when I thought I’d covered everything, I discovered that if you use
a huge value of alignment with musl aligned_alloc then it will crash
with a segfault. The crash is in version 1.2.2 and it has apparently been
fixed in 1.2.3.

So far, no platform has done anything about the “the value of size shall be
an integral multiple of alignment” part of the C11 standard. macOS is the
remaining platform and it DOES do something about it. If the size isn’t

What is a ‘weak alias’?
It is a mechanism that allows one or more symbols to refer to the same
object or function. I shall now digress into the world of the link editor
and the link loader. I expect that everyone reading this is familiar with
compiling and linking libraries and executables. You compile some
source files into object files and then link them. There isn’t always a
1:1 relationship between names in your source and symbols in object
files. There are several ways in which this can happen. One way that
this can be done is to explicitly request a ‘weak alias’. These aliases
can refer to any other symbol, and unlike regular symbols it is not an
error if weak aliases do not get resolved. That makes them ideal to
use for functions such as the malloc family that are specified to be
replaceable.

Consider this small program:

 #include <iostream>
 extern "C" void hello()
 {
 std::cout << "Hello from " << __func__
 << " address " << std::hex << (size_t)hello
 << '\n';
 }
 extern "C" void hello_alias() __attribute__
 ((weak, alias ("hello")));
 int main()
 {
 hello();
 hello_alias();
 }

As you can see, main() calls two functions, but only one is defined!

If I compile and run this, I get

paulf> ./weak_alias
Hello from hello address 202740
Hello from hello address 202740

As you see, both calls print the same function address, confirming that
the weak alias calls the original strong function. The nm tool can show
this in the binary:

paulf> nm weak_alias | grep hello
0000000000202740 T hello
0000000000202740 W hello_alias

T means a global function and W a weak alias. Getting back to the
GNU libc case of weak aliases, nm can again be used to show them.
First of all, aligned_alloc

paulf> nm /lib64/libc.so.6 | grep aligned_alloc
000000000009a6f0 W aligned_alloc

Then all symbols with the same address:

paulf> nm /lib64/libc.so.6 | grep 000000000009a6f0
000000000009a6f0 W aligned_alloc
000000000009a6f0 t __GI___libc_memalign
000000000009a6f0 T __libc_memalign
000000000009a6f0 W memalign
000000000009a6f0 t __memalign

Here, __libc_memalign is the real, private, implementation
and aligned_alloc and memalign are the public aliases for
__libc_memalign.

So far, no platform has done anything about the
“the value of size shall be an integral multiple

of alignment” part of the C11 standard

PAUL FLOyDFEATUrE

6 | Overload | April 2023

an integral multiple of the alignment, then it will return NULL and set
errno to EINVAL.

One thing that is generally not documented is that most of the functions
will fail if the alignment is huge (over half the memory space). In that
case they will return NULL and set errno to EINVAL.

Windows almost got away without a mention. Whilst Windows doesn’t
have any of the Unix aligned allocation functions (not even C11 aligned_
alloc), it does have its own variation. It’s called _aligned_malloc
[Microsoft].

Other than having an underscore and an extra ‘m’, Microsoft also
has the order of the alignment and the size arguments reversed. That
seems to me a source of confusion and potential bugs. I’m not sure if
_aligned_alloc predates memalign, I see references to it going as
far back as VC++ 6.0 (1998). That means that by the time C11 came
around there were already functions with different argument ordering.

Advice
Whilst I must say that I was quite underwhelmed by the quality of what
I saw, I don’t think that in practice these are big issues. I do recommend
that you avoid using an alignment that is zero or a non-power of two.
Unfortunately, Hyram’s law [hyrum] says that there is probably code
out there that is taking advantage of Linux glibc working out the next
power of two for the alignment. For portability, posix_memalign and
aligned_alloc have the edge, and of the two, aligned_alloc
is easier to adapt to its Windows counterpart, _aligned_malloc.
However, you still need to take care that the size is an integral multiple of
the alignment if you also port to macOS. n

references
[C11 final] International Standard: https://open-std.org/JTC1/SC22/

WG14/www/docs/n1570.pdf
[FreeBSD] Source for freebsd: https://github.com/freebsd/freebsd-src
[GNU libc] Source for glibc v2.37: https://elixir.bootlin.com/glibc/

glibc-2.37/source
[hyrum] Hyrum’s Law: https://www.hyrumslaw.com/
[illumos] Illumos is the continuation of OpenSolaris: https://github.com/

illumos/illumos-gate
[Microsoft] _aligned_malloc: https://learn.microsoft.com/en-us/cpp/c-

runtime-library/reference/aligned-malloc?view=msvc-170
[musl] Source for musl: https://elixir.bootlin.com/musl/v1.2.3/source
[opengroup] Open Group Library: https://publications.opengroup.org
[XNU] Source browser: https://opensource.apple.com/source/xnu/ (there

are also GitHub mirrors)

Idalia is a freelance artist operating at the intersection of art and geek,
using a myriad of techniques and styles to produce works that both
delight and entertain.

The best way to reach her is via idalia.ku@hotmail.com

https://open-std.org/JTC1/SC22/WG14/www/docs/n1570.pdf
https://open-std.org/JTC1/SC22/WG14/www/docs/n1570.pdf
https://github.com/freebsd/freebsd-src
https://elixir.bootlin.com/glibc/glibc-2.37/source
https://elixir.bootlin.com/glibc/glibc-2.37/source
https://www.hyrumslaw.com/
https://github.com/illumos/illumos-gate
https://github.com/illumos/illumos-gate
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/aligned-malloc?view=msvc-170
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/aligned-malloc?view=msvc-170
https://elixir.bootlin.com/musl/v1.2.3/source
https://publications.opengroup.org
https://opensource.apple.com/source/xnu/

AnDrEAS FErTIg FEATUrE

April 2023 | Overload | 7

C++20 Concepts: Testing
Constrained Functions
Concepts and the requires clause allow us to put constraints on
functions or classes and other template constructs. Andreas Fertig
gives a worked example including how to test the constraints

The difference between a requires-clause
and a requires-expression

In July 2020 [Fertig20], I showed a requires-clause and the three valid
places such a clause can be: as a requires-clause, a trailing requires-
clause, and when creating a concept. But there is another requires-

thing: the requires-expression. And guess what, there is more than one
kind of requires-expression. But hey, you are reading an article about
C++; you had it coming.

A requires-expression has a body, which itself has one or more
requirements. The expression can have an optional parameter list. A
requires-expression therefore looks like a function called requires,
except for the return-type which is implicitly bool. See Figure 1.

Now, inside of a requires-expression we can have four distinct types of
requirements:
	n Simple requirement
	n Nested requirement
	n Compound requirement
	n Type requirement

Simple requirement
This kind of requirement asserts the validity of an expression. For
example, a + b is an expression. It requires that there is an operator+
for these two types. If there is one, it fulfils this requirement; otherwise,
we get a compilation error.

nested requirement
A nested requirement asserts that an expression evaluates to true.
A nested requirement always starts with requires. So, we have a
requires inside a requires-expression. And we don’t stop there. With
a nested requirement, we can apply a type-trait to the parameters of the
requires-expression. Beware that this requires a boolean value, so either
use the _v version of the type-trait or ::value. Of course, this is not
limited to type-traits. You can supply any expression which evaluates to
true or false.

Compound requirement
With a compound requirement, we can check the return type of an
expression and (optionally) whether the expressions result is noexcept.
As the name indicates, a compound requirement has the expression in
curly braces, followed by the optional noexcept and something like a
trailing return-type. This trailing part needs to be a concept against which
we can check the result of the expression.

Type requirement
The last type of requirement we can have inside a requires-expression is
the type requirement. It looks much like a simple requirement, just that it
is introduced by typename. It asserts that a certain type is valid. We can
use it to check whether a given type has a certain subtype, or whether a
class template is instantiable with a given type.

An example: A constrained variadic function
template, add
Let’s let code speak. Assume that we have a variadic function template
add.
 template<typename... Args>
 auto add(Args&&... args)
 {
 return (... + args);
 }

It uses a fold expression to execute the plus operation on all values in the
parameter pack Args. We are looking at a binary left fold. This is a very
short function template. However, the requirements to a type are hidden.
What is typename? Any type, right? But wait, it must at least provide
operator+. The parameter pack can take values of different types, but
what if we want to constrain it to all types be of the same type? And do
we really want to allow a throwing operator+? Furthermore, as add
returns auto, what if operator+ of a type returns a different type? Do
we really want to allow that? Oh yes, and then there is the question of
whether add makes sense with just a single parameter which leads to an
empty pack. Doesn’t make much sense to me to add nothing. Let’s bake
all that in requirements.

We have:

1. The type must provide operator+

2. Only the same types are passed to args

3. At least two parameters are required, so that the pack is not empty

Andreas Fertig is a trainer and lecturer on C++11 to C++20,
who presents at international conferences. Involved in the C++
standardization committee, he has published articles (for example, in
iX) and several textbooks, most recently Programming with C++20.
His tool – C++ Insights (https://cppinsights.io) – enables people to
look behind the scenes of C++, and better understand constructs. He
can be reached at contact@andreasfertig.com

requires(T t, U u)
{
 // some requirements
}

Parameter list of the
requires-expression.

Body of the
requires-expression

One or multiple requirements.

Figure 1

AnDrEAS FErTIgFEATUrE

8 | Overload | April 2023

4. operator+ should be noexcept

5. operator+ should return an object of the same type.

Before we start with the requires-expression, we need some additional
type-traits. The function template signature only has a parameter pack.
For some of the tests, we need one type out of that pack. Therefore, a type-
trait first_type_t helps us to split the first type from the pack. For the
check whether all types are of the same type, we define a variable template
are_same_v using std::conjunction_v to apply std::is_same
to all elements. Thirdly, we need a concept same_as_first_type to
assert the return type with a compound requirement. It can use first_
type_t to compare the return type of the compound requirement to the
first type of the parameter pack. Listing 1 is a sample implementation1.

As you can see, we expect that the compiler inserts the missing template
parameter for same_as_first_type as the first parameter. In fact, the
compiler always fills them from the left to the right in case of concepts.

Now that we have the tools let’s create the requires-expression (see
Listing 2).

The numbers of the callouts in the example match the requirements we
listed earlier, which is the first step. We now have a constraint function
template using three out of four possible requirements. You are probably
accustomed to the new syntax, as is clang-format, but I hope you can
see that we not only have constrained add, we also added documentation
to it. It is surprising how many requirements we had to write for just a
one-line function-template. Now think about your real-world code and

1 Please note, C++20 ships with a concept same_as. This one here is a
version which ignores cvref qualifiers and is a variadic version to retrieve
the first type of a parameter pack.

how hard it is there sometimes to understand why a certain type causes a
template instantiation to error.

Testing the constraints
Great, now that we have this super constrained and documented add
function, would you believe me if I said that all the requirements are
correct? No worries, I expect you not to trust me; so far, I wouldn’t trust
myself.

What strategy can we use to verify the constraints? Sure, we can create
small code snippets which violate one of the assertions and ensure that
the compilation fails. But come on, that is not great and is cumbersome to
repeat. We can do better!

Whatever the solution is, so far we can say that we need a mock object
that can have a conditional noexcept operator+ and that that
operator can be conditionally disabled. Rather than copy and paste parts,
we can use a class template. We can conditionally disable a method using
a NTTP and requires. Passing the noexcept status as another NTTP
is simple. A mock class can look like Listing 3.

u we create a class template called ObjectMock, taking two NTTP
of type bool. It has an operator+ v, which has the conditional
noexcept controlled by NOEXCEPT, the first template parameter and
a matching return-type. The same operator is controlled by a trailing
requires-clause, which disables it based on hasOperatorPlus, the
second template parameter. The second version w is the same, except
that is returns a different type and with that does not match the expectation
of the requires-expression of add. A third NTTP, validReturnType,
controls two different operators vand w; it enables only one of them. In
x, we define three different mocks with the different properties. With that
we have our mock.

// First type struct which retrieves and stores
// the first type of a packu
template<typename T, typename...>
struct first_type
{
 using type = T;
};

// Using alias for clean TMPv
template<typename... Args>
using first_type_t =
 typename first_type<Args...>::type;

// Check whether all types are the samew
template<typename T, typename... Ts>
inline constexpr bool are_same_v =
std::conjunction_v<std::is_same<T, Ts>...>;

// Concept to compare a type against the first
// type of a parameter pack x
template<typename T, typename... Args>
concept same_as_first_type =
 std::is_same_v<std::remove_cvref_t<T>,
 std::remove_cvref_t<first_type_t<Args...>>>;

Listing 1

template<typename... Args>
requires requires(Args... args)
{
 (... + args); // Simple requirementu
 requires are_same_v<Args...>; // Nested
 // requirement with type-traitv
 requires sizeof...(Args) > 1; // Nested
 // requirement with a boolean expression
 // asserts at least 2 parametersw
 {
 (... + args)
 }
 noexcept //Compound requirement ensuring
 // noexceptx
 ->same_as_first_type<Args...>; // Same
 // compound requirement ensuring same typey
}
auto add(Args&&... args)
{
 return (... + args);
}

Listing 2

It is surprising how many requirements
we had to write for just a one-line
function-template

AnDrEAS FErTIg FEATUrE

April 2023 | Overload | 9

A concept to test constraints
The interesting question is now, how do we test the add function? We
clearly need to call it with the different mocks and validate that is fails or
succeeds but without causing a compilation error. The answer is, we use a
combination of a concept wrapped in a static_assert. Let’s call that
concept TestAdd. We need to pass either one or two types to it, based
on our requirement that add should not work with just one parameter.
That calls for a variadic template parameter of the concept. Inside the
requires-expression of TestAdd we make the call to add. There is one
minor thing, we need values in order to call add. If you remember, a
requires-expression can have a parameter list. We can use the parameter
pack and supply it as a parameter list. After that we can expand the pack
when calling add (see Listing 4).

Wrap the test concept in a static_assert
Nice! We have a concept which evaluates to true or false and calls add
with a given set of types. The last thing we have to do is to use TestAdd
together with our mocks inside a static_assert (Listing 5).

In u, we test with int that add works with built-in types but refuses
NoAdd, the mock without operator+. Next, the rejection of mixed
types is tested by v. u already ensured as a side-effect that the same
types are permitted. Disallowing a parameter pack with less than two
values is asserted by w and therefore add must be called with at least
two parameters. x verifies that operator+ must be noexcept. Second
last, y ensures that operator+ returns an object of the same type, while
z ensures that a valid class works. We are already implicitly testing this
with other tests and this is there for completeness only. That’s it! We just
tested the constraints of add during compile-time with no other library or
framework! I like that.

Summary
I hope you have learned something about concepts and how to use them,
but most of all, how to test them.

Concepts are a powerful new feature. While their main purpose is to add
constraints to a function, they also improve documentation and help us
make constraints visible to users. With the technique I have shown in
this article, you can ensure that your constraints are working as expected
using just C++ utilities, of course at compile-time.

If you have other techniques or feedback, please reach out to me on
Twitter or via email. If you would like a more detailed introduction into
Concepts, let me know. n

reference
[Fertig20] Andreas Fertig ‘How C++20 Concepts can simpolify your

code’, published 7 July 2020 at https://andreasfertig.blog/2020/07/
how-cpp20-concepts-can-simplify-your-code/

// Assert that type has operator+u
static_assert(TestAdd<int, int, int>);
static_assert(not TestAdd<NoAdd, NoAdd>);

// Assert, that no mixed types are allowedv
static_assert(not TestAdd<int, double>);

// Assert that pack has at least one parameterw
static_assert(not TestAdd<int>);

// Assert that operator+ is noexceptx
static_assert(not TestAdd<NotNoexcept,
 NotNoexcept>);

// Assert that operator+ returns the same typey
static_assert(not TestAdd<DifferentReturnType,
 DifferentReturnType>);

// Assert that a valid class worksz
static_assert(TestAdd<ValidClass, ValidClass>);

Listing 5

// Class template mock to create the different
// needed propertiesu
template<bool NOEXCEPT, bool hasOperatorPlus,
 bool validReturnType>
class ObjectMock
{
 public:
 ObjectMock() = default;

 // Operator plus with controlled noexcept can
 // be enabledv
 ObjectMock& operator+(const ObjectMock& rhs)
 noexcept(NOEXCEPT)
 requires(hasOperatorPlus&& validReturnType)
 {
 return *this;
 }
 // Operator plus with invalid return typew
 int operator+(const ObjectMock& rhs)
 noexcept(NOEXCEPT)
 requires(hasOperatorPlus &&
 not validReturnType)
 {
 return 3;
 }
};
// Create the different mocks from the class
// template x
using NoAdd = ObjectMock<true, false, true>;
using ValidClass = ObjectMock<true, true, true>;
using NotNoexcept =
 ObjectMock<false, true, true>;
using DifferentReturnType =
 ObjectMock<false, true, false>;

Listing 3

template<typename... Args>
concept TestAdd =
 requires(Args... args) // Define a variadic
 // concept as helper u
{
 add(args...); // Call add by
 // expanding the packv
};

Listing 4

This article was published on Andreas Fertig’s blog in August 2020
(https://andreasfer tig.blog/2020/08/cpp20-concepts-testing-
constrained-functions/) as a short version of Chapter 1 ‘Concepts:
Predicates for strongly typed generic code’ from his latest book
Programming with C++20. The book contains a more detailed
explanation and more information about this topic.

https://andreasfertig.blog/2020/07/how-cpp20-concepts-can-simplify-your-code/
https://andreasfertig.blog/2020/07/how-cpp20-concepts-can-simplify-your-code/
https://andreasfertig.blog/2020/08/cpp20-concepts-testing-constrained-functions/
https://andreasfertig.blog/2020/08/cpp20-concepts-testing-constrained-functions/

LUCIAn rADU TEODOrESCUFEATUrE

10 | Overload | April 2023

Concurrency is hard. Really, really hard. Especially in languages like
C++. First, there are the safety and correctness issues: deadlocks,
race condition bugs and resource starvation. Then, we have

performance issues: our typical concurrent application is far from being
as fast as we hoped. Lastly, concurrent code is far harder to understand
than single-threaded code.

Despite being an old problem (since 1965, older than Software
Engineering), it appears that it is largely unsolved. We lack concurrent
solutions that are safe, fast, and easy. This article tries to lay down the
characteristics of a good concurrent model and presents a possible model
that fulfils these characteristics.

The reader may be familiar with my previous work on Structured
Concurrency in C++ [Teodorescu22], which argued for a good
concurrency model. Here, we aim at going beyond that model, improving
on the ease-of-use side.

A concurrency model
Before diving into our analysis, we have to set some definitions. These
definitions may not be universally accepted; they are tailored for the
purposes of this article.

Concurrency is the set of rules that allows a program to have multiple
activities (tasks) start, run, and complete in overlapping time periods;
in other words, it allows the activities to be executed out-of-order
or in partial order. Parallelism is the ability to execute two activities
simultaneously. Concurrency enables parallelism, but we can have
concurrency without parallelism (e.g., a system with a single threaded
hardware that implements time slicing scheduling).

Concurrency concerns only apply at program design time. One can design
concurrent software that is independent of the hardware it runs on. On
the other hand, parallelism is an execution concern: whether parts of a
program run in parallel or not depends on the underlying hardware (both
in general and at the time of execution). For this reason, we focus on
concurrency, not on parallelism.

A hardware thread (core) is an execution unit that allows code to be
executed in isolation from other execution units on the hardware.
Multiple hardware threads enable parallelism. Software threads (or,
simply, threads) are logical execution streams that allow the expression
of concurrency at the OS or programming level.

Arguably, the most important concern in concurrent design is the analysis
of the overlapping activities. These activities can be repressed in the form
of a directed acyclic graph, possibly with more constraints that cannot be
expressed with graph links. For example, the constraint that two activities
cannot be executed concurrently, without specifying which activity needs
to be executed first, cannot be directly represented in the graph.

To handle concurrency, there are abstractions that deal with the start and
the end of these activities. We call the code executed in these abstractions
concurrency-control code. For example: creating a thread, spawning
a thread, joining a thread, waiting for a task to complete, etc. These
abstractions are usually implemented in a concurrency framework.

A concurrency model is the set of programming rules and abstractions
that allows us to build concurrent applications.

For simplification, this article uses the word threads as if all threads are
CPU threads. The same ideas can be extended if we think of threads
of execution as being part of other execution contexts (GPU threads,
compute resources in a remote location, etc.)

Safety in a concurrent world
Goal S1. The concurrency model shall not allow undefined behaviour
caused by race conditions.

For most practical purposes, this means that there shouldn’t be two threads
in the concurrent system that are sharing a resource in an unprotected
way, in which at least one thread is writing to that resource.

Let us take a simple example. Suppose we have a shared variable in a
C++ codebase of type shared_ptr<string>. One thread could be
trying to read the string from the shared pointer, while another thread
could replace the string object. The first thread assumes that the string
object is still valid, while the second thread just invalidates the object.
This will lead to undefined behaviour.

Adding mutexes around the accesses to the shared resource solves this
problem, but creates other problems, as detailed below.

In Search of a Better
Concurrency Model
Concurrency can get confusing quickly. Lucian Radu Teodorescu
presents current plans for concurrency in the VAL programming
language, comparing them with other languages.

Lucian Radu Teodorescu has a PhD in programming languages
and is a Staff Engineer at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

race conditions, deadlocks and starvation
Race condition bugs happen when two threads share a single
resource (most often, a memory location), and one thread writes to
that resource while the other thread is accessing the resource. This
usually means that one thread will invalidate the invariants that are
assumed to be true by the other thread. Often, these problems are
solved by protecting the access to the resources with mutexes (not
the best approach, though).

Deadlocks happen when two threads/tasks are waiting for each
other; each is waiting for the other one to resume, and both are stuck
forever. This frequently happens when a resource is protected by
multiple mutexes that are taken in different orders by tasks/threads.

Starvation happens when at least one thread tries to acquire a
resource multiple times, and each time the access to the needed
resource is denied. If person A constantly tries to get money from an
ATM at noon or afternoon, and person B always gets all the money
from the machine early in the morning, then person A will be starved
regarding using the ATM.

LUCIAn rADU TEODOrESCU FEATUrE

April 2023 | Overload | 11

Goal S2. The concurrency model shall not allow deadlocks.

In concurrent systems with threads and locks, deadlocks are a common
issue. This is not actually a safety issue per se; it is a correctness issue (and
also a performance issue). We don’t generate undefined behaviour, but we
reach a state in which at least one of the threads cannot progress any further.

Having these two goals, concurrent programs are as safe as programs that
don’t have any concurrency.

One would want to also add lack of starvation as a goal here. While
this is a noble goal, there is no concurrent system that can guarantee
the lack of starvation. This is because this is highly dependent on the
actual application. One cannot eliminate starvation without constraining
the types of problems that can be expressed by the concurrent model. In
other words, for all possible general concurrent systems, one can find an
application that has starvation.

Fast concurrency
Goal F1. For applications that express enough concurrent behaviour, the
concurrency model shall guarantee that the performance of the application
scales with the number of hardware threads.

If there is enough independent work in the application that can be
started, then adding more hardware threads should make the application
execute faster. Amdahl’s law tells us that the scale-up is not linear, but,
nevertheless, we should still see the performance improvements.

Let’s say, for example, that we need to process a thousand elements, and
processing them can be done in parallel. If processing one element takes
about 1 second, then processing all the elements on 10 cores should take
about 100 seconds, and processing all the elements on 20 cores should
take about 50 seconds. There are some concurrency costs when we create
appropriate tasks and when we finish them, but those should be fairly
insignificant for this problem.

Goal F2. The concurrency model shall not require blocking threads
(keeping the threads idle for longer periods of time).

If the number of software threads is equal to the number of hardware
threads, then blocking a software thread means reducing the amount of
actual parallelism, thus reducing the throughput of the application.

And, because of the next goal, we generally want to have the number of
software threads equal to the number of hardware threads. This implies
that blocks are typically a performance problem. This means that the
concurrency model should not rely on mutexes, semaphores, and similar
synchronisation primitives, if they strive for efficiency.

As concurrency models usually require some synchronisation logic,
this goal implies the use of lock-free schemas. Note, however, that
implementations may still choose to use blocking primitives for certain
operations in cases where they work faster than lock-free schemas.

Goal F3. The concurrency model shall allow limiting the oversubscription
on hardware threads.

For many problems, if we have one hardware core, it’s more than twice
as slow to run two threads on it than to run a single thread. Creating
two software threads on the same hardware thread, will not make the
hardware twice as fast; thus, we start from twice as slow. Then, we have
context switching, which will slow down both activities; this is why the
slowdown will be more than doubled.

Try reading two books at the same time; one phrase from one book, one
phrase from another book. Your reading speed will be extremely slow.

Goal F4. The concurrency model shall not require any synchronisation
code during the execution of the tasks (except in the concurrency-control
code).

If one has a task in which no other tasks are created, and no tasks are
expected to be completed, then adding any synchronisation code will just

slow the task down. The task should contain the same code as if it were
run in an environment without concurrency.

Goal F5. The concurrency model shall not require dynamic memory
allocation (unless type-erasure is requested by the user).

Dynamic memory allocation can be slow. The concurrency model shall
not require any dynamic memory allocation if there is no direct need for
it. For example, futures require dynamic memory allocation, even if the
user doesn’t need any type-erasure.

Easy concurrency
Goal E1. The concurrency model shall match the description of structured
concurrency.

In the previous article ‘Structured Concurrency in C++’ [Teodorescu22],
we said that an approach to concurrency is structured if the principles of
structured programming [Dahl72] are applied to concurrency:

	n use of abstractions as building blocks

	n ability to use recursive decomposition of the program

	n ability to use local reasoning

	n soundness and completeness: all concurrent programs can be safely
modelled in the concurrency model

If these goals are met, then writing programs in the concurrency model
will be easier.

Goal E2. Concurrent code shall be expressed using the same syntax and
semantics as non-concurrent code.

If there is no distinction between the concurrent code and the code that is
not meant for concurrent execution, then the user will find it easier to read
and reason about the concurrent code.

Of course, these principles assume that we don’t make non-concurrent
code more complex than it needs to be.

Goal E3. Function colouring shall not be required for expressing
concurrent code.

This can be thought of as a special case of the previous goal, but it’s worth
mentioning separately, as it has a special connotation for concurrency. The
term function colouring comes from Bob Nystrom’s article ‘What Color
is Your Function?’ [Nystrom15]. Bob argues that different asynchrony
frameworks apply different conventions to functions (different colours), and
it’s hard to interoperate between such functions (colours don’t mix well).

For example, in C#, one would typically add the async keyword to a
method to signal that the method is asynchronous; then, the callers
would call the function with await to get the real result from such
an asynchronous function. This makes the interoperability between
regular methods and asynchronous methods harder, making the whole
concurrency model harder for the programmer.

Goal E4. Except for concurrency-control code, the user shall not be required
to add any extra code in concurrent code versus non-concurrent code.

This goal is very similar to F4, but seen from a different perspective. It is
obvious that if writing concurrent programs requires us to add extra logic,
then things aren’t as easy as they could be.

Ideally, the extra complexity required when writing concurrent code
should be in the design of the activities that can be run concurrently, and
the setting of the proper relationships between them. This is always harder
than sequential code, where total ordering of activities is guaranteed.

Goal E5. The concurrency model should have a minimum set of rules for
the user to follow to stay within the model.

There is no concurrency model that would not require extra thought from
the programmer to write good concurrent applications. However, the
fewer those thoughts are, the fewer the rules that the programmers must
follow and the easier the concurrent programming would be.

LUCIAn rADU TEODOrESCUFEATUrE

12 | Overload | April 2023

A review of past concurrency modes
We will now take a few existing concurrency models and see how they
match the above goals. Please see Table 1. We mark with ‘+’ the fact that
a concurrency model fully meets a goal; we use ‘/’ to indicate that the goal
is only partially met; lastly, we use ‘–’ to indicate that the goal is not met.

For the E5 goal, we try to give a subjective measure of the concurrency
rules of the model (how many there are / how complex they are), and how
easy it is for an average user to master them.

Locks and threads
This is the classic model of concurrency, in which one would
explicitly create threads and use locks (mutexes, semaphores and other
synchronisation primitives) to synchronise between threads.

This mode is, as one would expect, one of the worst possible models. It
tends to generate a lot of safety/correctness issues, and it’s hard to use
correctly. Although one can create fast programs in this model, this is not
guaranteed by the model itself. In fact, average concurrent code written
with threads and locks is far from performant, as having numerous locks
will severely slow down the application (see [Parent16, Henney17]).

Using tasks
Tasks are much better than locks and threads. If done correctly, they
promise safety (although safety cannot be guaranteed by the compiler). In
general, tasks can be fast, except for a dynamic memory allocation that is
needed when the task is created. They don’t form a model of concurrency
that meets our definition of structured concurrency [Teodorescu22]. It may
not be the easiest model to work with, but it is not particularly bad either.

C# asynchronous model
For the C# world, this is not a bad model. It keeps the safety guarantees of
the language, it makes some efficiency tradeoffs that are fairly common,
and it has a decent ease of use. Not ideal, but in line with the general
philosophy of the language.

In terms of efficiency, the model has 2 problems: it requires blocking
calls and it doesn’t properly limit oversubscription. The two are closely
related. Calling an asynchronous function from a regular one requires the
use of a blocking call (e.g., Task.Wait or Task.WaitAll). Because
threads can be blocked, the framework can associate multiple threads for
a hardware core. To maintain good performance, the thread pool needs
to do a balancing act, starting and stopping threads at runtime. This
has a performance penalty, but it’s considered acceptable for most C#
applications.

The main reason I’ve included this model in my
analysis is because it’s a perfect example of function
colouring. We have asynchronous functions (to
be used in concurrent contexts), and synchronous
ones (to be used in contexts in which concurrency
is not required). Instead of having one syntax for
both concurrent code and non-concurrent one, we
have two syntaxes, each with slightly different rules.
This hurts the ability to read the programs. But,
to be honest, it is not that bad, if we consider the
performance implications of synchronously waiting
on tasks.

C++ coroutines
The concurrency model with C++ coroutines is very similar to the
asynchronous model in C#. In C++, we just have language support for
coroutines, without any library support for enabling a concurrent model.
However, we can assume that people will be able to create one.

To interact between functions and coroutines, we need a blocking wait
call, so the same tradeoffs apply as with the C# model. Although we can
implement the same strategies in C++, the performance expectations for
C++ are higher, so the model may not be considered very efficient for
C++ applications.

The way coroutines are specified in the language, the compiler cannot
guarantee (for most cases) the absence of dynamic memory allocation.
For many problems, this is not acceptable.

In terms of ease of use, C++ coroutines behave similarly to C#
asynchronous functions (ignoring the fact that in C++ everything is, by
default, harder to use).

Senders/receivers
The senders/receivers model is a C++ proposal named std::execution
that is currently targeting C++26 [P2300R6]. It contains a set of low-
level abstractions to represent concurrent computations efficiently, and it
follows a structured approach.

This model really shines on efficiency. The proposal targets composable
low-level abstractions for expressing concurrency, and there isn’t any
part of the proposal that has inherent performance costs. There is no
required blocking wait. For simple computations, when expressing the
entire computation flow can be stored on the stack, there is no required
dynamic memory allocation. However, for most practical problems we
would probably have some form of dynamic tasks, and thus we need heap
allocations in one way or another.

The problem with this model is its ease of use. All the computations
need to be expressed using primitives provided by the proposal. Listing
1 provides an elementary example of using this framework. Ideally, the
same logic should have been encoded in a form similar to Listing 2.

The code presented in Listing 2 is not that far from how one would write
concurrent code with coroutines, but we removed any syntax associated
with coroutines.

rust’s fearless concurrency
Rust’s default concurrency model has an odd place in our list of concurrency
models [Rust]. It promises safety, but it doesn’t deliver any guarantees to

scheduler auto sch = thread_pool.scheduler();
sender auto begin = schedule(sch);
sender auto hi = then(begin, [] {
 std::cout << "Hello world! Have an int.";
 return 13;
});
sender auto add_42 = then(hi, [](int arg) {
 return arg + 42; });
auto [i] = this_thread::sync_wait(add_42).value();

Listing 1

int hello() {
 std::cout << "Hello world! Have an int.";
 return 13;
}
void concurrent_processing() {
 thread_pool pool = ...;
 pool.activate(); // move to a different thread
 int i = hello() + 42;
 // ...
}

Listing 2

TABLE 1

COnCUrrEnCy MODEL S1 S2 F1 F2 F3 F4 F5 E1 E2 E3 E4 E5
Locks and threads - - - - - - / - - + - -

Tasks / + + + + + - - / - + /

C# asynchronous model / + + - - + - + / - + /

C++ Coroutines / + + / + + - + / - + /

Senders/Receivers / + + + + + / + - - + /

Rust’s fearless concurrency + / / - + - - - - + - -

LUCIAn rADU TEODOrESCU FEATUrE

April 2023 | Overload | 13

be free of deadlocks. It tries to provide access to lower-level primitives,
but that typically leads to slow code. Moreover, it also fails to deliver on
ease of use, as the low-level abstractions used for concurrency tend to
cloud the semantics of concurrent code. The concurrent applications are
cluttered with code needed for synchronisation.

The model is based on channels as a means of communicating between
threads and mutexes for blocking threads to access protected shared
resources. Mutexes are, by definition, blocking primitives; that is, they
tend to slow down the applications. Channels allow two threads to
communicate. The main problem with channels is that they often require
blocking primitives; moreover, in most of the cases in which blocking
primitives are not used, some kind of pooling is needed, which typically
also leads to bad performance.

For some reason, whenever I hear the syntagm fearless concurrency,
my mind flows to Aristotle’s ethics. Aristotle defines virtues as being the
golden means between two extremes, one being excess and one being
deficiency. He actually gives the example of the virtue of courage as
being the right balance between being a coward and being rash (fearless).
Having no fear frequently means seeking danger on purpose.

While this is just wordplay, I can’t help but think that being this fearless
is not a virtue.

A possible future for concurrency
The model that I am about to describe is still in the inception phase. It is
purely theoretical, there is no real implementation for it. I may be arguing
for some model that cannot be built, but, for discovery purposes, I hope
the reader will not mind my approach.

I am basing this model on the evolution and the ideas of the Val project
[Val, Abrahams22a, Abrahams22b, Racordon22, Teodorescu23]. While
this model was discussed in the Val community, and got support from
the community, there is no official buy-in of the community towards this
model. We see this as an experiment.

For the rest of this article, I will call this model the proposed Val
concurrency model.

The concurrency model has three pillars:

	n Val’s commitment to safety would imply safe concurrency.

	n The model aims at being as efficient as senders/receivers, but uses
coroutine-like syntax.

	n Reduce function colouring to make concurrent code look similar to
non-concurrent code.

An example
Listing 3 shows an example of a concurrent program in Val. We have three
innocent-looking functions. The long_task and greeting_task
functions are regular functions; they produce integer values on the same
thread they were started on. If the greeting_task function is called on
the main thread, the long_task function is called on a worker thread
(as it is started with spawn). The concurrency_example function is
different: it starts executing on one thread (the main thread) and most
probably it finishes executing on a worker thread. From the user’s
perspective, all three are still functions, but there is a slight generalisation
regarding threading guarantees.

Figure 1 shows a graphical representation of the tasks involved in this
program.

Computations, senders, coroutines, and functions
In the ‘Structured Concurrency in C++’ article [Teodorescu22], we
defined a computation as a chunk of work that can be executed on one or
multiple threads, with one entry point and one exit point. We argued that
the exit point doesn’t necessarily have to be on the same thread as the
entry point. This article tries to show that, if we consider computations to

be the basis of computing, we can build any concurrent program on top
of them.

In C++, the senders/receivers proposal can be built upon the computation
model to provide structured concurrency. Every computation can be
modelled with a sender. This provides an efficient basis for implementing
computations.

Moreover, we can use C++ coroutines to represent computations. In fact,
the senders/receivers model [P2300R6] provides a (partial) equivalence
relation between senders and coroutines. Coroutines can be easier to use
than senders, and thus it makes sense to consider them when designing a
user-friendly concurrency model.

In the proposed Val concurrency model, all functions are coroutines, even
if the user doesn’t explicitly mark them. This means that Val functions
can directly represent computations, and thus can be used for building
concurrent programs.

With this in mind, the code from Listing 3 can be translated to C++ as
something similar to the code from Listing 4. The long_task function
is automatically put through a coroutine, and waiting for its result looks
like calling co_await on the coroutine handle. This indicates that the
proposed Val concurrency model can be easy to use.

Concurrency operations
If concurrency is defined as being the execution of activities in partial
order, one of the main activities in concurrency design should be
establishing the relationships between activities. That is, the rules that
govern when activities can be properly started, or what needs to happen
when an activity is completed. If we see the execution of the program as
a directed acyclic graph, the main focus of concurrency should be on the
links of the graph.

As argued above, a good concurrency model shall not require any
synchronisation code except the start/end of the activities (what we called
concurrency-control code).

fun long_task(input: Int) -> Int {
 var result = input
 for let i in 0 ..< 42 {
 sleep(1)
 &result += 1
 }
 return result
}
fun greeting_task() -> Int {
 print("Hello world! Have an int.")
 return 13
}
fun concurrency_example() -> Int {
 var handle = spawn long_task(input: 0)
 let x = greeting_task()
 let y = handle.await() // switching threads
 return x + y
}
fun main() {
 print(concurrency_example())
}

Listing 3

x = greeting_task()x = greeting_task()

x+yx+ylong_task()long_task()

Figure 1

LUCIAn rADU TEODOrESCUFEATUrE

14 | Overload | April 2023

In our proposed model, starting new activities is signalled by the spawn
construct. By default, new work goes on a default thread pool. The user
can change this behaviour and provide a scheduler (term borrowed from
[P2300R6]), so the new activity will start in the specified execution
context.

Calling spawn f() in Val would be equivalent to a C++ sender
schedule(global_scheduler) | then(f) and starting that
sender. The result of such an operation would be represented by something
like Async<T>. This result can then be awaited to get the actual value
produced by the computation.

It is important to note that awaiting on such an asynchronous result may
switch the current thread. This is considered an acceptable behaviour in
our model.

It turns out that spawning new work, and awaiting the result of that
work, are the only two activities needed to express concurrency. This is
consistent with the other async/await models [Wikipedia].

C++ coroutines are not scalable
If we want programmers to avoid synchronous waits, then coroutines are
pervasive. If a coroutine switches threads, then the caller coroutines also
switches threads. Unless at the end of the caller we do a synchronous wait
for the initial thread, the caller also needs to be a coroutine. The same
reasoning then applies to its caller, and so on until we reach the bottom
of the stack.

Thus, avoiding synchronous waits implies that we have to transform a
large part of our functions into coroutines. This is obviously bad.

First, the function colouring problem affects most of the code. The
language stops being concurrency-friendly.

Then, we have performance implications. For every coroutine we create,
there is a potential heap allocation. If most of our functions need to be
coroutines, this cost is much too high.

Another approach for coroutines
C++ coroutines are stackless. They don’t require the entire stack to be
available, and all the local variables of the coroutine will be placed on the
heap (most probably). This limits the ability of the coroutine to suspend; it
can only suspend at the same level as its creation point; it cannot suspend
inside a called function.

Another way to model coroutines is to use stackful coroutines [Moura09].
Boost libraries provide support for such coroutines [BoostCoroutine2].
For these types of coroutines, we keep the entire stack around. We can

suspend such a coroutine at any point. This alone is a big win in terms
of usability.

Coming back to our initial problem with coroutines, calling stackful
coroutines doesn’t require special syntax or special performance penalties.

The stackful coroutines have performance downsides too. They require
memory for the full stack. If, for example, a function with a deep stack
creates many coroutines, we need memory to fit multiple copies of the
original stack. There are ways to keep the costs under control, but there
are nevertheless costs.

Using stackful coroutines for our concurrency implementation, the good
news is that we would only pay such costs when we spawn new work,
when we complete concurrent work, and whenever we want to switch
threads. The performance costs would be directly related to the use of
concurrency, which is what most users would expect.

More performance considerations
This model is consistent with other async/await models [Wikipedia].
Thus, it doesn’t need any synchronisation primitives during the execution
of tasks. This means that Goal F4 is met by design. Furthermore, using
functional composition for asynchronous operations, our proposed model
meets Goal F1, which requires that performance scales with the number
of performance threads (if the application exhibits enough concurrent
behaviour).

Moreover, because calling await doesn’t imply blocking the current
thread, Goal F2 is also met. The proposed model allows limiting
oversubscription by using an implicit thread pool scheduler for the
spawn calls; this means Goal F3 is also met .

Finally, there is Goal F5, which requires the model not to perform heap
allocation for creation of work and getting the results out of the work.
This is trickier.

As we just discussed, the stackful coroutines model may require heap
allocations when a new coroutine is created. While implementations
can perform tricks to amortise the cost of allocations, in essence we still
require memory allocation.

Thus, our proposed model only partially meets Goal F5. All the other
goals are met.

We believe that the compromise put forward by the model will turn out
to be efficient for the majority of practical problems. But, time remains to
tell whether we are correct.

Easiness and safety
As the reader may expect, the proposed Val concurrency model meets all
the goals for ease of use. In essence, the functions of the language are also
the primitives to be used for concurrency. The simplest model possible.

The set of rules that the programmer needs to know for concurrent
programming is almost identical to the rules for non-concurrent
programming. The difference is the semantics of spawn (including the
use of schedulers) and the semantics of the await functions.

One thing that needs highlighting is local reasoning. Unlike most
imperative languages, with Val’s Mutable Value Semantics, a variable
cannot be used in a code block that is mutated outside that code block.
This takes local reasoning to its maximum: to reason about a code block,
one doesn’t need to consider other, non-related code. This is true for
single-threaded code as well as for concurrent code.

fun f1() {}
fun f2() {
 var handle = spawn f1()
 handle.await() // switching threads
}
fun f3() {
 f2() // switching threads
}

Listing 5

int long_task(int input) {
 int result = input;
 for (int i=0; i<42; i++) {
 sleep(1);
 result += 1;
 }
 return result;
}
task<int> long_task_wrapper(int input) {
 co_await global_task_pool.enter_thread();
 co_return long_task(input);
}

int greeting_task() {
 std:: cout << “Hello world! Have an int.”;
 return 13;
}

task<int> concurrency_example() {
 auto handle = long_task_wrapper(0);
 auto x = greeting_task()
 auto y = co_await handle;
 co_return x + y;
}

Listing 4

LUCIAn rADU TEODOrESCU FEATUrE

April 2023 | Overload | 15

In terms of safety, the model builds upon the safety guarantees of Val. This
means that there cannot be any race conditions. Furthermore, because we
are not using locks, there cannot be deadlocks. As both of these conditions
are met, concurrent programming gets to be free of headaches, or, at least,
as free as single-threaded programming.

Analysis of the proposed model
In the previous section, we focused on describing the proposed
concurrency model and showing how well it meets our goals. In this
section, we look at some other implications for the model.

Threads are not persistent
Imagine the code from Listing 5. Because of the spawn / await
constructs from f2, the thread is most likely switched inside f2 . If f2
switches threads, then f3 also needs to switch threads. All the functions
on the stack can possibly switch threads.

In this model, threads are not persistent for the duration of a function.
Functions can be started on one thread, and they may exit another thread.
This might be surprising for some users, but we believe that most people
will not be affected by this.

This fact can also give us some advantages. One can use sequential code
that switches execution contexts, like the code from Listing 6. In this
snippet, one can move between execution contexts when processing data,
clearly expressing the transformation stages for processing requests, and
their execution contexts.

no thread-local storage
If threads are not persistent, one cannot properly talk about thread-local
storage. With every function call, the current thread can change, so
thread-local storage becomes an obsolete concept.

Removing the ability to use thread-local storage is also needed for a
different reason: it breaks the law of exclusivity [McCall17]. Thus, this
construct should be present in languages like Val.

Interoperability
The use of stackful coroutines would make the language harder to
interoperate with other languages. If other languages call Val functions,
the functions need to be wrapped/adapted to ensure that the assumptions
of the other languages are met. That is, the wrapped functions must
guarantee that the threads won’t change while executing these functions.

The problem with such adaptation of function calls is that it most likely
introduces performance penalties.

Conclusions
We started this article as a search for a better concurrency model. One that
allows us to write safe programs, that are fast and easy to reason about.
We defined the goals for an ideal concurrency model, and we looked at
past concurrency models to see how they meet our goals. Not surprisingly,
most models have drawbacks, in at least one area.

In the other half of the article, we tried to sketch a new concurrency model
that would (almost fully) meet all our criteria. This model is based on the
goals of the Val programming language, and it aims at fully delivering a
safe and easy experience, being as fast as possible.

Val is an experimental language. This concurrency model is an experiment
within the Val experiment. This word play seems appropriate, as one of
the goals for being structured is to be able to recursively decompose
problems.

Regardless of the success or failure of the experiment, the goal appears
to be worthwhile: searching for a better concurrency model. And, if
everything goes well, and our experiment succeeds, the search will end
with the implementation of this model. Time will tell. n

references
[Abrahams22a] Dave Abrahams, ‘A Future of Value Semantics and

Generic Programming (part 1)’, C++ Now 2022,
https://www.youtube.com/watch?v=4Ri8bly-dJs

[Abrahams22b] Dave Abrahams, Dimitri Racordon, ‘A Future of Value
Semantics and Generic Programming (part 2)’, C++ Now 2022,
https://www.youtube.com/watch?v=GsxYnEAZoNI&list=WL

[Aristotle] Aristotle, Nicomachean Ethics, translated by W. D. Ross,
http://classics.mit.edu/Aristotle/nicomachaen.mb.txt

[BoostCoroutine2] Oliver Kowalke, Boost: Coroutine2 library, https://
www.boost.org/doc/libs/1_81_0/libs/coroutine2/doc/html/index.html

[Dahl72] O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Structured
Programming, Academic Press Ltd., 1972

[Henney17] Kevlin Henney, ‘Thinking Outside the Synchronisation
Quadrant’, ACCU 2017 conference, 2017, https://www.youtube.
com/watch?v=UJrmee7o68A

[McCall17] John McCall, ‘Swift ownership manifesto’, 2017. https://
github.com/apple/swift/blob/main/docs/OwnershipManifesto.md

[Moura09] Ana Lúcia de Moura, Roberto Ierusalimschy. ‘Revisiting
coroutines’ ACM Transactions on Programming Languages and
Systems (TOPLAS), 2009.

[Nystrom15] Bob Nystrom, ‘What Color is Your Function?’, http://
journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

[P2300R6] Michał Dominiak, Georgy Evtushenko, Lewis Baker, Lucian
Radu Teodorescu, Lee Howes, Kirk Shoop, Michael Garland, Eric
Niebler, Bryce Adelstein Lelbach, std::execution, 2023, http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2300r4.html

[Parent16] Sean Parent, ‘Better Code: Concurrency’, code::dive 2016
conference, 2016, https://www.youtube.com/watch?v=QIHy8pXbneI

[Racordon22] Dimitri Racordon, ‘Val Wants To Be Your
Friend: The design of a safe, fast, and simple programming
language’, CppCon 2022, https://www.youtube.com/
watch?v=ELeZAKCN4tY&list=WL

[Rust] Steve Klabnik, Carol Nichols, community ‘Fearless Concurrency’,
https://doc.rust-lang.org/book/ch16-00-concurrency.html

[Teodorescu22] Lucian Radu Teodorescu, ‘Structured Concurrency
in C++’, Overload 168, April 2022, https://accu.org/journals/
overload/30/168/teodorescu/

[Teodorescu23] Lucian Radu Teodorescu, ‘Value-Oriented
Programming’, Overload 173, February 2023, https://accu.org/
journals/overload/31/173/teodorescu/

[Val] The Val Programming Language, https://www.val-lang.dev/
[Wikipedia] Async/await: https://en.wikipedia.org/wiki/Async/await

fun process_request(c: Connection) {
 io_thread.activate() // ensure we are on
 // I/O thead
 let incoming_request = c.read_and_parse()
 cpu_thread_pool.activate() // move to the
 // CPU thread
 let response = handle_request(incoming_request)
 io_thread.activate() // go back to the
 // I/O thread
 c.write_response(response)
}

Listing 6

https://www.youtube.com/watch?v=4Ri8bly-dJs
https://www.youtube.com/watch?v=GsxYnEAZoNI&list=WL
http://classics.mit.edu/Aristotle/nicomachaen.mb.txt
https://www.boost.org/doc/libs/1_81_0/libs/coroutine2/doc/html/index.html
https://www.boost.org/doc/libs/1_81_0/libs/coroutine2/doc/html/index.html
https://www.youtube.com/watch?v=UJrmee7o68A
https://www.youtube.com/watch?v=UJrmee7o68A
https://github.com/apple/swift/blob/main/docs/OwnershipManifesto.md
https://github.com/apple/swift/blob/main/docs/OwnershipManifesto.md
http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2300r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2300r4.html
https://www.youtube.com/watch?v=QIHy8pXbneI
https://www.youtube.com/watch?v=ELeZAKCN4tY&list=WL
https://www.youtube.com/watch?v=ELeZAKCN4tY&list=WL
https://doc.rust-lang.org/book/ch16-00-concurrency.html
https://accu.org/journals/overload/30/168/teodorescu/
https://accu.org/journals/overload/30/168/teodorescu/
https://accu.org/journals/overload/31/173/teodorescu/
https://accu.org/journals/overload/31/173/teodorescu/
https://www.val-lang.dev/
https://en.wikipedia.org/wiki/Async/await,

TEEDy DEIgHFEATUrE

16 | Overload | April 2023

he sky above port 80 is the colour of a dead Slack channel.
It is said the future is already here;
It’s just not evenly distributed.

Our heroine protagonist looks out across the bleak landscape:
Soulless and chintzy.
If this place had weather, there would be wind.
If this place had tumbleweed, it would be everywhere.
The future is clearly distributed somewhere else.

There are few structures dotted across the imaginary plane.
They are echoes of another world,
Constructed by the power of marketing,
Hollowed by contact with reality.
This blasted realm is not a place that once was;
It is a place that never was,
Except in some far away land
Imagined as the Cold War turned to perestroika.
A retrofuturist synthwave vision of cyberpunk
That is as virtual and outdated as its name suggests,
A future that never came to pass because Web.

Satisfied that she has adequately set the scene –
And gazed sufficiently on the pixel-rendered bleakness before her –
Our heroine protagonist considers heading
To the nearest depopulation centre.
If this were a film, around now a single chord would be struck.
It would sound big, overproduced and decisive.

Our protagonist is not the heroine we deserve.
It’s not clear she’s even the heroine we need.
But we’re going to have to make do,
Because she’s all we’ve got and she’s got the keyboard.
What she needs now that she hasn’t got is a drink.
Even without libation, though, she is legless.
Literally.
She looks down at her avatar.
She looks the post-apocalyptic part:
Goggles, slightly too pristine made-ragged clothes,
Non-descript weapon slung across her back...
But no legs.
She would file a bug report,
But she has neither the time
Nor the patience to fight the FAQs and Contact Us system.
Perhaps that’s what the non-descript weapon is for?
She pulls up a menu to enter main street.

She ‘strolls’ past the shops.
The unreal estate speaks of squandered budgets.
The whole place reeks of hype and VCs.
She happens across an avatar.
“What’s the value proposition here, friend?”
“Am I your friend? Did you send me a request?”
“What’s all this for?”
She waves at the branding and pop-ups around them.
At her question, he lights up,
All neon and animated,
More NPC than human.
“When here in this realm,
We shall be able to get together
With friends and family.
We shall be able to work, learn, play, shop and create.
It is the promised land,
Thus spake the Book of Faces.”
Wide-eyed and fanatical,
He’s probably high on NFTs or some other Web3 scheme.
“You just described what everyone’s been doing online for years.”
“But it’s not like this, is it?”
“No, mercifully not.
I don’t get headaches from having to wear goggles.
I just click on links and get things done instead of having to
Journey through janky skeuomorphisms.”
“You are not a believer?!”
“I believe I need a drink and some aspirin.
I believe the only place I’m going to get some is IRL.”
“Pray tell, where is that?
Is it a bar in another ‘verse?
You have been to other realms?
What are they like?
Are there people?
Are they like us? Or do they have legs?
Wait... you are going?
When will you return?
Will you return?”

Our heroine protagonist heads towards the port.
There is no reason to be found here, nor any rhyme.

Meta Verse
What’s life like in cyberspace?
Teedy Deigh turns on, jacks in, and
checks out the immersive experience.

T

Although ostensibly based in the real world, Teedy Deigh spends most
of her time living in codebases and in her head. She’s not sure what to
do with the unmanaged technical debt in either case but, should the debt
collectors call, cyberspace is one place she could flee where no one
would be bothered to follow.

accu
professionalism in programming

To find out more, visit accu.org

Monthly journals

Annual conference

Discussion lists

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

	2009-07-01 Care About Code - online.pdf
	Slide 1

