
A magazine of ACCU ISSN: 1354-3172

Live and Let Die
Martin Janzen reminds us how

important destructors are and when
to be mindful of their limitations.

Enodo, Divide, et Impera
Lucian Radu Teodorescu shows us how to
divide and conquer difficult problems.

C# v12 Primary Constructors
Steve Love investigates how primary
constructors fit into the language ecosystem.

Drive Musings on Linux
Ian Bruntlett muses on various approaches
that can help with large files on Linux.

Afterwood
Chris Oldwood considers metaphors as
inspiration for naming in code.

Join ACCU
Run by programmers for programmers,
join ACCU to improve your coding skills

www.accu.org

A worldwide non-profit organisation

Journals published alternate months:

CVu in January, March, May,
July, September and November

Overload in February, April, June,
August, October and December

Annual conference

Local groups run by members

professionalism in programming

Join now!
Visit the website

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

October 2023 | Overload | 1

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That
is, we care about writing good code,
and about writing it in a good way. We
are dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members –
by programmers, for programmers – and
all have been contributed free of charge.

Copyrights and Trademarks
Some articles and other contributions use terms that are either registered trade marks or
claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request, we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the
author. By submitting material to ACCU for publication, an author is, by default, assumed to
have granted ACCU the right to publish and republish that material in any medium as they
see fit. An author of an article or column (not a letter or a review of software or a book) may
explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution
2) members to copy source code for use on their own computers, no material can be copied
from Overload without written permission from the copyright holder.

October 2023
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo from Adobe Stock.

Copy deadlines
All articles intended for publication
in Overload 178 should be
submitted by 1st November 2023
and those for Overload 179 by
1st January 2024.

 4 Enodo, Divide et Impera
Lucian Radu Teodorescu shows us how to
divide and conquer difficult problems.

 10 Live and Let Die
Martin Janzen reminds us how important
destructors are and when to be mindful of
their limitations.

 14 C# v12 Primary Constructors
Steve love investigates how primary
constructors fit into the language ecosystem.

 17 Drive Musings on Linux
Ian Bruntlett muses on various approaches
that can help with large files on Linux.

 20 Afterwood
Chris Oldwood considers metaphors as
inspiration for naming in code.

FrAnCEs BuOntEMPOEDItOrIAL

2 | Overload | October 2023

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

Frozen or Buffering?
Sometimes things grind to a halt.
Frances Buontempo reminds us we cannot
be productive every minute of the day and
that downtime is important

My contract has come to an end, and I haven’t lined
anything else up. I’m in the privileged position of
having some savings and my husband has a job, so
the lack of income on my part hopefully won’t be a
problem for now. This will give me a chance to catch
up on several tasks, which will be useful. I might even

get a chance to do something different once in a while, like go for a long
walk. My head is spinning with all the incomplete jobs and half-baked
ideas I’ve started on, but not finished. Of course, this means I haven’t got
round to writing an editorial so, yet again, I apologise.

I had such plans for my first day off, but ended up spending hours
watching a new phone trying to transfer everything from my old phone,
so as usual I spent hours staring at a screen. I then failed to appear on a
pod-cast, since a host couldn’t make it. By the end of the day, I felt as
though I’d done nothing, which is an all too common state of affairs.
In the time sitting around waiting, I did manage to start thinking about
how to organise my time and what to prioritise. The day seemed like a
buffering day, both as a space between the old and the new, and as a place
to line plans up for the future. Sometimes, stopping and seemingly doing
nothing is actually much more important than randomly doing a variety of
things just because they spring to mind. Have you ever gone in one room
to do one thing, got distracted and done something completely different?
Almost certainly. Or opened a file in a code base to add a log line, and
refactored some horror you found without adding what was needed?
Then spent an hour or more waiting for the new log line to appear before
realizing your oversight? Easily done.

Rather than running your brain at 100% CPU usage, running around
doing 100s of things you didn’t mean to do and forgetting the important
tasks, you might go into a room and freeze instead, having forgotten why
you went there in the first place. Either way, the important work doesn’t
get done, so the outcome is the same. One looks like frantic buffering,
while the other appears frozen. Nothing happening and lots of things
happening can have the same outcome. In fact, sometimes, they look very
similar. How can you tell if a program is really doing something? It may
show high CPU utilization, but that can happen if code is stuck in a loop,
calculating the same thing over and over. In a previous role, I had to be
on overnight support from time to time. Our team ran various finance
simulations overnight which needed to be ready for 9 a.m. the following
morning. It was often touch and go as to whether we’d be on time or not.
One job in particular often took a long time, and I was called in the middle
of the night and asked to bounce the job because it had got stuck. How

could we tell it was stuck? It was hammering the
CPU, but we couldn’t see any logs, so what, if

anything, was it doing? I bowed to pressure,
and restarted the job. It got to the same point

and still didn’t appear to be doing anything. This time, when the inevitable
call came, I refused to restart it, and it did finish with a couple of minutes
to spare. The job had not frozen. It was lining up lots of calculations and
they took a long time. Unfortunately, there was no way to tell from the
outside whether it was doing anything or not. A spot of judicious logging
in the right places helped in the long run, as well as optimizing the code
where possible.

Many situations have no visible progress, not just an overnight job
appearing to be stuck. The same can happen on software projects. I’ve
picked up a few Jiras that have spilled over several sprints. Sometimes, the
person who wrote the task did a code review and announced “One more
thing” We called him Columbo, for reasons that are obvious if you’ve
ever watched the show [Columbo]. Other times, far more foundational
changes were required so every time you think you’re done, you have to
update, merge, retest, fix, rinse and repeat. Like running on the spot for
several, ahem, sprints. Often, abandoning the task and finding a way to
make the change in smaller steps is better, but we tend to get determined
or bullied into completing something once we’ve started. Making
fundamental changes can take a long time, and there may be no visible
changes for a while. That doesn’t meant no progress has been made:
we just can’t see the internal improvements from the front end. I guess
some kind of code metrics can help here, provided the non-coders on a
team understand what they mean and why they are important. Recently,
McKinsey produced a report about measuring developer productivity
[McKinsey23] McKinsey are a large management consultancy who
regularly publish reports on a variety of subjects, which tend to carry
weight and influence many companies worldwide. The report starts by
pointing out:

There is no denying that measuring developer productivity is
difficult. Other functions can be measured reasonably well, some
even with just a single metric; whereas in software development,
the link between inputs and outputs is considerably less clear.

They mention Google’s DevOps Research and Assessment (DORA)
metrics [Google], along with SPACE metrics (Satisfaction and well-
being, Performance, Activity, Communication and collaboration, and
Efficiency and flow – which is a bit of a mouthful!) [Forsgren21]. Their
report builds and extends on these ideas, but doesn’t really say anything
I find useful. I have seen several responses to the report. For example,
Kent Beck told LinkedIn the report is naïve, but found McKinsey
thinking their intended market want a report like this is interesting in
and of itself [Beck]. Gergely Orosz and Kent Beck have written a more
detailed analysis [Orosz23], questioning some of the measures such as
effort. Now, I go to the gym, and have to put in a huge effort to curl 7kg
dumb-bells. I watch other people using 10kg weights, and making it look
effortless. Does than make me more productive? No, I’m just not as good

FrAnCEs BuOntEMPO EDItOrIAL

October 2023 | Overload | 3

as them. Maybe as I keep practising, I’ll get better and be able to lift more.
In the meantime, there won’t be any visible progress.

Programming isn’t the only place where it’s hard to measure progress.
If you’ve ever had work done on your house, you will know this.
Recently, a small part of a boundary wall fell over into the neighbour’s
garden. We found a builder, and he was happy to reuse the bricks, after
cleaning them up. He hadn’t factored in how long that would take. It
turns out ivy can be very destructive and grow through almost anything.
It required a huge effort to untangle the mess, and then considerably more
digging than envisaged to get the roots out so a new foundation could
be laid. For many days, it looked as though nothing more had happened
than a pile of bricks had moved from one spot to another. The builder
couldn’t be precise about how much longer would be needed, which is
understandable. He’s never rebuilt this wall before, so couldn’t be sure.
Now he’s spent time getting the ground cleared for firm foundations,
he’s making visible progress. Writing code can be like that too. If you’ve
never coded a specific algorithm or solved a particular problem before,
you can’t tell how long it will take. You can say what you’re up to at the
moment and what other tasks will need doing, but you won’t know the
unknown unknowns. They are, after all, unknown. Furthermore, progress
is often non-linear. If you break work down into, say, five chunks, and the
first takes all of Monday, that is no guarantee you’ll be done by the end of
Friday. As for clearing the ground to build firm foundations, how many
of us have had to justify “no visible progress” and explain “tech debt” on
more than one occasion?

The wall is nearly finished now, so our neighbour will be able to let
their dog down the end of the garden again. Without the barrier, he was
concerned the dog could stray into our garden, and I’m sure our cat might
have opinions about that. The dog could probably jump over the wall
if it wanted to, but the boundary seems to form a physiological barrier
too. For the dog. The cat does what he wants, including wandering into
neighbours’ gardens and sitting on my seat. When the wall is rebuilt, I
will try to clear up more of the ivy round the garden. Having a buffer
zone between the wall and the plants to avoid a repeat of the collapse
might be a good idea. Buffer zones give space to see what’s going on.
I’ve tracked buffer overruns and similar by adding variables to the stack
to pinpoint where my code was doing something daft. These “canary”
variables were a simple but effective approach. There are better tools
available nowadays, for example using The /GS flag in Visual Studio to
enable buffer security checks [Microsoft21], and OWASP gives details
on problems to watch out for and other tools that might help [OWASP].

The word ‘buffer’ means anything to reduce shock or damage due to
contact, something that cushions against shock of fluctuations in finance
or more generally a protective barrier, according to Merriam-Webster
[Merriam-Webster]. Adding a buffer to protect a buffer seems recursive,
which is a different problem. Of course, a software memory buffer is not
about cushioning or protection, but rather a space to put things. We use
a buffer to store user input or other temporary data. We also talk about
a webpage or network traffic buffering. Data is stacked up, so it can be
accessed quickly or stop lag on the receiving end. This buffering should

be a good thing, but we also complain if a video stream or similar is
buffering, meaning it has frozen waiting for the buffer to fill up. Sitting
watching spinning wheels or stalled progress bars is very annoying.
Whether we need to bounce a router, restart a job or just wait depends.
Some things take time and we need to learn to be patient.

I’ve ground to a halt several times while trying to write this. My mind
keeps wandering to my ever growing to-do list, while also day-dreaming
about what I might be able to do with the spare time I now have. We all
need time out occasionally, to give ourselves time to allow things settle.
Downtime is important. It may look like inactivity or stagnation from the
outside, but buffering moments can lead to innovative sparks or changes
of direction. This has got to be an improvement on keeping digging or
being stuck in a rut. Let’s try to measure our ‘productivity’ in a positive
way, without ending up striving for 100% CPU usage but no constructive
outcomes. Failing that, certainly consider adding traces or logging to
see what is going on. And try to make them more
informative than Terry Pratchett’s computer Hex
unhelpfully pronouncing “++?????++ Out of Cheese
Error. Redo From Start.” [Discworld]:

references
[Beck] Kent Beck, published on LinkedIn: https://www.linkedin.com/

posts/kentbeck_mckinsey-claims-its-possible-to-measure-activity-
7099764438496407552-v8P2

[Columbo] Columbo: https://en.wikipedia.org/wiki/Columbo
[Discworld] ‘Hex’, published on Discworld Wiki, available at

https://discworld.fandom.com/wiki/Hex
[Forsgren21] Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila

Thomas Zimmermann, Brian Houck and Jenna Butler ‘The SPACE
of Developer Productivity’, acmqueue, Volume 19 Issue 1, 5 March
2021, available at: https://queue.acm.org/detail.cfm?id=3454124

[Google] DevOps: https://cloud.google.com/devops
[McKinsey23] ‘Yes, you can measure software developer productivity’,

a collaboratively written article published 17 August 2023, available
at: https://www.mckinsey.com/industries/technology-media-and-
telecommunications/our-insights/yes-you-can-measure-software-
developer-productivity

[Merriam-Webster] ‘buffer’, Merriam-Webster.com Dictionary,
https://www.merriam-webster.com/dictionary/buffer

[Microsoft21] ‘/GS (Buffer Security Check’ posted 8 March 2021 and
available at https://learn.microsoft.com/en-us/cpp/build/reference/
gs-buffer-security-check

[Orosz23] Gergely Orosz and Kent Beck ‘Measuring developer
productivity? A response to McKinsey’ in The Pragmatic Engineer,
published at: https://newsletter.pragmaticengineer.com/p/measuring-
developer-productivity

[OWASP] ‘Buffer Overflow, available at
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow

https://www.linkedin.com/posts/kentbeck_mckinsey-claims-its-possible-to-measure-activity-7099764438496407552-v8P2
https://www.linkedin.com/posts/kentbeck_mckinsey-claims-its-possible-to-measure-activity-7099764438496407552-v8P2
https://www.linkedin.com/posts/kentbeck_mckinsey-claims-its-possible-to-measure-activity-7099764438496407552-v8P2
https://en.wikipedia.org/wiki/Columbo
https://discworld.fandom.com/wiki/Hex
https://queue.acm.org/detail.cfm?id=3454124
https://cloud.google.com/devops
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/yes-you-can-measure-software-developer-productivity
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/yes-you-can-measure-software-developer-productivity
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/yes-you-can-measure-software-developer-productivity
https://www.merriam-webster.com/dictionary/buffer
https://learn.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check
https://learn.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check
https://newsletter.pragmaticengineer.com/p/measuring-developer-productivity
https://newsletter.pragmaticengineer.com/p/measuring-developer-productivity
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow

Lucian Radu TeodoRescuFeaTuRe

4 | overload | October 2023

The life which is unexamined is not worth living” says Socrates,
according to Plato [Apology]. This should apply both to personal
life, but also to professional life. Thus, it needs to be our duty to

analyse various aspects of Software Engineering. And, what is more
important to analyse than the fundamentals of our discipline?

This article aims to analyse one of the most useful techniques in software
engineering: the divide et impera (Divide and Conquer) technique. And
maybe the most useful one.

We define the divide et impera method as a way of breaking up a problem
into smaller parts and fixing those smaller parts. This applies to recursive
functions (where the phrase divide et impera is most often used), but it
will also apply to the decomposition of problems. At some point, we will
also discuss using abstraction as a way of applying divide et impera.
Finally, we will show how to use this technique in our daily engineering
activities that are not strictly related to coding.

Definition, generalisations, and distinctions
In this article, we call divide et impera a method of approaching problems
that has the following characteristics:

	� breaking the problem into sub-problems

	� solving the sub-problems independently of each other

	� occasionally, an answer to a sub-problem may render solving
the rest of the sub-problems unnecessary

	� sporadically, a small amount of information passes one sub-
problem to another

	� combining the results of the sub-problem solutions to form the
solution to the initial problem

We take a relaxed view on what a problem can be. In our exposition, it
may mean a software algorithm, as expressed in code (e.g., quick-sort
algorithm), or maybe the actions that a software engineer needs to do to
complete a task (e.g., fixing a defect may imply analysis of the defect,
discussions with other engineers, and perhaps closing the defect as ‘by
design’).

Please note that this definition is more general than what’s typically
understood by the Divide and conquer algorithm [Wikipedia-1], which
requires the sub-problems to be of the same nature, similar to the original
problem, but simpler. In our case, we allow the sub-problems to be widely
different from each other (and different from the original problem, too).

Our definition overlaps in a greater measure with the decomposition
technique [Wikipedia-2]. Decomposition techniques tend to be associated
with breaking down software systems. In our definition, we incorporate

that, but we will also apply the same technique to processes outside the
code (debugging, programming methodologies, etc.).

Truth be told, the name decomposition fits better than divide et impera;
I’m choosing the latter name because, besides decomposition (i.e.,
divide), it also highlights the idea of conquering (i.e., impera) the sub-
problem. The main point of applying this method is to simplify the
original problem, and we are doing this by making the sub-problems
much more approachable, easy to conquer.

Simplifying complexity
The typical model for analysing the complexity of a system is to look at the
interaction within its parts. If the system has n parts, then it may have up
to n(n-1)/2 interactions between these parts. We may associate complexity
with each of the parts, and with each interaction between these parts. If the
complexity associated with a part is c0 and the complexity associated with
an interaction is ci, then the total complexity of the system is:

C = c0 ∙ n + ci ∙ n ∙ (n-1) / 2

Its magnitude would be O(C) = n2.

One can easily remark here that the bulk of the complexity arises from the
interaction between parts, not from the parts themselves. Thus, limiting
the interaction between parts would be beneficial.

Let’s take an example. Let’s consider a system of n = 10 parts, and
complexity values c0 = ci = 1. The total complexity of the system, if we
had interactions between all parts, would be C = 10 + 45 = 55. Now, let’s
assume we could group the parts into two groups, such that the parts from
one group and the parts from the other don’t interact with each other,
just one interaction between the groups. If we do that, the complexity
of each group would be Cp = 15, and the total complexity of our system
C' = 15 + 15 + 1 = 31. Thus, this grouping does a reduction in terms of
complexity of 1.77 times.

In our method, we divide a problem into sub-problems not to create more
parts that interact with the rest of the parts, but to isolate the interactions;
this is why we require the problems to be able to be solved independently
of each other.

The two main benefits of this method are that it:

	� simplifies reasoning about the problem

	� makes the solving of the problem easier (performance improvements)

Let’s start by analysing the second benefit, and let’s use examples to drive
that analysis.

Algorithmic examples
Merge sort
The idea of the merge-sort algorithm is relatively simple:
	� divide the initial range of values into two halves;
	� sort the two halves independently;

Enodo, Divide et Impera
How do you untie the knotty problem of complexity?
Lucian Radu Teodorescu shows us how to divide
and conquer difficult problems.

“

Lucian Radu Teodorescu has a PhD in programming languages
and is a Staff Engineer at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

Lucian Radu TeodoRescu FeaTuRe

October 2023 | overload | 5

	� the sorting of the halves can be done recursively;

	� finally, combine the two sorted sub-ranges into the resulting sorted
range.

This would be implemented similar to the code in Listing 1.

The complexity of the algorithm is O(n log n) (assuming we always
have enough memory to perform the merging). The breaking down of
the problem into sub-problems is trivial: just compute the middle of the
input range; this will divide the initial range into two sub-ranges. The two
sub-ranges can be sorted independently of each other: to sort the left sub-
range, we don’t need any information from the right sub-range. Each sort
will be done in O(n log n).

Merging is slightly more complex, but this is doable in O(n) (if enough
memory is available). If we ignore the fact that the merging algorithm can
work in-place, the fundamental idea can be expressed as:

	� while both input arrays have remaining vales:

	� compare current elements of both input arrays;

	� copy the smaller element into the output array;

	� advance the current pointer for the array containing the smallest
element;

	� copy to the output array the remaining elements.

It is important for us to analyse the possible interactions between the
elements of the arrays being merged. Because the arrays are sorted, an
element is related to its adjacent elements in the same array, but it doesn’t
need to be compared/considered with any other elements. When merging,
we compare elements from one array to elements from the other array.
Again, here we only look at a limited set of interactions; when placing the
left-side element lcur into the output array, we only look at the elements
from the right-side that have values within the range lprev, lcur), where lprev
is the previous element in the left-side array. For the entire merge process,
we have O(n) in interactions, if the output array contains n elements.

We need to contrast these complexities with a naive approach (e.g.,
insertion sort) to sorting, in which we compare each element with all the

other elements, which has a complexity of O(n2). We can see how the
merge sort algorithm has lower complexity than a naive sorting algorithm.

Quicksort
Another good example for showcasing the divide et impera method is the
quicksort algorithm. See Listing 2 for a possible implementation of the
core algorithm. It has the same complexity of O(n log n) as merge sort,
but it achieves it differently. Instead of combining the sorted sub-ranges,
in quicksort we ensure that all elements on the left side are smaller than
the elements on the right side. Doing this, assures us that there is nothing
we need to do after we’ve sorted the sub-ranges.

For this algorithm, the choice of the middle element (called pivot) is
important, as it may change the complexity of the algorithm to be O(n2).
For this article, we assume we are using a scheme that guarantees the
O(n log n) complexity.

Binary search
We need to analyse another example to highlight an important point of
our divide et impera method: binary search; for a given sorted sequence
of value, check if a given value is in the sequence. Please see Listing 3
(overleaf) for a possible implementation.

Here, we are doing minimal work to break down the problem, similar
to merge sort. We are doing nothing to combine the results of the sub-
problems, similar to quicksort. What is remarkable in this example is that
we are short-circuiting the solving of the sub-problems. If we determine
that the solution must be in the first half of the sequence, it doesn’t make
sense for us to do anything for the second half.

The complexity of the binary search algorithm is O(log n), better than the
complexity of O(n) of doing a linear search.

We have briefly covered, with examples, the important part of the divide
et impera method, the way we defined it: there is a part in which we split
the problem, there is a part in which we solve the sub-problems, and there
is an optional part in which we combine the results. We’ve also looked

template <typename BidirIt>
void mergeSort(BidirIt begin, BidirIt end) {
 if (begin < end) {
 // break down the problem
 BidirIt mid = begin + (end-begin)/2;
 // solve sub-problems independently
 mergeSort(begin, mid);
 mergeSort(mid, end);
 // combine the results
 std::inplace_merge(begin, mid, mid, end);
 }
}

Listing 1

template <typename BidirIt>
void quickSort(BidirIt begin, BidirIt end) {
 if (begin < end) {
 // break down the problem
 BidirIt mid = pivot(begin, end);
 partitionElements(begin, mid, end);

 // solve sub-problems independently
 quickSort(begin, mid);
 quickSort(mid, end);
 // nothing to combine
 }
}

Listing 2

The bulk of the complexity arises from the
interaction between parts, not from the parts

themselves. Thus, limiting the interaction
between parts would be beneficial

Lucian Radu TeodoRescuFeaTuRe

6 | overload | October 2023

at a trivial example in which doing work for sub-problems may be short-
circuited.

It is important to mention that the splitting and the combining parts also
have costs associated with them. However, it seems that a proper division
of the problem into sub-problems would compensate for these costs.

We looked at how divide et impera can help improve the efficiency of
software algorithms. We will look at applying the method to reasoning
about software.

Reasoning with divide et impera
In the landmark Structured Programming book [Dahl72], Dijkstra argues
that one of the major sources of difficulties in software engineering is our
human inability to capture large programs in our head.

Reasoning about programs, where one needs to keep track of all parts of
the software, quickly grows to be impossible with the increase in the size
of the program. Like we mentioned above, for a program with n parts
(e.g., instructions) the complexity that one needs to maintain in their mind
is O(n2). And, studies show that, on average, our mind can keep track of
7 independent things at one time [Miller56].

To alleviate this problem, Dijkstra advocated that we must add structure
into our programs, such as the interaction between different parts of the
software is reduced. He argues that there are three main mental aids that
allow us to better understand a problem: enumeration, mathematical
induction, and abstraction. To some extent, they all overlap with divide
et impera.

The idea behind enumerative reasoning is that it is (somehow) easy for
humans to reason linearly on a sequence of instructions, especially if
the sequence of instructions aligns with the execution of the program.
Looking at the first instruction, one doesn’t need to care about the rest of
them. Looking at the second instruction, it may require understanding of

the results of the first one, but doesn’t require any understanding of the
following instructions. And so on.

Dijkstra also considers blocks of code with one entry point and one exit
point as a complex instruction. Thus, if, switch and while blocks can
also be instructions. Furthermore, more importantly, we can make use of
abstraction (i.e., making function calls) just like primitive instructions.

To the extent that the instructions are independent of each other, we apply
divide et impera. While we have said that our method allows information
to flow from one sub-problem to another, the amount of information
passed around needs to be small for the payoffs of the methods to show.

Listing 4 shows a possible implementation of std::remove, trying to
showcase the sequencing as a way to reduce cognitive load. In the first
step in the algorithm, we find the first occurrence of the given value. The
second step of the algorithm, if there is a match, is to shift left all
subsequent elements by one position. One can reason about the first sub-
problem completely independently from reasoning about the second sub-
problem.

The mathematical induction mental aid that Dijkstra mentions is helping
us cope with loops. While one can find similarities between this reasoning
and divide et impera, the two are somehow distant, so we won’t cover
their connection here.

The last mental aid that Dijkstra identified, perhaps the most important
one, is abstraction. Abstraction stays at the core of what Dijkstra considers
to be structured programming. The main idea is that abstraction allows
the programmer to lose sight of (abstract out) unimportant details, while
focusing only on important parts.

For example, for the std::remove function that we just discussed,
the implementation details are irrelevant for someone that just wants to
use the function according to the promised contract. There are many
ways this function can be implemented, but it doesn’t matter that much if
they all satisfy the same contract. Thus, our cognitive load for using this
function is lowered.

template <typename ForwardIt, typename T>
 ForwardIt remove(ForwardIt first,
 ForwardIt last, const T& value) {
 // subproblem 1: find the (first) occurence of
 // our value
 first = std::find(first, last, value)
 // subproblem 2: shift left one position
 // subsequent elements
 if (first != last) {
 for (auto it = first; ++it != last;) {
 if (!(*it == value)) {
 *first++ = std::move(*it);
 }
 }
 }
 return first;
}

Listing 4

template <typename BidirIt, typename T>
bool binarySearch(BidirIt begin, BidirIt end,
 const T& value) {
 if (begin < end) {
 // break down the problem
 BidirIt mid = begin + (end-begin)/2;

 // solve the sub-problems independently,
 // with short-circuit
 if (value == *mid)
 return true;
 else if (value < *mid)
 return binarySearch(begin, mid, value);
 else
 return binarySearch(mid, end, value);
 // nothing to combine
 }
 else
 return false;
}

Listing 3

Reasoning about programs, where one needs
to keep track of all parts of the software,
quickly grows to be impossible with the
increase in the size of the program

Lucian Radu TeodoRescu FeaTuRe

October 2023 | overload | 7

The reader is probably starting to realise where I’m going with this: the
simple use of an abstraction is an application of divide et impera, as it
separates the bigger problem into two sub-problems: implementing the
abstraction and using the abstraction. We are applying the method not
necessarily to the code itself, but to our reasoning about the code.

In our definition of the method, we identified a prerequisite step that is
breaking down the problem into sub-problems. This is the definition of
the function contract: the type of the function (parameters and return
type), constraints around the function, complexity guarantees, etc.

It’s not directly obvious whether there is a step that ‘combines the results
of the sub-problems’ in the case of using function abstractions. One may
argue that the simple realisation that calling the function will actually
execute the body of the function is such a step. Yes, this is so fundamental
that we don’t consciously think about this every time we use a function,
but that doesn’t mean that this thought process isn’t followed at some
point. I do feel that we should consider this realisation as part of the
process.

Thinking about the use of abstractions in terms of divide et impera allows
us to realise the benefits of using the abstractions. To take an example,
let’s assume that we write a function once, and we use it n times;
assuming the function doesn’t have bugs, and the contract of the function
is well understood, we only have to reason about the implementation
of that function once. Thus, the total cost of using the function would
be Ctotal = Cimpl + n ∙ Ccontract, where Cimpl is the mental cost spent while
implementing the function and Ccontract is the cost of understanding the
function contract in order to use it. If n > 1 and Ccontract < Cimpl ∙ (n-1)/n,
which is probably true for most of the functions, then we are reducing the
cognitive load to use this abstraction.

The reader should note that this applies to all types of abstractions, not
just functions. We can have similar arguments for classes, concepts, etc.

Dijkstra uses the mental aids to build a model of how programs should
be structured, describing a process for constructing programs. This
process is essentially decomposition. In one of the lengthier examples
he gives, printing a table of the first thousand prime numbers, he starts
from the top, and recursively divides the problem at hand into multiple
subproblems and solving those problems. The key point here is that, when
a problem is divided into sub-problems, the sub-problems can be worked
on in isolation. This is precisely what we discussed under the term divide
et impera.

What is interesting to notice in Dijkstra’s exposition is that we can easily
decompose programs without necessarily needing abstractions. He starts
by representing the problem with placeholders (English sentences), and
through repeated refinements he gradually transforms all the placeholders
into actual code.

I would recommend everyone to go through the decomposition exercise
that Dijkstra presented [Dahl72]. It’s a prime example of how to build a
program, and how to reason abut it.

Practical tips
Techniques for writing sustainable code
Good software needs to be sustainable software. Software that starts to rot
from its inception, software that is hard to fit in your brain, is the opposite
of what we want. But how do we write sustainable software?

The book Code that Fits in Your Head by Mark Seemann [Seemann21]
tries to answer this question by providing numerous tips on writing
sustainable code. Not surprisingly, many of these tips are related to our
divide et impera method.

In one of the most important tips in the book, Mark offers a direct
invitation to divide large problems into smaller ones:

No more than seven things should be going on in a single piece
of code.

There are many techniques that Mark explains in his book; it would be
too long to analyse them here, but at least we can mention some of them:

	� Fractal architecture

	� The 80/24 rule (write code that fits into an 80/24 screen terminal)

	� ‘Arrange, act, assert’ pattern for writing tests

	� Command Query Separation

	� Red Green Refactor (used in TDD)

	� Slicing (work in small increments)

	� Strangler

	� Etc.

Incremental development
Some techniques mentioned above may seem a bit farther away from our
definition of divide et impera. They would fit more into the incremental
development paradigm. What would be the connection between
incremental development and divide et impera?

We shall argue that incremental development is a form of divide et
impera. Let us analyse.

Let’s say we have a complex project P and we approach it incrementally,
and we will end up solving this problem by performing the increments I1,
I2, ..., In. Assuming that the project was successfully completed, we have
P = I1, I2, ..., In. A naive application of divide et impera would suggest
that we should break down P into P1 and P2, where P1 = I1, I2, ..., I⸤n/2⸥ and
P2 = I⸤n/2⸥ + 1 ..., In (assuming the increments are roughly the same size).

The problem is that, in practice, we don’t properly know the increments
upfront. To perform this division, we need to precisely know their number.
And, for most software engineering problems, we simply don’t.

If we intuitively try to divide the big problem into two halves, and jump
ahead to solving the first half, we probably end up with a mess. The first
half is also very complex, so it accumulates delays, technical debt and

Good software needs to be sustainable
software. Software that starts to rot from its
inception, software that is hard to fit in your

brain, is the opposite of what we want

Lucian Radu TeodoRescuFeaTuRe

8 | overload | October 2023

poor quality. I’ve seen many projects go down this route. (That does
not imply that we shouldn’t be combining this type of division with
incremental development; I can argue that this combination would be the
best approach.)

Using incremental development, we perform a division that is very
uneven. We divide P into two parts: I1 and everything else. We need to
have clean boundaries for what I1 means so that we know that we solve it
correctly. After solving I1 we apply the same process and divide the rest
into I2 and what comes after. We apply this repeatedly until we finish all
the iterations and solve the initial problem.

This is equivalent to an unbalanced binary tree, as shown in Figure 1.

Let’s look at the elements on our definition of divide et impera and see
how they fit incremental development. Breaking down the problem into
sub-problems consists of identifying the first increment that can be done.
It is important at this step to have a clear definition of ‘done’, and ensure
that we don’t redo the effort for I1 in the next sub-problem; that is, the
two sub-problems must be independent. The sub-problems are the first
increment and the rest of the problem. The combining step is typically
non-existent.

Bisection
Git bisect is a great example of divide et impera. If we have a bug that
appeared between two different releases, and there are multiple commits in
between, we can use this method to narrow down the search. It is essentially
an implementation of the binary search algorithm discussed above.

The important aspect of this method is finding a good way to expose the
bug (i.e., have a definite test). This test needs to be accurate. If the test

indicates that the bug is present, it means that it was introduced in a prior
commit; if the test indicates that the bug is not present, it might have been
introduced in a later commit.

Debugging tips
Let’s say we have a bug in a large code that is hard to understand, and we
need to find the source of this bug.

One method of approaching this problem is looking at different pieces of
the codebase and trying to understand/debug whether the bug comes from
there. This technique can be useful for experts as they probably have good
intuition of what could be the possible causes for the bug. But, in general,
this can be an expensive method of searching for the bug. Especially if we
don’t have a good test for the bug, the exploration space needed to detect
the bug is massive (considering that we often look at the same part of the
code multiple times). The method is related to the bogosort algorithm that
tries different permutations until it finds one that is good.

Another method of analysing is to linearly look at the entire flow. That is
typically expensive for complicated flows with many steps. We need to
clearly understand all the expected outputs for all the steps, typically for
every instruction in the codebase.

A better approach is to apply divide et impera (if possible). The idea is to
find a point, ideally around the middle of the flow, where we can relatively
easily check to see whether we are behaving correctly or not. This divides
the search space in two parts: what happens before that point, and what
happens after. In other words, it’s a manual bisection.

The test points are best to be chosen to be easily testable. For example,
at the end of a quick-sort, it’s easy to see whether the sorting contract is
met or not; on the other hand, if one adds a breakpoint somewhere in the
partition function, sometime during the execution of the algorithm, it may
be harder to understand whether the algorithm is working as expected.

If we have a client-server application, then checking the messages sent
between the two would be a good start. If the requests don’t follow the
agreed protocol, it’s probably a client problem. On the other hand, if the
responses don’t follow the agreed protocol, it’s most likely a server issue.

For complex flows, I often used a form of printf debugging to divide the
search space and narrow down on the problem. I carefully choose the test
points and dump the information available at those points, and then I can
reason whether the outputs are expected or not.

To be honest, I rarely use a proper debugger. It tends to create a linear
flow, and it doesn’t necessarily show the actual values that are important
for the entire flow. In the end, I find using a debugger slows me down
when investigating issues.

Solving complex problems: first breakdown
If we have a complex problem, attacking it directly tends to lead to
failure, or at least consumes a large amount of energy/time. One of the
chief difficulties of a complex problem is actually understanding the Figure 1

If we have a complex problem, attacking it
directly tends to lead to failure, or at least
consumes a large amount of energy/time.

Lucian Radu TeodoRescu FeaTuRe

October 2023 | overload | 9

problem in its entirely and its boundaries. If we clearly understand the
problem, it’s much easier to provide a solution.

Thus, solving a complex problem should have 2 steps:

	� Understand the problem and its limits

	� Actually solve the problem

I often say that understanding the problem is the harder part of the two.

This may sound commonsense, but unfortunately, I’ve seen too many cases
in which we start implementing a solution before clearly understanding
the problem we are trying to solve.

Solving complex problems: prototypes
and mathematical models
After the problem is clearly defined, we can actually start solving it. If
the problem is complex, there may be multiple possible alternatives to
solving it. Choosing the right alternative to use is hard. If we select a bad
alternative, we either don’t solve the problem (e.g., the solution doesn’t
have all the desired quality attributes), or we solve it with large costs.
Thus, it makes sense to spend some more time at the beginning to figure
out the shape of the solution.

We can spend this investigation time doing prototypes or mathematical
models for the problem. Oftentimes, just performing some back-of-the-
envelope calculations proves extremely valuable; they can determine
whether a particular solution fits the problem or not. If the initial effort is
small compared to the overall costs of implementing a solution, then that
effort is well spent.

What we are arguing is that we divide the implementation part into two
sub-problems: figure out the right approach and actually implement the
solution

To be honest, this idea prompted me to write this article. At the beginning
of the day on which I started to write this article, I had another topic
in mind to write about. But then, during the day, I had a discussion
with a fellow engineer who wanted to implement a better version of a
task scheduler. He tried to explain to me the model that he wanted to
implement and expressed the desire to start coding soon; I started to
suggest that he should first build a mathematic model of the solution, to
analyse what would be the consequences of implementing that algorithm;
more specifically, we wanted to understand if the new algorithm can be
better than the existing algorithm. Going meta, like I often do, I started
to argue that we should use divide et impera to attack these types of
programs. And this was the seed for the article.

Coming back to complex problems, if there are multiple solutions that
may or may not work, we should spend time upfront screening for
possible solutions. If we put this together with what we argued in the
previous section, solving complex problems often requires solving three
different sub-problems:

	� properly defining the problem

	� do a screening of potential solutions, and choose the right solution

	� implement the chosen solution

Conclusion
We argued, in this article, that one of the most useful methods in software
engineering is divide et impera. As there are multiple possible meanings
for this, we tried at the beginning of the article to formulate a definition
of the method that would be general enough to fit other definitions. We
positioned divide et impera as a general method that can be applied both
to organising code, and to how we are working.

We argued that this method is one of the widely used methods for solving
problems in our field. It overlaps with the recursive method used in
algorithms, it overlaps with decomposition, it’s a method that stands
behind several core ideas of structured programming, and it also stands
behind several practices in software engineering.

During the course of the article, we provided a series of examples of
how this method can be used. The examples cover things like algorithms,
reasoning about code as long as examples on applying divide et impera
in day-to-day work, from development methods to more concrete tips.

I’m always of the opinion that we should be constantly analysing
important things around us. That is why a method like divide et impera
is worth analysing, and that’s precisely what this article sets out to do. At
the end, if I should name two tips for software engineers, those would be:
constantly analyse and apply divide et impera. In other words, Enodo,
divide et impera.1 �

References
[Apology] Plato, Apology, translated by Benjamin Jowett,

http://classics.mit.edu/Plato/apology.html
[Cormen22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,

Introduction to algorithms (third edition), MIT press, 2022
[Dahl72] O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Structured

Programming, Academic Press Ltd., 1972
[Miller56] George A. Miller, ‘The magical number seven, plus or minus

two: Some limits on our capacity for processing information’,
Psychological Review. 63 (2), 1956, available at:
http://psychclassics.yorku.ca/Miller/

[Seemann21] Mark Seemann, Code That Fits in Your Head : Heuristics
for Software Engineering, Pearson, 2021

[Wikipedia-1] ‘Divide-and-conquer algorithm’, published on Wikipedia,
https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm

[Wilkipedia-2] ‘Decomposition (computer science)’, published
on Wikipedia, https://en.wikipedia.org/wiki/Decomposition_
(computer_science)

1 Analyse, divide and conquer

If the problem is complex, there may be
multiple possible alternatives to solving it.

Choosing the right alternative to use is hard.

http://classics.mit.edu/Plato/apology.html
http://psychclassics.yorku.ca/Miller/
https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm
https://en.wikipedia.org/wiki/Decomposition_(computer_science)
https://en.wikipedia.org/wiki/Decomposition_(computer_science)

MArtIn JAnzEnFEAturE

10 | Overload | October 2023

Most experienced C++ programmers will agree that one of the best
properties of our language is the ability to manage object lifecycles
using constructors and destructors.

Bjarne Stroustrup [Stroustrup19] has described ctor/dtor pairs as one
of C++’s most elegant features, giving us the ability to create clean types
which tidy up after themselves, with predictable performance, minimal
overhead, and no need for garbage collection.

In this year’s ACCU Conference Lightning Talks, Nico Josuttis singled
out destructors as (spoiler alert!) “the most important C++ feature”
[Josuttis23]; and Wiktor Klonowski told a sad tale of time wasted
debugging a .NET program that kept running out of ports, a fate which
could have been avoided by the use of dtors [Klonowski23].

At the same conference, as well as at the recent C++ On Sea, numerous
speakers talked about C++ and safety, a subject that’s been very much in
the news recently [NSA22], with C++ predictably receiving a lot of flak
for the ease with which one can write code containing buffer overflows,
memory leaks, and of course a rich and varied choice of ways to introduce
undefined behaviour (UB).

License to Kill
In its favour, though, C++ also provides at least one way in which we
can improve safety, and reliability, greatly, by use of the powerful RAII
(Resource Acquisition is Initialisation) idiom: taking ownership of a
resource in the ctor, then releasing it in the dtor.

If we ensure that all of our program’s resources are managed via RAII-
based classes, it becomes fairly straightforward to avoid resource leaks
[Core23]. Memory is freed automatically, mutexes unlocked, threads
joined, database connections released, files and sockets closed, and so on.

Furthermore, this approach makes it much easier to write code which
is exception-safe, because RAII-based resource management classes can
ensure that every newly-acquired resource is released if a scope is exited
because of a thrown exception.

In many cases we don’t even need to write the RAII code ourselves:

	� Memory can be owned via a std::shared_ptr or
std::unique_ptr.

	� Mutex locks can be managed by std::lock_guard and its
variants.

	� A std::packaged_task or C++20 std::jthread can often
eliminate the need to write a custom thread guard class, as in
[Williams19].

Of course, all of this works because the C++ language promises us that
the destructor will be called exactly once, when the lifetime of an object
ends.

To review, this happens:

	� at the end of a full expression, for temporary objects,

	� at the end of a scope, for automatic (stack-based) objects, either
normally or when the stack is unwound due to an exception,

	� on thread exit, for thread-local objects,

	� on program exit, for objects with static storage duration[1], or

	� when the dtor is called directly, by using a delete expression or
via a direct call when using placement new, or via an allocator’s
destroy() function. (In most cases, though, direct calls should be
reserved for RAII classes and library code.)

So, job done; our resource management headaches are solved. What can
possibly go wrong?

no time to Die
Unfortunately, destructors are not always called exactly once.

First, let’s look at some situations in which an object’s dtor may not be
called at all.

Sometimes this may be due to factors which are entirely beyond our
control, causing our program to terminate without any warning or
recourse:

	� Power failures and hardware faults can put a stop to things.

	� Finite resources such as memory can become exhausted, even if we
are managing them correctly.

	� In a POSIX-like environment1, an uncaught signal may terminate
our process immediately. SIGKILL(-9), in particular, cannot be
caught.

	� The last two may occur together – as when Linux decides that the
system is dangerously low on memory and its out-of-memory killer
starts getting rid of particularly greedy processes.

In other cases, it may be due to a software bug:

	� When not using RAII, it’s easy to forget to delete an object.

	� Even if a resource manager such as std::shared_ptr is used, it
is possible to create two or more objects which hold shared pointers
to each other, creating a cyclic graph which prevents any of the
objects from being destroyed automatically.

	� An uncaught exception will cause a call to std::terminate()
and, by default, to std::abort(). (More on that later.)

1 For this article I’m assuming a POSIX-like environment, simply because
that is what I know. Windows developers should have little difficulty
finding equivalents in their own world.

Live and Let Die
Resource lifetime management can be problematic.
Martin Janzen reminds us how important destructors
are and when to be mindful of their limitations.

Martin Janzen has enjoyed writing code for hire since before the
IBM PC or Apple][; and C++ since, well, ‘Nevermind’. After early
adventures in telecomms and digital TV, he’s ended up in the City of
London writing financial software, as one does. Generally reclusive,
but might be reached at overload.to.mj257@0sg.net

MArtIn JAnzEn FEAturE

October 2023 | Overload | 11

	� UB. As the name suggests, pretty much anything can happen next.

Then, we have the halting problem.

No, not that one [Turing37]. I’m concerned here with the way in which
we exit from a C++ program.

For many programs, such as command-line utilities, this is obvious:
simply exit from the main() function when finished, either by returning
an exit code or just falling off the end.

However, other programs are meant to run for indeterminate periods of
time. Software with a graphical user interface is normally started by its
user, and runs until asked to quit. Server-based software, from system
daemons to web servers to trading systems, is usually started and stopped
by a controller such as init or systemd, or by some sort of task manager or
framework. For these cases, the C++ Standard Library provides a number
of functions that will stop the current process, with varying degrees of
speed and grace.

The first one which comes to mind will likely be std::exit(). It
sounds like just the thing, doesn’t it? But any C++ programmer should
not be surprised to find that it’s not that simple.

This came to my attention in a recent conversation with a colleague
[McGuiness23] who was unhappy about the presence of a std::exit()
call in a code base he was reviewing. When asked why, he explained that
while this would call the destructors for static and thread-local objects, it
would not call the dtors for automatic variables. This sounded surprising
to me, but after a bit of digging on cppreference.com and in the C++
standard, I found that this is in fact the case.

But why would std::exit() ignore the dtors for automatic variables?
It turns out that, for a normal exit in which the program returns from
main(), there won’t be any. Returning from the main() function has the
effect of ending its scope, causing objects with automatic storage duration
to be destroyed. This is followed by an implicit call to std::exit(),
which destroys the remaining static objects and terminates the program.

So, what happens if std::exit() is called elsewhere in the program?
Does it matter that some automatic objects’ dtors may not called on exit?

Often it does not. If the program is running under any of the usual
operating systems, the OS will reclaim memory used by the process, close
files and sockets automatically, and so on. If functions higher up in the
call stack have existing automatic variables which own these resources,
the fact that their dtors are not called may not make any difference at all.

However, it is dangerous to assume that this is the case – or that it will
remain so in the future. If the program in question is large enough and
complex enough, and if it has even a small team of developers all making
changes to it, we are leaving ourselves open to some very subtle and
intermittent bugs.

Most obviously, if the program has acquired resources which are not
cleaned up automatically by the operating system – think of temporary
files, System V IPC structures, GUI objects, database sessions, hardware

devices, open orders, or worse – then this can cause a resource leak which
is extremely hard to track down, especially if we believe that we have
cleverly ruled out this possibility by wrapping our resource with a nice
RAII manager.

Also, most of us will have run into shutdown errors, in which a program
works perfectly well until it is time to stop, but then comes to an
undignified end, perhaps leaving behind a corefile or a set of disturbing
log messages. Often this is caused by code which expects that objects
will be destroyed in a particular order, and thus it is safe for one object’s
dtor to refer to another object that is still presumed to exist. (Data
structures representing complex graphs are good candidates for this;
ordering of data members also can be a culprit.) If we have a dependency
graph containing a mixture of objects with automatic and static storage
duration, then std::exit() may alter the usual destruction order, with
unfortunate results.

What can we do about all this? The C++ standard library does offer a
number of other exit functions; Table 1 (overleaf) is a summary of
information from cppreference.com.

Looking at the ‘auto’ column, it’s clear that none of these functions will
cause the stack to be unwound and dtors for objects with automatic
storage duration to be executed.

Therefore, the only way to ensure a clean exit is to not call std::exit()
and its friends at all, but to ensure that the program always returns from
main().

This may seem impractical in a complex program in which the decision
to exit is made far down the call stack. However, if the program is single-
threaded then a simple solution is to throw an exception that propagates
all the way back to main(), where it is caught and converted to a return.
We might choose to throw an exception type that is not derived from
std::exception in order to avoid inadvertent catches on the way
up, but to still allow catch/rethrow by objects which must do something
specific during shutdown.

In a multi-threaded program this is trickier. A thread which throws an
uncaught exception will terminate the entire program – and the default
std::terminate_handler() calls std::abort(), which doesn’t
call any dtors at all. A different approach is required, possibly using
std::packaged_task and std::future to return the exception to
the main thread, as well as some means of stopping and joining other
running threads before returning from main(). The details are well
outside the scope of this article, but see [Williams19], as well as later
C++20/23 changes such as std::jthread and std::stop_token.

Last but not least, consider that where external resources are involved,
when the program is restarted it may be wise to ensure that those resources
are in fact in a known and useable state; that they have not been left in a
bad state by an earlier unclean exit. This is highly application-dependent,
and may be much easier said than done.

most of us will have run into shutdown
errors, in which a program works

perfectly well until it is time to stop, but
then comes to an undignified end

http://cppreference.com
http://cppreference.com

Martin JanzenFeature

12 | Overload | October 2023

Die another Day
As if all of that wasn’t bad enough, let’s consider a number of situations
in which a program can attempt to destroy an object more than once:

	� Calling delete with a pointer to an object that was not created
by an earlier call to new (generally caused by calling delete twice
with the same pointer value, with no intervening new) is UB; but in
practice it’s likely to take the form of a second call to an already-
destroyed object’s dtor.

	� A similar duplicate call to delete can occur if two or more instances
of a std::shared_ptr are created, all of which point to the same
object, because the separate std::shared_ptr instances have
distinct reference counts.

	� A duplicate dtor call may also occur due to an error in the move
ctor or move assignment operator of a resource manager class, if
the pointer (or other resource handle) in the moved-from instance
isn’t set to null, or otherwise made to give up ownership.

	� The same error can occur in a copy ctor or copy assignment
operator – though [Müller19] points out that a resource manager
class should be move-only, and so these functions arguably should
have been deleted in the first place.

	� A dtor may be called explicitly, with p->~T(), which is fine when
destroying an object created via placement new – but not if a bug
causes this to happen twice for the same pointer value.

	� As usual, any UB could conceivably manifest itself as a duplicate
dtor call.

Fortunately, these are all software errors, and should therefore be
preventable, or at least debuggable if they do occur.

A duplicate delete used to be a very hard problem to track down. If
you were lucky, the program would crash immediately and leave a nice
corefile to help with debugging. If not, the symptoms might not appear
until much later, when there would be almost no chance of spotting the
original error.

Today, though, we are fortunate to have lots of help. Most C++ compilers
now provide sanitizers such as ASAN and UBSAN which detect most
such errors, and produce very detailed reports showing where the
duplicate dtor call occurred, where the object was initially created, and
where it was first deleted. There’s no excuse for not taking advantage of
these wonderful tools.

Static code analyzers are becoming very smart as well, though I’m not
yet aware of one which can spot this sort of error at compile time. (I’d be
delighted to be corrected on that.)

You Only Live twice
Finally, I’d like to point out one other scenario in which our dtors can
surprise us by being called more than once.

exit via:
Dtor called for object with storage duration registered functions called

auto thread_local static atexit at_quick_exit
return from main() Y Y Y Y N

std::exit() N Y Y Y N

std::_Exit() N N N N N

std::quick_exit() N N N N Y

std::terminate() N N N N N

std::abort() N N N N N

gcc __builtin_exit() N Y Y Y N

gcc __builtin_trap() N N N N N

Note 1. The last two columns refer to the lists of functions registered
using std::atexit() and std::at_quick_exit(), which will
be executed during processing of std::exit() and std::quick_
exit(), respectively.

Note 2. The std::abort() function (which is called by the
default handler for std::terminate()) may write a corefile if the
environment allows it.

Note 3. On POSIX-like systems it is also possible to terminate a C++
program by calling C library functions such as exit() and abort().
In some implementations, it turns out that these exhibit the same
behaviour as std::exit() and std::abort() – including dtor
calls, somewhat surprisingly. However, since they are not part of the
C++ Standard Library it would be unwise to count on any of this.

Note 4. For sake of comparison, the last two rows show the behaviour
of two gcc compiler intrinsics.

table 1

a duplicate delete used to be a very hard
problem to track down. if you were lucky, the
program would crash immediately and leave a
nice corefile to help with debugging

MArtIn JAnzEn FEAturE

October 2023 | Overload | 13

In a POSIX-like environment, a process can call fork() to create a new
copy of itself, resulting in a running parent and child process. The child
process inherits a copy of the parent’s memory space, as well as a number
of operating system structures, such as the list of open file descriptors.

This can be used to implement concurrent processing – though today
other mechanisms such as threads (or, preferably, higher-level structures
based on threads) and parallel algorithms offer better ways to achieve
concurrency.

More commonly, the fork() call is used in conjunction with exec() in
order to launch an entirely separate program; perhaps an existing utility
program whose services our parent process wants to use, or an interactive
program which the parent can control via stdin/stdout or another IPC
mechanism.

In this case it’s good practice for the child process to close all file
descriptors (fds) it inherited from the parent, then call exec(). If
successful, exec() overlays the child process image with that of the
new executable, and starts the new program running.

But what if exec() is not successful?

This might happen if the executable which was meant to replace the child
process cannot be not found, or is unavailable due to file permissions or
other restrictions. In this case, both the original parent and child processes
continue to execute.

So, what can the child process do now? It is an exact copy of the parent,
which means that its memory contains copies of the instances of each of
the parent’s objects. If the child process exits normally, via main(), all
dtors for existing objects will be invoked!

If these dtors simply free up allocated memory, that may be all right,
as the memory being freed is a copy of the parent’s memory. If they are
associated with buffered streams, such as stdout, there may be some
confusion as anything in the buffer at the time of the fork() call will
be displayed twice.

However, if any child dtors free resources that exist outside of the
program, this will not end well. Those resources will suddenly become
unavailable to the parent – and when the parent process exits, it will
attempt to free the resources again, with unpredictable consequences.
The only safe thing for the child process to do at this point is to exit, and
to exit in a way which guarantees that absolutely no dtors are invoked
(and no registered atexit() or at_quick_exit() functions either).

Checking the table above, there’s only one function which will do the
job, and that’s std::_Exit(). This calls no dtors at all, nor any of the
registered functions – exactly what we need. The child process simply
disappears, leaving the parent process’s objects intact.

You can try this for yourself, at [Janzen23].

Conclusion
C++ destructors are a powerful tool; one which we tend to take for
granted, both for better and for worse. We should try to make the most
of them, using RAII wherever possible to protect against the sorts of
resource management problems which bedevil so many other languages.

At the same time, we need to be mindful of their limitations – to
understand how they work and how they can fail.

I’ll close with a few recommendations:

	� Always try to exit your programs gracefully; that is, by returning
from main().

	� Avoid trying to exit a process from within application code, and
certainly from within library code.

	� When implementing a fork/exec, always have the child process call
std::_Exit() if exec() should fail.

	� Avoid std::exit() entirely.

references
[Core23] C++ Core Guidelines, “E.6: Use RAII to prevent leaks”,

https://github.com/isocpp/CppCoreGuidelines/blob/master/
CppCoreGuidelines.md#e6-use-raii-to-prevent-leaks

[Janzen23] Compiler Explorer demo, https://godbolt.org/z/YPonvWq7a
[Josuttis23] Nico Josuttis, ACCU 2023 Lightning Talk, “The

Most Important C++ Feature”, https://www.youtube.com/
watch?v=rt3YMOKa0TI

[Klonowski23] Wiktor Klonowski, ACCU 2023 Lightning Talk,
“’Huzzah!’ for destructors in C++”, https://www.youtube.com/
watch?v=0WmriNuQu60

[McGuiness23] Jason McGuiness, private communication.
[Müller19] Jonathan Müller’s blog, 2019-02-26, https://www.foonathan.

net/2019/02/special-member-functions
[NSA22] National Security Agency, Press Release, 2022-11-10,

https://www.nsa.gov/Press-Room/News-Highlights/Article/
Article/3215760/nsa-releases-guidance-on-how-to-protect-against-
software-memory-safety-issues

[Stroustrup19] Lex Fridman Podcast, 2019-11-07, https://www.youtube.
com/watch?v=LlZWqkCMdfk

[Turing37] Alan Turing, “On Computable Numbers, With an Application
to the Entscheidungsproblem”, 1937, https://turingarchive.kings.
cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-12

[Williams19] Anthony Williams, C++ Concurrency in Action, Second
Edition, Manning Publications, 2019.

Credits / Apologies
All movie titles are trademarks of EON Productions Limited, and are
used for educational purposes only, under the ‘fair dealing’ exceptions to
UK copyright law.

C++ destructors are a powerful tool; one which
we tend to take for granted, both for better and

for worse. We should try to make the most of
them, using rAII wherever possible

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#e6-use-raii-to-prevent-leaks
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#e6-use-raii-to-prevent-leaks
https://godbolt.org/z/YPonvWq7a
https://www.youtube.com/watch?v=rt3YMOKa0TI
https://www.youtube.com/watch?v=rt3YMOKa0TI
https://www.youtube.com/watch?v=0WmriNuQu60
https://www.youtube.com/watch?v=0WmriNuQu60
https://www.foonathan.net/2019/02/special-member-functions
https://www.foonathan.net/2019/02/special-member-functions
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-protect-against-software-memory-safety-issues
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-protect-against-software-memory-safety-issues
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-protect-against-software-memory-safety-issues
https://www.youtube.com/watch?v=LlZWqkCMdfk
https://www.youtube.com/watch?v=LlZWqkCMdfk
https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-12
https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-12

stEvE LOvEFEAturE

14 | Overload | October 2023

C# v12 Primary Constructors
C# v12.0, part of .NET 8, introduces a feature called
Primary Constructors. Steve Love investigates how
they fit into the language ecosystem.

Primary constructors are one of those features introduced to C# whose
purpose is to simplify class and struct definitions by reducing the
amount of code that needs to be written. However, they also have

some potential for introducing confusion. In this article we’ll look at the
essentials of using primary constructors, but also investigate how they
compare with other established C# features, and some recommendations
for introducing them in C# code.

the primary constructor
The idea behind primary constructors is simple: many, perhaps most
constructors written for classes and structs have one purpose, which is to
initialize fields or properties of the class with values copied from
constructor parameters. Primary constructors remove much of the syntax
of doing so. Listing 1 shows a bare-bones example of a simple Address
class defined using the primary constructor syntax.

The Address class doesn’t have a normal constructor method – a
method with the same name as the type that optionally takes parameters.
Instead, the Address type declaration has parameters named property
and postCode. Beginning with C# v12.0, classes and structs can use the
primary constructor syntax and the underlying mechanics are identical.

The Address class has two expression-bodied [MS-1] properties which
use the parameter variables introduced in the primary constructor. The
class in Listing 1 is almost equivalent to the class definition in Listing 2.

While the classes in both Listings 1 and 2 are functionally equivalent,
there are some subtle differences. For instance, the constructor parameters
of the class in Listing 2 are only visible within the constructor body. In

the version of Address with a primary constructor, the property
and postCode variables are in scope for all the member methods and
properties of Address, and within any user-defined constructors we
write.

If we add any of our own constructors, they must invoke the implicitly
defined primary constructor using the this(…) syntax, showing in
Listing 3. This ensures the parameter variables are always definitely
assigned; failing to invoke the primary constructor results in a compiler
error. Listing 3 shows an example where a user-defined constructor taking
a value tuple [MS-2] forwards to the primary constructor.

The other thing to note about a primary constructor is that it’s always
public. The user-defined constructor in Listing 2 can be made private, but
a primary constructor cannot.

The primary constructor syntax is superficially similar to positional
records [MS-3], introduced in C# v9.0, but records (as well as record
structs in C# v10.0) differ from classes that have primary constructors in
a number of important ways.

Positional records and record structs
As it stands, the Address class could easily be implemented as a
positional record:
 public sealed record Address(string Property,
 string PostCode);

The most obvious difference between the Address record and the class
with a primary constructor is that the record version has no explicit
methods or properties, resulting in a type definition that doesn’t have
a body. The compiler generates read only properties for the record
type, using the parameter names given in the positional parameters of
the primary constructor. Those properties are initialized by the parameter
values according to the arguments passed to the constructor when an
Address record instance is created.

Listing 4 (overleaf) demonstrates how the parameters in a record’s primary
constructor translate to both the property names and the constructor
parameter names, emphasized here by using named arguments in the
constructor call.

Properties are not generated by the compiler for class or struct types using
a primary constructor – we have to define them ourselves.

public sealed class Address(string property,
 string postCode)
{
 public string Property => property;
 public string PostCode => postCode;
}

Listing 1

public sealed class Address
{
 public Address(string property, string
postCode)
 {
 this.Property = property;
 this.PostCode = postCode;
 }

 public string Property { get; }
 public string PostCode { get; }
}

Listing 2

Steve Love is a seasoned developer in several programming
languages, and has strong opinions about the definition of ‘low code’.
He recently wrote a book about C#, and is very pleased it’s now
finally done. He can be reached at steve@arventech.com

public sealed class Address(string property,
 string postCode)
{
 public Address((string property,
 string postCode) address)
 : this(address.property, address.postCode)
 {
 }
 public string Property => property;
 public string PostCode => postCode;
}

Listing 3

stEvE LOvE FEAturE

October 2023 | Overload | 15

Equality semantics
A much more important but less visible difference between a record and
class with a primary constructor is that for the purposes of equality
comparisons, a record type has value-like semantics as demonstrated in
Listing 5.

Where Address is a record type, this test passes. Where Address is a
class – with or without a primary constructor – this test fails unless the
class overrides the Equals method and operator== to give the desired
behaviour. Classes, by default, have reference semantics so two variables
compare equal only when they refer to the same instance in memory. The
compiler generates the implementation required for value equality in a
record type, but not in a class.

In keeping with the good practices for defining value-like equality
behaviour for a type, the compiler also generates an implementation of
GetHashCode for a record to ensure that two instances that compare
equal according to Equals will always have the same hash code. Record
types can usually be safely used as keys in collections like Dictionary
and HashSet provided the instances are immutable, and caveats
regarding floating-point equality are carefully considered where they’re
appropriate.

The compiler doesn’t generate a custom implementation for either of
the Equals or GetHashCode methods for a class. In the absence of an
explicit override for these methods, classes inherit the default reference-
based behaviour from the object base class. This doesn’t preclude
instances being used as keys in hashing collections, but does require a
bit of extra care.

Primary constructors and structs
Struct types can have a primary constructor in exactly the same way as
classes, as shown in Listing 6.

This Address struct is identical to the Address class in Listing 1, aside
from the struct keyword and the language-defined differences between
structs and classes. As with a class, the compiler generates a constructor
method with parameters matching the primary constructor, and the
parameter values are in scope for the whole struct definition.

The differences between structs and classes do play a part here because
all struct types inherit the Equals and GetHashCode methods from the
System.ValueType class, giving them value semantics for equality.
However, that inherited implementation may not be optimal, relying as it
does on reflection in most cases (certainly for Address).

As with a class, the presence of a primary constructor on a struct definition
doesn’t mean the compiler provides any special implementation of
equality comparisons or property definitions as it does for a record or
record struct. In particular, the compiler provides both operator== and
operator!= for records and record structs, but does not do so for a
struct, whether or not it has a primary constructor. Therefore, the test
shown in Listing 5 using the Address struct in Listing 6 won’t compile,
owing to the use of == to compare the sweeney and newCafe variables.

In any case, since C# v10.0, in most cases where a value type is needed in
a program, a record struct is a better choice than a plain struct.

Properties vs. parameters
One final difference between class or struct primary constructors
and the positional type arguments for records or record structs is how
the identifiers are used within the body of the type. To demonstrate,
consider the record in Listing 7, which has an instance method that
uses the positional parameters as arguments to call an imaginary
AddressLookupService.Resolve method.

Recall that the compiler uses the positional parameters of a record type to
generate properties with the names of the parameters; when the Resolve
method is called, the get-accessor for each property is invoked to obtain
the value.

The parameters of primary constructors in classes and structs are
different: the compiler does not generate properties, but we can still use
the parameters in a similar member method, as in Listing 8 (overleaf).

Because the property and postCode parameter variables are used
in the body of the class, the compiler stores them in hidden fields, and

var sweeney = new Address("186", "EC4A 2HR");
var newCafe = new Address("186", "EC4A 2HR");

Assert.That(sweeney.Equals(newCafe), Is.True);
Assert.That(sweeney == newCafe, Is.True);

Listing 5

var sweeney = new Address(Property: "186",
 PostCode: "EC4A 2HR");

Assert.That(sweeney.Property, Is.EqualTo("186"));
Assert.That(sweeney.PostCode,
 Is.EqualTo("EC4A 2HR"));

Listing 4

public readonly struct Address(string property,
 string postCode)
{
 public string Property => property;
 public string PostCode => postCode;
}

Listing 6

public sealed record Address(string Property,
 string PostCode)
{
 public string GetFullAddress()
 {
 return AddressLookupService.Resolve(Property,
 PostCode);
 }
}

Listing 7

Classes, by default, have reference semantics
so two variables compare equal only when they

refer to the same instance in memory.

stEvE LOvEFEAturE

16 | Overload | October 2023

directly accesses the field values to call the Resolve method. This may
represent a very small performance gain over the record equivalent:
accessing a property involves a method call. Accessing a field value
directly is always optimally efficient.

This might matter if you’re especially sensitive to performance. In
practice, at run time the method call will very likely be inlined, but there’s
no guarantee that it will be.

The observant reader will have noticed the difference in casing between
the record positional parameters and the class primary constructor
parameters. The compiler generates property names from the positional
parameters of a record, and C# property names – by convention [MS-4]
– use PascalCase. The identifiers in a primary constructor are parameter
variables which by convention use camelCase.

Conclusion
In short, primary constructors for classes and structs offer a concise and
convenient way to define how instances of those types will usually be
created. Although the benefits are hardly dramatic, a primary constructor is
undoubtedly more compact than the equivalent full constructor definition.
However, the primary constructor syntax is similar enough to positional
records that some care is probably needed, especially when reading code

using either syntax. Mistaking a primary constructor on a class for a
positional record could easily lead to code being misunderstood, or even
the introduction of hard-to-find errors. Records are semantically different
from classes, whether or not those classes have primary constructors.

When a class does not require value-like behaviour for equality, and
needs a custom constructor only to initialize fields or properties using the
parameter variables, then a primary constructor may provide some, albeit
minor, benefit. If the constructor needs to do more than simply assigning
values to fields and properties, then a fully-defined constructor is required
in any case.

If a class needs an overridden Equals method to compare fields or
properties for value-like equality behaviour, then a record or record struct
is almost always preferable, although using the positional syntax for them
isn’t always the best approach. �

references
[MS-1] ‘C# programming guide: Expression-bodied members’,

available at: https://learn.microsoft.com/en-us/dotnet/csharp/
programming-guide/statements-expressions-operators/expression-
bodied-members

[MS-2] ‘C# reference: Tuple types’, available at:
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/
builtin-types/value-tuples

[MS-3] ‘Positional syntax for property definition’ in ‘C# reference:
Records’, availble at: https://learn.microsoft.com/en-us/dotnet/
csharp/language-reference/builtin-types/record#positional-syntax-
for-property-definition

[MS-4] ‘C# identifier naming rules and conventions’, available at:
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/
coding-style/identifier-names

public sealed class Address(string property,
 string postCode)
{
 public string GetFullAddress()
 {
 return AddressLookupService.Resolve(property,
 postCode);
 }
}

Listing 8

Mistaking a primary constructor on a class
for a positional record could easily lead
to code being misunderstood, or even the
introduction of hard-to-find errors

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/expression-bodied-members
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/expression-bodied-members
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/expression-bodied-members
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/value-tuples
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/value-tuples
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/record#positional-syntax-for-property-definition
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/record#positional-syntax-for-property-definition
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/record#positional-syntax-for-property-definition
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/identifier-names
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/identifier-names

IAn BruntLEtt FEAturE

October 2023 | Overload | 17

Drive Musings on Linux
Dealing with large files can be hard.
Ian Bruntlett muses on various
approaches that can help on Linux.

Motivation for this article

Files are important, which is why we entrust them to
computer systems. For backups, I use a personal shell
script which creates .tar.gz files which then get backed up

to external drive [Bruntlett16, Bruntlett21]. For a long time
that worked. Until one of my .tar.gz files exceeded the 4GB
barrier. Attempting to copy big files eventually resulted in an
error message complaining the file was too big for the file
system. So, I started using ext4 instead.

That works except, if you distro-hop (I don’t) – ext4 drives store user and
group metadata on the filesystem, leading to complications if you save
data as one user, with, say a UID (User ID) of 1000 and try to access it
later on a different user account, say with a UID of 1001.

As of the 5.4 release (November 2019) of the Linux Kernel, native exFAT
support is built in. This filesystem does not store user or group metadata
so UID and permission conflicts don’t arise. After much experimentation,
I figure that exfat is the way to go with USB flash or hard drives.

More about storage using ext4
I use Linux and my files are currently all stored on drives formatted to
the ‘ext4’ format. What is ext4? Well, to quote Wikipedia, “ext4 (fourth
extended filesystem) is a journaling file system for Linux”. It works. That
was good enough for me.

Until you try to access the saved data from a different user account.
From what I have seen on my systems, the conflict tends to be that on
the originating system, you have full read/write/execute permissions
whereas if you try to access the data using the ‘other’ user permissions,
you only have read/execute permissions. As always, with Linux, ‘it
depends’ on how your system is set up and what your current default
access permissions have been set to using the umask command – a shell
built-in command, so you’ll need to use the command help umask for
more information.

Well, ext4 on Linux systems is usually configured to reserve a certain
percentage of the drive for privileged processes – typically 5%. This is
usually helpful if you are mounting your root filesystem on the partition.
However, if you are strange enough to use ext4 for things like external
drives (such as a USB hard drives), you invariably find that you run out of
space quicker. This is because an ext4 filesystem has various parameters
stored away. The one we are interested in is ‘Reserved block count’. If
it is non-zero, it indicates the number of sectors exclusively available to
privileged processes. So if you are using an ext4 formatted external drive,
you have three options:

1. Just ignore the fact you aren’t using the full drive.

2. Use sudo to copy files to the drive.

3. Set the Reserved Block Count to 0 using the tune2fs command.

Linux provides a filesystem that is stored across one or more drives. That
filesystem provides a way for programs to access stored data – such as

/home without having to think about which device a file or directory is
on – or even which partition that a file or directory is on.

How do you find out where a file or directory is physically stored? You use
the df command which ‘reports file system disk space usage’. Cryptic,
no? To get an overview of your filesystem storage, you just type in df at
the command line and you might see something like Figure 1.

The above output is partially interesting. I ignore the entries for tmpfs,
which are ram disks used by Linux itself.

The interesting stuff begins with /dev – an abbreviation of ‘device’.
The critical stuff is the / (root) partition. Interestingly enough, you can
place (‘mount’) parts of the Linux file system over multiple drives and
partitions. So, if you wanted to, you could mount the root (/) filesystem
on one drive and the home files of all users (/home) on a different drive.
Note that the ‘Type’ column is important – this article is only relevant to
filesystems with a type of ext4 (and presumably other earlier versions of
ext as well – this hasn’t been tested on them).

To view the Reserved Block Count using the tune2fs command (default
is 5%), assuming that the filesystem is mounted to /dev/sdb1
 $ sudo tune2fs -l /dev/sdb1 | grep Reserved
 Reserved block count: 97766
 Reserved GDT blocks: 477
 Reserved blocks uid: 0 (user root)
 Reserved blocks gid: 0 (group root)

To set the Reserved Block Count to 0, use the tune2fs command again
george@lucas:~$ sudo tune2fs -m 0 /dev/sdb1
tune2fs 1.46.5 (30-Dec-2021)
Setting reserved blocks percentage to 0% (0 blocks)

So, now we can use all of an ext4 filesystem’s space for our files. How do
we keep them safe? By backing up, to a memory stick. How do we keep
our memory sticks synchronised with the contents of our main drive(s)?

Keeping backup drives up to date
What if you want to quickly check if a main drive directory is reasonably
similar with a copy on an external drive? I wrote a shell script,
irb-dirstat (in Listing 1, at the end of the article) which, given a

Ian Bruntlett Ian is a keen reader of software development books.
He has promised himself a long stint at dealing with C++, once he
has got to grips with Git.

$ df -Th
Filesystem Type Size Used Avail Use% Mounted on
tmpfs tmpfs 784M 2.1M 782M 1% /run
/dev/sda5 ext4 909G 370G 493G 43% /
tmpfs tmpfs 3.9G 0 3.9G 0% /dev/shm
tmpfs tmpfs 5.0M 4.0K 5.0M 1% /run/lock
tmpfs tmpfs 784M 148K 784M 1% /run/user/1000
/dev/sdb1 ext4 14G 1.7G 12G 13% /media/ian/HERMES

Figure 1

IAn BruntLEttFEAturE

18 | Overload | October 2023

directory will count the number of bytes, files, and directories in a
directory (including its children directories).
Here is the help / usage message for the script:
 $./irb-dirstat --help
 irb-dirstat: usage irb-dirstat directory1
 [directory2 etc]
 Used to check actual number of bytes, files, and
 directories in a directory

 Formatting output options for bytes used in files
 -b or -B output number of bytes (this is the
 default)
 -k or -K output number of KiB
 -m or -M output number of MiB
 -g or -G output number of GiB
 -t or -T output number of TiB
 -e or -E output number of EiB
 --commas output byte count with commas
 --no-commas output byte count without commas

 --help display this message

The above information should be fairly obvious. It is useful when doing
rough comparisons of a couple of sub-directories. Here is a sample of its
output…
 ~$./irb-dirstat --commas ~/isos
 /home/ian/isos
 Byte count 76,884,580,097
 Dir count 71
 File count 148

To take advantage of globbing, irb-dirstat can handle one or more
directory names as arguments. This is particularly useful when dealing
with multiple directories or to compare a source directory with a
destination directory.

However, irb-dirstat is best used for rough but quick comparison
of directory trees. GNOME’s meld command will do a thorough check
of two subdirectories (it does other things as well). Unfortunately, it is
necessarily slow and sometimes crashes with an error message so it isn’t
something I rely on alone.

The diff command can check two directories recursively, if you pass it
two directories and the -r flag. I haven’t managed to crash this command
and its output is very helpful. I tend to use irb-dirstat to quickly
ensure the drives are reasonably synchronised and finally use the diff
command for a more thorough, byte by byte comparison. �

references
[Bruntlett16] Ian Bruntlett ‘Stufftar’ in Overload 132, April

2016, available at https://accu.org/journals/overload/24/132/
bruntlett_2226/

[Bruntlett21] Ian Bruntlett ‘Stufftar Revisited’ in Overload 165, October
2021, available at https://accu.org/journals/overload/29/165/
bruntlett/

#!/bin/bash

default values, to be overridden by command
line options
divisor_scaling="Byte"
divisor=1
use_commas=0

function report_bytes_used_in_files()
{
 echo -n "$divisor_scaling count "
 byte_count=$(count_bytes_used_in_files "$1")
 if [$use_commas -eq "1"] ; then
 printf "%'f\n" "$byte_count"
 else
 echo "$byte_count"
 fi
}

function count_bytes_used_in_files()
{
 # this command inspired by
 # https://stackoverflow.com
 find "$1/"* -type f -print0 | \
 xargs -0 stat --format=%s | \
 awk -v divisor="$divisor" \
 '{s+=$1} END {print s/divisor}'
}

Listing 1

function report_no_of_directories()
{
 echo -n "Dir count "
 count_no_of_directories "$1"
}

function count_no_of_directories()
{
 find "$1"/* -type d | wc -l
}

function report_no_of_files()
{
 echo -n "File count "
 count_no_of_files "$1"
}

function count_no_of_files()
{
 find "$1"/* -type f | wc -l
}

return value 0=files present,
1=error or no files present
function are_there_any_files()
{
 find "$1"/* -maxdepth 1 -type f \
 -o -type d -iname "*" 1> /dev/null
}

Listing 1 (cont’d)

ext4 on Linux systems is usually configured
to reserve a certain percentage of the drive

for privileged processes – typically 5%

https://accu.org/journals/overload/24/132/bruntlett_2226/
https://accu.org/journals/overload/24/132/bruntlett_2226/
https://accu.org/journals/overload/29/165/bruntlett/
https://accu.org/journals/overload/29/165/bruntlett/

IAn BruntLEtt FEAturE

October 2023 | Overload | 19

function do_dirstat()
{
 if [$# -ne 1] ; then
 echo "do_dirstat insufficient no of " \
 "parameters ($#)." >&2;
 return 1;
 fi;

 if ! are_there_any_files "$1" ; then
 # echo NO FILES
 echo "$1"
 echo "$divisor_scaling" count 0
 echo "Dir count 0"
 echo "File count 0"
 echo
 return 1 # is a useful value?
 fi

 if [! -d "$1"] ; then
 echo "Parameter $1 is not a directory" >&2;
 return 1;
 fi;

 echo "$1"
 report_bytes_used_in_files "$1"
 report_no_of_directories "$1"
 report_no_of_files "$1"
 echo
}

function display_help()
{
 cat <<END_OF_HELP
irb-dirstat: usage irb-dirstat directory1
[directory2 etc]
Used to check actual number of bytes, files, and
directories in a directory

Listing 1 (cont’d)

Formatting output options for bytes used in files
-b or -B output number of bytes (this is the
default)
-k or -K output number of KiB
-m or -M output number of MiB
-g or -G output number of GiB
-t or -T output number of TiB
-e or -E output number of EiB
--commas output byte count with commas
--no-commas output byte count without commas

--help display this message
END_OF_HELP
}

if [$# -eq 0] ; then
 display_help
 exit
fi

for arg in "$@"
do
 case "$arg" in
 -b|-B) divisor_scaling="Byte";
 divisor=1 ;;
 -k|-K) divisor_scaling="KiB ";
 divisor=1024 ;;
 -m|-M) divisor_scaling="MiB ";
 divisor=1048576 ;;
 -g|-G) divisor_scaling="GiB ";
 divisor=$((2**30)) ;;
 -t|-T) divisor_scaling="TiB ";
 divisor=$((2**40)) ;;
 -e|-E) divisor_scaling="EiB ";
 divisor=$((2**50)) ;;
 --help) display_help ;;
 --commas) use_commas=1;;
 --no-commas) use_commas=0;;
 *) do_dirstat "$arg";;
 esac
done

Listing 1 (cont’d)
The whole of irb-dirstat can be found online at https://github.com/
ian-bruntlett/studies

https://github.com/ian-bruntlett/studies
https://github.com/ian-bruntlett/studies

ChrIs OLDWOODFEAturE

20 | Overload | October 2023

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He has resumed
commentating on the Godmanchester duck race but continues to be easily distracted by messages to gort@cix.co.uk or
@chrisoldwood

Afterwood
What’s in a name? Chris Oldwood considers
metaphors as inspiration for naming in code.

the second most popular joke in programming reminds us that naming
is hard. (In a Programming Jokes Top 10, this would be the other
one.) That hasn’t stopped some people apparently attempting to

overcome this problem by applying a ‘formula’, which generally involves
concatenating various Computer Science and business terms together and
finally appending one of Manager, Service, or Provider to give it extra
gravitas. The problem appears to be particularly acute in the enterprise
world of Java and C#, where Design Pattern Bingo is a popular pastime.

What triggered this latest Afterwood was working in a C# codebase
where there had been a need to write tests for code that invoked
DateTime.Now(), which is a static method that returns the current
date and time. Doing a spot of software archaeology, I noticed there had
been an initial attempt to work around the non-deterministic nature of
this method by doing an assertion in the tests with a small tolerance, but
the woefully underpowered CI server put paid to that as the tolerance was
widened every time the tests took longer than usual to run.

The solution had been to mock out the method call entirely and return
a fixed value in the tests, and the real date and time in production, by
introducing a suitable interface and pair of concrete implementations.
Naturally, if you’re looking to name an interface for such an abstraction
you’re probably thinking, ‘What do I call an interface that provides a date
and time value?’ and so you go with the first thing that pops into your
head – IDateTimeProvider. Wait, that’s not right…

I don’t know for sure how this name really came about but the seemingly
robotic approach to so many names in the codebase suggested they
were driven by terms from the solution domain instead of the problem
domain or, say, The Real World™. I posited on the team chat that the
IDateTimeProvider abstraction was basically just a ‘clock’, and that
was largely met with approval, so the refactoring went straight in. It also
opened the door for a further discussion about naming, metaphors, and
typing less. (Strunk famously tells us to “omit needless words” which has
the marginal added benefit of less wear and tear on the keyboard.)

The world of software is entirely virtual in nature and therefore we must
rely very heavily on metaphors as a source of inspiration for how we
name stuff. The great thing about the world of horology is that it provides
us with a whole host of physical devices to draw from. ‘Clocks’ and
‘calendars’ allow us to discover the current time and date, ‘stopwatches’
allow us to measure time, and ‘timers’ can be used to notify us when
a period has elapsed. Clocks come in many different shapes and sizes,
and degrees of precision, so if you want to capture that in your naming
scheme you could use ‘wall clock’ for the low-end and a highfalutin’
name like ‘chronometer’ for the high-end.

While the name IDateTimeProvider might on the surface appear to
be sufficient for the task, I argued that it’s too abstract. This also gave the
perfect opportunity to play one of my Programming Quote Top Trump
cards [Oldwood23] from Edsger Dijkstra:

Being abstract is something profoundly different from being vague
… The purpose of abstraction is not to be vague, but to create a
new semantic level in which one can be absolutely precise.

The point of using a metaphor is to allow us to be more precise about
the kind of thing we’re talking about by borrowing from a recognisable
domain. When talking to the business we would expect to use a ‘ubiquitous
language’ and expect the problem domain to provide many of the terms
we use in our code. When it comes to the technical domain, something
which the business will have almost no input on, we are left to our own
devices. This does not absolve us of the responsibility to be clear about
what we mean in the code. If anything, we have to work harder because
it’s not handed to us on a plate. (Pro Tip: always keep a thesaurus on hand
for inspiration [Oldwood15].)

One comment to my suggested renaming was that it didn’t really matter
because although the code said IDateTimeProvider, in their head
they mentally translated that into ‘clock’ anyway. This misses one of
the key points about why we refactor code – to ensure that it always
reflects the best understanding we have of the domain at any given point
in time. If your best mental model is currently a clock, then that’s what it
should be called (for now), don’t make people waste brain cycles second-
guessing what might have been meant.

And it is just a model, and an imperfect one at that. Playing my second
Quote Top Trump card – George Box – we are reminded that “all models
are wrong, some are useful”. In some scenarios, it could be a poor
metaphor because a clock may conjure up a different kind of device,
such as in electronics where the clock is an oscillating signal, more like
a metronome ticking left and right, than a pair of hands slowly turning
around a circle. Fortunately, the same stable that brought us the notion of
a ubiquitous language also helps us resolve our conflict here by applying
a ‘bounded context’ around our codebase so that the interpretation is the
most fitting one for our part of the business instead of encompassing
every potential definition covered by Wikipedia.

Hopefully, the use of the clock metaphor will be timeless, but as we
get older we do need to be aware of anachronisms, such as the nautical
terms I wrote about back in June [Oldwood23]. Once upon a time, Hi-
Fi Separates (where the turntable, tape deck, CD player, amp, etc. were
all distinct devices connected by standard RCA cables) was a common
metaphor for a component-based architecture but that seems to have died
out as headphones (except on public transport) are the only accessory
for the ‘modern Hi-Fi’, aka the phone. And if you’re still thinking of
using a floppy disk for your save icon, I’m afraid that ship sailed a long
time ago! �

references
[Oldwood15] Chris Oldwood, ‘In The Toolbox –

Dictionary & Thesaurus’, CVu, 27(3), July 2015.
[Oldwood23] Chris Oldwood, ‘Afterwood: Quote Top

Trumps’, Overload 175, June 2023.

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

Professional development
World-class conference

Individual membership
Corporate membership

Printed journals
Email discussion groups

Visit accu.org
for details

accu
Professionalism in Programming

	Editorial: Frozen or Buffering?
	Enodo, Divide et Impera
	Live and Let Die
	C# v12 Primary Constructors
	Drive Musings on Linux
	Afterwood

